idnits 2.17.1 draft-ietf-ccamp-rwa-wson-encode-27.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** There is 1 instance of too long lines in the document, the longest one being 8 characters in excess of 72. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (February 4, 2015) is 3367 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'G.959' is mentioned on line 913, but not defined ** Downref: Normative reference to an Informational draft: draft-ietf-ccamp-rwa-info (ref. 'RWA-Info') -- Obsolete informational reference (is this intentional?): RFC 5226 (Obsoleted by RFC 8126) Summary: 2 errors (**), 0 flaws (~~), 2 warnings (==), 2 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group G. Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Y. Lee 4 Expires: August 2015 D. Li 5 Huawei 6 W. Imajuku 7 NTT 9 February 4, 2015 11 Routing and Wavelength Assignment Information Encoding for 12 Wavelength Switched Optical Networks 14 draft-ietf-ccamp-rwa-wson-encode-27.txt 16 Status of this Memo 18 This Internet-Draft is submitted to IETF in full conformance with 19 the provisions of BCP 78 and BCP 79. 21 Internet-Drafts are working documents of the Internet Engineering 22 Task Force (IETF), its areas, and its working groups. Note that 23 other groups may also distribute working documents as Internet- 24 Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six 27 months and may be updated, replaced, or obsoleted by other documents 28 at any time. It is inappropriate to use Internet-Drafts as 29 reference material or to cite them other than as "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed at 35 http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on August 4, 2015. 39 Copyright Notice 41 Copyright (c) 2014 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents 46 (http://trustee.ietf.org/license-info) in effect on the date of 47 publication of this document. Please review these documents 48 carefully, as they describe your rights and restrictions with 49 respect to this document. Code Components extracted from this 50 document must include Simplified BSD License text as described in 51 Section 4.e of the Trust Legal Provisions and are provided without 52 warranty as described in the Simplified BSD License. 54 Abstract 56 A wavelength switched optical network (WSON) requires that certain 57 key information elements are made available to facilitate path 58 computation and the establishment of label switching paths (LSPs). 59 The information model described in "Routing and Wavelength 60 Assignment Information for Wavelength Switched Optical Networks" 61 shows what information is required at specific points in the WSON. 62 Part of the WSON information model contains aspects that may be of 63 general applicability to other technologies, while other parts are 64 specific to WSONs. 66 This document provides efficient, protocol-agnostic encodings for 67 the WSON specific information elements. It is intended that 68 protocol-specific documents will reference this memo to describe how 69 information is carried for specific uses. Such encodings can be used 70 to extend GMPLS signaling and routing protocols. In addition these 71 encodings could be used by other mechanisms to convey this same 72 information to a path computation element (PCE). 74 Conventions used in this document 76 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 77 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 78 document are to be interpreted as described in RFC-2119 [RFC2119]. 80 Table of Contents 82 1. Introduction...................................................3 83 1.1. Terminology..................................................4 84 2. Resources, Resource Blocks, and the Resource Pool..............4 85 2.1. Resource Block Set Field..................................5 86 3. Resource Accessibility/Availability............................6 87 3.1. Resource Accessibility Field..............................6 88 3.2. Resource Wavelength Constraints Field.....................8 89 3.3. Resource Block Pool State (RBPoolState) Field.............9 90 3.4. Resource Block Shared Access Wavelength Availability 91 (RBSharedAccessWaveAvailability) Field........................11 92 4. Resource Block Information (ResourceBlockInfo) Field..........12 93 4.1. Optical Interface Class List Subfield....................14 94 4.1.1. ITU-G.698.1 Application Code Mapping.............16 95 4.1.2. ITU-G.698.2 Application Code Mapping.............18 96 4.1.3. ITU-G.959.1 Application Code Mapping.............19 97 ITU-G.695 Application Code Mapping.....................22 98 4.1.4...................................................22 99 4.2. Acceptable Client Signal List Subfield................24 100 4.3. Input Bit Rate List Subfield..........................24 101 4.4. Processing Capability List Subfield...................25 102 5. Security Considerations.......................................27 103 6. IANA Considerations...........................................27 104 6.1. Types for subfields of WSON Resource Block Information...27 105 7. Acknowledgments...............................................28 106 APPENDIX A: Encoding Examples....................................29 107 A.1. Wavelength Converter Accessibility Field.................29 108 A.2. Wavelength Conversion Range Field........................31 109 A.3. An OEO Switch with DWDM Optics...........................31 110 8. References....................................................35 111 8.1. Normative References.....................................35 112 8.2. Informative References...................................35 113 9. Contributors..................................................37 114 Authors' Addresses...............................................38 115 Intellectual Property Statement..................................39 116 Disclaimer of Validity...........................................40 118 1. Introduction 120 A Wavelength Switched Optical Network (WSON) is a Wavelength 121 Division Multiplexing (WDM) optical network in which switching is 122 performed selectively based on the center wavelength of an optical 123 signal. 125 [RFC6163] describes a framework for Generalized Multiprotocol Label 126 Switching (GMPLS) and Path Computation Element (PCE) control of a 127 WSON. Based on this framework, [RWA-Info] describes an information 128 model that specifies what information is needed at various points in 129 a WSON in order to compute paths and establish Label Switched Paths 130 (LSPs). 132 This document provides efficient encodings of information needed by 133 the routing and wavelength assignment (RWA) process in a WSON. Such 134 encodings can be used to extend GMPLS signaling and routing 135 protocols. In addition these encodings could be used by other 136 mechanisms to convey this same information to a path computation 137 element (PCE). Note that since these encodings are efficient they 138 can provide more accurate analysis of the control plane 139 communications/processing load for WSONs looking to utilize a GMPLS 140 control plane. 142 In parallel to this document, [Gen-Encode] provides efficient 143 encodings of information needed by the routing and label assignment 144 process that are potentially applicable to a wider range of 145 technologies. 147 1.1. Terminology 149 Refer to [RFC6163] for CWDM, DWDM, RWA, WDM. 151 Refer to Section 5 of [RWA-Info] for the terminology of Resources, 152 Resources Blocks, and Resource Pool. 154 2. Resources, Resource Blocks, and the Resource Pool 156 This section provides encodings for the information elements defined 157 in [RWA-Info] that have applicability to WSON. The encodings are 158 designed to be suitable for use in the GMPLS routing protocols OSPF 159 [RFC4203] and IS-IS [RFC5307] and in the PCE protocol (PCEP) 160 [RFC5440]. Note that the information distributed in [RFC4203] and 161 [RFC5307] is arranged via the nesting of sub-TLVs within TLVs and 162 this document defines elements to be used within such constructs. 163 Specific constructs of sub-TLVs and the nesting of sub-TLVs of the 164 information element defined by this document will be defined in the 165 respective protocol enhancement documents. 167 This document defines the following information elements pertaining 168 to resources within an optical node: 170 . Resource Accessibility 172 . Resource Wavelength Constraints 174 . Resource Block Pool State 175 . Resource Block Shared Access Wavelength Availability 176 178 . Resource Block Information 180 Each of these information elements works with one or more sets of 181 resources rather than just a single resource block. This motivates 182 the following field definition. 184 2.1. Resource Block Set Field 186 In a WSON node that includes resource blocks (RB), denoting subsets 187 of these blocks allows one to efficiently describe common properties 188 of the blocks and to describe the structure and characteristics, if 189 non-trivial, of the resource pool. The RB Set field is defined in a 190 similar manner to the label set concept of [RFC3471]. 192 The information carried in a RB set field is defined by: 194 0 1 2 3 195 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 196 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 197 | Action |C| Reserved | Length | 198 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 199 | RB Identifier 1 | 200 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 201 : : : 202 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 203 | RB Identifier n | 204 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 206 Action: 8 bits 208 0 - Inclusive List 210 Indicates that the TLV contains one or more RB elements that are 211 included in the list. 213 1 - Inclusive Range(s) 215 Indicates that the TLV contains one or more ranges of RBs. Each 216 individual range is denoted by two 32 bit RB identifier. The first 217 32 bits is the RB identifier for the start of the range and the next 218 32 bits is the RB identifier for the end of the range. Note that the 219 Length field is used to determine the number of ranges. 221 C (Connectivity bit): Set to 0 to denote fixed (possibly multi- 222 cast) connectivity; Set to 1 to denote potential (switched) 223 connectivity. Used in Resource Accessibility field. Ignored 224 elsewhere. 226 Reserved: 7 bits 228 This field is reserved. It MUST be set to zero on transmission and 229 MUST be ignored on receipt. 231 Length: 16 bits 233 The total length of this field in bytes. 235 RB Identifier: 237 The RB identifier represents the ID of the resource block which is a 238 32 bit integer. The scope of the RB identifier is local to the node 239 on which it is applied. 241 Usage Note: the inclusive range "Action" can result in very compact 242 encoding of resource sets and it can be advantages to number 243 resource blocks in such a way so that status updates (dynamic 244 information) can take advantage of this efficiency. 246 3. Resource Accessibility/Availability 248 This section defines the information elements for dealing with 249 accessibility and availability of resource blocks within a pool of 250 resources. These include the ResourceAccessibility, 251 ResourceWaveConstraints, and RBPoolState fields. 253 3.1. Resource Accessibility Field 255 This information element describes the structure of the resource 256 pool in relation to the switching device. In particular it indicates 257 the ability of an input port to reach sets of resources and of sets 258 of resources to reach a particular output port. This is the 259 PoolInputMatrix and PoolOutputMatrix of [RWA-Info]. 261 The Resource Accessibility is defined by: 263 0 1 2 3 264 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 265 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 266 |Reserved(8bits)|C| Reserved (23 bits) | 267 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 268 | Input Link Set Field A #1 | 269 : : 270 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 271 | RB Set Field A #1 | 272 : : 273 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 274 | Additional Link set and RB set pairs as needed to | 275 : specify PoolInputMatrix : 276 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 277 | Output Link Set Field B #1 | 278 : : 279 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 280 | RB Set B Field #1 (for output connectivity) | 281 : : 282 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 283 | Additional Link Set and RB set pairs as needed to | 284 : specify PoolOutputMatrix : 285 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 287 Where 289 C (Connectivity bit): Connectivity indicates how the input/output 290 ports connect to the resource blocks. 292 0 -- the device is fixed (e.g., a connected port must go 293 through the resource block) 295 1 -- the device is switched (e.g., a port can be configured to 296 go through a resource but isn't required) 298 The For the Input and Output Link Set Fields, the Link Set Field 299 encoding defined in [Gen-Encode] is to be used. A Label Set Field 300 MUST carry a label as defined in [RFC6205]. 302 Note that the direction parameter within the Link Set Field is used 303 to indicate whether the link set is an input or output link set, and 304 the bidirectional value for this parameter is not permitted in this 305 field. 307 See Appendix A.1 for an illustration of this encoding. 309 3.2. Resource Wavelength Constraints Field 311 Resources, such as wavelength converters, etc., may have a limited 312 input or output wavelength ranges. Additionally, due to the 313 structure of the optical system not all wavelengths can necessarily 314 reach or leave all the resources. These properties are described by 315 using one or more resource wavelength restrictions fields as defined 316 below: 318 0 1 2 3 319 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 320 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 321 |I|O|B| Reserved | 322 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 323 | RB Set Field | 324 : : 325 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 326 | Input Wavelength Constraints | 327 : : 328 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 329 | Output Wavelength Constraints | 330 : : 331 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 333 I = 1 or 0 indicates the presence or absence of the Input Wavelength 334 Constraints Field. 336 O = 1 or 0 indicates the presence or absence of the Output 337 Wavelength Constraints Field. 339 B = 1 indicates that a single wavelength constraints field 340 represents both Input and Output Wavelength Constraints Fields. 342 Currently the only valid combinations of (I,O,B) are (1,0,0), 343 (0,1,0), (1,1,0), (0,0,1). 345 RB Set Field: 347 A set of resource blocks (RBs) which have the same wavelength 348 restrictions. 350 Input Wavelength Constraints Field: 352 Indicates the wavelength input restrictions of the RBs in the 353 corresponding RB set. This field is encoded via the Label Set field 354 of [Gen-Encode]. 356 Output Wavelength Constraints Field: 358 Indicates the wavelength output restrictions of RBs in the 359 corresponding RB set. This field is encoded via the Label Set field 360 of [Gen-Encode]. 362 3.3. Resource Block Pool State (RBPoolState) Field 364 The state of the pool is given by the number of resources available 365 with particular characteristics. A resource block set is used to 366 encode all or a subset of the resources of interest. The usage state 367 of resources within a resource block set is encoded as either a list 368 of 16 bit integer values or a bit map indicating whether a single 369 resource is available or in use. The bit map encoding is appropriate 370 when resource blocks consist of a single resource. This information 371 can be relatively dynamic, i.e., can change when a connection (LSP 372 is established or torn down. 374 0 1 2 3 375 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 376 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 377 | Action | Reserved | 378 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 379 | RB Set Field | 380 : : 381 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 382 | RB Usage state | 383 : : 384 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 386 Where Action = 0 denotes a list of 16 bit integers and Action = 1 387 denotes a bit map. Action = 0 covers the case where there are 388 multiple elements for each resource block. Action = 1 covers the 389 case where each resource block only contains a single element. 391 In both cases the elements of the RB Set field are in a one-to-one 392 correspondence with the values in the usage RB usage state area. 394 0 1 2 3 395 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 396 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 397 | Action = 0 | Reserved | 398 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 399 | RB Set Field | 400 : : 401 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 402 | RB#1 state | RB#2 state | 403 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 404 : : 405 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 406 | RB#n-1 state | RB#n state or Padding | 407 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 409 RB#i State (16 bits, unsigned integer): indicates the number of 410 resources available in Resource Block #i. 412 Whether the last 16 bits is a wavelength converter (RB) state or 413 padding is determined by the number of elements in the RB set field. 415 0 1 2 3 416 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 417 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 418 | Action = 1 | Reserved | 419 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 420 | RB Set Field | 421 : : 422 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 423 | RB Usage state bitmap | 424 : : 425 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 426 | ...... | Padding bits | 427 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 429 RB Usage state: Variable Length but must be a multiple of 4 byes. 431 Each bit indicates the usage status of one RB with 0 indicating the 432 RB is available and 1 indicating the RB is in used. The sequence of 433 the bit map is ordered according to the RB Set field with this 434 element. 436 Padding bits: Variable Length 438 3.4. Resource Block Shared Access Wavelength Availability 439 (RBSharedAccessWaveAvailability) Field 441 Resources blocks may be accessed via a shared fiber. If this is the 442 case, then wavelength availability on these shared fibers is needed 443 to understand resource availability. 445 0 1 2 3 446 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 447 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 448 |I|O|B| Reserved | 449 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 450 | RB Set Field | 451 : : 452 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 453 | Input Available Wavelength Set Field | 454 : (Optional) : 455 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 456 | Output Available Wavelength Set Field | 457 : (Optional) : 458 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 460 I = 1 or 0 indicates the presence or absence of the Input Available 461 Wavelength Set Field 463 O = 1 or 0 indicates the presence or absence of the Output Available 464 Wavelength Set Field. 466 B = 1 indicates that a single Available Wavelength Set Field 467 represents both Input and Output Available Wavelength Set Fields. 469 Currently the only valid combinations of (I,O,B) are (1,0,0), 470 (0,1,0), (1,1,0), (0,0,1). 472 RB Set Field: 474 A Resource Block set in which all the members share the same input 475 or output fiber or both. 477 Input Available Wavelength Set Field: 479 Indicates the wavelengths currently available (not being used) on 480 the input fiber to this resource block. This field is encoded via 481 the Label Set field of [Gen-Encode]. 483 Output Available Wavelength Set Field: 485 Indicates the wavelengths currently available (not being used) on 486 the output fiber from this resource block. This field is encoded via 487 the Label Set field of [Gen-Encode]. 489 4. Resource Block Information (ResourceBlockInfo) Field 491 As defined in [RWA-Info], the Resource Block Information 492 field is used to represent resource signal 493 constraints and processing capabilities of a node. 495 The fundamental properties of a resource block are: 497 (a) Optical Interface Class List(s) 498 (b) Acceptable Client Signal (shared input, modulation, FEC, bit 499 rate, G-PID) 500 (c) Input Bit Rate 501 (d) Processing Capabilities (number of resources in a block, 502 regeneration, performance monitoring, vendor specific) 504 ResourceBlockInfo fields are used to convey relatively static 505 information about individual resource blocks including the resource 506 block properties and the number of resources in a block. 508 When more than one ResourceBlockInfo field is used, there are no 509 ordering requirements amongst these fields. The length of the 510 ResourceBlockInfo field is determined from the length of the object 511 that includes it. 513 This ResourceBlockInfo field has the following format: 515 0 1 2 3 516 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 517 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 518 | RB Set Field | 519 : : 520 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 521 |I|O|B| Reserved | 522 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 523 | Optional subfield 1 | 524 : ... : 525 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 526 : : : 527 : : : 528 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 529 | Optional subfield N | 530 : : 531 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 533 RB Set Field is described in Section 2.1. 535 The shared input or output indication is indicated by the first bit 536 (I), the second bit (O) and the third bit (B): 538 I = 1 or 0 indicates if the resource blocks identified in the RB set 539 field utilized a shared fiber for input access and set to 0 540 otherwise. 542 O = 1 or 0 indicates if the resource blocks identified in the RB set 543 field utilized a shared fiber for output access and set to 0 544 otherwise. 546 B = 1 indicates if the resource blocks identified in the RB set 547 field utilized a shared fiber for both input and output access and 548 set to 0 otherwise. 550 Currently the only valid combinations of (I,O,B) are (1,0,0), 551 (0,1,0), (1,1,0), (0,0,1). 553 Zero or more Optional subfields MAY be present. Optional subfields 554 have following format: 556 0 1 2 3 557 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 558 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 559 | Type | Length | 560 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 561 | Value... | 562 . . 563 . . 564 . . 565 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 567 The Length field defines the length of the value portion in bytes 568 (thus a subfield with no value portion would have a length of zero). 569 The subfield is padded to four-byte alignment; padding is not 570 included in the Length field (so a three byte value would have a 571 length of three, but the total size of the subfield would be eight 572 byte). Unrecognized types are not processed. If multiple subfields 573 of the same type are present, only the first of the type SHOULD be 574 processed. 576 The following subfield Types are defined: 578 Value Length Sub-TLV Type 580 1 variable Optical Interface Class List 581 2 variable Acceptable Client Signal List 582 3 variable Input Bit Rate List 583 4 variable Processing Capability List 585 See the IANA Considerations section for allocation of new Types. 587 4.1. Optical Interface Class List Subfield 589 The list of Optical Interface Class subfield has the following 590 format: 592 0 1 2 3 593 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 594 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 595 | Reserved |I|O| 596 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 597 | Optical Interface Classes | 598 : : 599 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 601 The following I and O combination are defined: 603 I O 605 0 0 Invalid 607 1 0 Optical Interface Class List acceptable in input 609 0 1 Optical Interface Class List available in output 611 1 1 Optical Interface Class List available on both input and 612 output. 614 The Resource Block MAY contain one or more lists according to 615 input/output flags. 617 The Optical Interface Classes Format is defined as follows: 619 0 1 2 3 620 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 621 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 622 |S| Reserved | OI Code Points | 623 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 624 | Optical Interface Class | 625 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 626 | Optical Interface Class (Cont.) | 627 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 629 Where the first 32 bits of the encoding shall be used to identify 630 the semantic of the Optical Interface Class in the following way: 632 S Standard bit. 634 S=0, identify non ITU code points 636 S=1, identify ITU application codes 638 With S=0, the OI Code Points field can take the following 639 values: 641 0: reserved 643 Future work may add support for vendor-specific AI once the 644 ITU-T has completed its work in that area. 646 With S=1, the OI Code Points field can take the following 647 values: 649 0: reserved 651 1: [G.698.1] application code. 653 2: [G.698.2] application code. 655 3: [G.959.1] application code. 657 4: [G.695] application code. 659 In case of ITU Application Code, the mapping between the string 660 defining the application code and the 64 bits number implementing 661 the optical interface class is given in the following sections. 663 4.1.1. ITU-G.698.1 Application Code Mapping 665 [698.1] defines the Application Codes: DScW-ytz(v) and B-DScW- 666 ytz(v). Where: 668 B: means Bidirectionals. 670 D: means a DWDM application. 672 S: take values N (narrow spectral excursion), W (wide spectral 673 excursion). 675 c: Channel Spacing (GHz). 677 W: take values S (short-haul), L (long-haul). 679 y: take values 1 (NRZ 2.5G), 2 (indicating NRZ 10G). 681 t: take only D value is defined (link does not contain optical 682 amplifier) 684 z: take values 2 ([G.652] fibre), 3 ([G.653] fibre), 5 685 (indicating [G.655] fibre). 687 v: take values S (Short wavelength), C (Conventional), L (Long 688 wavelength). 690 The F flag indicates the presence or not of an optional FEC 691 Encoding suffix. 693 These get mapped into the 64 bit OIC field as follows: 695 0 1 2 3 696 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 697 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 698 |B| D |S| c | W | y | t | z | v | F | 699 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 700 | reserved | 701 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 703 Where values between parenthesis refer to ITU defined values as 704 reported above: 706 B: = 1 bidirectional, 0 otherwise 708 D (prefix): = 0 reserved, = 1 (D) 710 S: = 0 (N), = 1 (W) 712 c: Channel Spacing, 4 bits mapped according to same definition 713 in Figure 2 in Section 3.2 of [RFC6205] (note that DWDM spacing 714 apply here) 716 W: = 0 reserved, = 2 (S), = 3 (L) 717 y: = 0 reserved, = 1 (1), = 2 (2) 719 t: = 0 reserved, = 4 (D) 721 z: = 0 reserved, = 2 (2), = 3 (3), = 5 (5) 723 v: = 0 reserved, = 1 (S), = 2 (C), = 3 (L) 725 F (suffix): = 0 No FEC Encoding suffix present, = 1 FEC 726 Encoding suffix present 728 Values not mentioned here are not allowed in this application 729 code, the last 32 bits are reserved and shall be set to zero. 731 4.1.2. ITU-G.698.2 Application Code Mapping 733 [G.698.2] defines the Application Codes: DScW-ytz(v) and B-DScW- 734 ytz(v). 736 B: means Bidirectional. 738 D: means a DWDM application. 740 S: take values N (narrow spectral excursion), W (wide spectral 741 excursion). 743 c: Channel Spacing (GHz). 745 W: take values C (link is dispersion compensated), U (link is 746 dispersion uncompensated). 748 y: take values 1 (NRZ 2.5G), 2 (indicating NRZ 10G). 750 t: take value A (link may contains optical amplifier) 752 z: take values 2 ([G.652] fibre), 3 ([G.653] fibre), 5 753 (indicating [G.655] fibre). 755 v: take values S (Short wavelength), C (Conventional), L (Long 756 wavelength). 758 An Optional F can be added indicating a FEC Encoding. 760 These get mapped into the 64 bit OIC field as follows: 762 0 1 2 3 763 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 764 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 765 |B| D |S| c | W | y | t | z | v | F | 766 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 767 | reserved | 768 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 770 Where (values between parenthesis refer to ITU defined values as 771 reported above): 773 B: = 1 bidirectional, 0 otherwise 775 D (prefix): = 0 reserved, = 1 (D) 777 S: = 0 (N), = 1 (W) 779 c: Channel Spacing, 4 bits mapped according to same definition 780 in Figure 2 in Section 3.2 of [RFC6205] (note that DWDM spacing 781 apply here) 783 W: = 0 reserved, = 10 (C), = 11 (U) 785 y: = 0 reserved, = 1 (1), = 2 (2) 787 t: = 0 reserved, = 1 (A) 789 z: = 0 reserved, = 2 (2), = 3 (3), = 5 (5) 791 v: = 0 reserved, = 1 (S), = 2 (C), = 3 (L) 793 F (suffix): = 0 reserved, = 1 Fec Encoding 795 Values not mentioned here are not allowed in this application 796 code, the last 32 bits are reserved and shall be set to zero. 798 4.1.3. ITU-G.959.1 Application Code Mapping 800 [G.959.1] defines the Application Codes: PnWx-ytz and BnWx-ytz. 801 Where: 803 P,B: when present indicate Plural or Bidirectional 804 n: maximum number of channels supported by the application code 805 (i.e. an integer number) 807 W: take values I (intra-office), S (short-haul), L (long-haul), V 808 (very long-haul), U (ultra long-haul). 810 x: maximum number of spans allowed within the application code 811 (i.e. an integer number) 813 y: take values 1 (NRZ 2.5G), 2 (NRZ 10G), 9 (NRZ 25G), 3 (NRZ 814 40G), 7 (RZ 40G). 816 t: take values A (power levels suitable for a booster amplifier 817 in the originating ONE and power levels suitable for a pre-amplifier 818 in the terminating ONE), B (booster amplifier only), C (pre- 819 amplifier only), D (no amplifiers). 821 z: take values 1 (1310 nm sources on [G.652] fibre), 2 (1550 822 nm sources on [G.652] fibre), 3 (1550 nm sources on [G.653] fibre), 823 5 (1550 nm sources on [G.655] fibre). 825 The following list of suffixes can be added to these application 826 codes: 828 F: FEC encoding. 830 D: Adaptive dispersion compensation. 832 E: receiver capable of dispersion compensation. 834 r: reduced target distance. 836 a: power levels appropriate to APD receivers. 838 b: power levels appropriate to PIN receivers. 840 These values are encoded as follows: 842 0 1 2 3 843 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 844 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 845 | p | P | n | W | x | reserved | 846 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 847 | y | t | z | suffix | reserved | 848 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 850 Where (values between parenthesis refer to ITU defined values as 851 reported above): 853 p (prefix) = 0 otherwise, = 1 Bidirectional (B) 855 P (optional): = 0 not present, = 2 (P). 857 n: maximum number of channels (10 bits, up to 1023 channels) 859 W: = 0 reserved, = 1 (I), = 2 (S), = 3 (L), = 4 (V), = 5 (U) 861 x: = number of spans (6 bits, up to 64 spans) 863 y: = 0 reserved, = 1 (1), = 2 (2), = 3 (3), = 7 (7), = 9 (9) 865 t: = 0 reserved, = 1 (A), = 2 (B), = 3 (C), = 4 (D) 867 z: = 0 reserved, = 1 (1), = 2 (2), = 3 (3), = 5 (5) 869 suffix is an 6 bit, bit map: 871 0 1 2 3 4 5 872 +-+-+-+-+-+-+ 873 |F|D|E|r|a|b| 874 +-+-+-+-+-+-+ 875 where a 1 in the appropriate slot indicates that the corresponding 876 suffix has been added. 878 4.1.4. ITU-G.695 Application Code Mapping 880 [G.695] defines the Application Codes: CnWx-ytz and B-CnWx-ytz and 881 S-CnWx-ytz. 883 Where the optional prefixed are: 885 B: Bidirectional 887 S: a system using a black link approach 889 And the rest of the application code is defined as: 891 C: CWDM (Coarse WDM) application 893 n: maximum number of channels supported by the application code 894 (i.e. an integer number) 896 W: take values S (short-haul), L (long-haul). 898 x: maximum number of spans allowed 900 y: take values 0 (NRZ 1.25G), 1 (NRZ 2.5G), 2 (NRZ 10G). 902 t: take values D (link does not contain any optical amplifier). 904 z: take values 1 (1310 nm region for [G.652] fibre), 2 (ITU-T 905 [G.652] fibre), 3 ([G.653] fibre), 5 ([G.655] fibre). 907 The following list of suffixes can be added to these application 908 codes: 910 F: FEC encoding. 912 Since the application codes are very similar to the one from the 913 [G.959] section most of the fields are reused. The 64 bit OIC field 914 is encoded as follows: 916 0 1 2 3 917 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 918 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 919 | p | C | n | W | x | reserved | 920 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 921 | y | t | z | suffix | reserved | 922 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 924 Where (values between parenthesis refer to ITU defined values as 925 reported above): 927 p: = 0 no prefix, 1 = B bidirectional, = 2 S black link 929 C: = 0 reserved, = 3 (C). 931 n: maximum number of channels (10 bits, up to 1023 channels) 933 W: = 0 reserved, = 1 reserved, = 2 (S), = 3 (L), > 3 reserved 935 x: = number of spans (6 bits, up to 64 spans) 937 y: = 0 (0), = 1 (1), =2 (2), > 2 reserved 939 t: = 4 (D), all other values are reserved 941 z: = 0 reserved, = 1 (1), = 2 (2), = 3 (3) 943 suffix is an 6 bit, bit map: 945 0 1 2 3 4 5 946 +-+-+-+-+-+-+ 947 |F|0|0|0|0|0| 948 +-+-+-+-+-+-+ 949 where a 1 in the appropriate slot indicates that the corresponding 950 suffix has been added. 952 4.2. Acceptable Client Signal List Subfield 954 This subfield contains a list of acceptable input client signal 955 types. 957 The acceptable client signal list is a list of Generalized Protocol 958 Identifiers (G-PIDs). 960 0 1 2 3 961 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 962 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 963 | Reserved | Number of G-PIDs | 964 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 965 | G-PID #1 | G-PID #2 | 966 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 967 : | : 968 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 969 | G-PID #N | | 970 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 972 Type (16 bits): identifies the Acceptable Client Signal List field. 974 Length (16 bits): The Length field defines the length of the value 975 portion in octets. 977 The number of G-PIDs is an integer greater than or equal to one. 979 G-PIDs are assigned by IANA and many are defined in [RFC3471] and 980 [RFC4328]. 982 4.3. Input Bit Rate List Subfield 984 This subfield contains a list of bit rate of each input client 985 signal types specified in the Input Client Signal List. 987 The number of Input Bit Rate MUST match the number of G-PID. 989 0 1 2 3 990 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 991 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 992 | Input Bit Rate of G-PID #1 | 993 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 994 : : 995 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 996 | Input Bit Rate of G-PID #N | 997 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 999 Input Bit Rates are in IEEE floating point format [IEEE]. 1001 4.4. Processing Capability List Subfield 1003 This subfield contains a list of resource processing capabilities. 1005 The processing capability list field is a list of capabilities that 1006 can be achieved through the referred resources: 1008 1. Regeneration capability 1010 2. Fault and performance monitoring 1012 3. Vendor Specific capability 1014 Fault and performance monitoring and vendor Specific capability have 1015 no additional capability parameters. 1017 The processing capability list field is then given by: 1019 0 1 2 3 1020 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1021 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1022 | Reserved | Processing Cap ID | 1023 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1024 | Possible additional capability parameters depending upon | 1025 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1026 : the processing ID : 1027 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1029 The processing capability ID field defines the following processing 1030 capabilities: 1032 0: Reserved 1034 1: Regeneration capability 1036 2: Fault and performance monitoring 1038 3: Vendor Specific capability 1040 When the processing Cap ID is "regeneration capability", the 1041 following additional capability parameters are provided in the 1042 following field: 1044 0 1 2 3 1045 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1046 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1047 | T | C | Reserved | 1048 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1050 Where T bit indicates the type of regenerator: 1052 T=0: Reserved 1054 T=1: 1R Regenerator 1056 T=2: 2R Regenerator 1058 T=3: 3R Regenerator 1060 Where C bit indicates the capability of regenerator: 1062 C=0: Reserved 1064 C=1: Fixed Regeneration Point 1066 C=2: Selective Regeneration Point 1068 Note that when the capability of regenerator is indicated to be 1069 Selective Regeneration Pools, regeneration pool properties such as 1070 input and output restrictions and availability need to be specified. 1071 These properties will be encoded in the capabilities field starting 1072 with the bits marked Reserved in the figure. An additional 1073 specification describing the encoding of these parameters is 1074 required before the value C=2 can be used. 1076 5. Security Considerations 1078 This document defines protocol-independent encodings for WSON 1079 information and does not introduce any security issues. 1081 However, other documents that make use of these encodings within 1082 protocol extensions need to consider the issues and risks associated 1083 with, inspection, interception, modification, or spoofing of any of 1084 this information. It is expected that any such documents will 1085 describe the necessary security measures to provide adequate 1086 protection. A general discussion on security in GMPLS networks can 1087 be found in [RFC5920]. 1089 6. IANA Considerations 1091 This document introduces a new registry for GMPLS routing parameters 1092 for WSON encoding. This new IANA registry will be created to make 1093 the assignment of a new type and new values for the new "GMPLS 1094 Routing Parameters for WSON." Note that this registry is only used 1095 in routing, not in signaling. 1097 6.1. Types for subfields of WSON Resource Block Information 1099 Under this new GMPLS Routing Parameters for WSON, a new IANA 1100 registry will be created for nested subfields of the Resource Block 1101 Information field to create a new section named "Types for subfields 1102 of WSON Resource Block Information" and allocate new values as 1103 follows: 1105 Value Length Sub-TLV Type Reference 1107 0 Reserved 1108 1 variable Optical Interface Class List [This.I-D] 1109 2 variable Acceptable Client 1110 Signal List [This.I-D] 1111 3 variable Input Bit Rate List [This.I-D] 1112 4 variable Processing Capability List [This.I-D] 1113 5-65535 Unassigned 1115 Types are to be assigned via Standards Action as defined in 1116 [RFC5226]. 1118 7. Acknowledgments 1120 This document was prepared using 2-Word-v2.0.template.dot. 1122 APPENDIX A: Encoding Examples 1124 A.1. Wavelength Converter Accessibility Field 1126 Example: 1128 Figure 1 shows a wavelength converter pool architecture know as 1129 "shared per fiber". In this case the input and output pool matrices 1130 are simply: 1132 +-----+ +-----+ 1133 | 1 1 | | 1 0 | 1134 WI =| |, WE =| | 1135 | 1 1 | | 0 1 | 1136 +-----+ +-----+ 1138 +-----------+ +------+ 1139 | |--------------------->| | 1140 | |--------------------->| C | 1141 /| | |--------------------->| o | 1142 /D+--->| |--------------------->| m | 1143 + e+--->| | | b |=======> 1144 ========>| M| | Optical | +-----------+ | i | Port O1 1145 Port I1 + u+--->| Switch | | WC Pool | | n | 1146 \x+--->| | | +-----+ | | e | 1147 \| | +----+->|WC #1|--+---->| r | 1148 | | | +-----+ | +------+ 1149 | | | | +------+ 1150 /| | | | +-----+ | | | 1151 /D+--->| +----+->|WC #2|--+---->| C | 1152 + e+--->| | | +-----+ | | o | 1153 ========>| M| | | +-----------+ | m |=======> 1154 Port I2 + u+--->| | | b | Port O2 1155 \x+--->| |--------------------->| i | 1156 \| | |--------------------->| n | 1157 | |--------------------->| e | 1158 | |--------------------->| r | 1159 +-----------+ +------+ 1160 Figure 1 An optical switch featuring a shared per fiber wavelength 1161 converter pool architecture. 1163 The wavelength converters are resource blocks and the wavelength 1164 converter pool is a resource block pool. This can be encoded as 1165 follows: 1167 0 1 2 3 1168 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1169 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1170 | Reserved |1| Reserved | 1171 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1172 Note: I1,I2 can connect to either WC1 or WC2 1173 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1174 | Action=0 |0| Reserved | Length = 12 | 1175 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1176 | Link Local Identifier = #1 | 1177 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1178 | Link Local Identifier = #2 | 1179 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1180 | Action=0 |1| Reserved | Length = 8 | 1181 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1182 | RB ID = #1 | 1183 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1184 | RB ID = #2 | 1185 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1186 Note: WC1 can only connect to O1 1187 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1188 | Action=0 |1| Reserved | Length = 8 | 1189 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1190 | Link Local Identifier = #1 | 1191 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1192 | Action=0 |0| Reserved | Length = 8 | 1193 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1194 | RB ID = #1 | 1195 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1196 Note: WC2 can only connect to O2 1197 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1198 | Action=0 |1| Reserved | Length = 8 | 1199 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1200 | Link Local Identifier = #2 | 1201 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1202 | Action=0 |0| | Length = 8 | 1203 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1204 | RB ID = #2 | 1205 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1207 A.2. Wavelength Conversion Range Field 1209 Example: 1211 This example, based on figure 1, shows how to represent the 1212 wavelength conversion range of wavelength converters. Suppose the 1213 wavelength range of input and output of WC1 and WC2 are {L1, L2, L3, 1214 L4}: 1216 0 1 2 3 1217 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1218 Note: WC Set 1219 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1220 | Action=0 |1| Reserved | Length = 8 | 1221 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1222 | WC ID = #1 | WC ID = #2 | 1223 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1224 Note: wavelength input range 1225 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1226 | 2 | Num Wavelengths = 4 | Length = 8 | 1227 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1228 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1229 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1230 Note: wavelength output range 1231 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1232 | 2 | Num Wavelengths = 4 | Length = 8 | 1233 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1234 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1235 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1237 A.3. An OEO Switch with DWDM Optics 1239 Figure 2 shows an electronic switch fabric surrounded by DWDM 1240 optics. In this example the electronic fabric can handle either 1241 G.709 or SDH signals only (2.5 or 10 Gbps). To describe this node, 1242 the following information in RBNF form [RFC5511] is needed: 1244 ::= 1246 [Other GMPLS info-elements] 1248 [...] 1250 [] 1252 [] 1254 In this case there is complete port to port connectivity so the 1255 is not required. In addition since there are 1256 sufficient ports to handle all wavelength signals the 1257 element is not needed. 1259 Hence the attention will be focused on the field: 1261 ::= 1263 [...] 1265 [...] 1267 /| +-----------+ +-------------+ +------+ 1268 /D+--->| +--->|Tunable Laser|-->| | 1269 + e+--->| | +-------------+ | C | 1270 ========>| M| | | ... | o |=======> 1271 Port I1 + u+--->| | +-------------+ | m | Port O1 1272 \x+--->| |--->|Tunable Laser|-->| b | 1273 \| | Electric | +-------------+ +------+ 1274 | Switch | 1275 /| | | +-------------+ +------+ 1276 /D+--->| +--->|Tunable Laser|-->| | 1277 + e+--->| | +-------------+ | C | 1278 ========>| M| | | ... | o |=======> 1279 Port I2 + u+--->| | +-------------+ | m | Port O2 1280 \x+--->| +--->|Tunable Laser|-->| b | 1281 \| | | +-------------+ +------+ 1282 | | 1283 /| | | +-------------+ +------+ 1284 /D+--->| |--->|Tunable Laser|-->| | 1285 + e+--->| | +-------------+ | C | 1286 ========>| M| | | ... | o |=======> 1287 Port I3 + u+--->| | +-------------+ | m | Port O3 1288 \x+--->| |--->|Tunable Laser|-->| b | 1289 \| +-----------+ +-------------+ +------+ 1291 Figure 2 An optical switch built around an electronic switching 1292 fabric. 1294 The resource block information will tell us about the processing 1295 constraints of the receivers, transmitters and the electronic 1296 switch. The resource availability information, although very simple, 1297 tells us that all signals must traverse the electronic fabric (fixed 1298 connectivity). The resource wavelength constraints are not needed 1299 since there are no special wavelength constraints for the resources 1300 that would not appear as port/wavelength constraints. 1302 : 1304 0 1 2 3 1305 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1306 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1307 | RB Set Field | 1308 : (only one resource block in this example with shared | 1309 | input/output case) | 1310 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1311 |1|1|0| Reserved | 1312 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1313 | Optical Interface Class List(s) | 1314 : : 1315 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1316 | Input Client Signal Type | 1317 : (G-PIDs for SDH and G.709) : 1318 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1319 | Input Bit Rate Range List | 1320 : (2.5Gbps, 10Gbps) : 1321 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1322 | Processing Capabilities List | 1323 : Fixed (non optional) 3R regeneration : 1324 : : 1325 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1327 Since there is fixed connectivity to resource blocks (the electronic 1328 switch) the is: 1330 0 1 2 3 1331 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1332 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1333 | Connectivity=0|Reserved | 1334 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1335 | Input Link Set Field A #1 | 1336 : (All input links connect to resource) : 1337 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1338 | RB Set Field A #1 | 1339 : (trivial set only one resource block) : 1340 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1341 | Output Link Set Field B #1 | 1342 : (All output links connect to resource) : 1343 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1345 8. References 1347 8.1. Normative References 1349 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1350 Requirement Levels", BCP 14, RFC 2119, March 1997. 1352 [RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label 1353 Switching (GMPLS) Signaling Extensions for G.709 Optical 1354 Transport Networks Control", RFC 4328, January 2006. 1356 [Gen-Encode] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "General 1357 Network Element Constraint Encoding for GMPLS Controlled 1358 Networks", work in progress: draft-ietf-ccamp-general- 1359 constraint-encode. 1361 [RWA-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and 1362 Wavelength Assignment Information Model for Wavelength 1363 Switched Optical Networks", work in progress: draft-ietf- 1364 ccamp-rwa-info. 1366 [RFC6205] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized 1367 Labels for G.694 Lambda-Switching Capable Label Switching 1368 Routers", RFC 6205, March 2011. 1370 8.2. Informative References 1372 [IEEE] IEEE, "IEEE Standard for Binary Floating-Point 1373 Arithmetic", Standard 754-1985, 1985 (ISBN 1-5593-7653-8). 1375 [G.652] ITU-T Recommendation G.652, Characteristics of a single-mode 1376 optical fibre and cable, September, 2011. 1378 [G.653] ITU-T Recommendation G.653, Characteristics of a dispersion- 1379 shifted, single-mode optical fibre and cable, July, 1380 2010. 1382 [G.655] ITU-T Recommendation G.655, Characteristics of a non-zero 1383 dispersion-shifted single-mode optical fibre and cable, 1384 September, 2011. 1386 [G.698.1] ITU-T Recommendation G.698.1, Spectral grids for WDM 1387 applications: DWDM frequency grid, June 2002. 1389 [G.698.2] ITU-T Recommendation G.698.2, Spectral grids for WDM 1390 applications: CWDM wavelength grid, December 2003. 1392 [G.695] ITU-T Recommendation G.695, Optical interfaces for coarse 1393 wavelength division multiplexing applications, October, 1394 2010. 1396 [G.959.1] ITU-T Recommendation G.959.1, Optical transport network 1397 physical layer interfaces, February, 2012. 1399 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 1400 (GMPLS) Signaling Functional Description", RFC 3471, 1401 January 2003. 1403 [RFC4203] Kompella, L. and Y. Rekhter, Eds., "OSPF Extensions in 1404 Support of Generalized Multi-Protocol Label Switching 1405 (GMPLS)", RFC 4203, October 2005. 1407 [RFC5226] Narten, T., Alvestrand, H., "Guidelines for Writing an 1408 IANA Considerations Section in RFCs", RFC 5226, May 2008. 1410 [RFC5307] Kompella, L. and Y. Rekhter, Eds., "IS-IS Extensions in 1411 Support of Generalized Multi-Protocol Label Switching 1412 (GMPLS)", RFC 5307, October, 2008. 1414 [RFC5440] Vasseur, JP. and Le Roux, JL., Eds., "Path Computation 1415 Element (PCE) Communication Protocol (PCEP)", RFC 5440, 1416 March 2009. 1418 [RFC5511] A. Farrel, "Routing Backus-Naur Form (RBNF): A Syntax Used 1419 to Form Encoding Rules in Various Routing Protocol Specifications", 1420 RFC 5511, April 2009. 1422 [RFC5920] L. Fang, Ed., "Security Framework for MPLS and GMPLS 1423 Networks", RFC 5920, July 2010. 1425 [RFC6163] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS and 1426 PCE Control of Wavelength Switched Optical Networks", RFC 1427 6163, April 2011. 1429 9. Contributors 1431 Diego Caviglia 1432 Ericsson 1433 Via A. Negrone 1/A 16153 1434 Genoa Italy 1436 Phone: +39 010 600 3736 1437 Email: diego.caviglia@ericsson.com 1439 Anders Gavler 1440 Acreo AB 1441 Electrum 236 1442 SE - 164 40 Kista Sweden 1444 Email: Anders.Gavler@acreo.se 1446 Jonas Martensson 1447 Acreo AB 1448 Electrum 236 1449 SE - 164 40 Kista, Sweden 1451 Email: Jonas.Martensson@acreo.se 1453 Itaru Nishioka 1454 NEC Corp. 1455 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 1456 Japan 1458 Phone: +81 44 396 3287 1459 Email: i-nishioka@cb.jp.nec.com 1461 Pierre Peloso 1462 ALU 1464 Email: pierre.peloso@alcatel-lucent.com 1466 Cyril Margaria 1467 Email: cyril.margaria@gmail.com 1469 Giovanni Martinelli 1471 Cisco 1472 Email: giomarti@cisco.com 1474 Gabriele M Galimberti 1475 Cisco 1476 Email: ggalimbe@cisco.com 1478 Lyndon Ong 1479 Ciena Corporation 1480 Email: lyong@ciena.com 1482 Daniele Ceccarelli 1483 Ericsson 1484 Email: daniele.ceccarelli@ericsson.com 1486 Authors' Addresses 1488 Greg M. Bernstein (ed.) 1489 Grotto Networking 1490 Fremont California, USA 1492 Phone: (510) 573-2237 1493 Email: gregb@grotto-networking.com 1495 Young Lee (ed.) 1496 Huawei Technologies 1497 5340 Legacy Drive Build 3 1498 Plano, TX 75024 1499 USA 1501 Phone: (469) 277-5838 1502 Email: leeyoung@huawei.com 1503 Dan Li 1504 Huawei Technologies Co., Ltd. 1505 F3-5-B R&D Center, Huawei Base, 1506 Bantian, Longgang District 1507 Shenzhen 518129 P.R.China 1509 Phone: +86-755-28973237 1510 Email: danli@huawei.com 1512 Wataru Imajuku 1513 NTT Network Innovation Labs 1514 1-1 Hikari-no-oka, Yokosuka, Kanagawa 1515 Japan 1517 Phone: +81-(46) 859-4315 1518 Email: imajuku.wataru@lab.ntt.co.jp 1520 Jianrui Han 1521 Huawei Technologies Co., Ltd. 1522 F3-5-B R&D Center, Huawei Base, 1523 Bantian, Longgang District 1524 Shenzhen 518129 P.R.China 1526 Phone: +86-755-28972916 1527 Email: hanjianrui@huawei.com 1529 Intellectual Property Statement 1531 The IETF Trust takes no position regarding the validity or scope of 1532 any Intellectual Property Rights or other rights that might be 1533 claimed to pertain to the implementation or use of the technology 1534 described in any IETF Document or the extent to which any license 1535 under such rights might or might not be available; nor does it 1536 represent that it has made any independent effort to identify any 1537 such rights. 1539 Copies of Intellectual Property disclosures made to the IETF 1540 Secretariat and any assurances of licenses to be made available, or 1541 the result of an attempt made to obtain a general license or 1542 permission for the use of such proprietary rights by implementers or 1543 users of this specification can be obtained from the IETF on-line 1544 IPR repository at http://www.ietf.org/ipr 1545 The IETF invites any interested party to bring to its attention any 1546 copyrights, patents or patent applications, or other proprietary 1547 rights that may cover technology that may be required to implement 1548 any standard or specification contained in an IETF Document. Please 1549 address the information to the IETF at ietf-ipr@ietf.org. 1551 Disclaimer of Validity 1553 All IETF Documents and the information contained therein are 1554 provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION 1555 HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, 1556 THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL 1557 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 1558 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE 1559 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 1560 FOR A PARTICULAR PURPOSE. 1562 Acknowledgment 1564 Funding for the RFC Editor function is currently provided by the 1565 Internet Society.