idnits 2.17.1 draft-ietf-ccamp-rwa-wson-encode-21.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (September 30, 2013) is 3860 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'ITU-G.698.1' is mentioned on line 786, but not defined == Missing Reference: 'ITU-G.698.2' is mentioned on line 788, but not defined == Missing Reference: 'ITU-G.959.1' is mentioned on line 790, but not defined == Missing Reference: 'ITU-G.695.1' is mentioned on line 792, but not defined == Missing Reference: 'ITU-G.695' is mentioned on line 1011, but not defined == Unused Reference: 'RFC2578' is defined on line 1437, but no explicit reference was found in the text == Unused Reference: 'G.694.1' is defined on line 1451, but no explicit reference was found in the text == Unused Reference: 'G.694.2' is defined on line 1454, but no explicit reference was found in the text == Unused Reference: 'G.695' is defined on line 1457, but no explicit reference was found in the text == Unused Reference: 'G.959.1' is defined on line 1461, but no explicit reference was found in the text Summary: 0 errors (**), 0 flaws (~~), 11 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group G. Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Y. Lee 4 Expires: March 2014 D. Li 5 Huawei 6 W. Imajuku 7 NTT 9 September 30, 2013 11 Routing and Wavelength Assignment Information Encoding for 12 Wavelength Switched Optical Networks 14 draft-ietf-ccamp-rwa-wson-encode-21.txt 16 Status of this Memo 18 This Internet-Draft is submitted to IETF in full conformance with 19 the provisions of BCP 78 and BCP 79. 21 Internet-Drafts are working documents of the Internet Engineering 22 Task Force (IETF), its areas, and its working groups. Note that 23 other groups may also distribute working documents as Internet- 24 Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six 27 months and may be updated, replaced, or obsoleted by other documents 28 at any time. It is inappropriate to use Internet-Drafts as 29 reference material or to cite them other than as "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed at 35 http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on September 30, 2013. 39 Copyright Notice 41 Copyright (c) 2013 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents 46 (http://trustee.ietf.org/license-info) in effect on the date of 47 publication of this document. Please review these documents 48 carefully, as they describe your rights and restrictions with 49 respect to this document. Code Components extracted from this 50 document must include Simplified BSD License text as described in 51 Section 4.e of the Trust Legal Provisions and are provided without 52 warranty as described in the Simplified BSD License. 54 Abstract 56 A wavelength switched optical network (WSON) requires that certain 57 key information elements are made available to facilitate path 58 computation and the establishment of label switching paths (LSPs). 59 The information model described in "Routing and Wavelength 60 Assignment Information for Wavelength Switched Optical Networks" 61 shows what information is required at specific points in the WSON. 62 Part of the WSON information model contains aspects that may be of 63 general applicability to other technologies, while other parts are 64 fairly specific to WSONs. 66 This document provides efficient, protocol-agnostic encodings for 67 the WSON specific information elements. It is intended that 68 protocol-specific documents will reference this memo to describe how 69 information is carried for specific uses. Such encodings can be used 70 to extend GMPLS signaling and routing protocols. In addition these 71 encodings could be used by other mechanisms to convey this same 72 information to a path computation element (PCE). 74 Conventions used in this document 76 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 77 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 78 document are to be interpreted as described in RFC-2119 [RFC2119]. 80 Table of Contents 82 1. Introduction...................................................4 83 1.1. Revision History..........................................4 84 1.1.1. Changes from 00 draft................................4 85 1.1.2. Changes from 01 draft................................5 86 1.1.3. Changes from 02 draft................................5 87 1.1.4. Changes from 03 draft................................5 88 1.1.5. Changes from 04 draft................................5 89 1.1.6. Changes from 05 draft................................5 90 1.1.7. Changes from 06 draft................................6 91 1.1.8. Changes from 07 draft................................6 92 1.1.9. Changes from 08 draft................................6 93 1.1.10. Changes from 09 draft...............................6 94 1.1.11. Changes from 10 draft...............................6 95 1.1.12. Changes from 11 draft...............................6 96 1.1.13. Changes from 12 draft...............................6 97 1.1.14. Changes from 13 draft...............................7 98 1.1.15. Changes from 14 draft...............................7 99 1.1.16. Changes from 15 draft...............................7 100 1.1.17. Changes from 16 draft...............................7 101 1.1.18. Changes from 17 draft...............................7 102 1.1.19. Changes from 18 draft...............................7 103 1.1.20. Changes from 19 draft...............................7 104 1.1.21. Changes from 20 draft...............................8 105 1. Terminology....................................................8 106 2. Resources, Blocks, Sets, and the Resource Pool.................8 107 2.1. Resource Block Set Field..................................9 108 3. Resource Pool Accessibility/Availability......................10 109 3.1. Resource Pool Accessibility Sub-TLV......................11 110 3.2. Resource Block Wavelength Constraints Sub-TLV............12 111 3.3. Resource Pool State Sub-TLV..............................14 112 3.4. Block Shared Access Wavelength Availability sub-TLV......15 113 4. Resource Properties Encoding..................................16 114 4.1. Resource Block Information Sub-TLV.......................17 115 4.2. Optical Interface Class List(s) Sub-Sub-TLV..............17 116 4.2.1. Optical Interface Class Format......................18 117 4.2.2. ITU-G.698.1 Application Code Mapping................19 118 4.2.3. ITU-G.698.2 Application Code Mapping................21 119 4.2.4. ITU-G.959.1 Application Code Mapping................22 120 4.2.5. ITU-G.695 Application Code Mapping..................24 121 4.3. Input Client Signal List Sub-Sub-TLV.....................26 122 4.4. Input Bit Rate List Sub-Sub-TLV..........................27 123 4.5. Processing Capability List Sub-Sub-TLV...................27 124 4.5.1. Processing Capabilities Field.......................28 125 5. Security Considerations.......................................29 126 6. IANA Considerations...........................................29 127 7. Acknowledgments...............................................29 128 APPENDIX A: Encoding Examples....................................30 129 A.1. Wavelength Converter Accessibility Sub-TLV...............30 130 A.2. Wavelength Conversion Range Sub-TLV......................31 131 A.3. An OEO Switch with DWDM Optics...........................32 132 8. References....................................................35 133 8.1. Normative References.....................................35 134 8.2. Informative References...................................35 135 9. Contributors..................................................37 136 Authors' Addresses...............................................38 137 Intellectual Property Statement..................................39 138 Disclaimer of Validity...........................................40 140 1. Introduction 142 A Wavelength Switched Optical Network (WSON) is a Wavelength 143 Division Multiplexing (WDM) optical network in which switching is 144 performed selectively based on the center wavelength of an optical 145 signal. 147 [RFC6163] describes a framework for Generalized Multiprotocol Label 148 Switching (GMPLS) and Path Computation Element (PCE) control of a 149 WSON. Based on this framework, [WSON-Info] describes an information 150 model that specifies what information is needed at various points in 151 a WSON in order to compute paths and establish Label Switched Paths 152 (LSPs). 154 This document provides efficient encodings of information needed by 155 the routing and wavelength assignment (RWA) process in a WSON. Such 156 encodings can be used to extend GMPLS signaling and routing 157 protocols. In addition these encodings could be used by other 158 mechanisms to convey this same information to a path computation 159 element (PCE). Note that since these encodings are relatively 160 efficient they can provide more accurate analysis of the control 161 plane communications/processing load for WSONs looking to utilize a 162 GMPLS control plane. 164 Note that encodings of information needed by the routing and label 165 assignment process applicable to general networks beyond WSON are 166 addressed in a separate document [Gen-Encode]. This document makes 167 use of the Label Set Field encoding of [Gen-Encode] and refers to it 168 as a Wavelength Set Field. 170 1.1. Revision History 172 1.1.1. Changes from 00 draft 174 Edits to make consistent with update to [RFC6205], i.e., removal of 175 sign bit. 177 Clarification of TBD on connection matrix type and possibly 178 numbering. 180 New sections for wavelength converter pool encoding: Wavelength 181 Converter Set Sub-TLV, Wavelength Converter Accessibility Sub-TLV, 182 Wavelength Conversion Range Sub-TLV, WC Usage State Sub-TLV. 184 Added optional wavelength converter pool TLVs to the composite node 185 TLV. 187 1.1.2. Changes from 01 draft 189 The encoding examples have been moved to an appendix. Classified and 190 corrected information elements as either reusable fields or sub- 191 TLVs. Updated Port Wavelength Restriction sub-TLV. Added available 192 wavelength and shared backup wavelength sub-TLVs. Changed the title 193 and scope of section 6 to recommendations since the higher level 194 TLVs that this encoding will be used in is somewhat protocol 195 specific. 197 1.1.3. Changes from 02 draft 199 Removed inconsistent text concerning link local identifiers and the 200 link set field. 202 Added E bit to the Wavelength Converter Set Field. 204 Added bidirectional connectivity matrix example. Added simple link 205 set example. Edited examples for consistency. 207 1.1.4. Changes from 03 draft 209 Removed encodings for general concepts to [Gen-Encode]. 211 Added in WSON signal compatibility and processing capability 212 information encoding. 214 1.1.5. Changes from 04 draft 216 Added encodings to deal with access to resource blocks via shared 217 fiber. 219 1.1.6. Changes from 05 draft 221 Revised the encoding for the "shared access" indicators to only use 222 one bit each for input and output. 224 1.1.7. Changes from 06 draft 226 Removed section on "WSON Encoding Usage Recommendations" 228 1.1.8. Changes from 07 draft 230 Section 3: Enhanced text to clarify relationship between pools, 231 blocks and resources. Section 3.1, 3.2: Change title to clarify 232 Pool-Block relationship. Section 3.3: clarify block-resource state. 234 Section 4: Deleted reference to previously removed RBNF element. 235 Fixed TLV figures and descriptions for consistent sub-sub-TLV 236 nomenclature. 238 1.1.9. Changes from 08 draft 240 Fixed ordering of fields in second half of sub-TLV example in 241 Appendix A.1. 243 Clarifying edits in section 3 on pools, blocks, and resources. 245 1.1.10. Changes from 09 draft 247 Fixed the "Block Shared Access Wavelength Availability sub-TLV" of 248 section 3.4 to use an "RB set field" rather than a single RB ID. 249 Removed all 1st person idioms. 251 1.1.11. Changes from 10 draft 253 Removed remaining 1st person idioms. Updated IANA section. Update 254 references for newly issued RFCs. 256 1.1.12. Changes from 11 draft 258 Fixed length fields in section 4 to be 16 bits, correcting errors in 259 TLV and field figures. Added a separate section on resources, 260 blocks, sets and the resource pool. Moved definition of the resource 261 block set field to this new section. 263 1.1.13. Changes from 12 draft 265 Replaced all instances of "ingress" with "input" and all instances 266 of "egress" with "output". 268 1.1.14. Changes from 13 draft 270 C bit of Resource Block Set Field is redundant and was removed, 271 i.e., has been returned to "Reserved" block and appendix examples 272 were updated to reflect the change. 274 Enhanced section 4.2 encoding to allow for optionality of input or 275 output wavelength set fields. 277 Clarified that wavelength set fields use the Label Set field 278 encoding from [Gen-Encode]. 280 Enhanced section 5.1 encoding to simplify the Modulation and FEC 281 input and output cases. 283 1.1.15. Changes from 14 draft 285 OIC changes per workgroup request. Removed FEC type and modulation 286 type. Fixed versioning error and return RB identifiers to 32 bits. 288 1.1.16. Changes from 15 draft 290 Edits of OIC related text per CCAMP list email. 292 1.1.17. Changes from 16 draft 294 Added full ITU-T string to 64 bit mapping to text from OIC draft. 296 1.1.18. Changes from 17 draft 298 Action value for Inclusive Range(s) changed to 1 from 2 for the 299 Resource Block Set Field encoding in Section 3.1. 301 Added a list of contributors who provided texts for the Optical 302 Interface Class (OIC) description. 304 1.1.19. Changes from 18 draft 306 Added Section 5.2.5 to include ITU-G.695 Application Code Mapping. 308 1.1.20. Changes from 19 draft 310 Added the definition and encoding of Input Bit Rate List Sub-Sub-TLV 311 in Section 4.4. 313 1.1.21. Changes from 20 draft 315 Revived the expired version with no change of content. 317 1. Terminology 319 CWDM: Coarse Wavelength Division Multiplexing. 321 DWDM: Dense Wavelength Division Multiplexing. 323 FOADM: Fixed Optical Add/Drop Multiplexer. 325 ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port 326 count wavelength selective switching element featuring input and 327 output line side ports as well as add/drop side ports. 329 RWA: Routing and Wavelength Assignment. 331 Wavelength Conversion. The process of converting an information 332 bearing optical signal centered at a given wavelength to one with 333 "equivalent" content centered at a different wavelength. Wavelength 334 conversion can be implemented via an optical-electronic-optical 335 (OEO) process or via a strictly optical process. 337 WDM: Wavelength Division Multiplexing. 339 Wavelength Switched Optical Network (WSON): A WDM based optical 340 network in which switching is performed selectively based on the 341 center wavelength of an optical signal. 343 2. Resources, Blocks, Sets, and the Resource Pool 345 The optical system to be encoded may contain a pool of resources of 346 different types and properties for processing optical signals. For 347 the purposes here a "resource" is an individual entity such as a 348 wavelength converter or regenerator within the optical node that 349 acts on an individual wavelength signal. 351 Since resources tend to be packaged together in blocks of similar 352 devices, e.g., on line cards or other types of modules, the 353 fundamental unit of identifiable resource in this document is the 354 "resource block". A resource block may contain one or more 355 resources. As resource blocks are the smallest identifiable unit of 356 processing resource, one should group together resources into blocks 357 if they have similar characteristics relevant to the optical system 358 being modeled, e.g., processing properties, accessibility, etc. 360 This document defines the following sub-TLVs pertaining to resources 361 within an optical node: 363 . Resource Pool Accessibility Sub-TLV 365 . Resource Block Wavelength Constraints Sub-TLV 367 . Resource Pool State Sub-TLV 369 . Block Shared Access Wavelength Availability Sub-TLV 371 . Resource Block Information Sub-TLV 373 Each of these sub-TLVs works with one or more sets of resources 374 rather than just a single resource block. This motivates the 375 following field definition. 377 2.1. Resource Block Set Field 379 In a WSON node that includes resource blocks (RB), denoting subsets 380 of these blocks allows one to efficiently describe common properties 381 of the blocks and to describe the structure and characteristics, if 382 non-trivial, of the resource pool. The RB Set field is defined in a 383 similar manner to the label set concept of [RFC3471]. 385 The information carried in a RB set field is defined by: 387 0 1 2 3 388 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 389 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 390 | Action |C| Reserved | Length | 391 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 392 | RB Identifier 1 | 393 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 394 : : : 395 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 396 | RB Identifier n | 397 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 399 Action: 8 bits 400 0 - Inclusive List 402 Indicates that the TLV contains one or more RB elements that are 403 included in the list. 405 1 - Inclusive Range(s) 407 Indicates that the TLV contains one or more ranges of RBs. Each 408 individual range is denoted by two 32 bit RB identifier. The first 409 32 bits is the RB identifier for the start of the range and the next 410 32 bits is the RB identifier for the end of the range. Note that the 411 Length field is used to determine the number of ranges. 413 C (Connectivity bit): Set to 0 to denote fixed (possibly multi- 414 cast) connectivity; Set to 1 to denote potential (switched) 415 connectivity. Used in resource pool accessibility sub-TLV. Ignored 416 elsewhere. 418 Reserved: 7 bits 420 This field is reserved. It MUST be set to zero on transmission and 421 MUST be ignored on receipt. 423 Length: 16 bits 425 The total length of this field in bytes. 427 RB Identifier: 429 The RB identifier represents the ID of the resource block which is a 430 32 bit integer. 432 Usage Note: the inclusive range "Action" can result in very compact 433 encoding of resource sets and it can be advantages to number 434 resource blocks in such a way so that status updates (dynamic 435 information) can take advantage of this efficiency. 437 3. Resource Pool Accessibility/Availability 439 This section defines the sub-TLVs for dealing with accessibility and 440 availability of resource blocks within a pool of resources. These 441 include the ResourceBlockAccessibility, ResourceWaveConstraints, and 442 RBPoolState sub-TLVs. 444 3.1. Resource Pool Accessibility Sub-TLV 446 This sub-TLV describes the structure of the resource pool in 447 relation to the switching device. In particular it indicates the 448 ability of an input port to reach sets of resources and of a sets of 449 resources to reach a particular output port. This is the 450 PoolInputMatrix and PoolOutputMatrix of [WSON-Info]. 452 The resource pool accessibility sub-TLV is defined by: 454 0 1 2 3 455 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 456 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 457 | Connectivity | Reserved | 458 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 459 | Input Link Set Field A #1 | 460 : : 461 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 462 | RB Set Field A #1 | 463 : : 464 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 465 | Additional Link set and RB set pairs as needed to | 466 : specify PoolInputMatrix : 467 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 468 | Output Link Set Field B #1 | 469 : : 470 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 471 | RB Set B Field #1 (for output connectivity) | 472 : : 473 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 474 | Additional Link Set and RB set pairs as needed to | 475 : specify PoolOutputMatrix : 476 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 478 Where 480 Connectivity indicates how the input/output ports connect to the 481 resource blocks. 483 0 -- the device is fixed (e.g., a connected port must go 484 through the resource block) 486 1 -- the device is switched (e.g., a port can be configured to 487 go through a resource but isn't required) 489 The For the Input and Output Link Set Fields, the Link Set Field 490 encoding defined in [Gen-Encode] is to be used. 492 Note that the direction parameter within the Link Set Field is used 493 to indicate whether the link set is an input or output link set, and 494 the bidirectional value for this parameter is not permitted in this 495 sub-TLV. 497 See Appendix A.1 for an illustration of this encoding. 499 3.2. Resource Block Wavelength Constraints Sub-TLV 501 Resources, such as wavelength converters, etc., may have a limited 502 input or output wavelength ranges. Additionally, due to the 503 structure of the optical system not all wavelengths can necessarily 504 reach or leave all the resources. These properties are described by 505 using one or more resource wavelength restrictions sub-TLVs as 506 defined below: 508 0 1 2 3 509 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 510 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 511 |I|O|B| Reserved | 512 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 513 | RB Set Field | 514 : : 515 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 516 | Input Wavelength Set Field | 517 : : 518 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 519 | Output Wavelength Set Field | 520 : : 521 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 523 I = 1 or 0 indicates the presence or absence of the Input Wavelength 524 Set Field. 526 O = 1 or 0 indicates the presence or absence of the Output 527 Wavelength Set Field. 529 B = 1 indicates that a single wavelength set field represents both 530 input and output wavelength constraints. 532 Currently the only valid combinations of (I,O,B) are (1,0,0), 533 (0,1,0), (1,1,0), (0,0,1). 535 RB Set Field: 537 A set of resource blocks (RBs) which have the same wavelength 538 restrictions. 540 Input Wavelength Set Field: 542 Indicates the wavelength input restrictions of the RBs in the 543 corresponding RB set. This field is encoded via the Label Set field 544 of [Gen-Encode]. 546 Output Wavelength Set Field: 548 Indicates the wavelength output restrictions of RBs in the 549 corresponding RB set. This field is encoded via the Label Set field 550 of [Gen-Encode]. 552 3.3. Resource Pool State Sub-TLV 554 The state of the pool is given by the number of resources available 555 with particular characteristics. A resource block set is used to 556 encode all or a subset of the resources of interest. The usage state 557 of resources within a resource block set is encoded as either a list 558 of 16 bit integer values or a bit map indicating whether a single 559 resource is available or in use. The bit map encoding is appropriate 560 when resource blocks consist of a single resource. This information 561 can be relatively dynamic, i.e., can change when a connection (LSP 562 is established or torn down. 564 0 1 2 3 565 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 566 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 567 | Action | Reserved | 568 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 569 | RB Set Field | 570 : : 571 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 572 | RB Usage state | 573 : : 574 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 576 Where Action = 0 denotes a list of 16 bit integers and Action = 1 577 denotes a bit map. In both cases the elements of the RB Set field 578 are in a one-to-one correspondence with the values in the usage RB 579 usage state area. 581 0 1 2 3 582 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 583 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 584 | Action = 0 | Reserved | 585 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 586 | RB Set Field | 587 : : 588 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 589 | RB#1 state | RB#2 state | 590 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 591 : : 592 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 593 | RB#n-1 state | RB#n state or Padding | 594 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 596 Whether the last 16 bits is a wavelength converter (RB) state or 597 padding is determined by the number of elements in the RB set field. 599 0 1 2 3 600 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 601 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 602 | Action = 1 | Reserved | 603 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 604 | RB Set Field | 605 : : 606 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 607 | RB Usage state bitmap | 608 : : 609 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 610 | ...... | Padding bits | 611 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 613 RB Usage state: Variable Length but must be a multiple of 4 byes. 615 Each bit indicates the usage status of one RB with 0 indicating the 616 RB is available and 1 indicating the RB is in used. The sequence of 617 the bit map is ordered according to the RB Set field with this sub- 618 TLV. 620 Padding bits: Variable Length 622 3.4. Block Shared Access Wavelength Availability sub-TLV 624 Resources blocks may be accessed via a shared fiber. If this is the 625 case, then wavelength availability on these shared fibers is needed 626 to understand resource availability. 628 0 1 2 3 629 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 630 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 631 |I|E| Reserved | 632 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 633 | RB Set Field | 634 : : 635 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 636 | Input Available Wavelength Set Field | 637 : (Optional) : 638 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 639 | Output Available Wavelength Set Field | 640 : (Optional) : 641 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 642 I bit: 644 Indicates whether the input available wavelength set field is 645 included (1) or not (0). 647 E bit: 649 Indicates whether the output available wavelength set field is 650 included (1) or not (0). 652 RB Set Field: 654 A Resource Block set in which all the members share the same input 655 or output fiber or both. 657 Input Available Wavelength Set Field: 659 Indicates the wavelengths currently available (not being used) on 660 the input fiber to this resource block. This field is encoded via 661 the Label Set field of [Gen-Encode]. 663 Output Available Wavelength Set Field: 665 Indicates the wavelengths currently available (not being used) on 666 the output fiber from this resource block. This field is encoded via 667 the Label Set field of [Gen-Encode]. 669 4. Resource Properties Encoding 671 Within a WSON network element (NE) there may be resources with 672 signal compatibility constraints. These resources be regenerators, 673 wavelength converters, etc... Such resources may also constitute the 674 network element as a whole as in the case of an electro optical 675 switch. This section primarily focuses on the signal compatibility 676 and processing properties of such a resource block. 678 The fundamental properties of a resource block, such as a 679 regenerator or wavelength converter, are: 681 (a) Input constraints (shared input, modulation, FEC, bit rate, 682 GPID) 684 (b) Processing capabilities (number of resources in a block, 685 regeneration, performance monitoring, vendor specific) 687 (c) Output Constraints (shared output, modulation, FEC) 689 4.1. Resource Block Information Sub-TLV 691 Resource Block descriptor sub-TLVs are used to convey relatively 692 static information about individual resource blocks including the 693 resource block compatibility properties, processing properties, and 694 the number of resources in a block. 696 This sub-TLV has the following format: 698 0 1 2 3 699 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 700 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 701 | RB Set Field | 702 : : 703 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 704 |I|E| Reserved | 705 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 706 | Optical Interface Class List(s) Sub-Sub-TLV (opt) | 707 : : 708 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 709 | Input Client Signal Type Sub-Sub-TLV (opt) | 710 : : 711 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 712 | Input Bit Rate List Sub-Sub-TLV (opt) | 713 : : 714 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 715 | Processing Capabilities List Sub-Sub-TLV (opt) | 716 : : 717 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 719 Where I and E, the shared input/output indicator, is set to 1 if the 720 resource blocks identified in the RB set field utilized a shared 721 fiber for input/output access and set to 0 otherwise. 723 4.2. Optical Interface Class List(s) Sub-Sub-TLV 725 The list of Optical Interface Class sub-sub-TLV has the following 726 format: 728 0 1 2 3 729 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 730 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 731 | Type | Length | Reserved |I|E| 732 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 733 | Optical Interface Classes | 734 : : 735 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 737 The following I and E combination are defined: 739 I E 741 0 0 Invalid 743 1 0 Optical Interface Class List acceptable in input 745 0 1 Optical Interface Class List available in output 747 1 1 Optical Interface Class List available on both input and 748 output. 750 The Resource Block MAY contain one or more lists according to 751 input/output flags. 753 4.2.1. Optical Interface Class Format 755 0 1 2 3 756 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 757 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 758 |S| Reserved | OI Code Points | 759 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 760 | Optical Interface Class | 761 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 762 | Optical Interface Class (Cont.) | 763 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 765 Where the first 32 bits of the encoding shall be used to identify 766 the semantic of the Optical Interface Class in the following way: 768 S Standard bit. 770 S=0, identify not ITU code points 772 S=1, identify ITU application codes 774 With S=0, the OI Code Points field can take the following 775 values: 777 0: reserved 779 1: Vendor Specific Optical Interface Class. 781 With S=1, the OI Code Points field can take the following 782 values: 784 0: reserved 786 1: [ITU-G.698.1] application code. 788 2: [ITU-G.698.2] application code. 790 3: [ITU-G.959.1] application code. 792 4: [ITU-G.695.1] application code. 794 In case of ITU Application Code, the mapping between the string 795 defining the application code and the 64 bits number implementing 796 the optical interface class is given in the following sections. 798 4.2.2. ITU-G.698.1 Application Code Mapping 800 Recommendation ITU-G.698.1 defines the Application Codes: DScW- 801 ytz(v) and B-DScW-ytz(v). Where: 803 B: means Bidirectionals. 805 D: means a DWDM application. 807 S: take values N (narrow spectral excursion), W (wide spectral 808 excursion). 810 c: Channel Spacing (GHz). 812 W: take values S (short-haul), L (long-haul). 814 y: take values 1 (NRZ 2.5G), 2 (indicating NRZ 10G). 816 t: take only D value is defined (link does not contain optical 817 amplifier) 819 z: take values 2 (ITU-T G.652 fibre), 3 (ITU-T G.653 fibre), 5 820 (indicating ITU-T G.655 fibre). 822 v: take values S (Short wavelength), C (Conventional), L (Long 823 wavelength). 825 An Optional F can be added indicating a FEC Encoding. 827 These get mapped into the 64 bit OIC field as follows: 829 0 1 2 3 830 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 831 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 832 |B| p |S| c | W | y | t | z | v | s | 833 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 834 | reserved | 835 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 837 Where (values between parenthesis refer to ITU defined values as 838 reported above): 840 B: = 1 bidirectional, 0 otherwise 842 p (prefix): = 0 reserved, = 1 (D) 844 S: = 0 (N), = 1 (W) 846 c: Channel Spacing, 4 bits mapped according to same definition 847 in [RFC6205] (note that DWDM spacing apply here) 849 W: = 0 reserved, = 2 (S), = 3 (L) 851 y: = 0 reserved, = 1 (1), = 2 (2) 853 t: = 0 reserved, = 4 (D) 855 z: = 0 reserved, = 2 (2), = 3 (3), = 5 (5) 856 v: = 0 reserved, = 1 (S), = 2 (C), = 3 (L) 858 s (suffix): = 0 reserved, = 1 Fec Encoding 860 Values not mentioned here are not allowed in this application 861 code, the last 32 bits are reserved and shall be set to zero. 863 4.2.3. ITU-G.698.2 Application Code Mapping 865 Recommendation ITU-G.698.2 defines the Application Codes: DScW- 866 ytz(v) and B-DScW-ytz(v). 868 B: means Bidirectional. 870 D: means a DWDM application. 872 S: take values N (narrow spectral excursion), W (wide spectral 873 excursion). 875 c: Channel Spacing (GHz). 877 W: take values C (link is dispersion compensated), U (link is 878 dispersion uncompensated). 880 y: take values 1 (NRZ 2.5G), 2 (indicating NRZ 10G). 882 t: take value A (link may contains optical amplifier) 884 z: take values 2 (ITU-T G.652 fibre), 3 (ITU-T G.653 fibre), 5 885 (indicating ITU-T G.655 fibre). 887 v: take values S (Short wavelength), C (Conventional), L (Long 888 wavelength). 890 An Optional F can be added indicating a FEC Encoding. 892 These get mapped into the 64 bit OIC field as follows: 894 0 1 2 3 895 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 896 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 897 |B| p |S| c | W | y | t | z | v | s | 898 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 899 | reserved | 900 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 902 Where (values between parenthesis refer to ITU defined values as 903 reported above): 905 B: = 1 bidirectional, 0 otherwise 907 p (prefix): = 0 reserved, = 1 (D) 909 S: = 0 (N), = 1 (W) 911 c: Channel Spacing, 4 bits mapped according to same definition 912 in [RFC6205] (note that DWDM spacing apply here) 914 W: = 0 reserved, = 10 (C), = 11 (U) 916 y: = 0 reserved, = 1 (1), = 2 (2) 918 t: = 0 reserved, = 1 (A) 920 z: = 0 reserved, = 2 (2), = 3 (3), = 5 (5) 922 v: = 0 reserved, = 1 (S), = 2 (C), = 3 (L) 924 s (suffix): = 0 reserved, = 1 Fec Encoding 926 Values not mentioned here are not allowed in this application 927 code, the last 32 bits are reserved and shall be set to zero. 929 4.2.4. ITU-G.959.1 Application Code Mapping 931 Recommendation ITU-G.959.1 defines the Application Codes: PnWx-ytz 932 and BnWx-ytz. Where: 934 P,B: when present indicate Plural or Bidirectional 936 n: maximum number of channels supported by the application code 937 (i.e. an integer number) 939 W: take values I (intra-office), S (short-haul), L (long-haul), V 940 (very long-haul), U (ultra long-haul). 942 x: maximum number of spans allowed within the application code 943 (i.e. an integer number) 944 y: take values 1 (NRZ 2.5G), 2 (NRZ 10G), 9 (NRZ 25G), 3 (NRZ 945 40G), 7 (RZ 40G). 947 t: take values A (power levels suitable for a booster amplifier 948 in the originating ONE and power levels suitable for a pre-amplifier 949 in the terminating ONE), B (booster amplifier only), C (pre- 950 amplifier only), D (no amplifiers). 952 z: take values 1 (1310 nm sources on ITU-T G.652 fibre), 2 (1550 953 nm sources on ITU-T G.652 fibre), 3 (1550 nm sources on ITU-T 954 G.653 fibre), 5 (1550 nm sources on ITU-T G.655 fibre). 956 The following list of suffixes can be added to these application 957 codes: 959 F: FEC encoding. 961 D: Adaptive dispersion compensation. 963 E: receiver capable of dispersion compensation. 965 r: reduced target distance. 967 a: power levels appropriate to APD receivers. 969 b: power levels appropriate to PIN receivers. 971 These values are encoded as follows: 973 0 1 2 3 974 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 975 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 976 | p | P | n | W | x | reserved | 977 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 978 | y | t | z | suffix | reserved | 979 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 981 Where (values between parenthesis refer to ITU defined values as 982 reported above): 984 p (prefix) = 0 otherwise, = 1 Bidirectional (B) 986 P (optional): = 0 not present, = 2 (P). 988 n: maximum number of channels (10 bits, up to 1024 channels) 990 W: = 0 reserved, = 1 (I), = 2 (S), = 3 (L), = 4 (V), = 5 (U) 992 x: = number of spans (6 bits, up to 64 spans) 994 y: = 0 reserved, = 1 (1), = 2 (2), = 3 (3), = 7 (7), = 9 (9) 996 t: = 0 reserved, = 1 (A), = 2 (B), = 3 (C), = 4 (D) 998 z: = 0 reserved, = 1 (1), = 2 (2), = 3 (3), = 5 (5) 1000 suffix is an 6 bit, bit map: 1002 0 1 2 3 4 5 1003 +-+-+-+-+-+-+ 1004 |F|D|E|r|a|b| 1005 +-+-+-+-+-+-+ 1006 where a 1 in the appropriate slot indicates that the corresponding 1007 suffix has been added. 1009 4.2.5. ITU-G.695 Application Code Mapping 1011 Recommendation [ITU-G.695] defines the Application Codes: CnWx-ytz 1012 and B-CnWx-ytz and S-CnWx-ytz. 1014 Where the optional prefixed are: 1016 B: Bidirectional 1018 S: a system using a black link approach 1020 And the rest of the application code is defined as: 1022 C: CWDM (Coarse WDM) application 1024 n: maximum number of channels supported by the application code 1025 (i.e. an integer number) 1027 W: take values S (short-haul), L (long-haul). 1029 x: maximum number of spans allowed 1031 y: take values 0 (NRZ 1.25G), 1 (NRZ 2.5G), 2 (NRZ 10G). 1033 t: take values D (link does not contain any optical amplifier). 1035 z: take values 1 (1310 nm region for ITU-T G.652 fibre), 2 (ITU-T 1036 G.652 fibre), 3 (ITU-T G.653 fibre), 5 (ITU-T G.655 fibre). 1038 The following list of suffixes can be added to these application 1039 codes: 1041 F: FEC encoding. 1043 Since the application codes are very similar to the one from the 1044 G.959 section most of the fields are reused. The 64 bit OIC field is 1045 encoded as follows: 1047 0 1 2 3 1048 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1049 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1050 | p | C | n | W | x | reserved | 1051 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1052 | y | t | z | suffix | reserved | 1053 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1055 Where (values between parenthesis refer to ITU defined values as 1056 reported above): 1058 p: = 0 no prefix, 1 = B bidirectional, = 2 S black link 1060 C: = 0 reserved, = 3 (C). 1062 n: maximum number of channels (10 bits, up to 1024 channels) 1064 W: = 0 reserved, = 1 reserved, = 2 (S), = 3 (L), > 3 reserved 1066 x: = number of spans (6 bits, up to 64 spans) 1068 y: = 0 (0), = 1 (1), =2 (2), > 2 reserved 1070 t: = 4 (D), all other values are reserved 1072 z: = 0 reserved, = 1 (1), = 2 (2), = 3 (3) 1074 suffix is an 6 bit, bit map: 1076 0 1 2 3 4 5 1077 +-+-+-+-+-+-+ 1078 |F|0|0|0|0|0| 1079 +-+-+-+-+-+-+ 1080 where a 1 in the appropriate slot indicates that the corresponding 1081 suffix has been added. 1083 4.3. Input Client Signal List Sub-Sub-TLV 1085 This sub-sub-TLV contains a list of acceptable input client signal 1086 types. 1088 Type := Input Client Signal List 1090 Value := A list of GPIDs 1092 The acceptable client signal list sub-TLV is a list of Generalized 1093 Protocol Identifiers (GPIDs). GPIDs are assigned by IANA and many 1094 are defined in [RFC3471] and [RFC4328]. 1096 0 1 2 3 1097 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1098 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1099 | Number of GPIDs | GPID #1 | 1100 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1101 : | : 1102 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1103 | GPID #N | | 1104 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1106 Where the number of GPIDs is an integer greater than or equal to 1107 one. 1109 4.4. Input Bit Rate List Sub-Sub-TLV 1111 This sub-sub-TLV contains a list of bit rate of each input client 1112 signal types specified in the Input Client Signal List Sub-Sub-TLV. 1114 Type := Input Bit Rate List 1116 Value := IEEE 32-bit IEEE Floating Point 1118 The number of Input Bit Rate MUST match the number of GPID. 1120 0 1 2 3 1121 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1122 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1123 | Input Bit Rate of GPID #1 | 1124 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1125 : : 1126 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1127 | Input Bit Rate of GPID #N | 1128 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1130 4.5. Processing Capability List Sub-Sub-TLV 1132 This sub-sub-TLV contains a list of resource processing 1133 capabilities. 1135 Type := Processing Capabilities List 1136 Value := A list of Processing Capabilities Fields 1138 The processing capability list sub-sub-TLV is a list of capabilities 1139 that can be achieved through the referred resources:: 1141 1. Regeneration capability 1143 2. Fault and performance monitoring 1145 3. Vendor Specific capability 1147 Note that the code points for Fault and performance monitoring and 1148 vendor specific capability are subject to further study. 1150 4.5.1. Processing Capabilities Field 1152 The processing capability field is then given by: 1154 0 1 2 3 1155 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1156 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1157 | Processing Cap ID | Length | 1158 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1159 | Possible additional capability parameters depending upon | 1160 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1161 : the processing ID : 1162 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1164 When the processing Cap ID is "regeneration capability", the 1165 following additional capability parameters are provided in the sub- 1166 TLV: 1168 0 1 2 3 1169 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1170 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1171 | T | C | Reserved | 1172 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1174 Where T bit indicates the type of regenerator: 1176 T=0: Reserved 1177 T=1: 1R Regenerator 1179 T=2: 2R Regenerator 1181 T=3: 3R Regenerator 1183 Where C bit indicates the capability of regenerator: 1185 C=0: Reserved 1187 C=1: Fixed Regeneration Point 1189 C=2: Selective Regeneration Point 1191 Note that when the capability of regenerator is indicated to be 1192 Selective Regeneration Pools, regeneration pool properties such as 1193 input and output restrictions and availability need to be specified. 1194 This encoding is to be determined in the later revision. 1196 5. Security Considerations 1198 This document defines protocol-independent encodings for WSON 1199 information and does not introduce any security issues. 1201 However, other documents that make use of these encodings within 1202 protocol extensions need to consider the issues and risks associated 1203 with, inspection, interception, modification, or spoofing of any of 1204 this information. It is expected that any such documents will 1205 describe the necessary security measures to provide adequate 1206 protection. 1208 6. IANA Considerations 1210 This document provides general protocol independent information 1211 encodings. There is no IANA allocation request for the TLVs defined 1212 in this document. IANA allocation requests will be addressed in 1213 protocol specific documents based on the encodings defined here. 1215 7. Acknowledgments 1217 This document was prepared using 2-Word-v2.0.template.dot. 1219 APPENDIX A: Encoding Examples 1221 A.1. Wavelength Converter Accessibility Sub-TLV 1223 Example: 1225 Figure 1 shows a wavelength converter pool architecture know as 1226 "shared per fiber". In this case the input and output pool matrices 1227 are simply: 1229 +-----+ +-----+ 1230 | 1 1 | | 1 0 | 1231 WI =| |, WE =| | 1232 | 1 1 | | 0 1 | 1233 +-----+ +-----+ 1235 +-----------+ +------+ 1236 | |--------------------->| | 1237 | |--------------------->| C | 1238 /| | |--------------------->| o | 1239 /D+--->| |--------------------->| m | 1240 + e+--->| | | b |=======> 1241 ========>| M| | Optical | +-----------+ | i | Port E1 1242 Port I1 + u+--->| Switch | | WC Pool | | n | 1243 \x+--->| | | +-----+ | | e | 1244 \| | +----+->|WC #1|--+---->| r | 1245 | | | +-----+ | +------+ 1246 | | | | +------+ 1247 /| | | | +-----+ | | | 1248 /D+--->| +----+->|WC #2|--+---->| C | 1249 + e+--->| | | +-----+ | | o | 1250 ========>| M| | | +-----------+ | m |=======> 1251 Port I2 + u+--->| | | b | Port E2 1252 \x+--->| |--------------------->| i | 1253 \| | |--------------------->| n | 1254 | |--------------------->| e | 1255 | |--------------------->| r | 1256 +-----------+ +------+ 1257 Figure 1 An optical switch featuring a shared per fiber wavelength 1258 converter pool architecture. 1260 This wavelength converter pool can be encoded as follows: 1262 0 1 2 3 1263 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1264 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1265 | Connectivity=1| Reserved | 1266 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1267 Note: I1,I2 can connect to either WC1 or WC2 1268 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1269 | Action=0 |0| Reserved | Length = 12 | 1270 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1271 | Link Local Identifier = #1 | 1272 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1273 | Link Local Identifier = #2 | 1274 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1275 | Action=0 |1| Reserved | Length = 8 | 1276 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1277 | RB ID = #1 | 1278 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1279 | RB ID = #2 | 1280 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1281 Note: WC1 can only connect to E1 1282 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1283 | Action=0 |1| Reserved | Length = 8 | 1284 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1285 | Link Local Identifier = #1 | 1286 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1287 | Action=0 |0| Reserved | Length = 8 | 1288 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1289 | RB ID = #1 | 1290 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1291 Note: WC2 can only connect to E2 1292 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1293 | Action=0 |1| Reserved | Length = 8 | 1294 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1295 | Link Local Identifier = #2 | 1296 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1297 | Action=0 |0| | Length = 8 | 1298 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1299 | RB ID = #2 | 1300 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1302 A.2. Wavelength Conversion Range Sub-TLV 1304 Example: 1306 This example, based on figure 1, shows how to represent the 1307 wavelength conversion range of wavelength converters. Suppose the 1308 wavelength range of input and output of WC1 and WC2 are {L1, L2, L3, 1309 L4}: 1311 0 1 2 3 1312 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1313 Note: WC Set 1314 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1315 | Action=0 |1| Reserved | Length = 8 | 1316 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1317 | WC ID = #1 | WC ID = #2 | 1318 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1319 Note: wavelength input range 1320 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1321 | 2 | Num Wavelengths = 4 | Length = 8 | 1322 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1323 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1324 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1325 Note: wavelength output range 1326 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1327 | 2 | Num Wavelengths = 4 | Length = 8 | 1328 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1329 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1330 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1332 A.3. An OEO Switch with DWDM Optics 1334 Figure 2 shows an electronic switch fabric surrounded by DWDM 1335 optics. In this example the electronic fabric can handle either 1336 G.709 or SDH signals only (2.5 or 10 Gbps). To describe this node, 1337 the following information is needed: 1339 ::= [Other GMPLS sub- 1340 TLVs][...] [][] 1342 In this case there is complete port to port connectivity so the 1343 is not required. In addition since there are 1344 sufficient ports to handle all wavelength signals the 1345 element is not needed. 1347 Hence the attention will be focused on the sub-TLV: 1349 ::= 1350 [...][...] 1352 /| +-----------+ +-------------+ +------+ 1353 /D+--->| +--->|Tunable Laser|-->| | 1354 + e+--->| | +-------------+ | C | 1355 ========>| M| | | ... | o |=======> 1356 Port I1 + u+--->| | +-------------+ | m | Port E1 1357 \x+--->| |--->|Tunable Laser|-->| b | 1358 \| | Electric | +-------------+ +------+ 1359 | Switch | 1360 /| | | +-------------+ +------+ 1361 /D+--->| +--->|Tunable Laser|-->| | 1362 + e+--->| | +-------------+ | C | 1363 ========>| M| | | ... | o |=======> 1364 Port I2 + u+--->| | +-------------+ | m | Port E2 1365 \x+--->| +--->|Tunable Laser|-->| b | 1366 \| | | +-------------+ +------+ 1367 | | 1368 /| | | +-------------+ +------+ 1369 /D+--->| |--->|Tunable Laser|-->| | 1370 + e+--->| | +-------------+ | C | 1371 ========>| M| | | ... | o |=======> 1372 Port I3 + u+--->| | +-------------+ | m | Port E3 1373 \x+--->| |--->|Tunable Laser|-->| b | 1374 \| +-----------+ +-------------+ +------+ 1376 Figure 2 An optical switch built around an electronic switching 1377 fabric. 1379 The resource block information will tell us about the processing 1380 constraints of the receivers, transmitters and the electronic 1381 switch. The resource availability information, although very simple, 1382 tells us that all signals must traverse the electronic fabric (fixed 1383 connectivity). The resource wavelength constraints are not needed 1384 since there are no special wavelength constraints for the resources 1385 that would not appear as port/wavelength constraints. 1387 : 1389 0 1 2 3 1390 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1391 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1392 | RB Set Field | 1393 : (only one resource block in this example with shared | 1394 | input/output case) | 1395 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1396 |1|1| Reserved | 1397 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1398 | Optical Interface Class List(s) Sub-Sub-TLV | 1399 : : 1400 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1401 | Input Client Signal Type Sub-TLV | 1402 : (GPIDs for SDH and G.709) : 1403 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1404 | Input Bit Rate Range List Sub-Sub-TLV | 1405 : (2.5Gbps, 10Gbps) : 1406 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1407 | Processing Capabilities List Sub-Sub-TLV | 1408 : Fixed (non optional) 3R regeneration : 1409 : : 1410 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1412 Since there is fixed connectivity to resource blocks (the electronic 1413 switch) the is: 1415 0 1 2 3 1416 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1417 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1418 | Connectivity=0|Reserved | 1419 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1420 | Input Link Set Field A #1 | 1421 : (All input links connect to resource) : 1422 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1423 | RB Set Field A #1 | 1424 : (trivial set only one resource block) : 1425 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1426 | Output Link Set Field B #1 | 1427 : (All output links connect to resource) : 1428 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1430 8. References 1432 8.1. Normative References 1434 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1435 Requirement Levels", BCP 14, RFC 2119, March 1997. 1437 [RFC2578] McCloghrie, K., Perkins, D., and J. Schoenwaelder, 1438 "Structure of Management Information Version 2 (SMIv2)", 1439 STD 58, RFC 2578, April 1999. 1441 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 1442 (GMPLS) Signaling Functional Description", RFC 3471, 1443 January 2003. 1445 [RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label 1446 Switching (GMPLS) Signaling Extensions for G.709 Optical 1447 Transport Networks Control", RFC 4328, January 2006. 1449 8.2. Informative References 1451 [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM 1452 applications: DWDM frequency grid, June 2002. 1454 [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM 1455 applications: CWDM wavelength grid, December 2003. 1457 [G.695] ITU-T Recommendation G.695, Optical interfaces for coarse 1458 wavelength division multiplexing applications, October, 1459 2010. 1461 [G.959.1] ITU-T Recommendation G.959.1, Optical transport network 1462 physical layer interfaces, February, 2012. 1464 [Gen-Encode] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "General 1465 Network Element Constraint Encoding for GMPLS Controlled 1466 Networks", work in progress: draft-ietf-ccamp-general- 1467 constraint-encode. 1469 [RFC6205] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized 1470 Labels for G.694 Lambda-Switching Capable Label Switching 1471 Routers", RFC 6205, March 2011. 1473 [RFC6163] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS 1474 and PCE Control of Wavelength Switched Optical Networks", 1475 RFC 6163, April 2011. 1477 [WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and 1478 Wavelength Assignment Information Model for Wavelength 1479 Switched Optical Networks", work in progress: draft-ietf- 1480 ccamp-rwa-info. 1482 9. Contributors 1484 Diego Caviglia 1485 Ericsson 1486 Via A. Negrone 1/A 16153 1487 Genoa Italy 1489 Phone: +39 010 600 3736 1490 Email: diego.caviglia@(marconi.com, ericsson.com) 1492 Anders Gavler 1493 Acreo AB 1494 Electrum 236 1495 SE - 164 40 Kista Sweden 1497 Email: Anders.Gavler@acreo.se 1499 Jonas Martensson 1500 Acreo AB 1501 Electrum 236 1502 SE - 164 40 Kista, Sweden 1504 Email: Jonas.Martensson@acreo.se 1506 Itaru Nishioka 1507 NEC Corp. 1508 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 1509 Japan 1511 Phone: +81 44 396 3287 1512 Email: i-nishioka@cb.jp.nec.com 1514 Pierre Peloso 1515 ALU 1517 Email: pierre.peloso@alcatel-lucent.com 1519 Cyril Margaria 1520 NSN 1522 Email: cyril.margaria@coriant.com 1524 Giovanni Martinelli 1525 Cisco 1526 Email: giomarti@cisco.com 1528 Gabriele M Galimberti 1529 Cisco 1530 Email: ggalimbe@cisco.com 1532 Lyndon Ong 1533 Ciena Corporation 1534 Email: lyong@ciena.com 1536 Daniele Ceccarelli 1537 Ericsson 1538 Email: daniele.ceccarelli@ericsson.com 1540 Authors' Addresses 1542 Greg M. Bernstein (ed.) 1543 Grotto Networking 1544 Fremont California, USA 1546 Phone: (510) 573-2237 1547 Email: gregb@grotto-networking.com 1549 Young Lee (ed.) 1550 Huawei Technologies 1551 5340 Legacy Drive Build 3 1552 Plano, TX 75024 1553 USA 1555 Phone: (469) 277-5838 1556 Email: leeyoung@huawei.com 1557 Dan Li 1558 Huawei Technologies Co., Ltd. 1559 F3-5-B R&D Center, Huawei Base, 1560 Bantian, Longgang District 1561 Shenzhen 518129 P.R.China 1563 Phone: +86-755-28973237 1564 Email: danli@huawei.com 1566 Wataru Imajuku 1567 NTT Network Innovation Labs 1568 1-1 Hikari-no-oka, Yokosuka, Kanagawa 1569 Japan 1571 Phone: +81-(46) 859-4315 1572 Email: imajuku.wataru@lab.ntt.co.jp 1574 Jianrui Han 1575 Huawei Technologies Co., Ltd. 1576 F3-5-B R&D Center, Huawei Base, 1577 Bantian, Longgang District 1578 Shenzhen 518129 P.R.China 1580 Phone: +86-755-28972916 1581 Email: hanjianrui@huawei.com 1583 Intellectual Property Statement 1585 The IETF Trust takes no position regarding the validity or scope of 1586 any Intellectual Property Rights or other rights that might be 1587 claimed to pertain to the implementation or use of the technology 1588 described in any IETF Document or the extent to which any license 1589 under such rights might or might not be available; nor does it 1590 represent that it has made any independent effort to identify any 1591 such rights. 1593 Copies of Intellectual Property disclosures made to the IETF 1594 Secretariat and any assurances of licenses to be made available, or 1595 the result of an attempt made to obtain a general license or 1596 permission for the use of such proprietary rights by implementers or 1597 users of this specification can be obtained from the IETF on-line 1598 IPR repository at http://www.ietf.org/ipr 1599 The IETF invites any interested party to bring to its attention any 1600 copyrights, patents or patent applications, or other proprietary 1601 rights that may cover technology that may be required to implement 1602 any standard or specification contained in an IETF Document. Please 1603 address the information to the IETF at ietf-ipr@ietf.org. 1605 Disclaimer of Validity 1607 All IETF Documents and the information contained therein are 1608 provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION 1609 HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, 1610 THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL 1611 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 1612 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE 1613 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 1614 FOR A PARTICULAR PURPOSE. 1616 Acknowledgment 1618 Funding for the RFC Editor function is currently provided by the 1619 Internet Society.