idnits 2.17.1 draft-ietf-ccamp-rwa-wson-encode-24.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (February 13, 2014) is 3719 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'RWA-INFO' is mentioned on line 480, but not defined == Missing Reference: 'ITU-G.698.1' is mentioned on line 625, but not defined == Missing Reference: 'ITU-G.698.2' is mentioned on line 627, but not defined == Missing Reference: 'ITU-G.959.1' is mentioned on line 629, but not defined == Missing Reference: 'ITU-G.695' is mentioned on line 851, but not defined == Missing Reference: 'RFC5226' is mentioned on line 1076, but not defined ** Obsolete undefined reference: RFC 5226 (Obsoleted by RFC 8126) == Unused Reference: 'G.694.1' is defined on line 1314, but no explicit reference was found in the text == Unused Reference: 'G.694.2' is defined on line 1317, but no explicit reference was found in the text == Unused Reference: 'G.695' is defined on line 1320, but no explicit reference was found in the text == Unused Reference: 'G.959.1' is defined on line 1324, but no explicit reference was found in the text Summary: 1 error (**), 0 flaws (~~), 11 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group G. Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Y. Lee 4 Expires: August 2014 D. Li 5 Huawei 6 W. Imajuku 7 NTT 9 February 13, 2014 11 Routing and Wavelength Assignment Information Encoding for 12 Wavelength Switched Optical Networks 14 draft-ietf-ccamp-rwa-wson-encode-24.txt 16 Status of this Memo 18 This Internet-Draft is submitted to IETF in full conformance with 19 the provisions of BCP 78 and BCP 79. 21 Internet-Drafts are working documents of the Internet Engineering 22 Task Force (IETF), its areas, and its working groups. Note that 23 other groups may also distribute working documents as Internet- 24 Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six 27 months and may be updated, replaced, or obsoleted by other documents 28 at any time. It is inappropriate to use Internet-Drafts as 29 reference material or to cite them other than as "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed at 35 http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on August 13, 2014. 39 Copyright Notice 41 Copyright (c) 2014 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents 46 (http://trustee.ietf.org/license-info) in effect on the date of 47 publication of this document. Please review these documents 48 carefully, as they describe your rights and restrictions with 49 respect to this document. Code Components extracted from this 50 document must include Simplified BSD License text as described in 51 Section 4.e of the Trust Legal Provisions and are provided without 52 warranty as described in the Simplified BSD License. 54 Abstract 56 A wavelength switched optical network (WSON) requires that certain 57 key information elements are made available to facilitate path 58 computation and the establishment of label switching paths (LSPs). 59 The information model described in "Routing and Wavelength 60 Assignment Information for Wavelength Switched Optical Networks" 61 shows what information is required at specific points in the WSON. 62 Part of the WSON information model contains aspects that may be of 63 general applicability to other technologies, while other parts are 64 fairly specific to WSONs. 66 This document provides efficient, protocol-agnostic encodings for 67 the WSON specific information elements. It is intended that 68 protocol-specific documents will reference this memo to describe how 69 information is carried for specific uses. Such encodings can be used 70 to extend GMPLS signaling and routing protocols. In addition these 71 encodings could be used by other mechanisms to convey this same 72 information to a path computation element (PCE). 74 Conventions used in this document 76 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 77 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 78 document are to be interpreted as described in RFC-2119 [RFC2119]. 80 Table of Contents 82 1. Introduction...................................................3 83 1.1. Terminology..................................................4 84 2. Resources, Resource Blocks, and the Resource Pool..............4 85 2.1. Resource Block Set Field..................................5 86 3. Resource Accessibility/Availability............................6 87 3.1. Resource Accessibility Field..............................6 88 3.2. Resource Wavelength Constraints Field.....................8 89 3.3. Resource Block Pool State (RBPoolState) Field............10 90 3.4. Resource Block Shared Access Wavelength Availability 91 (RBSharedAccessWaveAvailability) Field........................11 92 4. Resource Block Information (ResourceBlockInfo) Field..........13 93 4.1. Optical Interface Class List Subfield....................15 94 4.1.1. ITU-G.698.1 Application Code Mapping.............16 95 4.1.2. ITU-G.698.2 Application Code Mapping.............18 96 4.1.3. ITU-G.959.1 Application Code Mapping.............19 97 4.1.4. ITU-G.695 Application Code Mapping...............22 98 4.2. Acceptable Client Signal List Subfield...................24 99 4.3. Input Bit Rate List Subfield.............................24 100 4.4. Processing Capability List Subfield......................25 101 5. Security Considerations.......................................26 102 6. IANA Considerations...........................................27 103 6.1. Types for subfields of WSON Resource Block Information...27 104 7. Acknowledgments...............................................27 105 APPENDIX A: Encoding Examples....................................28 106 A.1. Wavelength Converter Accessibility Field.................28 107 A.2. Wavelength Conversion Range Field........................29 108 A.3. An OEO Switch with DWDM Optics...........................30 109 8. References....................................................33 110 8.1. Normative References.....................................33 111 8.2. Informative References...................................33 112 9. Contributors..................................................35 113 Authors' Addresses...............................................36 114 Intellectual Property Statement..................................37 115 Disclaimer of Validity...........................................38 117 1. Introduction 119 A Wavelength Switched Optical Network (WSON) is a Wavelength 120 Division Multiplexing (WDM) optical network in which switching is 121 performed selectively based on the center wavelength of an optical 122 signal. 124 [RFC6163] describes a framework for Generalized Multiprotocol Label 125 Switching (GMPLS) and Path Computation Element (PCE) control of a 126 WSON. Based on this framework, [RWA-Info] describes an information 127 model that specifies what information is needed at various points in 128 a WSON in order to compute paths and establish Label Switched Paths 129 (LSPs). 131 This document provides efficient encodings of information needed by 132 the routing and wavelength assignment (RWA) process in a WSON. Such 133 encodings can be used to extend GMPLS signaling and routing 134 protocols. In addition these encodings could be used by other 135 mechanisms to convey this same information to a path computation 136 element (PCE). Note that since these encodings are relatively 137 efficient they can provide more accurate analysis of the control 138 plane communications/processing load for WSONs looking to utilize a 139 GMPLS control plane. 141 1.1. Terminology 143 Refer to [RFC6163] for CWDM, DWDM, RWA, WDM. 145 Refer to Section 5 of [Gen-Encode] for the terminology of Resources, 146 Resources Blocks, and Resource Pool. 148 2. Resources, Resource Blocks, and the Resource Pool 150 This section provides encodings for the information elements defined 151 in [RWA-Info] that have applicability to WSON. The encodings are 152 designed to be suitable for use in the GMPLS routing protocols OSPF 153 [RFC4203] and IS-IS [RFC5307] and in the PCE protocol (PCEP) 154 [RFC5440]. Note that the information distributed in [RFC4203] and 155 [RFC5307] is arranged via the nesting of sub-TLVs within TLVs and 156 this document defines elements to be used within such constructs. 157 Specific constructs of sub-TLVs and the nesting of sub-TLVs of the 158 information element defined by this document will be defined in the 159 respective protocol enhancement documents. 161 This document defines the following information elements pertaining 162 to resources within an optical node: 164 . Resource Accessibility 166 . Resource Wavelength Constraints 168 . Resource Block Pool State 170 . Resource Block Shared Access Wavelength Availability 171 173 . Resource Block Information 175 Each of these information elements works with one or more sets of 176 resources rather than just a single resource block. This motivates 177 the following field definition. 179 2.1. Resource Block Set Field 181 In a WSON node that includes resource blocks (RB), denoting subsets 182 of these blocks allows one to efficiently describe common properties 183 of the blocks and to describe the structure and characteristics, if 184 non-trivial, of the resource pool. The RB Set field is defined in a 185 similar manner to the label set concept of [RFC3471]. 187 The information carried in a RB set field is defined by: 189 0 1 2 3 190 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 191 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 192 | Action |C| Reserved | Length | 193 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 194 | RB Identifier 1 | 195 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 196 : : : 197 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 198 | RB Identifier n | 199 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 201 Action: 8 bits 203 0 - Inclusive List 205 Indicates that the TLV contains one or more RB elements that are 206 included in the list. 208 1 - Inclusive Range(s) 210 Indicates that the TLV contains one or more ranges of RBs. Each 211 individual range is denoted by two 32 bit RB identifier. The first 212 32 bits is the RB identifier for the start of the range and the next 213 32 bits is the RB identifier for the end of the range. Note that the 214 Length field is used to determine the number of ranges. 216 C (Connectivity bit): Set to 0 to denote fixed (possibly multi- 217 cast) connectivity; Set to 1 to denote potential (switched) 218 connectivity. Used in Resource Accessibility field. Ignored 219 elsewhere. 221 Reserved: 7 bits 223 This field is reserved. It MUST be set to zero on transmission and 224 MUST be ignored on receipt. 226 Length: 16 bits 228 The total length of this field in bytes. 230 RB Identifier: 232 The RB identifier represents the ID of the resource block which is a 233 32 bit integer. 235 Usage Note: the inclusive range "Action" can result in very compact 236 encoding of resource sets and it can be advantages to number 237 resource blocks in such a way so that status updates (dynamic 238 information) can take advantage of this efficiency. 240 3. Resource Accessibility/Availability 242 This section defines the information elements for dealing with 243 accessibility and availability of resource blocks within a pool of 244 resources. These include the ResourceAccessibility, 245 ResourceWaveConstraints, and RBPoolState fields. 247 3.1. Resource Accessibility Field 249 This information element describes the structure of the resource 250 pool in relation to the switching device. In particular it indicates 251 the ability of an input port to reach sets of resources and of sets 252 of resources to reach a particular output port. This is the 253 PoolInputMatrix and PoolOutputMatrix of [RWA-Info]. 255 The Resource Accessibility is defined by: 257 0 1 2 3 258 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 259 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 260 |Reserved(8bits)|C| Reserved (23 bits) | 261 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 262 | Input Link Set Field A #1 | 263 : : 264 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 265 | RB Set Field A #1 | 266 : : 267 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 268 | Additional Link set and RB set pairs as needed to | 269 : specify PoolInputMatrix : 270 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 271 | Output Link Set Field B #1 | 272 : : 273 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 274 | RB Set B Field #1 (for output connectivity) | 275 : : 276 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 277 | Additional Link Set and RB set pairs as needed to | 278 : specify PoolOutputMatrix : 279 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 281 Where 283 C (Connectivity bit): Connectivity indicates how the input/output 284 ports connect to the resource blocks. 286 0 -- the device is fixed (e.g., a connected port must go 287 through the resource block) 289 1 -- the device is switched (e.g., a port can be configured to 290 go through a resource but isn't required) 292 The For the Input and Output Link Set Fields, the Link Set Field 293 encoding defined in [Gen-Encode] is to be used. A Label Set Field 294 MUST carry a label as defined in [RFC6205]. 296 Note that the direction parameter within the Link Set Field is used 297 to indicate whether the link set is an input or output link set, and 298 the bidirectional value for this parameter is not permitted in this 299 field. 301 See Appendix A.1 for an illustration of this encoding. 303 3.2. Resource Wavelength Constraints Field 305 Resources, such as wavelength converters, etc., may have a limited 306 input or output wavelength ranges. Additionally, due to the 307 structure of the optical system not all wavelengths can necessarily 308 reach or leave all the resources. These properties are described by 309 using one or more resource wavelength restrictions fields as defined 310 below: 312 0 1 2 3 313 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 314 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 315 |I|O|B| Reserved | 316 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 317 | RB Set Field | 318 : : 319 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 320 | Input Wavelength Constraints | 321 : : 322 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 323 | Output Wavelength Constraints | 324 : : 325 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 327 I = 1 or 0 indicates the presence or absence of the Input Wavelength 328 Constraints Field. 330 O = 1 or 0 indicates the presence or absence of the Output 331 Wavelength Constraints Field. 333 B = 1 indicates that a single wavelength constraints field 334 represents both Input and Output Wavelength Constraints Fields. 336 Currently the only valid combinations of (I,O,B) are (1,0,0), 337 (0,1,0), (1,1,0), (0,0,1). 339 RB Set Field: 341 A set of resource blocks (RBs) which have the same wavelength 342 restrictions. 344 Input Wavelength Constraints Field: 346 Indicates the wavelength input restrictions of the RBs in the 347 corresponding RB set. This field is encoded via the Label Set field 348 of [Gen-Encode]. 350 Output Wavelength Constraints Field: 352 Indicates the wavelength output restrictions of RBs in the 353 corresponding RB set. This field is encoded via the Label Set field 354 of [Gen-Encode]. 356 3.3. Resource Block Pool State (RBPoolState) Field 358 The state of the pool is given by the number of resources available 359 with particular characteristics. A resource block set is used to 360 encode all or a subset of the resources of interest. The usage state 361 of resources within a resource block set is encoded as either a list 362 of 16 bit integer values or a bit map indicating whether a single 363 resource is available or in use. The bit map encoding is appropriate 364 when resource blocks consist of a single resource. This information 365 can be relatively dynamic, i.e., can change when a connection (LSP 366 is established or torn down. 368 0 1 2 3 369 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 370 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 371 | Action | Reserved | 372 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 373 | RB Set Field | 374 : : 375 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 376 | RB Usage state | 377 : : 378 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 380 Where Action = 0 denotes a list of 16 bit integers and Action = 1 381 denotes a bit map. In both cases the elements of the RB Set field 382 are in a one-to-one correspondence with the values in the usage RB 383 usage state area. 385 0 1 2 3 386 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 387 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 388 | Action = 0 | Reserved | 389 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 390 | RB Set Field | 391 : : 392 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 393 | RB#1 state | RB#2 state | 394 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 395 : : 396 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 397 | RB#n-1 state | RB#n state or Padding | 398 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 400 RB#i State (16 bits, unsigned integer): indicates Resource Block #i 401 is in use or available. 403 Whether the last 16 bits is a wavelength converter (RB) state or 404 padding is determined by the number of elements in the RB set field. 406 0 1 2 3 407 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 408 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 409 | Action = 1 | Reserved | 410 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 411 | RB Set Field | 412 : : 413 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 414 | RB Usage state bitmap | 415 : : 416 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 417 | ...... | Padding bits | 418 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 420 RB Usage state: Variable Length but must be a multiple of 4 byes. 422 Each bit indicates the usage status of one RB with 0 indicating the 423 RB is available and 1 indicating the RB is in used. The sequence of 424 the bit map is ordered according to the RB Set field with this 425 element. 427 Padding bits: Variable Length 429 3.4. Resource Block Shared Access Wavelength Availability 430 (RBSharedAccessWaveAvailability) Field 432 Resources blocks may be accessed via a shared fiber. If this is the 433 case, then wavelength availability on these shared fibers is needed 434 to understand resource availability. 436 0 1 2 3 437 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 438 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 439 |I|O| Reserved | 440 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 441 | RB Set Field | 442 : : 443 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 444 | Input Available Wavelength Set Field | 445 : (Optional) : 446 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 447 | Output Available Wavelength Set Field | 448 : (Optional) : 449 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 451 I bit: 453 Indicates whether the input available wavelength set field is 454 included (1) or not (0). 456 O bit: 458 Indicates whether the output available wavelength set field is 459 included (1) or not (0). 461 RB Set Field: 463 A Resource Block set in which all the members share the same input 464 or output fiber or both. 466 Input Available Wavelength Set Field: 468 Indicates the wavelengths currently available (not being used) on 469 the input fiber to this resource block. This field is encoded via 470 the Label Set field of [Gen-Encode]. 472 Output Available Wavelength Set Field: 474 Indicates the wavelengths currently available (not being used) on 475 the output fiber from this resource block. This field is encoded via 476 the Label Set field of [Gen-Encode]. 478 4. Resource Block Information (ResourceBlockInfo) Field 480 As defined in [RWA-INFO], the Resource Block Information 481 field is used to represent resource signal 482 constraints and processing capabilities of a node. 484 The fundamental properties of a resource block are: 486 (a) Optical Interface Class List(s) 487 (b) Acceptable Client Signal (shared input, modulation, FEC, bit 488 rate, G-PID) 489 (c) Input Bit Rate 490 (d) Processing Capabilities (number of resources in a block, 491 regeneration, performance monitoring, vendor specific) 493 ResourceBlockInfo fields are used to convey relatively static 494 information about individual resource blocks including the resource 495 block properties and the number of resources in a block. 497 When more than one ResourceBlockInfo field is used, there are no 498 ordering requirements amongst these fields. 500 This ResourceBlockInfo field has the following format: 502 0 1 2 3 503 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 504 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 505 | RB Set Field | 506 : : 507 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 508 |I|O| Reserved | 509 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 510 | Optional subfield 1 | 511 : ... : 512 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 513 : : : 514 : : : 515 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 516 | Optional subfield N | 517 : : 518 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 520 RB Set Field is described in Section 2.1. 522 The shared input or output indication is indicated by the first bit 523 (I) and the second bit (O): 525 where I and O are set to 1 if the resource blocks identified in the 526 RB set field utilized a shared fiber for input/output access and set 527 to 0 otherwise. 529 Zero or more Optional subfields MAY be present. Optional subfields 530 have following format: 532 0 1 2 3 533 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 534 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 535 | Type | Length | 536 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 537 | Value... | 538 . . 539 . . 540 . . 541 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 543 The Length field defines the length of the value portion in bytes 544 (thus a subfield with no value portion would have a length of zero). 545 The subfield is padded to four-byte alignment; padding is not 546 included in the Length field (so a three byte value would have a 547 length of three, but the total size of the subfield would be eight 548 byte). Unrecognized types are not processed. If multiple subfields 549 of the same type are present, only the first of the type SHOULD be 550 processed. 552 The following subfield Types are defined: 554 Value Length Sub-TLV Type 556 1 variable Optical Interface Class List 557 2 variable Acceptable Client Signal List 558 3 variable Input Bit Rate List 559 4 variable Processing Capability List 561 See the IANA Considerations section for allocation of new Types. 563 4.1. Optical Interface Class List Subfield 565 The list of Optical Interface Class subfield has the following 566 format: 568 0 1 2 3 569 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 570 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 571 | Reserved |I|O| 572 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 573 | Optical Interface Classes | 574 : : 575 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 577 The following I and E combination are defined: 579 I O 581 0 0 Invalid 583 1 0 Optical Interface Class List acceptable in input 585 0 1 Optical Interface Class List available in output 587 1 1 Optical Interface Class List available on both input and 588 output. 590 The Resource Block MAY contain one or more lists according to 591 input/output flags. 593 The Optical Interface Classes Format is defined as follows: 595 0 1 2 3 596 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 597 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 598 |S| Reserved | OI Code Points | 599 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 600 | Optical Interface Class | 601 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 602 | Optical Interface Class (Cont.) | 603 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 604 Where the first 32 bits of the encoding shall be used to identify 605 the semantic of the Optical Interface Class in the following way: 607 S Standard bit. 609 S=0, identify not ITU code points 611 S=1, identify ITU application codes 613 With S=0, the OI Code Points field can take the following 614 values: 616 0: reserved 618 1: Vendor Specific Optical Interface Class. 620 With S=1, the OI Code Points field can take the following 621 values: 623 0: reserved 625 1: [ITU-G.698.1] application code. 627 2: [ITU-G.698.2] application code. 629 3: [ITU-G.959.1] application code. 631 4: [ITU-G.695] application code. 633 In case of ITU Application Code, the mapping between the string 634 defining the application code and the 64 bits number implementing 635 the optical interface class is given in the following sections. 637 4.1.1. ITU-G.698.1 Application Code Mapping 639 Recommendation ITU-G.698.1 defines the Application Codes: DScW- 640 ytz(v) and B-DScW-ytz(v). Where: 642 B: means Bidirectionals. 644 D: means a DWDM application. 646 S: take values N (narrow spectral excursion), W (wide spectral 647 excursion). 649 c: Channel Spacing (GHz). 651 W: take values S (short-haul), L (long-haul). 653 y: take values 1 (NRZ 2.5G), 2 (indicating NRZ 10G). 655 t: take only D value is defined (link does not contain optical 656 amplifier) 658 z: take values 2 (ITU-T G.652 fibre), 3 (ITU-T G.653 fibre), 5 659 (indicating ITU-T G.655 fibre). 661 v: take values S (Short wavelength), C (Conventional), L (Long 662 wavelength). 664 An Optional F can be added indicating a FEC Encoding. 666 These get mapped into the 64 bit OIC field as follows: 668 0 1 2 3 669 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 670 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 671 |B| D |S| c | W | y | t | z | v | F | 672 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 673 | reserved | 674 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 676 Where (values between parenthesis refer to ITU defined values as 677 reported above): 679 B: = 1 bidirectional, 0 otherwise 681 D (prefix): = 0 reserved, = 1 (D) 683 S: = 0 (N), = 1 (W) 685 c: Channel Spacing, 4 bits mapped according to same definition 686 in [RFC6205] (note that DWDM spacing apply here) 687 W: = 0 reserved, = 2 (S), = 3 (L) 689 y: = 0 reserved, = 1 (1), = 2 (2) 691 t: = 0 reserved, = 4 (D) 693 z: = 0 reserved, = 2 (2), = 3 (3), = 5 (5) 695 v: = 0 reserved, = 1 (S), = 2 (C), = 3 (L) 697 F (suffix): = 0 reserved, = 1 Fec Encoding 699 Values not mentioned here are not allowed in this application 700 code, the last 32 bits are reserved and shall be set to zero. 702 4.1.2. ITU-G.698.2 Application Code Mapping 704 Recommendation ITU-G.698.2 defines the Application Codes: DScW- 705 ytz(v) and B-DScW-ytz(v). 707 B: means Bidirectional. 709 D: means a DWDM application. 711 S: take values N (narrow spectral excursion), W (wide spectral 712 excursion). 714 c: Channel Spacing (GHz). 716 W: take values C (link is dispersion compensated), U (link is 717 dispersion uncompensated). 719 y: take values 1 (NRZ 2.5G), 2 (indicating NRZ 10G). 721 t: take value A (link may contains optical amplifier) 723 z: take values 2 (ITU-T G.652 fibre), 3 (ITU-T G.653 fibre), 5 724 (indicating ITU-T G.655 fibre). 726 v: take values S (Short wavelength), C (Conventional), L (Long 727 wavelength). 729 An Optional F can be added indicating a FEC Encoding. 731 These get mapped into the 64 bit OIC field as follows: 733 0 1 2 3 734 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 735 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 736 |B| D |S| c | W | y | t | z | v | F | 737 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 738 | reserved | 739 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 741 Where (values between parenthesis refer to ITU defined values as 742 reported above): 744 B: = 1 bidirectional, 0 otherwise 746 D (prefix): = 0 reserved, = 1 (D) 748 S: = 0 (N), = 1 (W) 750 c: Channel Spacing, 4 bits mapped according to same definition 751 in [RFC6205] (note that DWDM spacing apply here) 753 W: = 0 reserved, = 10 (C), = 11 (U) 755 y: = 0 reserved, = 1 (1), = 2 (2) 757 t: = 0 reserved, = 1 (A) 759 z: = 0 reserved, = 2 (2), = 3 (3), = 5 (5) 761 v: = 0 reserved, = 1 (S), = 2 (C), = 3 (L) 763 F (suffix): = 0 reserved, = 1 Fec Encoding 765 Values not mentioned here are not allowed in this application 766 code, the last 32 bits are reserved and shall be set to zero. 768 4.1.3. ITU-G.959.1 Application Code Mapping 770 Recommendation ITU-G.959.1 defines the Application Codes: PnWx-ytz 771 and BnWx-ytz. Where: 773 P,B: when present indicate Plural or Bidirectional 775 n: maximum number of channels supported by the application code 776 (i.e. an integer number) 778 W: take values I (intra-office), S (short-haul), L (long-haul), V 779 (very long-haul), U (ultra long-haul). 781 x: maximum number of spans allowed within the application code 782 (i.e. an integer number) 784 y: take values 1 (NRZ 2.5G), 2 (NRZ 10G), 9 (NRZ 25G), 3 (NRZ 785 40G), 7 (RZ 40G). 787 t: take values A (power levels suitable for a booster amplifier 788 in the originating ONE and power levels suitable for a pre-amplifier 789 in the terminating ONE), B (booster amplifier only), C (pre- 790 amplifier only), D (no amplifiers). 792 z: take values 1 (1310 nm sources on ITU-T G.652 fibre), 2 (1550 793 nm sources on ITU-T G.652 fibre), 3 (1550 nm sources on ITU-T 794 G.653 fibre), 5 (1550 nm sources on ITU-T G.655 fibre). 796 The following list of suffixes can be added to these application 797 codes: 799 F: FEC encoding. 801 D: Adaptive dispersion compensation. 803 E: receiver capable of dispersion compensation. 805 r: reduced target distance. 807 a: power levels appropriate to APD receivers. 809 b: power levels appropriate to PIN receivers. 811 These values are encoded as follows: 813 0 1 2 3 814 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 815 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 816 | p | P | n | W | x | reserved | 817 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 818 | y | t | z | suffix | reserved | 819 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 821 Where (values between parenthesis refer to ITU defined values as 822 reported above): 824 p (prefix) = 0 otherwise, = 1 Bidirectional (B) 826 P (optional): = 0 not present, = 2 (P). 828 n: maximum number of channels (10 bits, up to 1024 channels) 830 W: = 0 reserved, = 1 (I), = 2 (S), = 3 (L), = 4 (V), = 5 (U) 832 x: = number of spans (6 bits, up to 64 spans) 834 y: = 0 reserved, = 1 (1), = 2 (2), = 3 (3), = 7 (7), = 9 (9) 836 t: = 0 reserved, = 1 (A), = 2 (B), = 3 (C), = 4 (D) 838 z: = 0 reserved, = 1 (1), = 2 (2), = 3 (3), = 5 (5) 840 suffix is an 6 bit, bit map: 842 0 1 2 3 4 5 843 +-+-+-+-+-+-+ 844 |F|D|E|r|a|b| 845 +-+-+-+-+-+-+ 846 where a 1 in the appropriate slot indicates that the corresponding 847 suffix has been added. 849 4.1.4. ITU-G.695 Application Code Mapping 851 Recommendation [ITU-G.695] defines the Application Codes: CnWx-ytz 852 and B-CnWx-ytz and S-CnWx-ytz. 854 Where the optional prefixed are: 856 B: Bidirectional 858 S: a system using a black link approach 860 And the rest of the application code is defined as: 862 C: CWDM (Coarse WDM) application 864 n: maximum number of channels supported by the application code 865 (i.e. an integer number) 867 W: take values S (short-haul), L (long-haul). 869 x: maximum number of spans allowed 871 y: take values 0 (NRZ 1.25G), 1 (NRZ 2.5G), 2 (NRZ 10G). 873 t: take values D (link does not contain any optical amplifier). 875 z: take values 1 (1310 nm region for ITU-T G.652 fibre), 2 (ITU-T 876 G.652 fibre), 3 (ITU-T G.653 fibre), 5 (ITU-T G.655 fibre). 878 The following list of suffixes can be added to these application 879 codes: 881 F: FEC encoding. 883 Since the application codes are very similar to the one from the 884 G.959 section most of the fields are reused. The 64 bit OIC field is 885 encoded as follows: 887 0 1 2 3 888 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 889 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 890 | p | C | n | W | x | reserved | 891 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 892 | y | t | z | suffix | reserved | 893 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 895 Where (values between parenthesis refer to ITU defined values as 896 reported above): 898 p: = 0 no prefix, 1 = B bidirectional, = 2 S black link 900 C: = 0 reserved, = 3 (C). 902 n: maximum number of channels (10 bits, up to 1024 channels) 904 W: = 0 reserved, = 1 reserved, = 2 (S), = 3 (L), > 3 reserved 906 x: = number of spans (6 bits, up to 64 spans) 908 y: = 0 (0), = 1 (1), =2 (2), > 2 reserved 910 t: = 4 (D), all other values are reserved 912 z: = 0 reserved, = 1 (1), = 2 (2), = 3 (3) 914 suffix is an 6 bit, bit map: 916 0 1 2 3 4 5 917 +-+-+-+-+-+-+ 918 |F|0|0|0|0|0| 919 +-+-+-+-+-+-+ 920 where a 1 in the appropriate slot indicates that the corresponding 921 suffix has been added. 923 4.2. Acceptable Client Signal List Subfield 925 This subfield contains a list of acceptable input client signal 926 types. 928 The acceptable client signal list is a list of Generalized Protocol 929 Identifiers (G-PIDs). 931 0 1 2 3 932 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 933 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 934 | Reserved | Number of G-PIDs | 935 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 936 | G-PID #1 | G-PID #2 | 937 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 938 : | : 939 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 940 | G-PID #N | | 941 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 943 Type (16 bits): identifies the Acceptable Client Signal List field. 945 Length (16 bits): The Length field defines the length of the value 946 portion in octets. 948 The number of G-PIDs is an integer greater than or equal to one. 950 G-PIDs are assigned by IANA and many are defined in [RFC3471] and 951 [RFC4328]. 953 4.3. Input Bit Rate List Subfield 955 This subfield contains a list of bit rate of each input client 956 signal types specified in the Input Client Signal List. 958 The number of Input Bit Rate MUST match the number of G-PID. 960 0 1 2 3 961 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 962 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 963 | Input Bit Rate of G-PID #1 | 964 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 965 : : 966 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 967 | Input Bit Rate of G-PID #N | 968 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 970 Input Bit Rates are in IEEE floating point format [IEEE]. 972 4.4. Processing Capability List Subfield 974 This subfield contains a list of resource processing capabilities. 976 The processing capability list field is a list of capabilities that 977 can be achieved through the referred resources: 979 1. Regeneration capability 981 2. Fault and performance monitoring 983 3. Vendor Specific capability 985 Note that the code points for Fault and performance monitoring and 986 vendor specific capability are subject to further study. 988 The processing capability list field is then given by: 990 0 1 2 3 991 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 992 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 993 | Reserved | Processing Cap ID | 994 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 995 | Possible additional capability parameters depending upon | 996 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 997 : the processing ID : 998 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1000 When the processing Cap ID is "regeneration capability", the 1001 following additional capability parameters are provided in the 1002 following field: 1004 0 1 2 3 1005 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1006 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1007 | T | C | Reserved | 1008 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1010 Where T bit indicates the type of regenerator: 1012 T=0: Reserved 1014 T=1: 1R Regenerator 1016 T=2: 2R Regenerator 1018 T=3: 3R Regenerator 1020 Where C bit indicates the capability of regenerator: 1022 C=0: Reserved 1024 C=1: Fixed Regeneration Point 1026 C=2: Selective Regeneration Point 1028 Note that when the capability of regenerator is indicated to be 1029 Selective Regeneration Pools, regeneration pool properties such as 1030 input and output restrictions and availability need to be specified. 1031 The code point for this is subject to further study. 1033 5. Security Considerations 1035 This document defines protocol-independent encodings for WSON 1036 information and does not introduce any security issues. 1038 However, other documents that make use of these encodings within 1039 protocol extensions need to consider the issues and risks associated 1040 with, inspection, interception, modification, or spoofing of any of 1041 this information. It is expected that any such documents will 1042 describe the necessary security measures to provide adequate 1043 protection. A general discussion on security in GMPLS networks can 1044 be found in [RFC5920]. 1046 6. IANA Considerations 1048 IANA allocation requests for protocol dependent encodings will be 1049 addressed in protocol specific documents based on the encodings 1050 defined here. 1052 This document introduces a new registry for GMPLS routing parameters 1053 for WSON encoding. This new IANA registry will be created to make 1054 the assignment of a new type and new values for the new "GMPLS 1055 Routing Parameters for WSON." 1057 6.1. Types for subfields of WSON Resource Block Information 1059 Under this new GMPLS Routing Parameters for WSON, a new IANA 1060 registry will be created for nested subfields of the Resource Block 1061 Information field to create a new section named "Types for subfields 1062 of WSON Resource Block Information" and allocate new values as 1063 follows: 1065 Value Length Sub-TLV Type Reference 1067 0 Reserved 1068 1 variable Optical Interface Class List [This.I-D] 1069 2 variable Acceptable Client 1070 Signal List [This.I-D] 1071 3 variable Input Bit Rate List [This.I-D] 1072 4 variable Processing Capability List [This.I-D] 1073 5-65535 Unassigned 1075 Types are to be assigned via Standards Action as defined in 1076 [RFC5226]. 1078 7. Acknowledgments 1080 This document was prepared using 2-Word-v2.0.template.dot. 1082 APPENDIX A: Encoding Examples 1084 A.1. Wavelength Converter Accessibility Field 1086 Example: 1088 Figure 1 shows a wavelength converter pool architecture know as 1089 "shared per fiber". In this case the input and output pool matrices 1090 are simply: 1092 +-----+ +-----+ 1093 | 1 1 | | 1 0 | 1094 WI =| |, WE =| | 1095 | 1 1 | | 0 1 | 1096 +-----+ +-----+ 1098 +-----------+ +------+ 1099 | |--------------------->| | 1100 | |--------------------->| C | 1101 /| | |--------------------->| o | 1102 /D+--->| |--------------------->| m | 1103 + e+--->| | | b |=======> 1104 ========>| M| | Optical | +-----------+ | i | Port O1 1105 Port I1 + u+--->| Switch | | WC Pool | | n | 1106 \x+--->| | | +-----+ | | e | 1107 \| | +----+->|WC #1|--+---->| r | 1108 | | | +-----+ | +------+ 1109 | | | | +------+ 1110 /| | | | +-----+ | | | 1111 /D+--->| +----+->|WC #2|--+---->| C | 1112 + e+--->| | | +-----+ | | o | 1113 ========>| M| | | +-----------+ | m |=======> 1114 Port I2 + u+--->| | | b | Port O2 1115 \x+--->| |--------------------->| i | 1116 \| | |--------------------->| n | 1117 | |--------------------->| e | 1118 | |--------------------->| r | 1119 +-----------+ +------+ 1120 Figure 1 An optical switch featuring a shared per fiber wavelength 1121 converter pool architecture. 1123 This wavelength converter pool can be encoded as follows: 1125 0 1 2 3 1126 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1127 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1128 | Reserved |1| Reserved | 1129 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1130 Note: I1,I2 can connect to either WC1 or WC2 1131 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1132 | Action=0 |0| Reserved | Length = 12 | 1133 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1134 | Link Local Identifier = #1 | 1135 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1136 | Link Local Identifier = #2 | 1137 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1138 | Action=0 |1| Reserved | Length = 8 | 1139 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1140 | RB ID = #1 | 1141 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1142 | RB ID = #2 | 1143 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1144 Note: WC1 can only connect to O1 1145 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1146 | Action=0 |1| Reserved | Length = 8 | 1147 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1148 | Link Local Identifier = #1 | 1149 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1150 | Action=0 |0| Reserved | Length = 8 | 1151 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1152 | RB ID = #1 | 1153 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1154 Note: WC2 can only connect to O2 1155 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1156 | Action=0 |1| Reserved | Length = 8 | 1157 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1158 | Link Local Identifier = #2 | 1159 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1160 | Action=0 |0| | Length = 8 | 1161 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1162 | RB ID = #2 | 1163 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1165 A.2. Wavelength Conversion Range Field 1167 Example: 1169 This example, based on figure 1, shows how to represent the 1170 wavelength conversion range of wavelength converters. Suppose the 1171 wavelength range of input and output of WC1 and WC2 are {L1, L2, L3, 1172 L4}: 1174 0 1 2 3 1175 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1176 Note: WC Set 1177 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1178 | Action=0 |1| Reserved | Length = 8 | 1179 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1180 | WC ID = #1 | WC ID = #2 | 1181 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1182 Note: wavelength input range 1183 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1184 | 2 | Num Wavelengths = 4 | Length = 8 | 1185 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1186 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1187 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1188 Note: wavelength output range 1189 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1190 | 2 | Num Wavelengths = 4 | Length = 8 | 1191 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1192 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1193 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1195 A.3. An OEO Switch with DWDM Optics 1197 Figure 2 shows an electronic switch fabric surrounded by DWDM 1198 optics. In this example the electronic fabric can handle either 1199 G.709 or SDH signals only (2.5 or 10 Gbps). To describe this node, 1200 the following information is needed: 1202 ::= [Other GMPLS info- 1203 elements][...] [][] 1205 In this case there is complete port to port connectivity so the 1206 is not required. In addition since there are 1207 sufficient ports to handle all wavelength signals the 1208 element is not needed. 1210 Hence the attention will be focused on the field: 1212 ::= 1213 [...][. 1214 ..] 1215 /| +-----------+ +-------------+ +------+ 1216 /D+--->| +--->|Tunable Laser|-->| | 1217 + e+--->| | +-------------+ | C | 1218 ========>| M| | | ... | o |=======> 1219 Port I1 + u+--->| | +-------------+ | m | Port O1 1220 \x+--->| |--->|Tunable Laser|-->| b | 1221 \| | Electric | +-------------+ +------+ 1222 | Switch | 1223 /| | | +-------------+ +------+ 1224 /D+--->| +--->|Tunable Laser|-->| | 1225 + e+--->| | +-------------+ | C | 1226 ========>| M| | | ... | o |=======> 1227 Port I2 + u+--->| | +-------------+ | m | Port O2 1228 \x+--->| +--->|Tunable Laser|-->| b | 1229 \| | | +-------------+ +------+ 1230 | | 1231 /| | | +-------------+ +------+ 1232 /D+--->| |--->|Tunable Laser|-->| | 1233 + e+--->| | +-------------+ | C | 1234 ========>| M| | | ... | o |=======> 1235 Port I3 + u+--->| | +-------------+ | m | Port O3 1236 \x+--->| |--->|Tunable Laser|-->| b | 1237 \| +-----------+ +-------------+ +------+ 1239 Figure 2 An optical switch built around an electronic switching 1240 fabric. 1242 The resource block information will tell us about the processing 1243 constraints of the receivers, transmitters and the electronic 1244 switch. The resource availability information, although very simple, 1245 tells us that all signals must traverse the electronic fabric (fixed 1246 connectivity). The resource wavelength constraints are not needed 1247 since there are no special wavelength constraints for the resources 1248 that would not appear as port/wavelength constraints. 1250 : 1252 0 1 2 3 1253 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1254 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1255 | RB Set Field | 1256 : (only one resource block in this example with shared | 1257 | input/output case) | 1258 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1259 |1|1| Reserved | 1260 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1261 | Optical Interface Class List(s) | 1262 : : 1263 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1264 | Input Client Signal Type | 1265 : (G-PIDs for SDH and G.709) : 1266 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1267 | Input Bit Rate Range List | 1268 : (2.5Gbps, 10Gbps) : 1269 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1270 | Processing Capabilities List | 1271 : Fixed (non optional) 3R regeneration : 1272 : : 1273 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1275 Since there is fixed connectivity to resource blocks (the electronic 1276 switch) the is: 1278 0 1 2 3 1279 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1280 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1281 | Connectivity=0|Reserved | 1282 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1283 | Input Link Set Field A #1 | 1284 : (All input links connect to resource) : 1285 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1286 | RB Set Field A #1 | 1287 : (trivial set only one resource block) : 1288 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1289 | Output Link Set Field B #1 | 1290 : (All output links connect to resource) : 1291 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1293 8. References 1295 8.1. Normative References 1297 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1298 Requirement Levels", BCP 14, RFC 2119, March 1997. 1300 [RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label 1301 Switching (GMPLS) Signaling Extensions for G.709 Optical 1302 Transport Networks Control", RFC 4328, January 2006. 1304 [Gen-Encode] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "General 1305 Network Element Constraint Encoding for GMPLS Controlled 1306 Networks", work in progress: draft-ietf-ccamp-general- 1307 constraint-encode. 1309 8.2. Informative References 1311 [IEEE] IEEE, "IEEE Standard for Binary Floating-Point 1312 Arithmetic", Standard 754-1985, 1985 (ISBN 1-5593-7653-8). 1314 [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM 1315 applications: DWDM frequency grid, June 2002. 1317 [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM 1318 applications: CWDM wavelength grid, December 2003. 1320 [G.695] ITU-T Recommendation G.695, Optical interfaces for coarse 1321 wavelength division multiplexing applications, October, 1322 2010. 1324 [G.959.1] ITU-T Recommendation G.959.1, Optical transport network 1325 physical layer interfaces, February, 2012. 1327 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 1328 (GMPLS) Signaling Functional Description", RFC 3471, 1329 January 2003. 1331 [RFC4203] Kompella, L. and Y. Rekhter, Eds., "OSPF Extensions in 1332 Support of Generalized Multi-Protocol Label Switching 1333 (GMPLS)", RFC 4203, October 2005. 1335 [RFC5307] Kompella, L. and Y. Rekhter, Eds., "IS-IS Extensions in 1336 Support of Generalized Multi-Protocol Label Switching 1337 (GMPLS)", RFC 5307, October, 2008. 1339 [RFC5440] Vasseur, JP. and Le Roux, JL., Eds., "Path Computation 1340 Element (PCE) Communication Protocol (PCEP)", RFC 5440, 1341 March 2009. 1343 [RFC5920] L. Fang, Ed., "Security Framework for MPLS and GMPLS 1344 Networks", RFC 5920, July 2010. 1346 [RFC6205] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized 1347 Labels for G.694 Lambda-Switching Capable Label Switching 1348 Routers", RFC 6205, March 2011. 1350 [RFC6163] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS 1351 and PCE Control of Wavelength Switched Optical Networks", 1352 RFC 6163, April 2011. 1354 [RWA-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and 1355 Wavelength Assignment Information Model for Wavelength 1356 Switched Optical Networks", work in progress: draft-ietf- 1357 ccamp-rwa-info. 1359 9. Contributors 1361 Diego Caviglia 1362 Ericsson 1363 Via A. Negrone 1/A 16153 1364 Genoa Italy 1366 Phone: +39 010 600 3736 1367 Email: diego.caviglia@ericsson.com 1369 Anders Gavler 1370 Acreo AB 1371 Electrum 236 1372 SE - 164 40 Kista Sweden 1374 Email: Anders.Gavler@acreo.se 1376 Jonas Martensson 1377 Acreo AB 1378 Electrum 236 1379 SE - 164 40 Kista, Sweden 1381 Email: Jonas.Martensson@acreo.se 1383 Itaru Nishioka 1384 NEC Corp. 1385 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 1386 Japan 1388 Phone: +81 44 396 3287 1389 Email: i-nishioka@cb.jp.nec.com 1391 Pierre Peloso 1392 ALU 1394 Email: pierre.peloso@alcatel-lucent.com 1396 Cyril Margaria 1397 Email: cyril.margaria@gmail.com 1399 Giovanni Martinelli 1401 Cisco 1402 Email: giomarti@cisco.com 1404 Gabriele M Galimberti 1405 Cisco 1406 Email: ggalimbe@cisco.com 1408 Lyndon Ong 1409 Ciena Corporation 1410 Email: lyong@ciena.com 1412 Daniele Ceccarelli 1413 Ericsson 1414 Email: daniele.ceccarelli@ericsson.com 1416 Authors' Addresses 1418 Greg M. Bernstein (ed.) 1419 Grotto Networking 1420 Fremont California, USA 1422 Phone: (510) 573-2237 1423 Email: gregb@grotto-networking.com 1425 Young Lee (ed.) 1426 Huawei Technologies 1427 5340 Legacy Drive Build 3 1428 Plano, TX 75024 1429 USA 1431 Phone: (469) 277-5838 1432 Email: leeyoung@huawei.com 1433 Dan Li 1434 Huawei Technologies Co., Ltd. 1435 F3-5-B R&D Center, Huawei Base, 1436 Bantian, Longgang District 1437 Shenzhen 518129 P.R.China 1439 Phone: +86-755-28973237 1440 Email: danli@huawei.com 1442 Wataru Imajuku 1443 NTT Network Innovation Labs 1444 1-1 Hikari-no-oka, Yokosuka, Kanagawa 1445 Japan 1447 Phone: +81-(46) 859-4315 1448 Email: imajuku.wataru@lab.ntt.co.jp 1450 Jianrui Han 1451 Huawei Technologies Co., Ltd. 1452 F3-5-B R&D Center, Huawei Base, 1453 Bantian, Longgang District 1454 Shenzhen 518129 P.R.China 1456 Phone: +86-755-28972916 1457 Email: hanjianrui@huawei.com 1459 Intellectual Property Statement 1461 The IETF Trust takes no position regarding the validity or scope of 1462 any Intellectual Property Rights or other rights that might be 1463 claimed to pertain to the implementation or use of the technology 1464 described in any IETF Document or the extent to which any license 1465 under such rights might or might not be available; nor does it 1466 represent that it has made any independent effort to identify any 1467 such rights. 1469 Copies of Intellectual Property disclosures made to the IETF 1470 Secretariat and any assurances of licenses to be made available, or 1471 the result of an attempt made to obtain a general license or 1472 permission for the use of such proprietary rights by implementers or 1473 users of this specification can be obtained from the IETF on-line 1474 IPR repository at http://www.ietf.org/ipr 1475 The IETF invites any interested party to bring to its attention any 1476 copyrights, patents or patent applications, or other proprietary 1477 rights that may cover technology that may be required to implement 1478 any standard or specification contained in an IETF Document. Please 1479 address the information to the IETF at ietf-ipr@ietf.org. 1481 Disclaimer of Validity 1483 All IETF Documents and the information contained therein are 1484 provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION 1485 HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, 1486 THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL 1487 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 1488 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE 1489 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 1490 FOR A PARTICULAR PURPOSE. 1492 Acknowledgment 1494 Funding for the RFC Editor function is currently provided by the 1495 Internet Society.