idnits 2.17.1 draft-ietf-ccamp-rwa-wson-encode-20.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (March 15, 2013) is 4059 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'ITU-G.698.1' is mentioned on line 782, but not defined == Missing Reference: 'ITU-G.698.2' is mentioned on line 784, but not defined == Missing Reference: 'ITU-G.959.1' is mentioned on line 786, but not defined == Missing Reference: 'ITU-G.695.1' is mentioned on line 788, but not defined == Missing Reference: 'ITU-G.695' is mentioned on line 1007, but not defined == Unused Reference: 'RFC2578' is defined on line 1433, but no explicit reference was found in the text == Unused Reference: 'G.694.1' is defined on line 1447, but no explicit reference was found in the text == Unused Reference: 'G.694.2' is defined on line 1450, but no explicit reference was found in the text == Unused Reference: 'G.695' is defined on line 1453, but no explicit reference was found in the text == Unused Reference: 'G.959.1' is defined on line 1457, but no explicit reference was found in the text Summary: 0 errors (**), 0 flaws (~~), 11 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group G. Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Y. Lee 4 Expires: September 2013 D. Li 5 Huawei 6 W. Imajuku 7 NTT 9 March 15, 2013 11 Routing and Wavelength Assignment Information Encoding for 12 Wavelength Switched Optical Networks 14 draft-ietf-ccamp-rwa-wson-encode-20.txt 16 Status of this Memo 18 This Internet-Draft is submitted to IETF in full conformance with 19 the provisions of BCP 78 and BCP 79. 21 Internet-Drafts are working documents of the Internet Engineering 22 Task Force (IETF), its areas, and its working groups. Note that 23 other groups may also distribute working documents as Internet- 24 Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six 27 months and may be updated, replaced, or obsoleted by other documents 28 at any time. It is inappropriate to use Internet-Drafts as 29 reference material or to cite them other than as "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed at 35 http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on September 15, 2013. 39 Copyright Notice 41 Copyright (c) 2013 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents 46 (http://trustee.ietf.org/license-info) in effect on the date of 47 publication of this document. Please review these documents 48 carefully, as they describe your rights and restrictions with 49 respect to this document. Code Components extracted from this 50 document must include Simplified BSD License text as described in 51 Section 4.e of the Trust Legal Provisions and are provided without 52 warranty as described in the Simplified BSD License. 54 Abstract 56 A wavelength switched optical network (WSON) requires that certain 57 key information elements are made available to facilitate path 58 computation and the establishment of label switching paths (LSPs). 59 The information model described in "Routing and Wavelength 60 Assignment Information for Wavelength Switched Optical Networks" 61 shows what information is required at specific points in the WSON. 62 Part of the WSON information model contains aspects that may be of 63 general applicability to other technologies, while other parts are 64 fairly specific to WSONs. 66 This document provides efficient, protocol-agnostic encodings for 67 the WSON specific information elements. It is intended that 68 protocol-specific documents will reference this memo to describe how 69 information is carried for specific uses. Such encodings can be used 70 to extend GMPLS signaling and routing protocols. In addition these 71 encodings could be used by other mechanisms to convey this same 72 information to a path computation element (PCE). 74 Conventions used in this document 76 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 77 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 78 document are to be interpreted as described in RFC-2119 [RFC2119]. 80 Table of Contents 82 1. Introduction...................................................4 83 1.1. Revision History..........................................4 84 1.1.1. Changes from 00 draft................................4 85 1.1.2. Changes from 01 draft................................5 86 1.1.3. Changes from 02 draft................................5 87 1.1.4. Changes from 03 draft................................5 88 1.1.5. Changes from 04 draft................................5 89 1.1.6. Changes from 05 draft................................5 90 1.1.7. Changes from 06 draft................................6 91 1.1.8. Changes from 07 draft................................6 92 1.1.9. Changes from 08 draft................................6 93 1.1.10. Changes from 09 draft...............................6 94 1.1.11. Changes from 10 draft...............................6 95 1.1.12. Changes from 11 draft...............................6 96 1.1.13. Changes from 12 draft...............................6 97 1.1.14. Changes from 13 draft...............................7 98 1.1.15. Changes from 14 draft...............................7 99 1.1.16. Changes from 15 draft...............................7 100 1.1.17. Changes from 16 draft...............................7 101 1.1.18. Changes from 17 draft...............................7 102 1.1.19. Changes from 18 draft...............................7 103 1.1.20. Changes from 19 draft...............................7 104 1. Terminology....................................................8 105 2. Resources, Blocks, Sets, and the Resource Pool.................8 106 2.1. Resource Block Set Field..................................9 107 3. Resource Pool Accessibility/Availability......................10 108 3.1. Resource Pool Accessibility Sub-TLV......................10 109 3.2. Resource Block Wavelength Constraints Sub-TLV............12 110 3.3. Resource Pool State Sub-TLV..............................14 111 3.4. Block Shared Access Wavelength Availability sub-TLV......15 112 4. Resource Properties Encoding..................................16 113 4.1. Resource Block Information Sub-TLV.......................17 114 4.2. Optical Interface Class List(s) Sub-Sub-TLV..............17 115 4.2.1. Optical Interface Class Format......................18 116 4.2.2. ITU-G.698.1 Application Code Mapping................19 117 4.2.3. ITU-G.698.2 Application Code Mapping................21 118 4.2.4. ITU-G.959.1 Application Code Mapping................22 119 4.2.5. ITU-G.695 Application Code Mapping..................24 120 4.3. Input Client Signal List Sub-Sub-TLV.....................26 121 4.4. Input Bit Rate List Sub-Sub-TLV..........................27 122 4.5. Processing Capability List Sub-Sub-TLV...................27 123 4.5.1. Processing Capabilities Field.......................28 124 5. Security Considerations.......................................29 125 6. IANA Considerations...........................................29 126 7. Acknowledgments...............................................29 127 APPENDIX A: Encoding Examples....................................30 128 A.1. Wavelength Converter Accessibility Sub-TLV...............30 129 A.2. Wavelength Conversion Range Sub-TLV......................31 130 A.3. An OEO Switch with DWDM Optics...........................32 131 8. References....................................................35 132 8.1. Normative References.....................................35 133 8.2. Informative References...................................35 134 9. Contributors..................................................37 135 Authors' Addresses...............................................38 136 Intellectual Property Statement..................................39 137 Disclaimer of Validity...........................................40 139 1. Introduction 141 A Wavelength Switched Optical Network (WSON) is a Wavelength 142 Division Multiplexing (WDM) optical network in which switching is 143 performed selectively based on the center wavelength of an optical 144 signal. 146 [RFC6163] describes a framework for Generalized Multiprotocol Label 147 Switching (GMPLS) and Path Computation Element (PCE) control of a 148 WSON. Based on this framework, [WSON-Info] describes an information 149 model that specifies what information is needed at various points in 150 a WSON in order to compute paths and establish Label Switched Paths 151 (LSPs). 153 This document provides efficient encodings of information needed by 154 the routing and wavelength assignment (RWA) process in a WSON. Such 155 encodings can be used to extend GMPLS signaling and routing 156 protocols. In addition these encodings could be used by other 157 mechanisms to convey this same information to a path computation 158 element (PCE). Note that since these encodings are relatively 159 efficient they can provide more accurate analysis of the control 160 plane communications/processing load for WSONs looking to utilize a 161 GMPLS control plane. 163 Note that encodings of information needed by the routing and label 164 assignment process applicable to general networks beyond WSON are 165 addressed in a separate document [Gen-Encode]. This document makes 166 use of the Label Set Field encoding of [Gen-Encode] and refers to it 167 as a Wavelength Set Field. 169 1.1. Revision History 171 1.1.1. Changes from 00 draft 173 Edits to make consistent with update to [RFC6205], i.e., removal of 174 sign bit. 176 Clarification of TBD on connection matrix type and possibly 177 numbering. 179 New sections for wavelength converter pool encoding: Wavelength 180 Converter Set Sub-TLV, Wavelength Converter Accessibility Sub-TLV, 181 Wavelength Conversion Range Sub-TLV, WC Usage State Sub-TLV. 183 Added optional wavelength converter pool TLVs to the composite node 184 TLV. 186 1.1.2. Changes from 01 draft 188 The encoding examples have been moved to an appendix. Classified and 189 corrected information elements as either reusable fields or sub- 190 TLVs. Updated Port Wavelength Restriction sub-TLV. Added available 191 wavelength and shared backup wavelength sub-TLVs. Changed the title 192 and scope of section 6 to recommendations since the higher level 193 TLVs that this encoding will be used in is somewhat protocol 194 specific. 196 1.1.3. Changes from 02 draft 198 Removed inconsistent text concerning link local identifiers and the 199 link set field. 201 Added E bit to the Wavelength Converter Set Field. 203 Added bidirectional connectivity matrix example. Added simple link 204 set example. Edited examples for consistency. 206 1.1.4. Changes from 03 draft 208 Removed encodings for general concepts to [Gen-Encode]. 210 Added in WSON signal compatibility and processing capability 211 information encoding. 213 1.1.5. Changes from 04 draft 215 Added encodings to deal with access to resource blocks via shared 216 fiber. 218 1.1.6. Changes from 05 draft 220 Revised the encoding for the "shared access" indicators to only use 221 one bit each for input and output. 223 1.1.7. Changes from 06 draft 225 Removed section on "WSON Encoding Usage Recommendations" 227 1.1.8. Changes from 07 draft 229 Section 3: Enhanced text to clarify relationship between pools, 230 blocks and resources. Section 3.1, 3.2: Change title to clarify 231 Pool-Block relationship. Section 3.3: clarify block-resource state. 233 Section 4: Deleted reference to previously removed RBNF element. 234 Fixed TLV figures and descriptions for consistent sub-sub-TLV 235 nomenclature. 237 1.1.9. Changes from 08 draft 239 Fixed ordering of fields in second half of sub-TLV example in 240 Appendix A.1. 242 Clarifying edits in section 3 on pools, blocks, and resources. 244 1.1.10. Changes from 09 draft 246 Fixed the "Block Shared Access Wavelength Availability sub-TLV" of 247 section 3.4 to use an "RB set field" rather than a single RB ID. 248 Removed all 1st person idioms. 250 1.1.11. Changes from 10 draft 252 Removed remaining 1st person idioms. Updated IANA section. Update 253 references for newly issued RFCs. 255 1.1.12. Changes from 11 draft 257 Fixed length fields in section 4 to be 16 bits, correcting errors in 258 TLV and field figures. Added a separate section on resources, 259 blocks, sets and the resource pool. Moved definition of the resource 260 block set field to this new section. 262 1.1.13. Changes from 12 draft 264 Replaced all instances of "ingress" with "input" and all instances 265 of "egress" with "output". 267 1.1.14. Changes from 13 draft 269 C bit of Resource Block Set Field is redundant and was removed, 270 i.e., has been returned to "Reserved" block and appendix examples 271 were updated to reflect the change. 273 Enhanced section 4.2 encoding to allow for optionality of input or 274 output wavelength set fields. 276 Clarified that wavelength set fields use the Label Set field 277 encoding from [Gen-Encode]. 279 Enhanced section 5.1 encoding to simplify the Modulation and FEC 280 input and output cases. 282 1.1.15. Changes from 14 draft 284 OIC changes per workgroup request. Removed FEC type and modulation 285 type. Fixed versioning error and return RB identifiers to 32 bits. 287 1.1.16. Changes from 15 draft 289 Edits of OIC related text per CCAMP list email. 291 1.1.17. Changes from 16 draft 293 Added full ITU-T string to 64 bit mapping to text from OIC draft. 295 1.1.18. Changes from 17 draft 297 Action value for Inclusive Range(s) changed to 1 from 2 for the 298 Resource Block Set Field encoding in Section 3.1. 300 Added a list of contributors who provided texts for the Optical 301 Interface Class (OIC) description. 303 1.1.19. Changes from 18 draft 305 Added Section 5.2.5 to include ITU-G.695 Application Code Mapping. 307 1.1.20. Changes from 19 draft 309 Added the definition and encoding of Input Bit Rate List Sub-Sub-TLV 310 in Section 4.4. 312 1. Terminology 314 CWDM: Coarse Wavelength Division Multiplexing. 316 DWDM: Dense Wavelength Division Multiplexing. 318 FOADM: Fixed Optical Add/Drop Multiplexer. 320 ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port 321 count wavelength selective switching element featuring input and 322 output line side ports as well as add/drop side ports. 324 RWA: Routing and Wavelength Assignment. 326 Wavelength Conversion. The process of converting an information 327 bearing optical signal centered at a given wavelength to one with 328 "equivalent" content centered at a different wavelength. Wavelength 329 conversion can be implemented via an optical-electronic-optical 330 (OEO) process or via a strictly optical process. 332 WDM: Wavelength Division Multiplexing. 334 Wavelength Switched Optical Network (WSON): A WDM based optical 335 network in which switching is performed selectively based on the 336 center wavelength of an optical signal. 338 2. Resources, Blocks, Sets, and the Resource Pool 340 The optical system to be encoded may contain a pool of resources of 341 different types and properties for processing optical signals. For 342 the purposes here a "resource" is an individual entity such as a 343 wavelength converter or regenerator within the optical node that 344 acts on an individual wavelength signal. 346 Since resources tend to be packaged together in blocks of similar 347 devices, e.g., on line cards or other types of modules, the 348 fundamental unit of identifiable resource in this document is the 349 "resource block". A resource block may contain one or more 350 resources. As resource blocks are the smallest identifiable unit of 351 processing resource, one should group together resources into blocks 352 if they have similar characteristics relevant to the optical system 353 being modeled, e.g., processing properties, accessibility, etc. 355 This document defines the following sub-TLVs pertaining to resources 356 within an optical node: 358 Resource Pool Accessibility Sub-TLV 360 Resource Block Wavelength Constraints Sub-TLV 362 Resource Pool State Sub-TLV 364 Block Shared Access Wavelength Availability Sub-TLV 366 Resource Block Information Sub-TLV 368 Each of these sub-TLVs works with one or more sets of resources 369 rather than just a single resource block. This motivates the 370 following field definition. 372 2.1. Resource Block Set Field 374 In a WSON node that includes resource blocks (RB), denoting subsets 375 of these blocks allows one to efficiently describe common properties 376 of the blocks and to describe the structure and characteristics, if 377 non-trivial, of the resource pool. The RB Set field is defined in a 378 similar manner to the label set concept of [RFC3471]. 380 The information carried in a RB set field is defined by: 382 0 1 2 3 383 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 384 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 385 | Action |C| Reserved | Length | 386 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 387 | RB Identifier 1 | 388 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 389 : : : 390 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 391 | RB Identifier n | 392 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 394 Action: 8 bits 396 0 - Inclusive List 398 Indicates that the TLV contains one or more RB elements that are 399 included in the list. 401 1 - Inclusive Range(s) 403 Indicates that the TLV contains one or more ranges of RBs. Each 404 individual range is denoted by two 32 bit RB identifier. The first 405 32 bits is the RB identifier for the start of the range and the next 406 32 bits is the RB identifier for the end of the range. Note that the 407 Length field is used to determine the number of ranges. 409 C (Connectivity bit): Set to 0 to denote fixed (possibly multi- 410 cast) connectivity; Set to 1 to denote potential (switched) 411 connectivity. Used in resource pool accessibility sub-TLV. Ignored 412 elsewhere. 414 Reserved: 7 bits 416 This field is reserved. It MUST be set to zero on transmission and 417 MUST be ignored on receipt. 419 Length: 16 bits 421 The total length of this field in bytes. 423 RB Identifier: 425 The RB identifier represents the ID of the resource block which is a 426 32 bit integer. 428 Usage Note: the inclusive range "Action" can result in very compact 429 encoding of resource sets and it can be advantages to number 430 resource blocks in such a way so that status updates (dynamic 431 information) can take advantage of this efficiency. 433 3. Resource Pool Accessibility/Availability 435 This section defines the sub-TLVs for dealing with accessibility and 436 availability of resource blocks within a pool of resources. These 437 include the ResourceBlockAccessibility, ResourceWaveConstraints, and 438 RBPoolState sub-TLVs. 440 3.1. Resource Pool Accessibility Sub-TLV 442 This sub-TLV describes the structure of the resource pool in 443 relation to the switching device. In particular it indicates the 444 ability of an input port to reach sets of resources and of a sets of 445 resources to reach a particular output port. This is the 446 PoolInputMatrix and PoolOutputMatrix of [WSON-Info]. 448 The resource pool accessibility sub-TLV is defined by: 450 0 1 2 3 451 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 452 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 453 | Connectivity | Reserved | 454 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 455 | Input Link Set Field A #1 | 456 : : 457 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 458 | RB Set Field A #1 | 459 : : 460 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 461 | Additional Link set and RB set pairs as needed to | 462 : specify PoolInputMatrix : 463 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 464 | Output Link Set Field B #1 | 465 : : 466 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 467 | RB Set B Field #1 (for output connectivity) | 468 : : 469 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 470 | Additional Link Set and RB set pairs as needed to | 471 : specify PoolOutputMatrix : 472 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 474 Where 476 Connectivity indicates how the input/output ports connect to the 477 resource blocks. 479 0 -- the device is fixed (e.g., a connected port must go 480 through the resource block) 482 1 -- the device is switched (e.g., a port can be configured to 483 go through a resource but isn't required) 485 The For the Input and Output Link Set Fields, the Link Set Field 486 encoding defined in [Gen-Encode] is to be used. 488 Note that the direction parameter within the Link Set Field is used 489 to indicate whether the link set is an input or output link set, and 490 the bidirectional value for this parameter is not permitted in this 491 sub-TLV. 493 See Appendix A.1 for an illustration of this encoding. 495 3.2. Resource Block Wavelength Constraints Sub-TLV 497 Resources, such as wavelength converters, etc., may have a limited 498 input or output wavelength ranges. Additionally, due to the 499 structure of the optical system not all wavelengths can necessarily 500 reach or leave all the resources. These properties are described by 501 using one or more resource wavelength restrictions sub-TLVs as 502 defined below: 504 0 1 2 3 505 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 506 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 507 |I|O|B| Reserved | 508 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 509 | RB Set Field | 510 : : 511 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 512 | Input Wavelength Set Field | 513 : : 514 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 515 | Output Wavelength Set Field | 516 : : 517 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 519 I = 1 or 0 indicates the presence or absence of the Input Wavelength 520 Set Field. 522 O = 1 or 0 indicates the presence or absence of the Output 523 Wavelength Set Field. 525 B = 1 indicates that a single wavelength set field represents both 526 input and output wavelength constraints. 528 Currently the only valid combinations of (I,O,B) are (1,0,0), 529 (0,1,0), (1,1,0), (0,0,1). 531 RB Set Field: 533 A set of resource blocks (RBs) which have the same wavelength 534 restrictions. 536 Input Wavelength Set Field: 538 Indicates the wavelength input restrictions of the RBs in the 539 corresponding RB set. This field is encoded via the Label Set field 540 of [Gen-Encode]. 542 Output Wavelength Set Field: 544 Indicates the wavelength output restrictions of RBs in the 545 corresponding RB set. This field is encoded via the Label Set field 546 of [Gen-Encode]. 548 3.3. Resource Pool State Sub-TLV 550 The state of the pool is given by the number of resources available 551 with particular characteristics. A resource block set is used to 552 encode all or a subset of the resources of interest. The usage state 553 of resources within a resource block set is encoded as either a list 554 of 16 bit integer values or a bit map indicating whether a single 555 resource is available or in use. The bit map encoding is appropriate 556 when resource blocks consist of a single resource. This information 557 can be relatively dynamic, i.e., can change when a connection (LSP 558 is established or torn down. 560 0 1 2 3 561 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 562 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 563 | Action | Reserved | 564 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 565 | RB Set Field | 566 : : 567 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 568 | RB Usage state | 569 : : 570 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 572 Where Action = 0 denotes a list of 16 bit integers and Action = 1 573 denotes a bit map. In both cases the elements of the RB Set field 574 are in a one-to-one correspondence with the values in the usage RB 575 usage state area. 577 0 1 2 3 578 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 579 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 580 | Action = 0 | Reserved | 581 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 582 | RB Set Field | 583 : : 584 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 585 | RB#1 state | RB#2 state | 586 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 587 : : 588 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 589 | RB#n-1 state | RB#n state or Padding | 590 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 592 Whether the last 16 bits is a wavelength converter (RB) state or 593 padding is determined by the number of elements in the RB set field. 595 0 1 2 3 596 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 597 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 598 | Action = 1 | Reserved | 599 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 600 | RB Set Field | 601 : : 602 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 603 | RB Usage state bitmap | 604 : : 605 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 606 | ...... | Padding bits | 607 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 609 RB Usage state: Variable Length but must be a multiple of 4 byes. 611 Each bit indicates the usage status of one RB with 0 indicating the 612 RB is available and 1 indicating the RB is in used. The sequence of 613 the bit map is ordered according to the RB Set field with this sub- 614 TLV. 616 Padding bits: Variable Length 618 3.4. Block Shared Access Wavelength Availability sub-TLV 620 Resources blocks may be accessed via a shared fiber. If this is the 621 case, then wavelength availability on these shared fibers is needed 622 to understand resource availability. 624 0 1 2 3 625 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 626 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 627 |I|E| Reserved | 628 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 629 | RB Set Field | 630 : : 631 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 632 | Input Available Wavelength Set Field | 633 : (Optional) : 634 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 635 | Output Available Wavelength Set Field | 636 : (Optional) : 637 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 638 I bit: 640 Indicates whether the input available wavelength set field is 641 included (1) or not (0). 643 E bit: 645 Indicates whether the output available wavelength set field is 646 included (1) or not (0). 648 RB Set Field: 650 A Resource Block set in which all the members share the same input 651 or output fiber or both. 653 Input Available Wavelength Set Field: 655 Indicates the wavelengths currently available (not being used) on 656 the input fiber to this resource block. This field is encoded via 657 the Label Set field of [Gen-Encode]. 659 Output Available Wavelength Set Field: 661 Indicates the wavelengths currently available (not being used) on 662 the output fiber from this resource block. This field is encoded via 663 the Label Set field of [Gen-Encode]. 665 4. Resource Properties Encoding 667 Within a WSON network element (NE) there may be resources with 668 signal compatibility constraints. These resources be regenerators, 669 wavelength converters, etc... Such resources may also constitute the 670 network element as a whole as in the case of an electro optical 671 switch. This section primarily focuses on the signal compatibility 672 and processing properties of such a resource block. 674 The fundamental properties of a resource block, such as a 675 regenerator or wavelength converter, are: 677 (a) Input constraints (shared input, modulation, FEC, bit rate, 678 GPID) 680 (b) Processing capabilities (number of resources in a block, 681 regeneration, performance monitoring, vendor specific) 683 (c) Output Constraints (shared output, modulation, FEC) 685 4.1. Resource Block Information Sub-TLV 687 Resource Block descriptor sub-TLVs are used to convey relatively 688 static information about individual resource blocks including the 689 resource block compatibility properties, processing properties, and 690 the number of resources in a block. 692 This sub-TLV has the following format: 694 0 1 2 3 695 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 696 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 697 | RB Set Field | 698 : : 699 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 700 |I|E| Reserved | 701 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 702 | Optical Interface Class List(s) Sub-Sub-TLV (opt) | 703 : : 704 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 705 | Input Client Signal Type Sub-Sub-TLV (opt) | 706 : : 707 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 708 | Input Bit Rate List Sub-Sub-TLV (opt) | 709 : : 710 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 711 | Processing Capabilities List Sub-Sub-TLV (opt) | 712 : : 713 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 715 Where I and E, the shared input/output indicator, is set to 1 if the 716 resource blocks identified in the RB set field utilized a shared 717 fiber for input/output access and set to 0 otherwise. 719 4.2. Optical Interface Class List(s) Sub-Sub-TLV 721 The list of Optical Interface Class sub-sub-TLV has the following 722 format: 724 0 1 2 3 725 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 726 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 727 | Type | Length | Reserved |I|E| 728 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 729 | Optical Interface Classes | 730 : : 731 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 733 The following I and E combination are defined: 735 I E 737 0 0 Invalid 739 1 0 Optical Interface Class List acceptable in input 741 0 1 Optical Interface Class List available in output 743 1 1 Optical Interface Class List available on both input and 744 output. 746 The Resource Block MAY contain one or more lists according to 747 input/output flags. 749 4.2.1. Optical Interface Class Format 751 0 1 2 3 752 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 753 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 754 |S| Reserved | OI Code Points | 755 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 756 | Optical Interface Class | 757 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 758 | Optical Interface Class (Cont.) | 759 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 761 Where the first 32 bits of the encoding shall be used to identify 762 the semantic of the Optical Interface Class in the following way: 764 S Standard bit. 766 S=0, identify not ITU code points 768 S=1, identify ITU application codes 770 With S=0, the OI Code Points field can take the following 771 values: 773 0: reserved 775 1: Vendor Specific Optical Interface Class. 777 With S=1, the OI Code Points field can take the following 778 values: 780 0: reserved 782 1: [ITU-G.698.1] application code. 784 2: [ITU-G.698.2] application code. 786 3: [ITU-G.959.1] application code. 788 4: [ITU-G.695.1] application code. 790 In case of ITU Application Code, the mapping between the string 791 defining the application code and the 64 bits number implementing 792 the optical interface class is given in the following sections. 794 4.2.2. ITU-G.698.1 Application Code Mapping 796 Recommendation ITU-G.698.1 defines the Application Codes: DScW- 797 ytz(v) and B-DScW-ytz(v). Where: 799 B: means Bidirectionals. 801 D: means a DWDM application. 803 S: take values N (narrow spectral excursion), W (wide spectral 804 excursion). 806 c: Channel Spacing (GHz). 808 W: take values S (short-haul), L (long-haul). 810 y: take values 1 (NRZ 2.5G), 2 (indicating NRZ 10G). 812 t: take only D value is defined (link does not contain optical 813 amplifier) 815 z: take values 2 (ITU-T G.652 fibre), 3 (ITU-T G.653 fibre), 5 816 (indicating ITU-T G.655 fibre). 818 v: take values S (Short wavelength), C (Conventional), L (Long 819 wavelength). 821 An Optional F can be added indicating a FEC Encoding. 823 These get mapped into the 64 bit OIC field as follows: 825 0 1 2 3 826 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 827 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 828 |B| p |S| c | W | y | t | z | v | s | 829 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 830 | reserved | 831 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 833 Where (values between parenthesis refer to ITU defined values as 834 reported above): 836 B: = 1 bidirectional, 0 otherwise 838 p (prefix): = 0 reserved, = 1 (D) 840 S: = 0 (N), = 1 (W) 842 c: Channel Spacing, 4 bits mapped according to same definition 843 in [RFC6205] (note that DWDM spacing apply here) 845 W: = 0 reserved, = 2 (S), = 3 (L) 847 y: = 0 reserved, = 1 (1), = 2 (2) 849 t: = 0 reserved, = 4 (D) 851 z: = 0 reserved, = 2 (2), = 3 (3), = 5 (5) 852 v: = 0 reserved, = 1 (S), = 2 (C), = 3 (L) 854 s (suffix): = 0 reserved, = 1 Fec Encoding 856 Values not mentioned here are not allowed in this application 857 code, the last 32 bits are reserved and shall be set to zero. 859 4.2.3. ITU-G.698.2 Application Code Mapping 861 Recommendation ITU-G.698.2 defines the Application Codes: DScW- 862 ytz(v) and B-DScW-ytz(v). 864 B: means Bidirectional. 866 D: means a DWDM application. 868 S: take values N (narrow spectral excursion), W (wide spectral 869 excursion). 871 c: Channel Spacing (GHz). 873 W: take values C (link is dispersion compensated), U (link is 874 dispersion uncompensated). 876 y: take values 1 (NRZ 2.5G), 2 (indicating NRZ 10G). 878 t: take value A (link may contains optical amplifier) 880 z: take values 2 (ITU-T G.652 fibre), 3 (ITU-T G.653 fibre), 5 881 (indicating ITU-T G.655 fibre). 883 v: take values S (Short wavelength), C (Conventional), L (Long 884 wavelength). 886 An Optional F can be added indicating a FEC Encoding. 888 These get mapped into the 64 bit OIC field as follows: 890 0 1 2 3 891 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 892 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 893 |B| p |S| c | W | y | t | z | v | s | 894 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 895 | reserved | 896 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 898 Where (values between parenthesis refer to ITU defined values as 899 reported above): 901 B: = 1 bidirectional, 0 otherwise 903 p (prefix): = 0 reserved, = 1 (D) 905 S: = 0 (N), = 1 (W) 907 c: Channel Spacing, 4 bits mapped according to same definition 908 in [RFC6205] (note that DWDM spacing apply here) 910 W: = 0 reserved, = 10 (C), = 11 (U) 912 y: = 0 reserved, = 1 (1), = 2 (2) 914 t: = 0 reserved, = 1 (A) 916 z: = 0 reserved, = 2 (2), = 3 (3), = 5 (5) 918 v: = 0 reserved, = 1 (S), = 2 (C), = 3 (L) 920 s (suffix): = 0 reserved, = 1 Fec Encoding 922 Values not mentioned here are not allowed in this application 923 code, the last 32 bits are reserved and shall be set to zero. 925 4.2.4. ITU-G.959.1 Application Code Mapping 927 Recommendation ITU-G.959.1 defines the Application Codes: PnWx-ytz 928 and BnWx-ytz. Where: 930 P,B: when present indicate Plural or Bidirectional 932 n: maximum number of channels supported by the application code 933 (i.e. an integer number) 935 W: take values I (intra-office), S (short-haul), L (long-haul), V 936 (very long-haul), U (ultra long-haul). 938 x: maximum number of spans allowed within the application code 939 (i.e. an integer number) 940 y: take values 1 (NRZ 2.5G), 2 (NRZ 10G), 9 (NRZ 25G), 3 (NRZ 941 40G), 7 (RZ 40G). 943 t: take values A (power levels suitable for a booster amplifier 944 in the originating ONE and power levels suitable for a pre-amplifier 945 in the terminating ONE), B (booster amplifier only), C (pre- 946 amplifier only), D (no amplifiers). 948 z: take values 1 (1310 nm sources on ITU-T G.652 fibre), 2 (1550 949 nm sources on ITU-T G.652 fibre), 3 (1550 nm sources on ITU-T 950 G.653 fibre), 5 (1550 nm sources on ITU-T G.655 fibre). 952 The following list of suffixes can be added to these application 953 codes: 955 F: FEC encoding. 957 D: Adaptive dispersion compensation. 959 E: receiver capable of dispersion compensation. 961 r: reduced target distance. 963 a: power levels appropriate to APD receivers. 965 b: power levels appropriate to PIN receivers. 967 These values are encoded as follows: 969 0 1 2 3 970 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 971 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 972 | p | P | n | W | x | reserved | 973 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 974 | y | t | z | suffix | reserved | 975 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 977 Where (values between parenthesis refer to ITU defined values as 978 reported above): 980 p (prefix) = 0 otherwise, = 1 Bidirectional (B) 982 P (optional): = 0 not present, = 2 (P). 984 n: maximum number of channels (10 bits, up to 1024 channels) 986 W: = 0 reserved, = 1 (I), = 2 (S), = 3 (L), = 4 (V), = 5 (U) 988 x: = number of spans (6 bits, up to 64 spans) 990 y: = 0 reserved, = 1 (1), = 2 (2), = 3 (3), = 7 (7), = 9 (9) 992 t: = 0 reserved, = 1 (A), = 2 (B), = 3 (C), = 4 (D) 994 z: = 0 reserved, = 1 (1), = 2 (2), = 3 (3), = 5 (5) 996 suffix is an 6 bit, bit map: 998 0 1 2 3 4 5 999 +-+-+-+-+-+-+ 1000 |F|D|E|r|a|b| 1001 +-+-+-+-+-+-+ 1002 where a 1 in the appropriate slot indicates that the corresponding 1003 suffix has been added. 1005 4.2.5. ITU-G.695 Application Code Mapping 1007 Recommendation [ITU-G.695] defines the Application Codes: CnWx-ytz 1008 and B-CnWx-ytz and S-CnWx-ytz. 1010 Where the optional prefixed are: 1012 B: Bidirectional 1014 S: a system using a black link approach 1016 And the rest of the application code is defined as: 1018 C: CWDM (Coarse WDM) application 1020 n: maximum number of channels supported by the application code 1021 (i.e. an integer number) 1023 W: take values S (short-haul), L (long-haul). 1025 x: maximum number of spans allowed 1027 y: take values 0 (NRZ 1.25G), 1 (NRZ 2.5G), 2 (NRZ 10G). 1029 t: take values D (link does not contain any optical amplifier). 1031 z: take values 1 (1310 nm region for ITU-T G.652 fibre), 2 (ITU-T 1032 G.652 fibre), 3 (ITU-T G.653 fibre), 5 (ITU-T G.655 fibre). 1034 The following list of suffixes can be added to these application 1035 codes: 1037 F: FEC encoding. 1039 Since the application codes are very similar to the one from the 1040 G.959 section most of the fields are reused. The 64 bit OIC field is 1041 encoded as follows: 1043 0 1 2 3 1044 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1045 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1046 | p | C | n | W | x | reserved | 1047 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1048 | y | t | z | suffix | reserved | 1049 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1051 Where (values between parenthesis refer to ITU defined values as 1052 reported above): 1054 p: = 0 no prefix, 1 = B bidirectional, = 2 S black link 1056 C: = 0 reserved, = 3 (C). 1058 n: maximum number of channels (10 bits, up to 1024 channels) 1060 W: = 0 reserved, = 1 reserved, = 2 (S), = 3 (L), > 3 reserved 1062 x: = number of spans (6 bits, up to 64 spans) 1064 y: = 0 (0), = 1 (1), =2 (2), > 2 reserved 1066 t: = 4 (D), all other values are reserved 1068 z: = 0 reserved, = 1 (1), = 2 (2), = 3 (3) 1070 suffix is an 6 bit, bit map: 1072 0 1 2 3 4 5 1073 +-+-+-+-+-+-+ 1074 |F|0|0|0|0|0| 1075 +-+-+-+-+-+-+ 1076 where a 1 in the appropriate slot indicates that the corresponding 1077 suffix has been added. 1079 4.3. Input Client Signal List Sub-Sub-TLV 1081 This sub-sub-TLV contains a list of acceptable input client signal 1082 types. 1084 Type := Input Client Signal List 1086 Value := A list of GPIDs 1088 The acceptable client signal list sub-TLV is a list of Generalized 1089 Protocol Identifiers (GPIDs). GPIDs are assigned by IANA and many 1090 are defined in [RFC3471] and [RFC4328]. 1092 0 1 2 3 1093 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1094 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1095 | Number of GPIDs | GPID #1 | 1096 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1097 : | : 1098 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1099 | GPID #N | | 1100 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1102 Where the number of GPIDs is an integer greater than or equal to 1103 one. 1105 4.4. Input Bit Rate List Sub-Sub-TLV 1107 This sub-sub-TLV contains a list of bit rate of each input client 1108 signal types specified in the Input Client Signal List Sub-Sub-TLV. 1110 Type := Input Bit Rate List 1112 Value := IEEE 32-bit IEEE Floating Point 1114 The number of Input Bit Rate MUST match the number of GPID. 1116 0 1 2 3 1117 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1118 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1119 | Input Bit Rate of GPID #1 | 1120 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1121 : : 1122 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1123 | Input Bit Rate of GPID #N | 1124 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1126 4.5. Processing Capability List Sub-Sub-TLV 1128 This sub-sub-TLV contains a list of resource processing 1129 capabilities. 1131 Type := Processing Capabilities List 1132 Value := A list of Processing Capabilities Fields 1134 The processing capability list sub-sub-TLV is a list of capabilities 1135 that can be achieved through the referred resources:: 1137 1. Regeneration capability 1139 2. Fault and performance monitoring 1141 3. Vendor Specific capability 1143 Note that the code points for Fault and performance monitoring and 1144 vendor specific capability are subject to further study. 1146 4.5.1. Processing Capabilities Field 1148 The processing capability field is then given by: 1150 0 1 2 3 1151 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1152 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1153 | Processing Cap ID | Length | 1154 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1155 | Possible additional capability parameters depending upon | 1156 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1157 : the processing ID : 1158 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1160 When the processing Cap ID is "regeneration capability", the 1161 following additional capability parameters are provided in the sub- 1162 TLV: 1164 0 1 2 3 1165 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1166 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1167 | T | C | Reserved | 1168 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1170 Where T bit indicates the type of regenerator: 1172 T=0: Reserved 1173 T=1: 1R Regenerator 1175 T=2: 2R Regenerator 1177 T=3: 3R Regenerator 1179 Where C bit indicates the capability of regenerator: 1181 C=0: Reserved 1183 C=1: Fixed Regeneration Point 1185 C=2: Selective Regeneration Point 1187 Note that when the capability of regenerator is indicated to be 1188 Selective Regeneration Pools, regeneration pool properties such as 1189 input and output restrictions and availability need to be specified. 1190 This encoding is to be determined in the later revision. 1192 5. Security Considerations 1194 This document defines protocol-independent encodings for WSON 1195 information and does not introduce any security issues. 1197 However, other documents that make use of these encodings within 1198 protocol extensions need to consider the issues and risks associated 1199 with, inspection, interception, modification, or spoofing of any of 1200 this information. It is expected that any such documents will 1201 describe the necessary security measures to provide adequate 1202 protection. 1204 6. IANA Considerations 1206 This document provides general protocol independent information 1207 encodings. There is no IANA allocation request for the TLVs defined 1208 in this document. IANA allocation requests will be addressed in 1209 protocol specific documents based on the encodings defined here. 1211 7. Acknowledgments 1213 This document was prepared using 2-Word-v2.0.template.dot. 1215 APPENDIX A: Encoding Examples 1217 A.1. Wavelength Converter Accessibility Sub-TLV 1219 Example: 1221 Figure 1 shows a wavelength converter pool architecture know as 1222 "shared per fiber". In this case the input and output pool matrices 1223 are simply: 1225 +-----+ +-----+ 1226 | 1 1 | | 1 0 | 1227 WI =| |, WE =| | 1228 | 1 1 | | 0 1 | 1229 +-----+ +-----+ 1231 +-----------+ +------+ 1232 | |--------------------->| | 1233 | |--------------------->| C | 1234 /| | |--------------------->| o | 1235 /D+--->| |--------------------->| m | 1236 + e+--->| | | b |=======> 1237 ========>| M| | Optical | +-----------+ | i | Port E1 1238 Port I1 + u+--->| Switch | | WC Pool | | n | 1239 \x+--->| | | +-----+ | | e | 1240 \| | +----+->|WC #1|--+---->| r | 1241 | | | +-----+ | +------+ 1242 | | | | +------+ 1243 /| | | | +-----+ | | | 1244 /D+--->| +----+->|WC #2|--+---->| C | 1245 + e+--->| | | +-----+ | | o | 1246 ========>| M| | | +-----------+ | m |=======> 1247 Port I2 + u+--->| | | b | Port E2 1248 \x+--->| |--------------------->| i | 1249 \| | |--------------------->| n | 1250 | |--------------------->| e | 1251 | |--------------------->| r | 1252 +-----------+ +------+ 1253 Figure 1 An optical switch featuring a shared per fiber wavelength 1254 converter pool architecture. 1256 This wavelength converter pool can be encoded as follows: 1258 0 1 2 3 1259 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1260 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1261 | Connectivity=1| Reserved | 1262 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1263 Note: I1,I2 can connect to either WC1 or WC2 1264 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1265 | Action=0 |0| Reserved | Length = 12 | 1266 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1267 | Link Local Identifier = #1 | 1268 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1269 | Link Local Identifier = #2 | 1270 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1271 | Action=0 |1| Reserved | Length = 8 | 1272 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1273 | RB ID = #1 | 1274 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1275 | RB ID = #2 | 1276 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1277 Note: WC1 can only connect to E1 1278 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1279 | Action=0 |1| Reserved | Length = 8 | 1280 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1281 | Link Local Identifier = #1 | 1282 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1283 | Action=0 |0| Reserved | Length = 8 | 1284 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1285 | RB ID = #1 | 1286 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1287 Note: WC2 can only connect to E2 1288 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1289 | Action=0 |1| Reserved | Length = 8 | 1290 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1291 | Link Local Identifier = #2 | 1292 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1293 | Action=0 |0| | Length = 8 | 1294 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1295 | RB ID = #2 | 1296 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1298 A.2. Wavelength Conversion Range Sub-TLV 1300 Example: 1302 This example, based on figure 1, shows how to represent the 1303 wavelength conversion range of wavelength converters. Suppose the 1304 wavelength range of input and output of WC1 and WC2 are {L1, L2, L3, 1305 L4}: 1307 0 1 2 3 1308 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1309 Note: WC Set 1310 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1311 | Action=0 |1| Reserved | Length = 8 | 1312 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1313 | WC ID = #1 | WC ID = #2 | 1314 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1315 Note: wavelength input range 1316 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1317 | 2 | Num Wavelengths = 4 | Length = 8 | 1318 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1319 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1320 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1321 Note: wavelength output range 1322 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1323 | 2 | Num Wavelengths = 4 | Length = 8 | 1324 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1325 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1326 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1328 A.3. An OEO Switch with DWDM Optics 1330 Figure 2 shows an electronic switch fabric surrounded by DWDM 1331 optics. In this example the electronic fabric can handle either 1332 G.709 or SDH signals only (2.5 or 10 Gbps). To describe this node, 1333 the following information is needed: 1335 ::= [Other GMPLS sub- 1336 TLVs][...] [][] 1338 In this case there is complete port to port connectivity so the 1339 is not required. In addition since there are 1340 sufficient ports to handle all wavelength signals the 1341 element is not needed. 1343 Hence the attention will be focused on the sub-TLV: 1345 ::= 1346 [...][...] 1348 /| +-----------+ +-------------+ +------+ 1349 /D+--->| +--->|Tunable Laser|-->| | 1350 + e+--->| | +-------------+ | C | 1351 ========>| M| | | ... | o |=======> 1352 Port I1 + u+--->| | +-------------+ | m | Port E1 1353 \x+--->| |--->|Tunable Laser|-->| b | 1354 \| | Electric | +-------------+ +------+ 1355 | Switch | 1356 /| | | +-------------+ +------+ 1357 /D+--->| +--->|Tunable Laser|-->| | 1358 + e+--->| | +-------------+ | C | 1359 ========>| M| | | ... | o |=======> 1360 Port I2 + u+--->| | +-------------+ | m | Port E2 1361 \x+--->| +--->|Tunable Laser|-->| b | 1362 \| | | +-------------+ +------+ 1363 | | 1364 /| | | +-------------+ +------+ 1365 /D+--->| |--->|Tunable Laser|-->| | 1366 + e+--->| | +-------------+ | C | 1367 ========>| M| | | ... | o |=======> 1368 Port I3 + u+--->| | +-------------+ | m | Port E3 1369 \x+--->| |--->|Tunable Laser|-->| b | 1370 \| +-----------+ +-------------+ +------+ 1372 Figure 2 An optical switch built around an electronic switching 1373 fabric. 1375 The resource block information will tell us about the processing 1376 constraints of the receivers, transmitters and the electronic 1377 switch. The resource availability information, although very simple, 1378 tells us that all signals must traverse the electronic fabric (fixed 1379 connectivity). The resource wavelength constraints are not needed 1380 since there are no special wavelength constraints for the resources 1381 that would not appear as port/wavelength constraints. 1383 : 1385 0 1 2 3 1386 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1387 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1388 | RB Set Field | 1389 : (only one resource block in this example with shared | 1390 | input/output case) | 1391 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1392 |1|1| Reserved | 1393 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1394 | Optical Interface Class List(s) Sub-Sub-TLV | 1395 : : 1396 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1397 | Input Client Signal Type Sub-TLV | 1398 : (GPIDs for SDH and G.709) : 1399 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1400 | Input Bit Rate Range List Sub-Sub-TLV | 1401 : (2.5Gbps, 10Gbps) : 1402 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1403 | Processing Capabilities List Sub-Sub-TLV | 1404 : Fixed (non optional) 3R regeneration : 1405 : : 1406 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1408 Since there is fixed connectivity to resource blocks (the electronic 1409 switch) the is: 1411 0 1 2 3 1412 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1413 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1414 | Connectivity=0|Reserved | 1415 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1416 | Input Link Set Field A #1 | 1417 : (All input links connect to resource) : 1418 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1419 | RB Set Field A #1 | 1420 : (trivial set only one resource block) : 1421 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1422 | Output Link Set Field B #1 | 1423 : (All output links connect to resource) : 1424 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1426 8. References 1428 8.1. Normative References 1430 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1431 Requirement Levels", BCP 14, RFC 2119, March 1997. 1433 [RFC2578] McCloghrie, K., Perkins, D., and J. Schoenwaelder, 1434 "Structure of Management Information Version 2 (SMIv2)", 1435 STD 58, RFC 2578, April 1999. 1437 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 1438 (GMPLS) Signaling Functional Description", RFC 3471, 1439 January 2003. 1441 [RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label 1442 Switching (GMPLS) Signaling Extensions for G.709 Optical 1443 Transport Networks Control", RFC 4328, January 2006. 1445 8.2. Informative References 1447 [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM 1448 applications: DWDM frequency grid, June 2002. 1450 [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM 1451 applications: CWDM wavelength grid, December 2003. 1453 [G.695] ITU-T Recommendation G.695, Optical interfaces for coarse 1454 wavelength division multiplexing applications, October, 1455 2010. 1457 [G.959.1] ITU-T Recommendation G.959.1, Optical transport network 1458 physical layer interfaces, February, 2012. 1460 [Gen-Encode] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "General 1461 Network Element Constraint Encoding for GMPLS Controlled 1462 Networks", work in progress: draft-ietf-ccamp-general- 1463 constraint-encode. 1465 [RFC6205] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized 1466 Labels for G.694 Lambda-Switching Capable Label Switching 1467 Routers", RFC 6205, March 2011. 1469 [RFC6163] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS 1470 and PCE Control of Wavelength Switched Optical Networks", 1471 RFC 6163, April 2011. 1473 [WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and 1474 Wavelength Assignment Information Model for Wavelength 1475 Switched Optical Networks", work in progress: draft-ietf- 1476 ccamp-rwa-info. 1478 9. Contributors 1480 Diego Caviglia 1481 Ericsson 1482 Via A. Negrone 1/A 16153 1483 Genoa Italy 1485 Phone: +39 010 600 3736 1486 Email: diego.caviglia@(marconi.com, ericsson.com) 1488 Anders Gavler 1489 Acreo AB 1490 Electrum 236 1491 SE - 164 40 Kista Sweden 1493 Email: Anders.Gavler@acreo.se 1495 Jonas Martensson 1496 Acreo AB 1497 Electrum 236 1498 SE - 164 40 Kista, Sweden 1500 Email: Jonas.Martensson@acreo.se 1502 Itaru Nishioka 1503 NEC Corp. 1504 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 1505 Japan 1507 Phone: +81 44 396 3287 1508 Email: i-nishioka@cb.jp.nec.com 1510 Pierre Peloso 1511 ALU 1513 Email: pierre.peloso@alcatel-lucent.com 1515 Cyril Margaria 1516 NSN 1518 Email: cyril.margaria@nsn.com 1520 Giovanni Martinelli 1521 Cisco 1522 Email: giomarti@cisco.com 1524 Gabriele M Galimberti 1525 Cisco 1526 Email: ggalimbe@cisco.com 1528 Lyndon Ong 1529 Ciena Corporation 1530 Email: lyong@ciena.com 1532 Daniele Ceccarelli 1533 Ericsson 1534 Email: daniele.ceccarelli@ericsson.com 1536 Authors' Addresses 1538 Greg M. Bernstein (ed.) 1539 Grotto Networking 1540 Fremont California, USA 1542 Phone: (510) 573-2237 1543 Email: gregb@grotto-networking.com 1545 Young Lee (ed.) 1546 Huawei Technologies 1547 5340 Legacy Drive Build 3 1548 Plano, TX 75024 1549 USA 1551 Phone: (469) 277-5838 1552 Email: leeyoung@huawei.com 1553 Dan Li 1554 Huawei Technologies Co., Ltd. 1555 F3-5-B R&D Center, Huawei Base, 1556 Bantian, Longgang District 1557 Shenzhen 518129 P.R.China 1559 Phone: +86-755-28973237 1560 Email: danli@huawei.com 1562 Wataru Imajuku 1563 NTT Network Innovation Labs 1564 1-1 Hikari-no-oka, Yokosuka, Kanagawa 1565 Japan 1567 Phone: +81-(46) 859-4315 1568 Email: imajuku.wataru@lab.ntt.co.jp 1570 Jianrui Han 1571 Huawei Technologies Co., Ltd. 1572 F3-5-B R&D Center, Huawei Base, 1573 Bantian, Longgang District 1574 Shenzhen 518129 P.R.China 1576 Phone: +86-755-28972916 1577 Email: hanjianrui@huawei.com 1579 Intellectual Property Statement 1581 The IETF Trust takes no position regarding the validity or scope of 1582 any Intellectual Property Rights or other rights that might be 1583 claimed to pertain to the implementation or use of the technology 1584 described in any IETF Document or the extent to which any license 1585 under such rights might or might not be available; nor does it 1586 represent that it has made any independent effort to identify any 1587 such rights. 1589 Copies of Intellectual Property disclosures made to the IETF 1590 Secretariat and any assurances of licenses to be made available, or 1591 the result of an attempt made to obtain a general license or 1592 permission for the use of such proprietary rights by implementers or 1593 users of this specification can be obtained from the IETF on-line 1594 IPR repository at http://www.ietf.org/ipr 1595 The IETF invites any interested party to bring to its attention any 1596 copyrights, patents or patent applications, or other proprietary 1597 rights that may cover technology that may be required to implement 1598 any standard or specification contained in an IETF Document. Please 1599 address the information to the IETF at ietf-ipr@ietf.org. 1601 Disclaimer of Validity 1603 All IETF Documents and the information contained therein are 1604 provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION 1605 HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, 1606 THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL 1607 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 1608 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE 1609 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 1610 FOR A PARTICULAR PURPOSE. 1612 Acknowledgment 1614 Funding for the RFC Editor function is currently provided by the 1615 Internet Society.