idnits 2.17.1 draft-ietf-ccamp-rwa-wson-encode-19.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (November 8, 2012) is 4186 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'ITU-G.698.1' is mentioned on line 774, but not defined == Missing Reference: 'ITU-G.698.2' is mentioned on line 776, but not defined == Missing Reference: 'ITU-G.959.1' is mentioned on line 778, but not defined == Missing Reference: 'ITU-G.695.1' is mentioned on line 780, but not defined == Missing Reference: 'ITU-G.695' is mentioned on line 999, but not defined == Unused Reference: 'RFC2578' is defined on line 1406, but no explicit reference was found in the text == Unused Reference: 'G.694.1' is defined on line 1420, but no explicit reference was found in the text == Unused Reference: 'G.694.2' is defined on line 1423, but no explicit reference was found in the text == Unused Reference: 'G.695' is defined on line 1426, but no explicit reference was found in the text == Unused Reference: 'G.959.1' is defined on line 1430, but no explicit reference was found in the text Summary: 0 errors (**), 0 flaws (~~), 11 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group G. Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Y. Lee 4 Expires: May 2013 D. Li 5 Huawei 6 W. Imajuku 7 NTT 9 November 8, 2012 11 Routing and Wavelength Assignment Information Encoding for 12 Wavelength Switched Optical Networks 14 draft-ietf-ccamp-rwa-wson-encode-19.txt 16 Status of this Memo 18 This Internet-Draft is submitted to IETF in full conformance with 19 the provisions of BCP 78 and BCP 79. 21 Internet-Drafts are working documents of the Internet Engineering 22 Task Force (IETF), its areas, and its working groups. Note that 23 other groups may also distribute working documents as Internet- 24 Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six 27 months and may be updated, replaced, or obsoleted by other documents 28 at any time. It is inappropriate to use Internet-Drafts as 29 reference material or to cite them other than as "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed at 35 http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on May 8, 2013. 39 Copyright Notice 41 Copyright (c) 2012 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents 46 (http://trustee.ietf.org/license-info) in effect on the date of 47 publication of this document. Please review these documents 48 carefully, as they describe your rights and restrictions with 49 respect to this document. Code Components extracted from this 50 document must include Simplified BSD License text as described in 51 Section 4.e of the Trust Legal Provisions and are provided without 52 warranty as described in the Simplified BSD License. 54 Abstract 56 A wavelength switched optical network (WSON) requires that certain 57 key information elements are made available to facilitate path 58 computation and the establishment of label switching paths (LSPs). 59 The information model described in "Routing and Wavelength 60 Assignment Information for Wavelength Switched Optical Networks" 61 shows what information is required at specific points in the WSON. 62 Part of the WSON information model contains aspects that may be of 63 general applicability to other technologies, while other parts are 64 fairly specific to WSONs. 66 This document provides efficient, protocol-agnostic encodings for 67 the WSON specific information elements. It is intended that 68 protocol-specific documents will reference this memo to describe how 69 information is carried for specific uses. Such encodings can be used 70 to extend GMPLS signaling and routing protocols. In addition these 71 encodings could be used by other mechanisms to convey this same 72 information to a path computation element (PCE). 74 Conventions used in this document 76 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 77 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 78 document are to be interpreted as described in RFC-2119 [RFC2119]. 80 Table of Contents 82 1. Introduction...................................................4 83 1.1. Revision History..........................................4 84 1.1.1. Changes from 00 draft................................4 85 1.1.2. Changes from 01 draft................................5 86 1.1.3. Changes from 02 draft................................5 87 1.1.4. Changes from 03 draft................................5 88 1.1.5. Changes from 04 draft................................5 89 1.1.6. Changes from 05 draft................................5 90 1.1.7. Changes from 06 draft................................6 91 1.1.8. Changes from 07 draft................................6 92 1.1.9. Changes from 08 draft................................6 93 1.1.10. Changes from 09 draft...............................6 94 1.1.11. Changes from 10 draft...............................6 95 1.1.12. Changes from 11 draft...............................6 96 1.1.13. Changes from 12 draft...............................6 97 1.1.14. Changes from 13 draft...............................7 98 1.1.15. Changes from 14 draft...............................7 99 1.1.16. Changes from 15 draft...............................7 100 1.1.17. Changes from 16 draft...............................7 101 1.1.18. Changes from 17 draft...............................7 102 1.1.19. Changes from 18 draft...............................7 103 2. Terminology....................................................7 104 3. Resources, Blocks, Sets, and the Resource Pool.................8 105 3.1. Resource Block Set Field..................................9 106 4. Resource Pool Accessibility/Availability......................10 107 4.1. Resource Pool Accessibility Sub-TLV......................10 108 4.2. Resource Block Wavelength Constraints Sub-TLV............12 109 4.3. Resource Pool State Sub-TLV..............................14 110 4.4. Block Shared Access Wavelength Availability sub-TLV......15 111 5. Resource Properties Encoding..................................16 112 5.1. Resource Block Information Sub-TLV.......................17 113 5.2. Optical Interface Class List(s) Sub-Sub-TLV..............17 114 5.2.1. Optical Interface Class Format......................18 115 5.2.2. ITU-G.698.1 Application Code Mapping................19 116 5.2.3. ITU-G.698.2 Application Code Mapping................21 117 5.2.4. ITU-G.959.1 Application Code Mapping................22 118 5.2.5. ITU-G.695 Application Code Mapping..................24 119 5.3. Input Client Signal List Sub-Sub-TLV.....................26 120 5.4. Processing Capability List Sub-Sub-TLV...................27 121 5.4.1. Processing Capabilities Field.......................27 122 6. Security Considerations.......................................29 123 7. IANA Considerations...........................................29 124 8. Acknowledgments...............................................29 125 APPENDIX A: Encoding Examples....................................30 126 A.1. Wavelength Converter Accessibility Sub-TLV...............30 127 A.2. Wavelength Conversion Range Sub-TLV......................31 128 A.3. An OEO Switch with DWDM Optics...........................32 129 9. References....................................................35 130 9.1. Normative References.....................................35 131 9.2. Informative References...................................35 132 10. Contributors.................................................37 133 Authors' Addresses...............................................38 134 Intellectual Property Statement..................................39 135 Disclaimer of Validity...........................................40 137 1. Introduction 139 A Wavelength Switched Optical Network (WSON) is a Wavelength 140 Division Multiplexing (WDM) optical network in which switching is 141 performed selectively based on the center wavelength of an optical 142 signal. 144 [RFC6163] describes a framework for Generalized Multiprotocol Label 145 Switching (GMPLS) and Path Computation Element (PCE) control of a 146 WSON. Based on this framework, [WSON-Info] describes an information 147 model that specifies what information is needed at various points in 148 a WSON in order to compute paths and establish Label Switched Paths 149 (LSPs). 151 This document provides efficient encodings of information needed by 152 the routing and wavelength assignment (RWA) process in a WSON. Such 153 encodings can be used to extend GMPLS signaling and routing 154 protocols. In addition these encodings could be used by other 155 mechanisms to convey this same information to a path computation 156 element (PCE). Note that since these encodings are relatively 157 efficient they can provide more accurate analysis of the control 158 plane communications/processing load for WSONs looking to utilize a 159 GMPLS control plane. 161 Note that encodings of information needed by the routing and label 162 assignment process applicable to general networks beyond WSON are 163 addressed in a separate document [Gen-Encode]. This document makes 164 use of the Label Set Field encoding of [Gen-Encode] and refers to it 165 as a Wavelength Set Field. 167 1.1. Revision History 169 1.1.1. Changes from 00 draft 171 Edits to make consistent with update to [RFC6205], i.e., removal of 172 sign bit. 174 Clarification of TBD on connection matrix type and possibly 175 numbering. 177 New sections for wavelength converter pool encoding: Wavelength 178 Converter Set Sub-TLV, Wavelength Converter Accessibility Sub-TLV, 179 Wavelength Conversion Range Sub-TLV, WC Usage State Sub-TLV. 181 Added optional wavelength converter pool TLVs to the composite node 182 TLV. 184 1.1.2. Changes from 01 draft 186 The encoding examples have been moved to an appendix. Classified and 187 corrected information elements as either reusable fields or sub- 188 TLVs. Updated Port Wavelength Restriction sub-TLV. Added available 189 wavelength and shared backup wavelength sub-TLVs. Changed the title 190 and scope of section 6 to recommendations since the higher level 191 TLVs that this encoding will be used in is somewhat protocol 192 specific. 194 1.1.3. Changes from 02 draft 196 Removed inconsistent text concerning link local identifiers and the 197 link set field. 199 Added E bit to the Wavelength Converter Set Field. 201 Added bidirectional connectivity matrix example. Added simple link 202 set example. Edited examples for consistency. 204 1.1.4. Changes from 03 draft 206 Removed encodings for general concepts to [Gen-Encode]. 208 Added in WSON signal compatibility and processing capability 209 information encoding. 211 1.1.5. Changes from 04 draft 213 Added encodings to deal with access to resource blocks via shared 214 fiber. 216 1.1.6. Changes from 05 draft 218 Revised the encoding for the "shared access" indicators to only use 219 one bit each for input and output. 221 1.1.7. Changes from 06 draft 223 Removed section on "WSON Encoding Usage Recommendations" 225 1.1.8. Changes from 07 draft 227 Section 3: Enhanced text to clarify relationship between pools, 228 blocks and resources. Section 3.1, 3.2: Change title to clarify 229 Pool-Block relationship. Section 3.3: clarify block-resource state. 231 Section 4: Deleted reference to previously removed RBNF element. 232 Fixed TLV figures and descriptions for consistent sub-sub-TLV 233 nomenclature. 235 1.1.9. Changes from 08 draft 237 Fixed ordering of fields in second half of sub-TLV example in 238 Appendix A.1. 240 Clarifying edits in section 3 on pools, blocks, and resources. 242 1.1.10. Changes from 09 draft 244 Fixed the "Block Shared Access Wavelength Availability sub-TLV" of 245 section 3.4 to use an "RB set field" rather than a single RB ID. 246 Removed all 1st person idioms. 248 1.1.11. Changes from 10 draft 250 Removed remaining 1st person idioms. Updated IANA section. Update 251 references for newly issued RFCs. 253 1.1.12. Changes from 11 draft 255 Fixed length fields in section 4 to be 16 bits, correcting errors in 256 TLV and field figures. Added a separate section on resources, 257 blocks, sets and the resource pool. Moved definition of the resource 258 block set field to this new section. 260 1.1.13. Changes from 12 draft 262 Replaced all instances of "ingress" with "input" and all instances 263 of "egress" with "output". 265 1.1.14. Changes from 13 draft 267 C bit of Resource Block Set Field is redundant and was removed, 268 i.e., has been returned to "Reserved" block and appendix examples 269 were updated to reflect the change. 271 Enhanced section 4.2 encoding to allow for optionality of input or 272 output wavelength set fields. 274 Clarified that wavelength set fields use the Label Set field 275 encoding from [Gen-Encode]. 277 Enhanced section 5.1 encoding to simplify the Modulation and FEC 278 input and output cases. 280 1.1.15. Changes from 14 draft 282 OIC changes per workgroup request. Removed FEC type and modulation 283 type. Fixed versioning error and return RB identifiers to 32 bits. 285 1.1.16. Changes from 15 draft 287 Edits of OIC related text per CCAMP list email. 289 1.1.17. Changes from 16 draft 291 Added full ITU-T string to 64 bit mapping to text from OIC draft. 293 1.1.18. Changes from 17 draft 295 Action value for Inclusive Range(s) changed to 1 from 2 for the 296 Resource Block Set Field encoding in Section 3.1. 298 Added a list of contributors who provided texts for the Optical 299 Interface Class (OIC) description. 301 1.1.19. Changes from 18 draft 303 Added Section 5.2.5 to include ITU-G.695 Application Code Mapping. 305 2. Terminology 307 CWDM: Coarse Wavelength Division Multiplexing. 309 DWDM: Dense Wavelength Division Multiplexing. 311 FOADM: Fixed Optical Add/Drop Multiplexer. 313 ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port 314 count wavelength selective switching element featuring input and 315 output line side ports as well as add/drop side ports. 317 RWA: Routing and Wavelength Assignment. 319 Wavelength Conversion. The process of converting an information 320 bearing optical signal centered at a given wavelength to one with 321 "equivalent" content centered at a different wavelength. Wavelength 322 conversion can be implemented via an optical-electronic-optical 323 (OEO) process or via a strictly optical process. 325 WDM: Wavelength Division Multiplexing. 327 Wavelength Switched Optical Network (WSON): A WDM based optical 328 network in which switching is performed selectively based on the 329 center wavelength of an optical signal. 331 3. Resources, Blocks, Sets, and the Resource Pool 333 The optical system to be encoded may contain a pool of resources of 334 different types and properties for processing optical signals. For 335 the purposes here a "resource" is an individual entity such as a 336 wavelength converter or regenerator within the optical node that 337 acts on an individual wavelength signal. 339 Since resources tend to be packaged together in blocks of similar 340 devices, e.g., on line cards or other types of modules, the 341 fundamental unit of identifiable resource in this document is the 342 "resource block". A resource block may contain one or more 343 resources. As resource blocks are the smallest identifiable unit of 344 processing resource, one should group together resources into blocks 345 if they have similar characteristics relevant to the optical system 346 being modeled, e.g., processing properties, accessibility, etc. 348 This document defines the following sub-TLVs pertaining to resources 349 within an optical node: 351 Resource Pool Accessibility Sub-TLV 353 Resource Block Wavelength Constraints Sub-TLV 354 Resource Pool State Sub-TLV 356 Block Shared Access Wavelength Availability Sub-TLV 358 Resource Block Information Sub-TLV 360 Each of these sub-TLVs works with one or more sets of resources 361 rather than just a single resource block. This motivates the 362 following field definition. 364 3.1. Resource Block Set Field 366 In a WSON node that includes resource blocks (RB), denoting subsets 367 of these blocks allows one to efficiently describe common properties 368 of the blocks and to describe the structure and characteristics, if 369 non-trivial, of the resource pool. The RB Set field is defined in a 370 similar manner to the label set concept of [RFC3471]. 372 The information carried in a RB set field is defined by: 374 0 1 2 3 375 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 376 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 377 | Action |C| Reserved | Length | 378 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 379 | RB Identifier 1 | 380 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 381 : : : 382 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 383 | RB Identifier n | 384 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 386 Action: 8 bits 388 0 - Inclusive List 390 Indicates that the TLV contains one or more RB elements that are 391 included in the list. 393 1 - Inclusive Range(s) 395 Indicates that the TLV contains one or more ranges of RBs. Each 396 individual range is denoted by two 32 bit RB identifier. The first 397 32 bits is the RB identifier for the start of the range and the next 398 32 bits is the RB identifier for the end of the range. Note that the 399 Length field is used to determine the number of ranges. 401 C (Connectivity bit): Set to 0 to denote fixed (possibly multi- 402 cast) connectivity; Set to 1 to denote potential (switched) 403 connectivity. Used in resource pool accessibility sub-TLV. Ignored 404 elsewhere. 406 Reserved: 7 bits 408 This field is reserved. It MUST be set to zero on transmission and 409 MUST be ignored on receipt. 411 Length: 16 bits 413 The total length of this field in bytes. 415 RB Identifier: 417 The RB identifier represents the ID of the resource block which is a 418 32 bit integer. 420 Usage Note: the inclusive range "Action" can result in very compact 421 encoding of resource sets and it can be advantages to number 422 resource blocks in such a way so that status updates (dynamic 423 information) can take advantage of this efficiency. 425 4. Resource Pool Accessibility/Availability 427 This section defines the sub-TLVs for dealing with accessibility and 428 availability of resource blocks within a pool of resources. These 429 include the ResourceBlockAccessibility, ResourceWaveConstraints, and 430 RBPoolState sub-TLVs. 432 4.1. Resource Pool Accessibility Sub-TLV 434 This sub-TLV describes the structure of the resource pool in 435 relation to the switching device. In particular it indicates the 436 ability of an input port to reach sets of resources and of a sets of 437 resources to reach a particular output port. This is the 438 PoolInputMatrix and PoolOutputMatrix of [WSON-Info]. 440 The resource pool accessibility sub-TLV is defined by: 442 0 1 2 3 443 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 444 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 445 | Connectivity | Reserved | 446 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 447 | Input Link Set Field A #1 | 448 : : 449 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 450 | RB Set Field A #1 | 451 : : 452 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 453 | Additional Link set and RB set pairs as needed to | 454 : specify PoolInputMatrix : 455 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 456 | Output Link Set Field B #1 | 457 : : 458 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 459 | RB Set B Field #1 (for output connectivity) | 460 : : 461 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 462 | Additional Link Set and RB set pairs as needed to | 463 : specify PoolOutputMatrix : 464 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 466 Where 468 Connectivity indicates how the input/output ports connect to the 469 resource blocks. 471 0 -- the device is fixed (e.g., a connected port must go 472 through the resource block) 474 1 -- the device is switched (e.g., a port can be configured to 475 go through a resource but isn't required) 477 The For the Input and Output Link Set Fields, the Link Set Field 478 encoding defined in [Gen-Encode] is to be used. 480 Note that the direction parameter within the Link Set Field is used 481 to indicate whether the link set is an input or output link set, and 482 the bidirectional value for this parameter is not permitted in this 483 sub-TLV. 485 See Appendix A.1 for an illustration of this encoding. 487 4.2. Resource Block Wavelength Constraints Sub-TLV 489 Resources, such as wavelength converters, etc., may have a limited 490 input or output wavelength ranges. Additionally, due to the 491 structure of the optical system not all wavelengths can necessarily 492 reach or leave all the resources. These properties are described by 493 using one or more resource wavelength restrictions sub-TLVs as 494 defined below: 496 0 1 2 3 497 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 498 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 499 |I|O|B| Reserved | 500 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 501 | RB Set Field | 502 : : 503 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 504 | Input Wavelength Set Field | 505 : : 506 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 507 | Output Wavelength Set Field | 508 : : 509 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 511 I = 1 or 0 indicates the presence or absence of the Input Wavelength 512 Set Field. 514 O = 1 or 0 indicates the presence or absence of the Output 515 Wavelength Set Field. 517 B = 1 indicates that a single wavelength set field represents both 518 input and output wavelength constraints. 520 Currently the only valid combinations of (I,O,B) are (1,0,0), 521 (0,1,0), (1,1,0), (0,0,1). 523 RB Set Field: 525 A set of resource blocks (RBs) which have the same wavelength 526 restrictions. 528 Input Wavelength Set Field: 530 Indicates the wavelength input restrictions of the RBs in the 531 corresponding RB set. This field is encoded via the Label Set field 532 of [Gen-Encode]. 534 Output Wavelength Set Field: 536 Indicates the wavelength output restrictions of RBs in the 537 corresponding RB set. This field is encoded via the Label Set field 538 of [Gen-Encode]. 540 4.3. Resource Pool State Sub-TLV 542 The state of the pool is given by the number of resources available 543 with particular characteristics. A resource block set is used to 544 encode all or a subset of the resources of interest. The usage state 545 of resources within a resource block set is encoded as either a list 546 of 16 bit integer values or a bit map indicating whether a single 547 resource is available or in use. The bit map encoding is appropriate 548 when resource blocks consist of a single resource. This information 549 can be relatively dynamic, i.e., can change when a connection (LSP 550 is established or torn down. 552 0 1 2 3 553 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 554 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 555 | Action | Reserved | 556 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 557 | RB Set Field | 558 : : 559 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 560 | RB Usage state | 561 : : 562 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 564 Where Action = 0 denotes a list of 16 bit integers and Action = 1 565 denotes a bit map. In both cases the elements of the RB Set field 566 are in a one-to-one correspondence with the values in the usage RB 567 usage state area. 569 0 1 2 3 570 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 571 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 572 | Action = 0 | Reserved | 573 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 574 | RB Set Field | 575 : : 576 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 577 | RB#1 state | RB#2 state | 578 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 579 : : 580 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 581 | RB#n-1 state | RB#n state or Padding | 582 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 584 Whether the last 16 bits is a wavelength converter (RB) state or 585 padding is determined by the number of elements in the RB set field. 587 0 1 2 3 588 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 589 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 590 | Action = 1 | Reserved | 591 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 592 | RB Set Field | 593 : : 594 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 595 | RB Usage state bitmap | 596 : : 597 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 598 | ...... | Padding bits | 599 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 601 RB Usage state: Variable Length but must be a multiple of 4 byes. 603 Each bit indicates the usage status of one RB with 0 indicating the 604 RB is available and 1 indicating the RB is in used. The sequence of 605 the bit map is ordered according to the RB Set field with this sub- 606 TLV. 608 Padding bits: Variable Length 610 4.4. Block Shared Access Wavelength Availability sub-TLV 612 Resources blocks may be accessed via a shared fiber. If this is the 613 case, then wavelength availability on these shared fibers is needed 614 to understand resource availability. 616 0 1 2 3 617 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 618 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 619 |I|E| Reserved | 620 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 621 | RB Set Field | 622 : : 623 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 624 | Input Available Wavelength Set Field | 625 : (Optional) : 626 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 627 | Output Available Wavelength Set Field | 628 : (Optional) : 629 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 630 I bit: 632 Indicates whether the input available wavelength set field is 633 included (1) or not (0). 635 E bit: 637 Indicates whether the output available wavelength set field is 638 included (1) or not (0). 640 RB Set Field: 642 A Resource Block set in which all the members share the same input 643 or output fiber or both. 645 Input Available Wavelength Set Field: 647 Indicates the wavelengths currently available (not being used) on 648 the input fiber to this resource block. This field is encoded via 649 the Label Set field of [Gen-Encode]. 651 Output Available Wavelength Set Field: 653 Indicates the wavelengths currently available (not being used) on 654 the output fiber from this resource block. This field is encoded via 655 the Label Set field of [Gen-Encode]. 657 5. Resource Properties Encoding 659 Within a WSON network element (NE) there may be resources with 660 signal compatibility constraints. These resources be regenerators, 661 wavelength converters, etc... Such resources may also constitute the 662 network element as a whole as in the case of an electro optical 663 switch. This section primarily focuses on the signal compatibility 664 and processing properties of such a resource block. 666 The fundamental properties of a resource block, such as a 667 regenerator or wavelength converter, are: 669 (a) Input constraints (shared input, modulation, FEC, bit rate, 670 GPID) 672 (b) Processing capabilities (number of resources in a block, 673 regeneration, performance monitoring, vendor specific) 675 (c) Output Constraints (shared output, modulation, FEC) 677 5.1. Resource Block Information Sub-TLV 679 Resource Block descriptor sub-TLVs are used to convey relatively 680 static information about individual resource blocks including the 681 resource block compatibility properties, processing properties, and 682 the number of resources in a block. 684 This sub-TLV has the following format: 686 0 1 2 3 687 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 688 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 689 | RB Set Field | 690 : : 691 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 692 |I|E| Reserved | 693 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 694 | Optical Interface Class List(s) Sub-Sub-TLV (opt) | 695 : : 696 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 697 | Input Client Signal Type Sub-Sub-TLV (opt) | 698 : : 699 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 700 | Input Bit Rate Range List Sub-Sub-TLV (opt) | 701 : : 702 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 703 | Processing Capabilities List Sub-Sub-TLV (opt) | 704 : : 705 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 707 Where I and E, the shared input/output indicator, is set to 1 if the 708 resource blocks identified in the RB set field utilized a shared 709 fiber for input/output access and set to 0 otherwise. 711 5.2. Optical Interface Class List(s) Sub-Sub-TLV 713 The list of Optical Interface Class sub-sub-TLV has the following 714 format: 716 0 1 2 3 717 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 718 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 719 | Type | Length | Reserved |I|E| 720 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 721 | Optical Interface Classes | 722 : : 723 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 725 The following I and E combination are defined: 727 I E 729 0 0 Invalid 731 1 0 Optical Interface Class List acceptable in input 733 0 1 Optical Interface Class List available in output 735 1 1 Optical Interface Class List available on both input and 736 output. 738 The Resource Block MAY contain one or more lists according to 739 input/output flags. 741 5.2.1. Optical Interface Class Format 743 0 1 2 3 744 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 745 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 746 |S| Reserved | OI Code Points | 747 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 748 | Optical Interface Class | 749 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 750 | Optical Interface Class (Cont.) | 751 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 753 Where the first 32 bits of the encoding shall be used to identify 754 the semantic of the Optical Interface Class in the following way: 756 S Standard bit. 758 S=0, identify not ITU code points 760 S=1, identify ITU application codes 762 With S=0, the OI Code Points field can take the following 763 values: 765 0: reserved 767 1: Vendor Specific Optical Interface Class. 769 With S=1, the OI Code Points field can take the following 770 values: 772 0: reserved 774 1: [ITU-G.698.1] application code. 776 2: [ITU-G.698.2] application code. 778 3: [ITU-G.959.1] application code. 780 4: [ITU-G.695.1] application code. 782 In case of ITU Application Code, the mapping between the string 783 defining the application code and the 64 bits number implementing 784 the optical interface class is given in the following sections. 786 5.2.2. ITU-G.698.1 Application Code Mapping 788 Recommendation ITU-G.698.1 defines the Application Codes: DScW- 789 ytz(v) and B-DScW-ytz(v). Where: 791 B: means Bidirectionals. 793 D: means a DWDM application. 795 S: take values N (narrow spectral excursion), W (wide spectral 796 excursion). 798 c: Channel Spacing (GHz). 800 W: take values S (short-haul), L (long-haul). 802 y: take values 1 (NRZ 2.5G), 2 (indicating NRZ 10G). 804 t: take only D value is defined (link does not contain optical 805 amplifier) 807 z: take values 2 (ITU-T G.652 fibre), 3 (ITU-T G.653 fibre), 5 808 (indicating ITU-T G.655 fibre). 810 v: take values S (Short wavelength), C (Conventional), L (Long 811 wavelength). 813 An Optional F can be added indicating a FEC Encoding. 815 These get mapped into the 64 bit OIC field as follows: 817 0 1 2 3 818 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 819 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 820 |B| p |S| c | W | y | t | z | v | s | 821 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 822 | reserved | 823 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 825 Where (values between parenthesis refer to ITU defined values as 826 reported above): 828 B: = 1 bidirectional, 0 otherwise 830 p (prefix): = 0 reserved, = 1 (D) 832 S: = 0 (N), = 1 (W) 834 c: Channel Spacing, 4 bits mapped according to same definition 835 in [RFC6205] (note that DWDM spacing apply here) 837 W: = 0 reserved, = 2 (S), = 3 (L) 839 y: = 0 reserved, = 1 (1), = 2 (2) 841 t: = 0 reserved, = 4 (D) 843 z: = 0 reserved, = 2 (2), = 3 (3), = 5 (5) 844 v: = 0 reserved, = 1 (S), = 2 (C), = 3 (L) 846 s (suffix): = 0 reserved, = 1 Fec Encoding 848 Values not mentioned here are not allowed in this application 849 code, the last 32 bits are reserved and shall be set to zero. 851 5.2.3. ITU-G.698.2 Application Code Mapping 853 Recommendation ITU-G.698.2 defines the Application Codes: DScW- 854 ytz(v) and B-DScW-ytz(v). 856 B: means Bidirectional. 858 D: means a DWDM application. 860 S: take values N (narrow spectral excursion), W (wide spectral 861 excursion). 863 c: Channel Spacing (GHz). 865 W: take values C (link is dispersion compensated), U (link is 866 dispersion uncompensated). 868 y: take values 1 (NRZ 2.5G), 2 (indicating NRZ 10G). 870 t: take value A (link may contains optical amplifier) 872 z: take values 2 (ITU-T G.652 fibre), 3 (ITU-T G.653 fibre), 5 873 (indicating ITU-T G.655 fibre). 875 v: take values S (Short wavelength), C (Conventional), L (Long 876 wavelength). 878 An Optional F can be added indicating a FEC Encoding. 880 These get mapped into the 64 bit OIC field as follows: 882 0 1 2 3 883 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 884 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 885 |B| p |S| c | W | y | t | z | v | s | 886 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 887 | reserved | 888 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 890 Where (values between parenthesis refer to ITU defined values as 891 reported above): 893 B: = 1 bidirectional, 0 otherwise 895 p (prefix): = 0 reserved, = 1 (D) 897 S: = 0 (N), = 1 (W) 899 c: Channel Spacing, 4 bits mapped according to same definition 900 in [RFC6205] (note that DWDM spacing apply here) 902 W: = 0 reserved, = 10 (C), = 11 (U) 904 y: = 0 reserved, = 1 (1), = 2 (2) 906 t: = 0 reserved, = 1 (A) 908 z: = 0 reserved, = 2 (2), = 3 (3), = 5 (5) 910 v: = 0 reserved, = 1 (S), = 2 (C), = 3 (L) 912 s (suffix): = 0 reserved, = 1 Fec Encoding 914 Values not mentioned here are not allowed in this application 915 code, the last 32 bits are reserved and shall be set to zero. 917 5.2.4. ITU-G.959.1 Application Code Mapping 919 Recommendation ITU-G.959.1 defines the Application Codes: PnWx-ytz 920 and BnWx-ytz. Where: 922 P,B: when present indicate Plural or Bidirectional 924 n: maximum number of channels supported by the application code 925 (i.e. an integer number) 927 W: take values I (intra-office), S (short-haul), L (long-haul), V 928 (very long-haul), U (ultra long-haul). 930 x: maximum number of spans allowed within the application code 931 (i.e. an integer number) 932 y: take values 1 (NRZ 2.5G), 2 (NRZ 10G), 9 (NRZ 25G), 3 (NRZ 933 40G), 7 (RZ 40G). 935 t: take values A (power levels suitable for a booster amplifier 936 in the originating ONE and power levels suitable for a pre-amplifier 937 in the terminating ONE), B (booster amplifier only), C (pre- 938 amplifier only), D (no amplifiers). 940 z: take values 1 (1310 nm sources on ITU-T G.652 fibre), 2 (1550 941 nm sources on ITU-T G.652 fibre), 3 (1550 nm sources on ITU-T 942 G.653 fibre), 5 (1550 nm sources on ITU-T G.655 fibre). 944 The following list of suffixes can be added to these application 945 codes: 947 F: FEC encoding. 949 D: Adaptive dispersion compensation. 951 E: receiver capable of dispersion compensation. 953 r: reduced target distance. 955 a: power levels appropriate to APD receivers. 957 b: power levels appropriate to PIN receivers. 959 These values are encoded as follows: 961 0 1 2 3 962 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 963 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 964 | p | P | n | W | x | reserved | 965 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 966 | y | t | z | suffix | reserved | 967 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 969 Where (values between parenthesis refer to ITU defined values as 970 reported above): 972 p (prefix) = 0 otherwise, = 1 Bidirectional (B) 974 P (optional): = 0 not present, = 2 (P). 976 n: maximum number of channels (10 bits, up to 1024 channels) 978 W: = 0 reserved, = 1 (I), = 2 (S), = 3 (L), = 4 (V), = 5 (U) 980 x: = number of spans (6 bits, up to 64 spans) 982 y: = 0 reserved, = 1 (1), = 2 (2), = 3 (3), = 7 (7), = 9 (9) 984 t: = 0 reserved, = 1 (A), = 2 (B), = 3 (C), = 4 (D) 986 z: = 0 reserved, = 1 (1), = 2 (2), = 3 (3), = 5 (5) 988 suffix is an 6 bit, bit map: 990 0 1 2 3 4 5 991 +-+-+-+-+-+-+ 992 |F|D|E|r|a|b| 993 +-+-+-+-+-+-+ 994 where a 1 in the appropriate slot indicates that the corresponding 995 suffix has been added. 997 5.2.5. ITU-G.695 Application Code Mapping 999 Recommendation [ITU-G.695] defines the Application Codes: CnWx-ytz 1000 and B-CnWx-ytz and S-CnWx-ytz. 1002 Where the optional prefixed are: 1004 B: Bidirectional 1006 S: a system using a black link approach 1008 And the rest of the application code is defined as: 1010 C: CWDM (Coarse WDM) application 1012 n: maximum number of channels supported by the application code 1013 (i.e. an integer number) 1015 W: take values S (short-haul), L (long-haul). 1017 x: maximum number of spans allowed 1019 y: take values 0 (NRZ 1.25G), 1 (NRZ 2.5G), 2 (NRZ 10G). 1021 t: take values D (link does not contain any optical amplifier). 1023 z: take values 1 (1310 nm region for ITU-T G.652 fibre), 2 (ITU-T 1024 G.652 fibre), 3 (ITU-T G.653 fibre), 5 (ITU-T G.655 fibre). 1026 The following list of suffixes can be added to these application 1027 codes: 1029 F: FEC encoding. 1031 Since the application codes are very similar to the one from the 1032 G.959 section most of the fields are reused. The 64 bit OIC field is 1033 encoded as follows: 1035 0 1 2 3 1036 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1037 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1038 | p | C | n | W | x | reserved | 1039 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1040 | y | t | z | suffix | reserved | 1041 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1043 Where (values between parenthesis refer to ITU defined values as 1044 reported above): 1046 p: = 0 no prefix, 1 = B bidirectional, = 2 S black link 1048 C: = 0 reserved, = 3 (C). 1050 n: maximum number of channels (10 bits, up to 1024 channels) 1052 W: = 0 reserved, = 1 reserved, = 2 (S), = 3 (L), > 3 reserved 1054 x: = number of spans (6 bits, up to 64 spans) 1056 y: = 0 (0), = 1 (1), =2 (2), > 2 reserved 1058 t: = 4 (D), all other values are reserved 1060 z: = 0 reserved, = 1 (1), = 2 (2), = 3 (3) 1062 suffix is an 6 bit, bit map: 1064 0 1 2 3 4 5 1065 +-+-+-+-+-+-+ 1066 |F|0|0|0|0|0| 1067 +-+-+-+-+-+-+ 1068 where a 1 in the appropriate slot indicates that the corresponding 1069 suffix has been added. 1071 5.3. Input Client Signal List Sub-Sub-TLV 1073 This sub-sub-TLV contains a list of acceptable input client signal 1074 types. 1076 Type := Input Client Signal List 1078 Value := A list of GPIDs 1080 The acceptable client signal list sub-TLV is a list of Generalized 1081 Protocol Identifiers (GPIDs). GPIDs are assigned by IANA and many 1082 are defined in [RFC3471] and [RFC4328]. 1084 0 1 2 3 1085 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1086 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1087 | Number of GPIDs | GPID #1 | 1088 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1089 : | : 1090 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1091 | GPID #N | | 1092 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1094 Where the number of GPIDs is an integer greater than or equal to 1095 one. 1097 5.4. Processing Capability List Sub-Sub-TLV 1099 This sub-sub-TLV contains a list of resource processing 1100 capabilities. 1102 Type := Processing Capabilities List 1104 Value := A list of Processing Capabilities Fields 1106 The processing capability list sub-sub-TLV is a list of capabilities 1107 that can be achieved through the referred resources:: 1109 1. Regeneration capability 1111 2. Fault and performance monitoring 1113 3. Vendor Specific capability 1115 Note that the code points for Fault and performance monitoring and 1116 vendor specific capability are subject to further study. 1118 5.4.1. Processing Capabilities Field 1120 The processing capability field is then given by: 1122 0 1 2 3 1123 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1124 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1125 | Processing Cap ID | Length | 1126 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1127 | Possible additional capability parameters depending upon | 1128 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1129 : the processing ID : 1130 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1132 When the processing Cap ID is "regeneration capability", the 1133 following additional capability parameters are provided in the sub- 1134 TLV: 1136 0 1 2 3 1137 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1138 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1139 | T | C | Reserved | 1140 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1142 Where T bit indicates the type of regenerator: 1144 T=0: Reserved 1146 T=1: 1R Regenerator 1148 T=2: 2R Regenerator 1150 T=3: 3R Regenerator 1152 Where C bit indicates the capability of regenerator: 1154 C=0: Reserved 1156 C=1: Fixed Regeneration Point 1158 C=2: Selective Regeneration Point 1160 Note that when the capability of regenerator is indicated to be 1161 Selective Regeneration Pools, regeneration pool properties such as 1162 input and output restrictions and availability need to be specified. 1163 This encoding is to be determined in the later revision. 1165 6. Security Considerations 1167 This document defines protocol-independent encodings for WSON 1168 information and does not introduce any security issues. 1170 However, other documents that make use of these encodings within 1171 protocol extensions need to consider the issues and risks associated 1172 with, inspection, interception, modification, or spoofing of any of 1173 this information. It is expected that any such documents will 1174 describe the necessary security measures to provide adequate 1175 protection. 1177 7. IANA Considerations 1179 This document provides general protocol independent information 1180 encodings. There is no IANA allocation request for the TLVs defined 1181 in this document. IANA allocation requests will be addressed in 1182 protocol specific documents based on the encodings defined here. 1184 8. Acknowledgments 1186 This document was prepared using 2-Word-v2.0.template.dot. 1188 APPENDIX A: Encoding Examples 1190 A.1. Wavelength Converter Accessibility Sub-TLV 1192 Example: 1194 Figure 1 shows a wavelength converter pool architecture know as 1195 "shared per fiber". In this case the input and output pool matrices 1196 are simply: 1198 +-----+ +-----+ 1199 | 1 1 | | 1 0 | 1200 WI =| |, WE =| | 1201 | 1 1 | | 0 1 | 1202 +-----+ +-----+ 1204 +-----------+ +------+ 1205 | |--------------------->| | 1206 | |--------------------->| C | 1207 /| | |--------------------->| o | 1208 /D+--->| |--------------------->| m | 1209 + e+--->| | | b |=======> 1210 ========>| M| | Optical | +-----------+ | i | Port E1 1211 Port I1 + u+--->| Switch | | WC Pool | | n | 1212 \x+--->| | | +-----+ | | e | 1213 \| | +----+->|WC #1|--+---->| r | 1214 | | | +-----+ | +------+ 1215 | | | | +------+ 1216 /| | | | +-----+ | | | 1217 /D+--->| +----+->|WC #2|--+---->| C | 1218 + e+--->| | | +-----+ | | o | 1219 ========>| M| | | +-----------+ | m |=======> 1220 Port I2 + u+--->| | | b | Port E2 1221 \x+--->| |--------------------->| i | 1222 \| | |--------------------->| n | 1223 | |--------------------->| e | 1224 | |--------------------->| r | 1225 +-----------+ +------+ 1226 Figure 1 An optical switch featuring a shared per fiber wavelength 1227 converter pool architecture. 1229 This wavelength converter pool can be encoded as follows: 1231 0 1 2 3 1232 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1233 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1234 | Connectivity=1| Reserved | 1235 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1236 Note: I1,I2 can connect to either WC1 or WC2 1237 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1238 | Action=0 |0| Reserved | Length = 12 | 1239 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1240 | Link Local Identifier = #1 | 1241 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1242 | Link Local Identifier = #2 | 1243 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1244 | Action=0 |1| Reserved | Length = 8 | 1245 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1246 | RB ID = #1 | 1247 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1248 | RB ID = #2 | 1249 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1250 Note: WC1 can only connect to E1 1251 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1252 | Action=0 |1| Reserved | Length = 8 | 1253 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1254 | Link Local Identifier = #1 | 1255 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1256 | Action=0 |0| Reserved | Length = 8 | 1257 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1258 | RB ID = #1 | 1259 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1260 Note: WC2 can only connect to E2 1261 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1262 | Action=0 |1| Reserved | Length = 8 | 1263 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1264 | Link Local Identifier = #2 | 1265 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1266 | Action=0 |0| | Length = 8 | 1267 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1268 | RB ID = #2 | 1269 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1271 A.2. Wavelength Conversion Range Sub-TLV 1273 Example: 1275 This example, based on figure 1, shows how to represent the 1276 wavelength conversion range of wavelength converters. Suppose the 1277 wavelength range of input and output of WC1 and WC2 are {L1, L2, L3, 1278 L4}: 1280 0 1 2 3 1281 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1282 Note: WC Set 1283 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1284 | Action=0 |1| Reserved | Length = 8 | 1285 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1286 | WC ID = #1 | WC ID = #2 | 1287 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1288 Note: wavelength input range 1289 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1290 | 2 | Num Wavelengths = 4 | Length = 8 | 1291 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1292 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1293 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1294 Note: wavelength output range 1295 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1296 | 2 | Num Wavelengths = 4 | Length = 8 | 1297 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1298 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1299 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1301 A.3. An OEO Switch with DWDM Optics 1303 Figure 2 shows an electronic switch fabric surrounded by DWDM 1304 optics. In this example the electronic fabric can handle either 1305 G.709 or SDH signals only (2.5 or 10 Gbps). To describe this node, 1306 the following information is needed: 1308 ::= [Other GMPLS sub- 1309 TLVs][...] [][] 1311 In this case there is complete port to port connectivity so the 1312 is not required. In addition since there are 1313 sufficient ports to handle all wavelength signals the 1314 element is not needed. 1316 Hence the attention will be focused on the sub-TLV: 1318 ::= 1319 [...][...] 1321 /| +-----------+ +-------------+ +------+ 1322 /D+--->| +--->|Tunable Laser|-->| | 1323 + e+--->| | +-------------+ | C | 1324 ========>| M| | | ... | o |=======> 1325 Port I1 + u+--->| | +-------------+ | m | Port E1 1326 \x+--->| |--->|Tunable Laser|-->| b | 1327 \| | Electric | +-------------+ +------+ 1328 | Switch | 1329 /| | | +-------------+ +------+ 1330 /D+--->| +--->|Tunable Laser|-->| | 1331 + e+--->| | +-------------+ | C | 1332 ========>| M| | | ... | o |=======> 1333 Port I2 + u+--->| | +-------------+ | m | Port E2 1334 \x+--->| +--->|Tunable Laser|-->| b | 1335 \| | | +-------------+ +------+ 1336 | | 1337 /| | | +-------------+ +------+ 1338 /D+--->| |--->|Tunable Laser|-->| | 1339 + e+--->| | +-------------+ | C | 1340 ========>| M| | | ... | o |=======> 1341 Port I3 + u+--->| | +-------------+ | m | Port E3 1342 \x+--->| |--->|Tunable Laser|-->| b | 1343 \| +-----------+ +-------------+ +------+ 1345 Figure 2 An optical switch built around an electronic switching 1346 fabric. 1348 The resource block information will tell us about the processing 1349 constraints of the receivers, transmitters and the electronic 1350 switch. The resource availability information, although very simple, 1351 tells us that all signals must traverse the electronic fabric (fixed 1352 connectivity). The resource wavelength constraints are not needed 1353 since there are no special wavelength constraints for the resources 1354 that would not appear as port/wavelength constraints. 1356 : 1358 0 1 2 3 1359 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1360 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1361 | RB Set Field | 1362 : (only one resource block in this example with shared | 1363 | input/output case) | 1364 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1365 |1|1| Reserved | 1366 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1367 | Optical Interface Class List(s) Sub-Sub-TLV | 1368 : : 1369 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1370 | Input Client Signal Type Sub-TLV | 1371 : (GPIDs for SDH and G.709) : 1372 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1373 | Input Bit Rate Range List Sub-Sub-TLV | 1374 : (2.5Gbps, 10Gbps) : 1375 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1376 | Processing Capabilities List Sub-Sub-TLV | 1377 : Fixed (non optional) 3R regeneration : 1378 : : 1379 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1381 Since there is fixed connectivity to resource blocks (the electronic 1382 switch) the is: 1384 0 1 2 3 1385 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1386 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1387 | Connectivity=0|Reserved | 1388 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1389 | Input Link Set Field A #1 | 1390 : (All input links connect to resource) : 1391 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1392 | RB Set Field A #1 | 1393 : (trivial set only one resource block) : 1394 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1395 | Output Link Set Field B #1 | 1396 : (All output links connect to resource) : 1397 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1399 9. References 1401 9.1. Normative References 1403 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1404 Requirement Levels", BCP 14, RFC 2119, March 1997. 1406 [RFC2578] McCloghrie, K., Perkins, D., and J. Schoenwaelder, 1407 "Structure of Management Information Version 2 (SMIv2)", 1408 STD 58, RFC 2578, April 1999. 1410 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 1411 (GMPLS) Signaling Functional Description", RFC 3471, 1412 January 2003. 1414 [RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label 1415 Switching (GMPLS) Signaling Extensions for G.709 Optical 1416 Transport Networks Control", RFC 4328, January 2006. 1418 9.2. Informative References 1420 [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM 1421 applications: DWDM frequency grid, June 2002. 1423 [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM 1424 applications: CWDM wavelength grid, December 2003. 1426 [G.695] ITU-T Recommendation G.695, Optical interfaces for coarse 1427 wavelength division multiplexing applications, October, 1428 2010. 1430 [G.959.1] ITU-T Recommendation G.959.1, Optical transport network 1431 physical layer interfaces, February, 2012. 1433 [Gen-Encode] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "General 1434 Network Element Constraint Encoding for GMPLS Controlled 1435 Networks", work in progress: draft-ietf-ccamp-general- 1436 constraint-encode. 1438 [RFC6205] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized 1439 Labels for G.694 Lambda-Switching Capable Label Switching 1440 Routers", RFC 6205, March 2011. 1442 [RFC6163] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS 1443 and PCE Control of Wavelength Switched Optical Networks", 1444 RFC 6163, April 2011. 1446 [WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and 1447 Wavelength Assignment Information Model for Wavelength 1448 Switched Optical Networks", work in progress: draft-ietf- 1449 ccamp-rwa-info. 1451 10. Contributors 1453 Diego Caviglia 1454 Ericsson 1455 Via A. Negrone 1/A 16153 1456 Genoa Italy 1458 Phone: +39 010 600 3736 1459 Email: diego.caviglia@(marconi.com, ericsson.com) 1461 Anders Gavler 1462 Acreo AB 1463 Electrum 236 1464 SE - 164 40 Kista Sweden 1466 Email: Anders.Gavler@acreo.se 1468 Jonas Martensson 1469 Acreo AB 1470 Electrum 236 1471 SE - 164 40 Kista, Sweden 1473 Email: Jonas.Martensson@acreo.se 1475 Itaru Nishioka 1476 NEC Corp. 1477 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 1478 Japan 1480 Phone: +81 44 396 3287 1481 Email: i-nishioka@cb.jp.nec.com 1483 Pierre Peloso 1484 ALU 1486 Email: pierre.peloso@alcatel-lucent.com 1488 Cyril Margaria 1489 NSN 1491 Email: cyril.margaria@nsn.com 1493 Giovanni Martinelli 1494 Cisco 1495 Email: giomarti@cisco.com 1497 Gabriele M Galimberti 1498 Cisco 1499 Email: ggalimbe@cisco.com 1501 Lyndon Ong 1502 Ciena Corporation 1503 Email: lyong@ciena.com 1505 Daniele Ceccarelli 1506 Ericsson 1507 Email: daniele.ceccarelli@ericsson.com 1509 Authors' Addresses 1511 Greg M. Bernstein (ed.) 1512 Grotto Networking 1513 Fremont California, USA 1515 Phone: (510) 573-2237 1516 Email: gregb@grotto-networking.com 1518 Young Lee (ed.) 1519 Huawei Technologies 1520 5340 Legacy Drive Build 3 1521 Plano, TX 75024 1522 USA 1524 Phone: (469) 277-5838 1525 Email: leeyoung@huawei.com 1526 Dan Li 1527 Huawei Technologies Co., Ltd. 1528 F3-5-B R&D Center, Huawei Base, 1529 Bantian, Longgang District 1530 Shenzhen 518129 P.R.China 1532 Phone: +86-755-28973237 1533 Email: danli@huawei.com 1535 Wataru Imajuku 1536 NTT Network Innovation Labs 1537 1-1 Hikari-no-oka, Yokosuka, Kanagawa 1538 Japan 1540 Phone: +81-(46) 859-4315 1541 Email: imajuku.wataru@lab.ntt.co.jp 1543 Jianrui Han 1544 Huawei Technologies Co., Ltd. 1545 F3-5-B R&D Center, Huawei Base, 1546 Bantian, Longgang District 1547 Shenzhen 518129 P.R.China 1549 Phone: +86-755-28972916 1550 Email: hanjianrui@huawei.com 1552 Intellectual Property Statement 1554 The IETF Trust takes no position regarding the validity or scope of 1555 any Intellectual Property Rights or other rights that might be 1556 claimed to pertain to the implementation or use of the technology 1557 described in any IETF Document or the extent to which any license 1558 under such rights might or might not be available; nor does it 1559 represent that it has made any independent effort to identify any 1560 such rights. 1562 Copies of Intellectual Property disclosures made to the IETF 1563 Secretariat and any assurances of licenses to be made available, or 1564 the result of an attempt made to obtain a general license or 1565 permission for the use of such proprietary rights by implementers or 1566 users of this specification can be obtained from the IETF on-line 1567 IPR repository at http://www.ietf.org/ipr 1568 The IETF invites any interested party to bring to its attention any 1569 copyrights, patents or patent applications, or other proprietary 1570 rights that may cover technology that may be required to implement 1571 any standard or specification contained in an IETF Document. Please 1572 address the information to the IETF at ietf-ipr@ietf.org. 1574 Disclaimer of Validity 1576 All IETF Documents and the information contained therein are 1577 provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION 1578 HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, 1579 THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL 1580 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 1581 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE 1582 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 1583 FOR A PARTICULAR PURPOSE. 1585 Acknowledgment 1587 Funding for the RFC Editor function is currently provided by the 1588 Internet Society.