idnits 2.17.1 draft-ietf-eman-energy-monitoring-mib-05.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- == The page length should not exceed 58 lines per page, but there was 1 longer page, the longest (page 1) being 59 lines Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** There are 3 instances of too long lines in the document, the longest one being 3 characters in excess of 72. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Line 302 has weird spacing: '...tiplier eoP...' == Line 316 has weird spacing: '...tateSet eoPow...' == Line 340 has weird spacing: '...wStatus eoEne...' -- The document date (April 22, 2013) is 4015 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Unused Reference: 'EMAN-TERMINOLOGY' is defined on line 3645, but no explicit reference was found in the text ** Obsolete normative reference: RFC 4133 (Obsoleted by RFC 6933) -- Possible downref: Non-RFC (?) normative reference: ref. 'LLDP-MED-MIB' -- Possible downref: Non-RFC (?) normative reference: ref. 'EMAN-AWARE-MIB' -- Obsolete informational reference (is this intentional?): RFC 5226 (Obsoleted by RFC 8126) == Outdated reference: A later version (-14) exists of draft-ietf-eman-requirements-12 == Outdated reference: A later version (-19) exists of draft-ietf-eman-framework-07 == Outdated reference: A later version (-13) exists of draft-ietf-eman-energy-monitoring-mib-04 == Outdated reference: A later version (-11) exists of draft-ietf-eman-applicability-statement-03 == Outdated reference: A later version (-09) exists of draft-parello-eman-definitions-07 Summary: 2 errors (**), 0 flaws (~~), 11 warnings (==), 4 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group M. Chandramouli 3 Internet-Draft Cisco Systems, Inc. 4 Intended Status: Standards Track B. Schoening 5 Expires: October 22, 2013 Independent Consultant 6 J. Quittek 7 T. Dietz 8 NEC Europe Ltd. 9 B. Claise 10 Cisco Systems, Inc. 11 April 22, 2013 13 Power and Energy Monitoring MIB 14 draft-ietf-eman-energy-monitoring-mib-05 16 Status of this Memo 18 This Internet-Draft is submitted to IETF in full conformance 19 with the provisions of BCP 78 and BCP 79. 21 Internet-Drafts are working documents of the Internet 22 Engineering Task Force (IETF), its areas, and its working 23 groups. Note that other groups may also distribute working 24 documents as Internet-Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six 27 months and may be updated, replaced, or obsoleted by other 28 documents at any time. It is inappropriate to use Internet- 29 Drafts as reference material or to cite them other than as 30 "work in progress." 32 The list of current Internet-Drafts can be accessed at 33 http://www.ietf.org/ietf/1id-abstracts.txt 35 The list of Internet-Draft Shadow Directories can be accessed 36 at http://www.ietf.org/shadow.html 38 This Internet-Draft will expire on October 2013. 40 Copyright Notice 42 Copyright (c) 2011 IETF Trust and the persons identified as the 43 document authors. All rights reserved. 45 This document is subject to BCP 78 and the IETF Trust's Legal 46 Provisions Relating to IETF Documents 47 (http://trustee.ietf.org/license-info) in effect on the date of 48 publication of this document. Please review these documents 49 carefully, as they describe your rights and restrictions with 50 respect to this document. Code Components extracted from this 51 document must include Simplified BSD License text as described 52 in Section 4.e of the Trust Legal Provisions and are provided 53 without warranty as described in the Simplified BSD License. 55 Abstract 57 This document defines a subset of the Management Information 58 Base (MIB) for power and energy monitoring of devices. 60 Conventions used in this document 62 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL 63 NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", 64 "MAY", and "OPTIONAL" in this document are to be interpreted as 65 described in RFC 2119 [RFC2119]. 67 Table of Contents 69 1. Introduction............................................ 3 70 2. The Internet-Standard Management Framework.............. 4 71 3. Use Cases............................................... 4 72 4. Terminology............................................. 5 73 5. Architecture Concepts Applied to the MIB Module......... 6 74 5.1. Energy Object Information............................ 13 75 5.2. Power State.......................................... 13 76 5.2.1. Power State Set...............................14 77 5.2.2. IEEE1621 Power State Set......................15 78 5.2.3. DMTF Power State Set..........................15 79 5.2.4. EMAN Power State Set..........................16 80 5.3. Energy Object Usage Information...................... 19 81 5.4. Optional Power Usage Attributes...................... 20 82 5.5. Optional Energy Measurement.......................... 21 83 5.6. Fault Management..................................... 25 84 6. Discovery.............................................. 25 85 7. Link with the other IETF MIBs.......................... 26 86 7.1. Link with the ENTITY-MIB and the ENTITY-SENSOR MIB..26 87 7.2. Link with the ENTITY-STATE MIB......................27 88 7.3. Link with the POWER-OVER-ETHERNET MIB...............28 89 7.4. Link with the UPS MIB...............................29 90 7.5. Link with the LLDP and LLDP-MED MIBs................30 91 8. Implementation Scenario................................ 30 92 9. Structure of the MIB................................... 33 93 10. MIB Definitions....................................... 34 94 11. Security Considerations............................... 74 95 12. IANA Considerations................................... 75 96 12.1. IANA Considerations for the MIB Modules............. 75 97 12.2. IANA Registration of new Power State Set............ 75 98 12.2.1. IANA Registration of the IEEE1621 Power State Set.76 99 12.2.2. IANA Registration of the DMTF Power State Set.....76 100 12.2.3. IANA Registration of the EMAN Power State Set.....77 101 12.3. Updating the Registration of Existing Power State 102 Sets...................................................... 77 103 12. Contributors.......................................... 77 104 13. Acknowledgment........................................ 78 105 14. Open Issues........................................... 78 106 15. References............................................ 78 107 15.2. Normative References..............................78 108 15.3. Informative References............................79 110 1. Introduction 112 This document defines a subset of the Management Information 113 Base (MIB) for use in energy management of devices within or 114 connected to communication networks. The MIB modules in this 115 document are designed to provide a model for energy management, 116 which includes monitoring for power state and energy consumption 117 of networked elements. This MIB takes into account the Energy 118 Management Framework [EMAN-FMWK], which in turn, is based on the 119 Requirements for Energy Management [EMAN-REQ]. 121 Energy management is applicable to devices in communication 122 networks. Target devices for this specification include (but 123 are not limited to): routers, switches, Power over Ethernet 124 (PoE) endpoints, protocol gateways for building management 125 systems, intelligent meters, home energy gateways, hosts and 126 servers, sensor proxies, etc. Target devices and the use cases 127 for Energy Management are discussed in Energy Management 128 Applicability Statement [EMAN-AS]. 130 Where applicable, device monitoring extends to the individual 131 components of the device and to any attached dependent devices. 132 For example: A device can contain components that are 133 independent from a power-state point of view, such as line 134 cards, processor cards, hard drives. A device can also have 135 dependent attached devices, such as a switch with PoE endpoints 136 or a power distribution unit with attached endpoints. 138 Devices and their sub-components may be characterized by the 139 power-related attributes of a physical entity present in the 140 ENTITY-MIB, even though the ENTITY-MIB compliance is not a 141 requirement due to the variety and broad base of devices 142 concerned with energy management. 144 2. The Internet-Standard Management Framework 146 For a detailed overview of the documents that describe the 147 current Internet-Standard Management Framework, please refer to 148 section 7 of RFC 3410 [RFC3410]. 150 Managed objects are accessed via a virtual information store, 151 termed the Management Information Base or MIB. MIB objects are 152 generally accessed through the Simple Network Management 153 Protocol (SNMP). Objects in the MIB are defined using the 154 mechanisms defined in the Structure of Management Information 155 (SMI). This memo specifies MIB modules that are compliant to 156 SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, 157 RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580]. 159 3. Use Cases 161 Requirements for power and energy monitoring for networking 162 devices are specified in [EMAN-REQ]. The requirements in [EMAN- 163 REQ] cover devices typically found in communications networks, 164 such as switches, routers, and various connected endpoints. For 165 a power monitoring architecture to be useful, it should also 166 apply to facility meters, power distribution units, gateway 167 proxies for commercial building control, home automation 168 devices, and devices that interface with the utility and/or 169 smart grid. Accordingly, the scope of the MIB modules in this 170 document is broader than that specified in [EMAN-REQ]. Several 171 use cases for Energy Management have been identified in the 172 "Energy Management (EMAN) Applicability Statement" [EMAN-AS]. An 173 illustrative example scenario is presented in Section 8. 175 4. Terminology 177 Please refer to [EMAN-FMWK] for the definitions of the 178 following terminology used in this draft. 180 Device 182 Component 184 Energy Management 186 Energy Management System (EnMS) 188 ISO Energy Management System 190 Energy 192 Power 194 Demand 196 Power Attributes 198 Electrical Equipment 200 Non-Electrical Equipment (Mechanical Equipment) 202 Energy Object 204 Electrical Energy Object 206 Non-Electrical Energy Object 208 Energy Monitoring 210 Energy Control 212 Provide Energy: 214 Receive Energy: 216 Power Interface 217 Power Inlet 219 Power Outlet 221 Energy Management Domain 223 Energy Object Identification 225 Energy Object Context 227 Energy Object Relationship 229 Aggregation Relationship 231 Metering Relationship 233 Power Source Relationship 235 Proxy Relationship 237 Energy Object Parent 239 Energy Object Child 241 Power State 243 Power State Set 245 Nameplate Power 247 5. Architecture Concepts Applied to the MIB Module 249 This section describes the concepts specified in the Energy 250 Management Framework [EMAN-FMWK] that pertain to power usage, 251 with specific information related to the MIB module specified in 252 this document. This subsection maps to the section 253 "Architecture High Level Concepts" in the Power Monitoring 254 Architecture [EMAN-FMWK]. 256 The Energy Monitoring MIB has 2 independent MIB modules. The 257 first MIB module energyObjectMib is focused on measurement of 258 power and energy. The second MIB module powerCharMIB is focused 259 on Power Attributes measurements. 261 The energyObjectMib MIB module consists of five tables. 263 The first table is the eoMeterCapabilitiesTable. It indicates 264 the instrumentation available for each energy object. Thus, the 265 entries in this table indicate to the EnMS which other tables 266 from the ENERGY-OBJECT-MIB and POWER-ATTRIBUTES-MIB are 267 available for each energy object. The eoMeterCapabilitiesTable 268 is indexed by entPhysicalIndex. 270 The second table is the eoPowerTable. It returns the power 271 consumption of each energy object, as well as the units, sign, 272 measurement accuracy, and related objects. The eoPowerTable is 273 indexed by entPhysicalIndex. 275 The third table is the eoPowerStateTable. For each energy 276 object, it provides information and statistics about the 277 supported power states. The eoPowerStateTable is indexed by 278 entPhysicalIndex and eoPowerStateIndex. 280 The fourth table is the eoEnergyParametersTable. The entries in 281 this table configure the parameters of energy and demand 282 measurement collection. This table is indexed by 283 eoEnergyParametersIndex. 285 The fifth table is the eoEnergyTable. The entries in this table 286 provide the log the energy and demand information. This table 287 is indexed by eoEnergyParametersIndex. 289 eoMeterCapabilitiesTable(1) 290 | 291 +---eoMeterCapabilitiesEntry(1)[entPhysicalIndex] 292 | | 293 | +---r-n BITS eoMeterCapability 294 | 296 eoPowerTable(2) 297 | 298 +---eoPowerEntry(1) [entPhysicalIndex] 299 | | 300 | +---r-n Integer32 eoPower(1) 301 | +-- r-n Integer32 eoPowerNamePlate(2) 302 | +-- r-n UnitMultiplier eoPowerUnitMultiplier(3) 303 | +-- r-n Integer32 eoPowerAccuracy(4) 304 | +-- r-n INTEGER eoMeasurementCaliber(5) 305 | +-- r-n INTEGER eoPowerCurrentType(6) 306 | +-- r-n INTEGER eoPowerOrigin(7) 307 | +-- rwn IANAPowerStateSet eoPowerAdminState(8) 308 | +-- r-n IANAPowerStateSet eoPowerOperState(9) 309 | +-- r-n OwnerString eoPowerStateEnterReason(10) 310 | 311 | 312 +---eoPowerStateTable(3) 313 | +--eoPowerStateEntry(1) 314 | | [entPhysicalIndex, eoPowerStateIndex] 315 | | 316 | +-- --n IANAPowerStateSet eoPowerStateIndex(1) 317 | +-- r-n Interger32 eoPowerStateMaxPower (2) 318 | +-- r-n UnitMultiplier 319 | eoPowerStatePowerUnitMultiplier (3) 320 | +-- r-n TimeTicks eoPowerStateTotalTime(4) 321 | +-- r-n Counter32 eoPowerStateEnterCount(5) 322 | 324 +eoEnergyParametersTable(4) 325 +---eoEnergyParametersEntry(1) [eoEnergyParametersIndex] 326 | 328 | +-- --n PhysicalIndex eoEnergyObjectIndex (1) 329 | + r-n Integer32 eoEnergyParametersIndex (2) 330 | +-- r-n TimeInterval 331 | eoEnergyParametersIntervalLength (3) 332 | +-- r-n Integer32 333 | eoEnergyParametersIntervalNumber (4) 334 | +-- r-n Integer32 335 | eoEnergyParametersIntervalMode (5) 336 | +-- r-n TimeInterval 337 | eoEnergyParametersIntervalWindow (6) 338 | +-- r-n Integer32 339 | eoEnergyParametersSampleRate (7) 340 | +-- r-n RowStatus eoEnergyParametersStatus (8) 341 | 342 +eoEnergyTable(5) 343 +---eoEnergyEntry(1) [ eoEnergyParametersIndex, 344 eoEnergyCollectionStartTime] 345 | 346 | +-- r-n TimeTicks eoEnergyCollectionStartTime (1) 347 | +-- r-n Integer32 eoEnergyConsumed (2) 348 | +-- r-n Integer32 eoEnergyProduced (3) 349 | +-- r-n Integer32 eoEnergyNet (4) 350 | +-- r-n UnitMultiplier 351 | eoEnergyUnitMultiplier (5) 352 | +-- r-n Integer32 eoEnergyAccuracy(6) 353 | +-- r-n Integer32 eoEnergyMaxConsumed (7) 354 | +-- r-n Integer32 eoEnergyMaxProduced (8) 355 | +-- r-n TimeTicks 356 | eoEnergyDiscontinuityTime(9) 358 The powerAttributesMIB consists of four tables. 359 eoACPwrAttributesTable is indexed by entPhysicalIndex. 360 eoACPwrAttributesPhaseTable is indexed by entPhysicalIndex and 361 eoPhaseIndex. eoACPwrAttributesWyePhaseTable and 362 eoACPwrAttributesDelPhaseTable are indexed by entPhysicalIndex 363 and eoPhaseIndex. 365 eoACPwrAttributesTable(1) 366 | 367 +---eoACPwrAttributesEntry(1) [ entPhysicalIndex] 368 | | 369 | | 370 | +---r-n INTEGER eoACPwrAttributesConfiguration (1) 371 | +-- r-n Interger32 eoACPwrAttributesAvgVoltage (2) 372 | +-- r-n Integer32 eoACPwrAttributesAvgCurrent (3) 373 | +-- r-n Integer32 eoACPwrAttributesFrequency (4) 374 | +-- r-n UnitMultiplier 375 | eoACPwrAttributesPowerUnitMultiplier (5) 376 | +-- r-n Integer32 eoACPwrAttributesPowerAccuracy (6) 377 | +-- r-n Interger32 378 eoACPwrAttributesTotalActivePower (7) 379 | +-- r-n Integer32 380 | eoACPwrAttributesTotalReactivePower (8) 381 | +-- r-n Integer32 382 eoACPwrAttributesTotalApparentPower (9) 383 | +-- r-n Integer32 384 eoACPwrAttributesTotalPowerFactor (10) 385 | +-- r-n Integer32 eoACPwrAttributesThdAmpheres (11) 386 | 387 +eoACPwrAttributesPhaseTable(2) 388 +---EoACPwrAttributesPhaseEntry(1)[ entPhysicalIndex, 389 | | eoPhaseIndex] 390 | | 391 | +-- r-n Integer32 eoPhaseIndex (1) 392 | +-- r-n Integer32 393 | | eoACPwrAttributesPhaseAvgCurrent (2) 394 | +-- r-n Integer32 395 | | eoACPwrAttributesPhaseActivePower (3) 396 | +-- r-n Integer32 397 | | eoACPwrAttributesPhaseReactivePower (4) 398 | +-- r-n Integer32 399 | | eoACPwrAttributesPhaseApparentPower (5) 400 | +-- r-n Integer32 401 | | eoACPwrAttributesPhasePowerFactor (6) 402 | +-- r-n Integer32 403 | | eoACPwrAttributesPhaseImpedance (7) 404 | | 405 +eoACPwrAttributesDelPhaseTable(3) 406 +-- eoACPwrAttributesDelPhaseEntry(1) 407 | | [entPhysicalIndex, 408 | | eoPhaseIndex] 409 | +-- r-n Integer32 410 | | eoACPwrAttributesDelPhaseToNextPhaseVoltage (1) 411 | +-- r-n Integer32 412 | |eoACPwrAttributesDelThdPhaseToNextPhaseVoltage (2) 413 | +-- r-n Integer32 414 eoACPwrAttributesDelThdCurrent (3) 415 | | 416 +eoACPwrAttributesWyePhaseTable(4) 417 +-- eoACPwrAttributesWyePhaseEntry(1) 418 | | [entPhysicalIndex, 419 | | eoPhaseIndex] 420 | +-- r-n Integer32 421 | | eoACPwrAttributesWyePhaseToNeutralVoltage (1) 422 | +-- r-n Integer32 423 | | eoACPwrAttributesWyePhaseCurrent (2) 424 | +-- r-n Integer32 425 | | eoACPwrAttributesWyeThdPhaseToNeutralVoltage (3) 426 | . 428 A UML representation of the MIB objects in the two MIB modules 429 are energyObjectMib and powerAttributesMIB are presented. 431 +-------------------------+ 432 | Energy Object State | 433 | ----------------------- | 434 | eoPowerAdminState | 435 | eoPowerOperState | 436 | eoPowerStateEnterReason | 437 +-------------------------+ 438 | 439 | 440 v 441 +-----------------------+ 442 |---> | Energy Object ID (*) | 443 | | --------------------- | 444 | | entPhysicalIndex | 445 | | entPhysicalName | 446 | | entPhysicalUUID | 447 | +-----------------------+ 448 | 449 | +-----------------------------+ 450 |---- | Energy Object Measurement | 451 | | --------------------------- | 452 | | eoPower | 453 | | eoPowerUnitMultiplier | 454 | | eoPowerAccuracy | 455 | +-----------------------------+ 456 | 457 | +---------------------------+ 458 |---- | Energy Object Attributes | 459 | | ------------------------- | 460 | | eoPowerNamePlate | 461 | | eoPowerMeasurementCaliber | 462 | | eoPowerCurrentType | 463 | | eoPowerOrigin | 464 | +---------------------------+ 465 | 466 | +---------------------------------+ 467 |---- |_Energy Object State Statistics | 468 |-------------------------------- | 469 | eoPowerStateMaxPower | 470 | eoPowerStatePowerUnitMultiplier | 471 | eoPowerStateTotalTime | 472 | eoPowerStateEnterCount | 473 +---------------------------------+ 475 Figure 1:UML diagram for energyObjectMib 477 (*) Compliance with the ENERGY-AWARE-MIB 479 +----------------------------------+ 480 | Energy ParametersTable | 481 | -------------------------------- | 482 | eoEnergyObjectIndex | 483 | eoEnergyParametersIndex | 484 | eoEnergyParametersIntervalLength | 485 | eoEnergyParametersIntervalNumber | 486 | eoEnergyParametersIntervalMode | 487 | eoEnergyParametersIntervalWindow | 488 | eoEnergyParametersSampleRate | 489 | eoEnergyParametersStatus | 490 +----------------------------------+ 491 | 492 V 493 +----------------------------------+ 494 | Energy Table | 495 | -------------------------------- | 496 | eoEnergyCollectionStartTime | 497 | eoEnergyConsumed | 498 | eoEnergyProduced | 499 | eoEnergyNet | 500 | eoEnergyUnitMultiplier | 501 | eoEnergyAccuracy | 502 | eoEnergyMaxConsumed | 503 | eoEnergyMaxProduced | 504 | eoDiscontinuityTime | 505 +----------------------------------+ 507 +-----------------------+ 508 |---> | Energy Object ID (*) | 509 | | --------------------- | 510 | | entPhysicalIndex | 511 | | entPhysicalName | 512 | | entPhysicalUUID | 513 | +-----------------------+ 514 | 515 | +-------------------------------------------+ 516 |---- | Power Attributes | 517 | | ----------------------------------------- | 518 | | eoACPwrAttributesConfiguration | 519 | | eoACPwrAttributesAvgVoltage | 520 | | eoACPwrAttributesAvgCurrent | 521 | | eoACPwrAttributesFrequency | 522 | | eoACPwrAttributesPowerUnitMultiplier | 523 | | eoACPwrAttributesPowerAccuracy | 524 | | eoACPwrAttributesTotalActivePower | 525 | | eoACPwrAttributesTotalReactivePower | 526 | | eoACPwrAttributesTotalApparentPower | 527 | | eoACPwrAttributesTotalPowerFactor | 528 | | eoACPwrAttributesThdAmpheres | 529 | +-------------------------------------------+ 530 | 531 | 532 | +-------------------------------------------+ 533 |---- | Power Phase Attributes | 534 | | ----------------------------------------- | 535 | | eoPhaseIndex | 536 | | eoACPwrAttributesPhaseAvgCurrent | 537 | | eoACPwrAttributesPhaseActivePower | 538 | | eoACPwrAttributesPhaseReactivePower | 539 | | eoACPwrAttributesPhaseApparentPower | 540 | | eoACPwrAttributesPhasePowerFactor | 541 | | eoACPwrAttributesPhaseImpedance | 542 | +-------------------------------------------+ 543 | 544 | 545 | +-----------------------------------------------------+ 546 |---- | AC Input DEL Configuration | 547 | | --------------------------------------------------- | 548 | | eoACPwrAttributesDelPhaseToNextPhaseVoltage | 549 | | eoACPwrAttributesDelThdPhaseToNextPhaseVoltage | 550 | | eoACPwrAttributesDelThdCurrent | 551 | +-----------------------------------------------------+ 552 | 553 | +---------------------------------------------------+ 554 |---- | AC Input WYE Configuration | 555 | ------------------------------------------------- | 556 | eoACPwrAttributesWyePhaseToNeutralVoltage | 557 | eoACPwrAttributesWyePhaseCurrent | 558 | eoACPwrAttributesWyeThdPhaseToNeutralVoltage | 559 +---------------------------------------------------+ 561 Figure 2: UML diagram for the powerAttributesMIB 563 (*) Compliance with the ENERGY-AWARE-MIB 565 5.1. Energy Object Information 567 Refer to the "Energy Object Information" section in [EMAN-FMWK] 568 for background information. An energy aware device is 569 considered as an instance of a Energy Object as defined in the 570 [EMAN-FMWK]. 572 The Energy Object identity information is specified in the MIB 573 ENERGY-AWARE-MIB module [EMAN-AWARE-MIB] primary table, i.e. the 574 eoTable. In this table, the context of the Energy Object such as 575 Domain, Role Description, Importance are specified. In addition, 576 the ENERGY-AWARE-MIB module returns the relationship between 577 Objects. There are several possible relationships between Parent 578 and Child as defined in [EMAN-AWARE-MIB] such as MeteredBy, 579 PoweredBy, AggregatedBy and ProxyedBy. 581 5.2. Power State 583 Refer to the "Power States" section in [EMAN-FMWK] for 584 background information. 586 An Energy Object may have energy conservation modes called Power 587 States. Between the ON and OFF states of a device, there can be 588 several intermediate energy saving modes. Those energy saving 589 modes are called as Power States. 591 Power States, which represent universal states of power 592 management of an Energy Object, are specified by the 593 eoPowerState MIB object. The actual Power State is specified by 594 the eoPowerOperState MIB object, while the eoPowerAdminState MIB 595 object specifies the Power State requested for the Energy 596 Object. The difference between the values of eoPowerOperState 597 and eoPowerAdminState can be attributed that the Energy Object 598 is busy transitioning from eoPowerAdminState into the 599 eoPowerOperState, at which point it will update the content of 600 eoPowerOperState. In addition, the possible reason for change 601 in Power State is reported in eoPowerStateEnterReason. 602 Regarding eoPowerStateEnterReason, management stations and 603 Energy Objects should support any format of the owner string 604 dictated by the local policy of the organization. It is 605 suggested that this name contain at least the reason for the 606 transition change, and one or more of the following: IP address, 607 management station name, network manager's name, location, or 608 phone number. 610 The MIB objects eoPowerOperState, eoPowerAdminState , and 611 eoPowerStateEnterReason are contained in the eoPowerTable MIB 612 table. 614 The eoPowerStateTable table enumerates the maximum power usage 615 in watts, for every single supported Power State of each Power 616 State Set supported by the Energy Object. In addition, 617 PowerStateTable provides additional statistics: 618 eoPowerStateEnterCount, the number of times an entity has 619 visited a particular Power State, and eoPowerStateTotalTime, the 620 total time spent in a particular Power State of an Energy 621 Object. 623 5.2.1. Power State Set 625 There are several standards and implementations of Power State 626 Sets. A Energy Object can support one or multiple Power State 627 Set implementation(s) concurrently. 629 There are currently three Power State Sets advocated: 631 unknown(0) 632 IEEE1621(256) - [IEEE1621] 633 DMTF(512) - [DMTF] 634 EMAN(1024) - [EMAN-MONITORING-MIB] 636 The respective specific states related to each Power State Set 637 are specified in the following sections. The guidelines for 638 addition of new Power State Sets have been specified in the IANA 639 Considerations Section. 641 5.2.2. IEEE1621 Power State Set 643 The IEEE1621 Power State Set [IEEE1621] consists of 3 644 rudimentary states : on, off or sleep. 646 on(0) - The device is fully On and all features of the 647 device are in working mode. 648 off(1) - The device is mechanically switched off and does 649 not consume energy. 650 sleep(2) - The device is in a power saving mode, and some 651 features may not be available immediately. 653 The Textual Convention IANAPowerStateSet provides the proposed 654 numbering of the Power States within the IEEE1621 Power State 655 Set. 657 5.2.3. DMTF Power State Set 659 DMTF [DMTF] standards organization has defined a power profile 660 standard based on the CIM (Common Information Model) model that 661 consists of 15 power states ON (2), SleepLight (3), SleepDeep 662 (4), Off-Hard (5), Off-Soft (6), Hibernate(7), PowerCycle Off- 663 Soft (8), PowerCycle Off-Hard (9), MasterBus reset (10), 664 Diagnostic Interrupt (11), Off-Soft-Graceful (12), Off-Hard 665 Graceful (13), MasterBus reset Graceful (14), Power-Cycle Off- 666 Soft Graceful (15), PowerCycle-Hard Graceful (16). DMTF 667 standard is targeted for hosts and computers. Details of the 668 semantics of each Power State within the DMTF Power State Set 669 can be obtained from the DMTF Power State Management Profile 670 specification [DMTF]. 672 DMTF power profile extends ACPI power states. The following 673 table provides a mapping between DMTF and ACPI Power State Set: 675 --------------------------------------------------- 676 | DMTF | ACPI | 677 | Power State | Power State | 678 --------------------------------------------------- 679 | Reserved(0) | | 680 --------------------------------------------------- 681 | Reserved(1) | | 682 --------------------------------------------------- 683 | ON (2) | G0-S0 | 684 -------------------------------------------------- 685 | Sleep-Light (3) | G1-S1 G1-S2 | 686 -------------------------------------------------- 687 | Sleep-Deep (4) | G1-S3 | 688 -------------------------------------------------- 689 | Power Cycle (Off-Soft) (5) | G2-S5 | 690 --------------------------------------------------- 691 | Off-hard (6) | G3 | 692 --------------------------------------------------- 693 | Hibernate (Off-Soft) (7) | G1-S4 | 694 --------------------------------------------------- 695 | Off-Soft (8) | G2-S5 | 696 --------------------------------------------------- 697 | Power Cycle (Off-Hard) (9) | G3 | 698 --------------------------------------------------- 699 | Master Bus Reset (10) | G2-S5 | 700 --------------------------------------------------- 701 | Diagnostic Interrupt (11) | G2-S5 | 702 --------------------------------------------------- 703 | Off-Soft Graceful (12) | G2-S5 | 704 --------------------------------------------------- 705 | Off-Hard Graceful (13) | G3 | 706 --------------------------------------------------- 707 | MasterBus Reset Graceful (14) | G2-S5 | 708 --------------------------------------------------- 709 | Power Cycle off-soft Graceful (15)| G2-S5 | 710 --------------------------------------------------- 711 | Power Cycle off-hard Graceful (16)| G3 | 712 --------------------------------------------------- 713 Figure 3: DMTF and ACPI Powe State Set Mapping 715 The Textual Convention IANAPowerStateSet contains the proposed 716 numbering of the Power States within the DMTF Power State Set. 718 5.2.4. EMAN Power State Set 720 The EMAN Power State Set represents an attempt for a uniform 721 standard approach to model the different levels of power 722 consumption of a device. The EMAN Power States are an expansion 723 of the basic Power States as defined in IEEE1621 that also 724 incorporate the Power States defined in ACPI and DMTF. 726 Therefore, in addition to the non-operational states as defined 727 in ACPI and DMTF standards, several intermediate operational 728 states have been defined. 730 There are twelve Power States, that expand on IEEE1621 on, sleep 731 and off. The expanded list of Power States are divided into six 732 operational states, and six non-operational states. The lowest 733 non-operational state is 1 and the highest is 6. Each non- 734 operational state corresponds to an ACPI state [ACPI] 735 corresponding to Global and System states between G3 (hard-off) 736 and G1 (sleeping). For Each operational state represent a 737 performance state, and may be mapped to ACPI states P0 (maximum 738 performance power) through P5 (minimum performance and minimum 739 power). 741 An Energy Object may have fewer Power States than twelve and 742 would then map several policy states to the same power state. 743 Energy Object with more than twelve states, would choose which 744 twelve to represent as power policy states. 746 In each of the non-operational states (from mechoff(1) to 747 ready(6)), the Power State preceding it is expected to have a 748 lower power consumption and a longer delay in returning to an 749 operational state: 751 IEEE1621 Power(off): 753 mechoff(1) : An off state where no entity features are 754 available. The entity is unavailable. 755 No energy is being consumed and the power 756 connector can be removed. This 757 corresponds to ACPI state G3. 759 softoff(2) : Similar to mechoff(1), but some 760 components remain powered or receive 761 trace power so that the entity 762 can be awakened from its off state. In 763 softoff(2), no context is saved and the 764 device typically requires a complete boot 765 when awakened. This corresponds to ACPI 766 state G2. 768 IEEE1621 Power(sleep) 770 hibernate(3): No entity features are available. The 771 entity may be awakened without requiring 772 a complete boot, but the time for 773 availability is longer than sleep(4). An 774 example for state hibernate(3) is a save 775 to-disk state where DRAM context is not 776 maintained. Typically, energy consumption 777 is zero or close to zero. This 778 corresponds to state G1, S4 in ACPI. 780 sleep(4) : No entity features are available, except 781 for out-of-band management, for example 782 wake-up mechanisms. The time for 783 availability is longer than standby(5). 784 An example for state sleep(4) is a save- 785 to-RAM state, where DRAM context is 786 maintained. Typically, energy 787 consumption is close to zero. This 788 corresponds to state G1, S3 in ACPI. 790 standby(5) : No entity features are available, except 791 for out-of-band management, for example 792 wake-up mechanisms. This mode is analogous 793 to cold-standy. The time for availability 794 is longer than ready(6). For example, the 795 processor context is not maintained. 796 Typically, energy consumption is close to 797 zero. This corresponds to state G1, S2 in 798 ACPI. 800 ready(6) : No entity features are available, except 801 for out-of-band management, for example 802 wake-up mechanisms. This mode is 803 analogous to hot-standby. The entity can 804 be quickly transitioned into an 805 operational state. For example, 806 processors are not executing, but 807 processor context is maintained. This 808 corresponds to state G1, S1 in ACPI. 810 IEEE1621 Power(on): 812 lowMinus(7) : Indicates some entity features may not be 813 available and the entity has selected 814 measures/options to provide less than 815 low(8) usage. This corresponds to 816 ACPI State G0. This includes operational 817 states lowMinus(7) to full(12). 819 low(8) : Indicates some features may not be 820 available and the entity has taken 821 measures or selected options to provide 822 less than mediumMinus(9) usage. 824 mediumMinus(9): Indicates all entity features are 825 available but the entity has taken 826 measures or selected options to provide 827 less than medium(10) usage. 829 medium(10) : Indicates all entity features are 830 available but the entity has taken 831 measures or selected options to provide 832 less than highMinus(11) usage. 834 highMinus(11): Indicates all entity features are 835 available and power usage is less 836 than high(12). 838 high(12) : Indicates all entity features are 839 available and the entity is consuming the 840 highest power. 842 The Textual Convention IANAPowerStateSet contains the proposed 843 numbering of the Power States within the EMAN Power State Set. 845 5.3. Energy Object Usage Information 847 Refer to the "Energy Object Usage Measurement" section in [EMAN- 848 FMWK] for background information. 850 For an Energy Object, power usage is reported using eoPower. 851 The magnitude of measurement is based on the 852 eoPowerUnitMultiplier MIB variable, based on the UnitMultiplier 853 Textual Convention (TC). Power measurement magnitude should 854 conform to the IEC 62053-21 [IEC.62053-21] and IEC 62053-22 855 [IEC.62053-22] definition of unit multiplier for the SI (System 856 International) units of measure. Measured values are 857 represented in SI units obtained by BaseValue * 10 raised to the 858 power of the scale. 860 For example, if current power usage of an Energy Object is 3, it 861 could be 3 W, 3 mW, 3 KW, or 3 MW, depending on the value of 862 eoPowerUnitMultiplier. Note that other measurements throughout 863 the two MIB modules in this document use the same mechanism, 864 including eoPowerStatePowerUnitMultiplier, 865 eoEnergyUnitMultiplier, and 866 eoACPwrAttributesPowerUnitMultiplier. 868 In addition to knowing the usage and magnitude, it is useful to 869 know how a eoPower measurement was obtained. An NMS can use 870 this to account for the accuracy and nature of the reading 871 between different implementations. For this eoPowerOrigin 872 describes whether the measurements were made at the device 873 itself or from a remote source. The eoPowerMeasurementCaliber 874 describes the method that was used to measure the power and can 875 distinguish actual or estimated values. There may be devices in 876 the network, which may not be able to measure or report power 877 consumption. For those devices, the object 878 eoPowerMeasurementCaliber shall report that measurement 879 mechanism is "unavailable" and the eoPower measurement shall be 880 "0". 882 The nameplate power rating of an Energy Object is specified in 883 eoPowerNameplate MIB object. 885 5.4. Optional Power Usage Attributes 887 Refer to the "Optional Power Usage Attributes" section in 888 [EMAN-FMWK] for background information. 890 The optional powerAttributesMIB MIB module can be implemented to 891 further describe power usage attributes measurement. The 892 powerAttributesMIB MIB module adheres closely to the IEC 61850 893 7-2 standard to describe AC measurements. 895 The powerAttributesMIB MIB module contains a primary table, the 896 eoACPwrAttributesTable table, that defines power attributes 897 measurements for supported entPhysicalIndex entities, as a 898 sparse extension of the eoPowerTable (with entPhysicalIndex as 899 primary index). This eoACPwrAttributesTable table contains such 900 information as the configuration (single phase, DEL 3 phases, 901 WYE 3 phases), voltage, frequency, power accuracy, total 902 active/reactive power/apparent power, amperage, and voltage. 904 In case of 3-phase power, the eoACPwrAttributesPhaseTable 905 additional table is populated with Power Attributes measurements 906 per phase (so double indexed by the entPhysicalIndex and 907 eoPhaseIndex). This table, which describes attributes common to 908 both WYE and DEL configurations, contains the average current, 909 active/reactive/apparent power, power factor, and impedance. 911 In case of 3-phase power with a DEL configuration, the 912 eoACPwrAttributesDelPhaseTable table describes the phase-to- 913 phase power attributes measurements, i.e., voltage and current. 915 In case of 3-phase power with a Wye configuration, the 916 eoACPwrAttributesWyePhaseTable table describes the phase-to- 917 neutral power attributes measurements, i.e., voltage and 918 current. 920 5.5. Optional Energy Measurement 922 Refer to the "Optional Energy and demand Measurement" section in 923 [EMAN-FMWK] for the definition and terminology information. 925 It is relevant to measure energy and demand only when there are 926 actual power measurements obtained from measurement hardware. If 927 the eoPowerMeasurementCaliber MIB object has values of 928 unavailable, unknown, estimated, or presumed, then the energy 929 and demand values are not useful. 931 Two tables are introduced to characterize energy measurement of 932 an Energy Object: eoEnergyTable and eoEnergyParametersTable. 933 Both energy and demand information can be represented via the 934 eoEnergyTable. Energy information will be an accumulation with 935 no interval. Demand information can be represented. 936 The eoEnergyParametersTable consists of the parameters defining 937 eoEnergyParametersIndex an index of that specifies the setting 938 for collection of energy measurements for an Energy Object, 939 eoEnergyObjectIndex linked to the entPhysicalIndex of the 940 Energy Object, the duration of measurement intervals in seconds, 941 (eoEnergyParametersIntervalLength), the number of successive 942 intervals to be stored in the eoEnergyTable, 943 (eoEnergyParametersIntervalNumber), the type of measurement 944 technique (eoEnergyParametersIntervalMode), and a sample rate 945 used to calculate the average (eoEnergyParametersSampleRate). 946 Judicious choice of the sampling rate will ensure accurate 947 measurement of energy while not imposing an excessive polling 948 burden. 950 There are three eoEnergyParametersIntervalMode types used for 951 energy measurement collection: period, sliding, and total. The 952 choices of the the three different modes of collection are based 953 on IEC standard 61850-7-4. Note that multiple 954 eoEnergyParametersIntervalMode types MAY be configured 955 simultaneously. It is important to note that for a given Energy 956 Object, multiple modes (periodic, total, sliding window) of 957 energy measurement collection can be configured with the use of 958 eoEnergyParametersIndex. However, simultaneous measurement in 959 multiple modes for a given Energy Object depends on the Energy 960 Object capability. 962 These three eoEnergyParametersIntervalMode types are illustrated 963 by the following three figures, for which: 965 - The horizontal axis represents the current time, with the 966 symbol <--- L ---> expressing the 967 eoEnergyParametersIntervalLength, and the 968 eoEnergyCollectionStartTime is represented by S1, S2, S3, S4, 969 ..., Sx where x is the value of 970 eoEnergyParametersIntervalNumber. 972 - The vertical axis represents the time interval of sampling and 973 the value of eoEnergyConsumed can be obtained at the end of the 974 sampling period. The symbol =========== denotes the duration of 975 the sampling period. 977 | | | =========== | 978 |============ | | | 979 | | | | 980 | |============ | | 981 | | | | 982 | <--- L ---> | <--- L ---> | <--- L ---> | 983 | | | | 984 S1 S2 S3 S4 986 Figure 4 : Period eoEnergyParametersIntervalMode 988 A eoEnergyParametersIntervalMode type of 'period' specifies non- 989 overlapping periodic measurements. Therefore, the next 990 eoEnergyCollectionStartTime is equal to the previous 991 eoEnergyCollectionStartTime plus 992 eoEnergyParametersIntervalLength. S2=S1+L; S3=S2+L, ... 994 |============ | 995 | | 996 | <--- L ---> | 997 | | 998 | |============ | 999 | | | 1000 | | <--- L ---> | 1001 | | | 1002 | | |============ | 1003 | | | | 1004 | | | <--- L ---> | 1005 | | | | 1006 | | | |============ | 1007 | | | | | 1008 | | | | <--- L ---> | 1009 S1 | | | | 1010 | | | | 1011 | | | | 1012 S2 | | | 1013 | | | 1014 | | | 1015 S3 | | 1016 | | 1017 | | 1018 S4 1020 Figure 5 : Sliding eoEnergyParametersIntervalMode 1022 A eoEnergyParametersIntervalMode type of 'sliding' specifies 1023 overlapping periodic measurements. 1025 | | 1026 |========================= | 1027 | | 1028 | | 1029 | | 1030 | <--- Total length ---> | 1031 | | 1032 S1 1034 Figure 6 : Total eoEnergyParametersIntervalMode 1036 A eoEnergyParametersIntervalMode type of 'total' specifies a 1037 continuous measurement since the last reset. The value of 1038 eoEnergyParametersIntervalNumber should be (1) one and 1039 eoEnergyParametersIntervalLength is ignored. 1041 The eoEnergyParametersStatus is used to start and stop energy 1042 usage logging. The status of this variable is "active" when 1043 all the objects in eoEnergyParametersTable are appropriate which 1044 in turn indicates if eoEnergyTable entries exist or not. 1046 The eoEnergyTable consists of energy measurements in 1047 eoEnergyConsumed, eoEnergyProduced and eoEnergyNet, the units of 1048 the measured energy eoEnergyUnitMultiplier, and the maximum 1049 observed energy within a window eoEnergyMaxConsumed, 1050 eoEnergyMaxProduced. 1052 Measurements of the total energy consumed by an Energy Object 1053 may suffer from interruptions in the continuous measurement of 1054 energy consumption. In order to indicate such interruptions, 1055 the object eoEnergyDiscontinuityTime is provided for indicating 1056 the time of the last interruption of total energy measurement. 1057 eoEnergyDiscontinuityTime shall indicate the sysUpTime [RFC3418] 1058 when the device was reset. 1060 The following example illustrates the eoEnergyTable and 1061 eoEnergyParametersTable: 1063 First, in order to estimate energy, a time interval to sample 1064 energy should be specified, i.e. 1065 eoEnergyParametersIntervalLength can be set to "900 seconds" or 1066 15 minutes and the number of consecutive intervals over which 1067 the maximum energy is calculated 1068 (eoEnergyParametersIntervalNumber) as "10". The sampling rate 1069 internal to the Energy Object for measurement of power usage 1070 (eoEnergyParametersSampleRate) can be "1000 milliseconds", as 1071 set by the Energy Object as a reasonable value. Then, the 1072 eoEnergyParametersStatus is set to active (value 1) to indicate 1073 that the Energy Object should start monitoring the usage per the 1074 eoEnergyTable. 1076 The indices for the eoEnergyTable are eoEnergyParametersIndex 1077 which identifies the index for the setting of energy measurement 1078 collection Energy Object, and eoEnergyCollectionStartTime, which 1079 denotes the start time of the energy measurement interval based 1080 on sysUpTime [RFC3418]. The value of eoEnergyComsumed is the 1081 measured energy consumption over the time interval specified 1082 (eoEnergyParametersIntervalLength) based on the Energy Object 1083 internal sampling rate (eoEnergyParametersSampleRate). While 1084 choosing the values for the eoEnergyParametersIntervalLength and 1085 eoEnergyParametersSampleRate, it is recommended to take into 1086 consideration either the network element resources adequate to 1087 process and store the sample values, and the mechanism used to 1088 calculate the eoEnergyConsumed. The units are derived from 1089 eoEnergyUnitMultiplier. For example, eoEnergyConsumed can be 1090 "100" with eoEnergyUnitMultiplier equal to 0, the measured 1091 energy consumption of the Energy Object is 100 watt-hours. The 1092 eoEnergyMaxConsumed is the maximum energy observed and that can 1093 be "150 watt-hours". 1095 The eoEnergyTable has a buffer to retain a certain number of 1096 intervals, as defined by eoEnergyParametersIntervalNumber. 1097 If the default value of "10" is kept, then the eoEnergyTable 1098 contains 10 energy measurements, including the maximum. 1100 Here is a brief explanation of how the maximum energy can be 1101 calculated. The first observed energy measurement value is 1102 taken to be the initial maximum. With each subsequent 1103 measurement, based on numerical comparison, maximum energy may 1104 be updated. The maximum value is retained as long as the 1105 measurements are taking place. Based on periodic polling of 1106 this table, an NMS could compute the maximum over a longer 1107 period, i.e. a month, 3 months, or a year. 1109 5.6. Fault Management 1111 [EMAN-REQ] specifies requirements about Power States such as 1112 "the current power state" , "the time of the last state change", 1113 "the total time spent in each state", "the number of transitions 1114 to each state" etc. Some of these requirements are fulfilled 1115 explicitly by MIB objects such as eoPowerOperState, 1116 eoPowerStateTotalTime and eoPowerStateEnterCount. Some of the 1117 other requirements are met via the SNMP NOTIFICATION mechanism. 1118 eoPowerStateChange SNMP notification which is generated when the 1119 value(s) of ,eoPowerStateIndex, eoPowerOperState, 1120 eoPowerAdminState have changed. 1122 6. Discovery 1124 It is foreseen that most Energy Objects will require the 1125 implementation of the ENERGY-AWARE MIB [EMAN-AWARE-MIB] as a 1126 prerequisite for this MIB module. In such a case, eoPowerTable 1127 of the EMAN-MON-MIB is a sparse extension of the eoTable of 1128 ENERGY-AWARE-MIB. Every Energy Object MUST implement 1129 entPhysicalIndex, entPhysicalUUID and entPhysicalName from the 1130 ENTITY-MIB [EMAN-ENTITY]. As the primary index for the Energy 1131 Object, entPhysicalIndex is used. 1133 The NMS must first poll the ENERGY-AWARE-MIB module [EMAN-AWARE- 1134 MIB], if available, in order to discover all the Energy Objects 1135 and the relationships between those (notion of Parent/Child). 1136 In the ENERGY-AWARE-MIB module tables, the Energy Objects are 1137 indexed by the entPhysicalIndex. 1139 If an implementation of the ENERGY-AWARE-MIB module is available 1140 in the local SNMP context, for the same Energy Object, the 1141 entPhysicalIndex value (EMAN-AWARE-MIB) shall be used. The 1142 entPhysicalIndex characterizes the Energy Object in the 1143 energyObjectMib and the powerAttributesMIB MIB modules (this 1144 document). 1146 From there, the NMS must poll the eoPowerStateTable (specified 1147 in the energyObjectMib module in this document), which 1148 enumerates, amongst other things, the maximum power usage. As 1149 the entries in eoPowerStateTable table are indexed by the 1150 Energy Object ( entPhysicalIndex), by the Power State Set 1151 (eoPowerStateIndex), the maximum power usage is discovered per 1152 Energy Object, and the power usage per Power State of the Power 1153 State Set. In other words, polling the eoPowerStateTable allows 1154 the discovery of each Power State within every Power State Set 1155 supported by the Energy Object. 1157 If the Energy Object is an Aggregator or a Proxy, the MIB module 1158 would be populated with the Energy Object Parent and Children 1159 information, which have their own Energy Object index value 1160 (entPhysicalIndex). However, the parent/child relationship must 1161 be discovered thanks to the ENERGY-AWARE-MIB module. 1163 Finally, the NMS can monitor the power attributes thanks to the 1164 powerAttributesMIB MIB module, which reuses the entPhysicalIndex 1165 to index the Energy Object. 1167 7. Link with the other IETF MIBs 1169 7.1. Link with the ENTITY-MIB and the ENTITY-SENSOR MIB 1171 RFC 4133 [RFC4133] defines the ENTITY-MIB module that lists the 1172 physical entities of a networking device (router, switch, etc.) 1173 and those physical entities indexed by entPhysicalIndex. From 1174 an energy-management standpoint, the physical entities that 1175 consume or produce energy are of interest. 1177 RFC 3433 [RFC3433] defines the ENTITY-SENSOR MIB module that 1178 provides a standardized way of obtaining information (current 1179 value of the sensor, operational status of the sensor, and the 1180 data units precision) from sensors embedded in networking 1181 devices. Sensors are associated with each index of 1182 entPhysicalIndex of the ENTITY-MIB [RFC4133]. While the focus 1183 of the Power and Energy Monitoring MIB is on measurement of 1184 power usage of networking equipment indexed by the ENTITY-MIB, 1185 this MIB proposes a customized power scale for power measurement 1186 and different power state states of networking equipment, and 1187 functionality to configure the power state states. 1189 When this MIB module is used to monitor the power usage of 1190 devices like routers and switches, the ENTITY-MIB and ENTITY- 1191 SENSOR MIB SHOULD be implemented. In such cases, the Energy 1192 Objects are modeled by the entPhysicalIndex through the 1193 entPhysicalEntity MIB object specified in the eoTable in the 1194 ENERGY-AWARE-MIB MIB module [EMAN-AWARE-MIB]. 1196 However, the ENTITY-SENSOR MIB [RFC3433] does not have the ANSI 1197 C12.x accuracy classes required for electricity (i.e., 1%, 2%, 1198 0.5% accuracy classes). Indeed, entPhySensorPrecision [RFC3433] 1199 represents "The number of decimal places of precision in fixed- 1200 point sensor values returned by the associated entPhySensorValue 1201 object". The ANSI and IEC Standards are used for power 1202 measurement and these standards require that we use an accuracy 1203 class, not the scientific-number precision model specified in 1204 RFC3433. The eoPowerAccuracy MIB object models this accuracy. 1205 Note that eoPowerUnitMultipler represents the scale factor per 1206 IEC 62053-21 [IEC.62053-21] and IEC 62053-22 [IEC.62053-22], 1207 which is a more logical representation for power measurements 1208 (compared to entPhySensorScale), with the mantissa and the 1209 exponent values X * 10 ^ Y. 1211 Power measurements specifying the qualifier 'UNITS' for each 1212 measured value in watts are used in the LLDP-EXT-MED-MIB, POE 1213 [RFC3621], and UPS [RFC1628] MIBs. The same 'UNITS' qualifier 1214 is used for the power measurement values. 1216 One cannot assume that the ENTITY-MIB and ENTITY-SENSOR MIB are 1217 implemented for all Energy Objects that need to be monitored. A 1218 typical example is a converged building gateway, monitoring 1219 several other devices in the building, doing the proxy between 1220 SNMP and a protocol like BACNET. Another example is the home 1221 energy controller. In such cases, the eoPhysicalEntity value 1222 contains the zero value, thanks to PhysicalIndexOrZero textual 1223 convention. 1225 The eoPower is similar to entPhySensorValue [RFC3433] and the 1226 eoPowerUnitMultipler is similar to entPhySensorScale. 1228 7.2. Link with the ENTITY-STATE MIB 1230 For each entity in the ENTITY-MIB [RFC4133], the ENTITY-STATE 1231 MIB [RFC4268] specifies the operational states (entStateOper: 1232 unknown, enabled, disabled, testing), the alarm (entStateAlarm: 1233 unknown, underRepair, critical, major, minor, warning, 1234 indeterminate) and the possible values of standby states 1235 (entStateStandby: unknown, hotStandby, coldStandby, 1236 providingService). 1238 From a power monitoring point of view, in contrast to the entity 1239 operational states of entities, Power States are required, as 1240 proposed in the Power and Energy Monitoring MIB module. Those 1241 Power States can be mapped to the different operational states 1242 in the ENTITY-STATE MIB, if a formal mapping is required. For 1243 example, the entStateStandby "unknown", "hotStandby", 1244 "coldStandby", states could map to the Power State "unknown", 1245 "ready", "standby", respectively, while the entStateStandby 1246 "providingService" could map to any "low" to "high" Power State. 1248 7.3. Link with the POWER-OVER-ETHERNET MIB 1250 Power-over-Ethernet MIB [RFC3621] provides an energy monitoring 1251 and configuration framework for power over Ethernet devices. 1252 The RFC introduces a concept of a port group on a switch to 1253 define power monitoring and management policy and does not use 1254 the entPhysicalIndex as the index. Indeed, the 1255 pethMainPseConsumptionPower is indexed by the 1256 pethMainPseGroupIndex, which has no mapping with the 1257 entPhysicalIndex. 1259 One cannot assume that the Power-over-Ethernet MIB is 1260 implemented for all Energy Objects that need to be monitored. 1261 A typical example is a converged building gateway, monitoring 1262 several other devices in the building, doing the proxy between 1263 SNMP and a protocol like BACNET. Another example is the home 1264 energy controller. In such cases, the eoethPortIndex and 1265 eoethPortGrpIndex values contain the zero value, thanks to new 1266 PethPsePortIndexOrZero and textual PethPsePortGroupIndexOrZero 1267 conventions. 1269 However, if the Power-over-Ethernet MIB [RFC3621] is supported, 1270 the Energy Object eoethPortIndex and eoethPortGrpIndex contain 1271 the pethPsePortIndex and pethPsePortGroupIndex, respectively. 1273 As a consequence, the entPhysicalIndex MIB object has been kept 1274 as the unique Energy Object index. 1276 Note that, even though the Power-over-Ethernet MIB [RFC3621] was 1277 created after the ENTITY-SENSOR MIB [RFC3433], it does not reuse 1278 the precision notion from the ENTITY-SENSOR MIB, i.e. the 1279 entPhySensorPrecision MIB object. 1281 7.4. Link with the UPS MIB 1283 To protect against unexpected power disruption, data centers and 1284 buildings make use of Uninterruptible Power Supplies (UPS). To 1285 protect critical assets, a UPS can be restricted to a particular 1286 subset or domain of the network. UPS usage typically lasts only 1287 for a finite period of time, until normal power supply is 1288 restored. Planning is required to decide on the capacity of the 1289 UPS based on output power and duration of probable power outage. 1290 To properly provision UPS power in a data center or building, it 1291 is important to first understand the total demand required to 1292 support all the entities in the site. This demand can be 1293 assessed and monitored via the Power and Energy Monitoring MIB. 1295 UPS MIB [RFC1628] provides information on the state of the UPS 1296 network. Implementation of the UPS MIB is useful at the 1297 aggregate level of a data center or a building. The MIB module 1298 contains several groups of variables: 1300 - upsIdent: Identifies the UPS entity (name, model, etc.). 1302 - upsBattery group: Indicates the battery state 1303 (upsbatteryStatus, upsEstimatedMinutesRemaining, etc.) 1305 - upsInput group: Characterizes the input load to the UPS 1306 (number of input lines, voltage, current, etc.). 1308 - upsOutput: Characterizes the output from the UPS (number of 1309 output lines, voltage, current, etc.) 1311 - upsAlarms: Indicates the various alarm events. 1313 The measurement of power in the UPS MIB is in Volts, Amperes and 1314 Watts. The units of power measurement are RMS volts and RMS 1315 Amperes. They are not based on the EntitySensorDataScale and 1316 EntitySensorDataPrecision of ENTITY-SENSOR-MIB. 1318 Both the Power and Energy Monitoring MIB and the UPS MIB may be 1319 implemented on the same UPS SNMP agent, without conflict. In 1320 this case, the UPS device itself is the Energy Object Parent and 1321 any of the UPS meters or submeters are the Energy Object 1322 Children. 1324 7.5. Link with the LLDP and LLDP-MED MIBs 1326 The LLDP Protocol is a Data Link Layer protocol used by network 1327 devices to advertise their identities, capabilities, and 1328 interconnections on a LAN network. 1330 The Media Endpoint Discovery is an enhancement of LLDP, known as 1331 LLDP-MED. The LLDP-MED enhancements specifically address voice 1332 applications. LLDP-MED covers 6 basic areas: capability 1333 discovery, LAN speed and duplex discovery, network policy 1334 discovery, location identification discovery, inventory 1335 discovery, and power discovery. 1337 Of particular interest to the current MIB module is the power 1338 discovery, which allows the endpoint device (such as a PoE 1339 phone) to convey power requirements to the switch. In power 1340 discovery, LLDP-MED has four Type Length Values (TLVs): power 1341 type, power source, power priority and power value. 1342 Respectively, those TLVs provide information related to the type 1343 of power (power sourcing entity versus powered device), how the 1344 device is powered (from the line, from a backup source, from 1345 external power source, etc.), the power priority (how important 1346 is it that this device has power?), and how much power the 1347 device needs. 1349 The power priority specified in the LLDP-MED MIB [LLDP-MED-MIB] 1350 actually comes from the Power-over-Ethernet MIB [RFC3621]. If 1351 the Power-over-Ethernet MIB [RFC3621] is supported, the exact 1352 value from the pethPsePortPowerPriority [RFC3621] is copied over 1353 in the lldpXMedRemXPoEPDPowerPriority [LLDP-MED-MIB]; otherwise 1354 the value in lldpXMedRemXPoEPDPowerPriority is "unknown". From 1355 the Power and Energy Monitoring MIB, it is possible to identify 1356 the pethPsePortPowerPriority [RFC3621], thanks to the 1357 eoethPortIndex and eoethPortGrpIndex. 1359 The lldpXMedLocXPoEPDPowerSource [LLDP-MED-MIB] is similar to 1360 eoPowerOrigin in indicating if the power for an attached device 1361 is local or from a remote device. If the LLDP-MED MIB is 1362 supported, the following mapping can be applied to the 1363 eoPowerOrigin: lldpXMedLocXPoEPDPowerSource fromPSE(2) and 1364 local(3) can be mapped to remote(2) and self(1), respectively. 1366 8. Implementation Scenario 1367 This section provides an illustrative example scenario for the 1368 implementation of the Energy Object, including Energy Object 1369 Parent and Energy Object Child relationships. 1371 Example Scenario of a campus network: Switch with PoE Endpoints 1372 with further connected devices. 1374 The campus network consists of switches that provide LAN 1375 connectivity. The switch with PoE ports is located in wiring 1376 closet. PoE IP phones are connected to the switch. The IP 1377 phones draw power from the PoE ports of the switch. In 1378 addition, a PC is daisy-chained from the IP phone for LAN 1379 connectivity. 1381 The IP phone consumes power from the PoE switch, while the PC 1382 consumes power from the wall outlet. 1384 The switch has implementations of ENTITY-MIB [EMAN-ENTITY ] and 1385 ENERGY-AWARE MIB [EMAN-AWARE-MIB] while the PC does not have 1386 implementation of the ENTITY-MIB, but has an implementation of 1387 ENERGY-AWARE MIB [EMAN-AWARE-MIB]. The switch has the following 1388 attributes, entPhysicalIndex "1", and entPhysicalUUID "UUID 1389 1000". The power usage of the switch is "440 Watts". The 1390 switch does not have an Energy Object Parent. 1392 The PoE switch port has the following attributes: The switch 1393 port has entPhysicalIndex "3", and entPhysicalUUID is "UUID 1394 1000:3". The power metered at the POE switch port is "12 1395 watts". In this example, the POE switch port has the switch as 1396 the Energy Object Parent, with its eoParentID of "1000". 1398 The attributes of the PC are given below. The PC does not have 1399 an entPhysicalIndex, and the entPhysicalUUID is "UUID 1000:57 ". 1400 The PC has an Energy Object Parent, i.e. the switch port whose 1401 entPhysicalUUID is "UUID 1000:3". The power usage of the PC is 1402 "120 Watts" and is communicated to the switch port. 1404 This example illustrates the important distinction between the 1405 Energy Object Children: The IP phone draws power from the 1406 switch, while the PC has LAN connectivity from the phone, but is 1407 powered from the wall outlet. However, the Energy Object Parent 1408 sends power control messages to both the Energy Object Children 1409 (IP phone and PC) and the Children react to those messages. 1411 |-------------------------------------------------------| 1412 | Switch | 1413 |=======================================================| 1414 | Switch | Switch | Switch | Switch | 1415 | entPhyIndx | UUID |eoParentId | eoPower | 1416 | ===================================================== | 1417 | 1 | UUID 1000 | null | 440 | 1418 | ===================================================== | 1419 | | 1420 | SWITCH PORT | 1421 | ===================================================== | 1422 | | Switch | Switch | Switch | Switch | 1423 | | Port | Port | Port | Port | 1424 | | entPhyIndx | UUID | eoParentId | eoPower | 1425 | ===================================================== | 1426 | | 3 | UUID 1000:3 | 1000 | 12 | 1427 | ======================================================| 1428 | ^ 1429 | | 1430 |-----------------------------------|------------------- 1431 | 1432 | 1433 POE IP PHONE | 1434 | 1435 | 1436 ====================================================== 1437 | IP phone | IP phone | IP phone | IP phone | 1438 | entPhyIndx | UUID | eoParentID | eoPower | 1439 ====================================================== 1440 | Null | UUID 1000:31| UUID 1000:3 | 12 | 1441 ======================================================= 1442 | 1443 | 1444 PC connected to switch via IP phone | 1445 | 1446 ===================================================== 1447 | PC | PC | PC | PC | 1448 |entPhyIndx | UUID | eoParentID | eoPower | 1449 ===================================================== 1450 | 7 | UUID 1000:57| UUID 1000:3 | 120 | 1451 ===================================================== 1453 Figure 1: Example scenario 1455 9. Structure of the MIB 1457 The primary MIB object in this MIB module is the 1458 energyObjectMibObject. The eoPowerTable table of 1459 energyObjectMibObject describes the power measurement attributes 1460 of an Energy Object entity. The notion of identity of the device 1461 in terms of uniquely identification of the Energy Object and its 1462 relationship to other entities in the network are addressed in 1463 [EMAN-AWARE-MIB]. 1465 Logically, this MIB module is a sparse extension of the 1466 [EMAN-AWARE-MIB] module. Thus the following requirements which 1467 are applied to [EMAN-AWARE-MIB] are also applicable. As a 1468 requirement for this MIB module, [EMAN-AWARE-MIB] should be 1469 implemented and as Module Compliance of ENTITY-MIB V4 [EMAN- 1470 ENTITY] with respect to entity4CRCompliance should be supported 1471 which requires 3 MIB objects (entPhysicalIndex, entPhysicalName 1472 and entPhysicalUUID ) MUST be implemented. 1474 eoMeterCapabilitiesTable is useful to enable applications to 1475 determine the capabilities supported by the local management 1476 agent. This table indicates the energy monitoring MIB groups 1477 that are supported by the local management system. By reading 1478 the value of this object, it is possible for applications to 1479 know which tables contain the information and are usable without 1480 walking through the table and querying every element which 1481 involves a trial-and-error process. 1483 The power measurement of an Energy Object contains information 1484 describing its power usage (eoPower) and its current power state 1485 (eoPowerOperState). In addition to power usage, additional 1486 information describing the units of measurement 1487 (eoPowerAccuracy, eoPowerUnitMultiplier), how power usage 1488 measurement was obtained (eoPowerMeasurementCaliber), the 1489 source of power (eoPowerOrigin) and the type of power 1490 (eoPowerCurrentTtype) are described. 1492 An Energy Object may contain an optional eoPowerAttributes table 1493 that describes the electrical characteristics associated with 1494 the current power state and usage. 1496 An Energy Object may contain an optional eoEnergyTable to 1497 describe energy measurement information over time. 1499 An Energy Object may also contain optional battery information 1500 associated with this entity. 1502 10. MIB Definitions 1504 -- ************************************************************ 1505 -- 1506 -- 1507 -- This MIB is used to monitor power usage of network 1508 -- devices 1509 -- 1510 -- ************************************************************* 1512 ENERGY-OBJECT-MIB DEFINITIONS ::= BEGIN 1514 IMPORTS 1515 MODULE-IDENTITY, 1516 OBJECT-TYPE, 1517 NOTIFICATION-TYPE, 1518 mib-2, 1519 Integer32, Counter32, TimeTicks 1520 FROM SNMPv2-SMI 1521 TEXTUAL-CONVENTION, DisplayString, RowStatus, TimeInterval, 1522 TimeStamp 1523 FROM SNMPv2-TC 1524 MODULE-COMPLIANCE, NOTIFICATION-GROUP, OBJECT-GROUP 1525 FROM SNMPv2-CONF 1526 OwnerString 1527 FROM RMON-MIB 1528 entPhysicalIndex, PhysicalIndex 1529 FROM ENTITY-MIB; 1531 energyObjectMib MODULE-IDENTITY 1532 LAST-UPDATED "201210220000Z" -- 22 October 2012 1534 ORGANIZATION "IETF EMAN Working Group" 1535 CONTACT-INFO 1536 "WG charter: 1537 http://datatracker.ietf.org/wg/eman/charter/ 1539 Mailing Lists: 1540 General Discussion: eman@ietf.org 1542 To Subscribe: 1543 https://www.ietf.org/mailman/listinfo/eman 1544 Archive: 1545 http://www.ietf.org/mail-archive/web/eman 1547 Editors: 1548 Mouli Chandramouli 1549 Cisco Systems, Inc. 1550 Sarjapur Outer Ring Road 1551 Bangalore 560103 1552 IN 1553 Phone: +91 80 4429 2409 1554 Email: moulchan@cisco.com 1556 Brad Schoening 1557 44 Rivers Edge Drive 1558 Little Silver, NJ 07739 1559 US 1560 Email: brad.schoening@verizon.net 1562 Juergen Quittek 1563 NEC Europe Ltd. 1564 NEC Laboratories Europe 1565 Network Research Division 1566 Kurfuersten-Anlage 36 1567 Heidelberg 69115 1568 DE 1569 Phone: +49 6221 4342-115 1570 Email: quittek@neclab.eu 1572 Thomas Dietz 1573 NEC Europe Ltd. 1574 NEC Laboratories Europe 1575 Network Research Division 1576 Kurfuersten-Anlage 36 1577 69115 Heidelberg 1578 DE 1579 Phone: +49 6221 4342-128 1580 Email: Thomas.Dietz@nw.neclab.eu 1582 Benoit Claise 1583 Cisco Systems, Inc. 1584 De Kleetlaan 6a b1 1585 Degem 1831 1586 Belgium 1587 Phone: +32 2 704 5622 1588 Email: bclaise@cisco.com" 1590 DESCRIPTION 1591 "This MIB is used to monitor power and energy in 1592 devices. 1594 This table sparse extension of the eoTable 1595 from the ENERGY-AWARE-MIB. As a requirement 1596 [EMAN-AWARE-MIB] should be implemented. 1598 Module Compliance of ENTITY-MIB v4 1599 with respect to entity4CRCompliance should 1600 be supported which requires implementation 1601 of 3 MIB objects (entPhysicalIndex, 1602 entPhysicalName and entPhysicalUUID)." 1604 REVISION 1605 "201210220000Z" -- 22 October 2012 1607 DESCRIPTION 1608 "Initial version, published as RFC XXXX." 1610 ::= { mib-2 xxx } 1612 energyObjectMibNotifs OBJECT IDENTIFIER 1613 ::= { energyObjectMib 0 } 1615 energyObjectMibObjects OBJECT IDENTIFIER 1616 ::= { energyObjectMib 1 } 1618 energyObjectMibConform OBJECT IDENTIFIER 1619 ::= { energyObjectMib 2 } 1621 -- Textual Conventions 1623 IANAPowerStateSet ::= TEXTUAL-CONVENTION 1624 STATUS current 1625 DESCRIPTION 1627 "IANAPowerState is a textual convention that describes 1628 Power State Sets and Power State Set Values an Energy Object 1629 supports. IANA has created a registry of Power State supported 1630 by an Energy Object and IANA shall administer the list of Power 1631 State Sets and Power States. 1633 The textual convention assumes that power states in a power 1634 state set are limited to 255 distinct values. For a Power 1635 State Set S, the named number with the value S * 256 is 1636 allocated to indicate the power state set. For a Power State X 1637 in the Power State S, the named number with the value S * 256 1638 + X + 1 is allocated to represent the power state." 1640 REFERENCE 1641 "http://www.iana.org/assignments/eman 1642 RFC EDITOR NOTE: please change the previous URL if this is 1643 not the correct one after IANA assigned it." 1645 SYNTAX INTEGER { 1646 other(0), -- indicates other set 1647 unknown(255), -- unknown power state 1649 ieee1621(256), -- indicates IEEE1621 set 1650 ieee1621On(257), 1651 ieee1621Off(258), 1652 ieee1621Sleep(259), 1654 dmtf(512), -- indicates DMTF set 1655 dmtfOn(513), 1656 dmtfSleepLight(514), 1657 dmtfSleepDeep(515), 1658 dmtfOffHard(516), 1659 dmtfOffSoft(517), 1660 dmtfHibernate(518), 1661 dmtfPowerOffSoft(519), 1662 dmtfPowerOffHard(520), 1663 dmtfMasterBusReset(521), 1664 dmtfDiagnosticInterrapt(522), 1665 dmtfOffSoftGraceful(523), 1666 dmtfOffHardGraceful(524), 1667 dmtfMasterBusResetGraceful(525), 1668 dmtfPowerCycleOffSoftGraceful(526), 1669 dmtfPowerCycleHardGraceful(527), 1671 eman(1024), -- indicates EMAN set 1672 emanmechoff(1025), 1673 emansoftoff(1026), 1674 emanhibernate(1027), 1675 emansleep(1028), 1676 emanstandby(1029), 1677 emanready(1030), 1678 emanlowMinus(1031), 1679 emanlow(1032), 1680 emanmediumMinus(1033), 1681 emanmedium(1034), 1682 emanhighMinus(1035), 1683 emanhigh(1036) 1684 } 1686 UnitMultiplier ::= TEXTUAL-CONVENTION 1687 STATUS current 1688 DESCRIPTION 1689 "The Unit Multiplier is an integer value that represents 1690 the IEEE 61850 Annex A units multiplier associated with 1691 the integer units used to measure the power or energy. 1693 For example, when used with eoPowerUnitMultiplier, -3 1694 represents 10^-3 or milliwatts." 1695 REFERENCE 1696 "The International System of Units (SI), 1697 National Institute of Standards and Technology, 1698 Spec. Publ. 330, August 1991." 1699 SYNTAX INTEGER { 1700 yocto(-24), -- 10^-24 1701 zepto(-21), -- 10^-21 1702 atto(-18), -- 10^-18 1703 femto(-15), -- 10^-15 1704 pico(-12), -- 10^-12 1705 nano(-9), -- 10^-9 1706 micro(-6), -- 10^-6 1707 milli(-3), -- 10^-3 1708 units(0), -- 10^0 1709 kilo(3), -- 10^3 1710 mega(6), -- 10^6 1711 giga(9), -- 10^9 1712 tera(12), -- 10^12 1713 peta(15), -- 10^15 1714 exa(18), -- 10^18 1715 zetta(21), -- 10^21 1716 yotta(24) -- 10^24 1717 } 1719 -- Objects 1721 eoMeterCapabilitiesTable OBJECT-TYPE 1722 SYNTAX SEQUENCE OF EoMeterCapabilitiesEntry 1723 MAX-ACCESS not-accessible 1724 STATUS current 1725 DESCRIPTION 1727 "This table is useful for helping applications determine the 1728 monitoring capabilities supported by the local management 1729 agents. It is possible for applications to know which tables 1730 are usable without going through a trial-and-error process." 1731 ::= { energyObjectMibObjects 1 } 1733 eoMeterCapabilitiesEntry OBJECT-TYPE 1734 SYNTAX EoMeterCapabilitiesEntry 1735 MAX-ACCESS not-accessible 1736 STATUS current 1737 DESCRIPTION 1738 "An entry describes the metering capability of an Energy 1739 Object." 1740 INDEX { entPhysicalIndex } 1741 ::= { eoMeterCapabilitiesTable 1 } 1743 EoMeterCapabilitiesEntry ::= SEQUENCE { 1744 eoMeterCapability BITS 1745 } 1747 eoMeterCapability OBJECT-TYPE 1748 SYNTAX BITS { 1749 none(0), 1750 powermetering(1), -- power measurement 1751 energymetering(2), -- energy measurement 1752 powerattributes(3) -- power attributes 1753 } 1754 MAX-ACCESS read-only 1755 STATUS current 1756 DESCRIPTION 1757 "An indication of the Energy monitoring capabilities supported 1758 by this agent. This object use a BITS syntax and indicate the 1759 MIB groups supported by the probe. By reading the value of this 1760 object, it is possible to determine the MIB tables supported. " 1761 ::= { eoMeterCapabilitiesEntry 1 } 1763 eoPowerTable OBJECT-TYPE 1764 SYNTAX SEQUENCE OF EoPowerEntry 1765 MAX-ACCESS not-accessible 1766 STATUS current 1767 DESCRIPTION 1768 "This table lists Energy Objects." 1769 ::= { energyObjectMibObjects 2 } 1771 eoPowerEntry OBJECT-TYPE 1772 SYNTAX EoPowerEntry 1773 MAX-ACCESS not-accessible 1774 STATUS current 1775 DESCRIPTION 1776 "An entry describes the power usage of an Energy Object." 1778 INDEX { entPhysicalIndex } 1779 ::= { eoPowerTable 1 } 1781 EoPowerEntry ::= SEQUENCE { 1783 eoPower Integer32, 1784 eoPowerNameplate Integer32, 1785 eoPowerUnitMultiplier UnitMultiplier, 1786 eoPowerAccuracy Integer32, 1787 eoPowerMeasurementCaliber INTEGER, 1788 eoPowerCurrentType INTEGER, 1789 eoPowerOrigin INTEGER, 1790 eoPowerAdminState IANAPowerStateSet, 1791 eoPowerOperState IANAPowerStateSet, 1792 eoPowerStateEnterReason OwnerString 1793 } 1795 eoPower OBJECT-TYPE 1796 SYNTAX Integer32 1797 UNITS "Watts" 1798 MAX-ACCESS read-only 1799 STATUS current 1800 DESCRIPTION 1801 "This object indicates the power measured for the Energy 1802 Object. For alternating current, this value is obtained 1803 as an average over fixed number of AC cycles. . This 1804 value is specified in SI units of watts with the 1805 magnitude of watts (milliwatts, kilowatts, etc.) 1806 indicated separately in eoPowerUnitMultiplier. The 1807 accuracy of the measurement is specfied in 1808 eoPowerAccuracy. The direction of power flow is indicated 1809 by the sign on eoPower. If the Energy Object is consuming 1810 power, the eoPower value will be positive. If the Energy 1811 Object is producing power, the eoPower value will be 1812 negative. 1814 The eoPower MUST be less than or equal to the maximum 1815 power that can be consumed at the power state specified 1816 by eoPowerState. 1818 The eoPowerMeasurementCaliber object specifies how the 1819 usage value reported by eoPower was obtained. The eoPower 1820 value must report 0 if the eoPowerMeasurementCaliber is 1821 'unavailable'. For devices that can not measure or 1822 report power, this option can be used." 1823 ::= { eoPowerEntry 1 } 1825 eoPowerNameplate OBJECT-TYPE 1826 SYNTAX Integer32 1827 UNITS "Watts" 1828 MAX-ACCESS read-only 1829 STATUS current 1830 DESCRIPTION 1831 "This object indicates the rated maximum consumption for 1832 the fully populated Energy Object. The nameplate power 1833 requirements are the maximum power numbers and, in almost 1834 all cases, are well above the expected operational 1835 consumption. The eoPowerNameplate is widely used for 1836 power provisioning. This value is specified in either 1837 units of watts or voltage and current. The units are 1838 therefore SI watts or equivalent Volt-Amperes with the 1839 magnitude (milliwatts, kilowatts, etc.) indicated 1840 separately in eoPowerUnitMultiplier." 1841 ::= { eoPowerEntry 2 } 1843 eoPowerUnitMultiplier OBJECT-TYPE 1844 SYNTAX UnitMultiplier 1845 MAX-ACCESS read-only 1846 STATUS current 1847 DESCRIPTION 1848 "The magnitude of watts for the usage value in eoPower 1849 and eoPowerNameplate." 1850 ::= { eoPowerEntry 3 } 1852 eoPowerAccuracy OBJECT-TYPE 1853 SYNTAX Integer32 (0..10000) 1854 UNITS "hundredths of percent" 1855 MAX-ACCESS read-only 1856 STATUS current 1857 DESCRIPTION 1858 "This object indicates a percentage value, in 100ths of a 1859 percent, representing the assumed accuracy of the usage 1860 reported by eoPower. For example: The value 1010 means 1861 the reported usage is accurate to +/- 10.1 percent. This 1862 value is zero if the accuracy is unknown or not 1863 applicable based upon the measurement method. 1865 ANSI and IEC define the following accuracy classes for 1866 power measurement: 1867 IEC 62053-22 60044-1 class 0.1, 0.2, 0.5, 1 3. 1868 ANSI C12.20 class 0.2, 0.5" 1869 ::= { eoPowerEntry 4 } 1871 eoPowerMeasurementCaliber OBJECT-TYPE 1872 SYNTAX INTEGER { 1873 unavailable(1) , 1874 unknown(2), 1875 actual(3) , 1876 estimated(4), 1877 presumed(5) } 1878 MAX-ACCESS read-only 1879 STATUS current 1880 DESCRIPTION 1881 "This object specifies how the usage value reported by 1882 eoPower was obtained: 1884 - unavailable(1): Indicates that the usage is not 1885 available. In such a case, the eoPower value must be 0 1886 for devices that can not measure or report power this 1887 option can be used. 1889 - unknown(2): Indicates that the way the usage was 1890 determined is unknown. In some cases, entities report 1891 aggregate power on behalf of another device. In such 1892 cases it is not known whether the usage reported is 1893 actual(2), estimated(3) or presumed (4). 1895 - actual(3): Indicates that the reported usage was 1896 measured by the entity through some hardware or direct 1897 physical means. The usage data reported is not presumed 1898 (4) or estimated (3) but is the measured consumption 1899 rate. 1901 - estimated(4): Indicates that the usage was not 1902 determined by physical measurement. The value is a 1903 derivation based upon the device type, state, and/or 1904 current utilization using some algorithm or heuristic. It 1905 is presumed that the entity's state and current 1906 configuration were used to compute the value. 1908 - presumed(5): Indicates that the usage was not 1909 determined by physical measurement, algorithm or 1910 derivation. The usage was reported based upon external 1911 tables, specifications, and/or model information. For 1912 example, a PC Model X draws 200W, while a PC Model Y 1913 draws 210W" 1915 ::= { eoPowerEntry 5 } 1917 eoPowerCurrentType OBJECT-TYPE 1918 SYNTAX INTEGER { 1919 ac(1), 1920 dc(2), 1921 unknown(3) 1922 } 1923 MAX-ACCESS read-only 1924 STATUS current 1925 DESCRIPTION 1926 "This object indicates whether the eoPower for the 1927 Energy Object reports alternating current AC(1), direct 1928 current DC(2), or that the current type is unknown(3)." 1929 ::= { eoPowerEntry 6 } 1931 eoPowerOrigin OBJECT-TYPE 1932 SYNTAX INTEGER { 1933 self (1), 1934 remote (2) 1935 } 1936 MAX-ACCESS read-only 1937 STATUS current 1938 DESCRIPTION 1939 "This object indicates the source of power measurement 1940 and can be useful when modeling the power usage of 1941 attached devices. The power measurement can be performed 1942 by the entity itself or the power measurement of the 1943 entity can be reported by another trusted entity using a 1944 protocol extension. A value of self(1) indicates the 1945 measurement is performed by the entity, whereas remote(2) 1946 indicates that the measurement was performed by another 1947 entity." 1948 ::= { eoPowerEntry 7 } 1950 eoPowerAdminState OBJECT-TYPE 1951 SYNTAX IANAPowerStateSet 1952 MAX-ACCESS read-write 1953 STATUS current 1954 DESCRIPTION 1955 "This object specifies the desired Power State and the 1956 Power State Set for the Energy Object. Note that 1957 other(0) is not a Power State Set and unknown(255) is 1958 not a Power State as such, but simply an indication that 1959 the Power State of the Energy Object is unknown. 1960 Possible values of eoPowerAdminState within the Power 1961 State Set are registered at IANA. 1962 A current list of assignments can be found at 1963 1964 RFC-EDITOR: please check the location after IANA" 1965 ::= { eoPowerEntry 8 } 1967 eoPowerOperState OBJECT-TYPE 1968 SYNTAX IANAPowerStateSet 1969 MAX-ACCESS read-only 1970 STATUS current 1971 DESCRIPTION 1973 "This object specifies the current operational Power 1974 State and the Power State Set for the Energy Object. 1975 other(0) is not a Power State Set and unknown(255) is 1976 not a Power State as such, but simply an indication that 1977 the Power State of the Energy Object is unknown. 1979 Possible values of eoPowerAdminState within the Power 1980 State Set are registered at IANA. 1981 A current list of assignments can be found at 1982 1983 RFC-EDITOR: please check the location after IANA" 1985 ::= { eoPowerEntry 9 } 1987 eoPowerStateEnterReason OBJECT-TYPE 1988 SYNTAX OwnerString 1989 MAX-ACCESS read-write 1990 STATUS current 1991 DESCRIPTION 1992 "This string object describes the reason for the 1993 eoPowerAdminState 1994 transition Alternatively, this string may contain with 1995 the entity that configured this Energy Object to this 1996 Power State." 1997 DEFVAL { "" } 1998 ::= { eoPowerEntry 10 } 2000 eoPowerStateTable OBJECT-TYPE 2001 SYNTAX SEQUENCE OF EoPowerStateEntry 2002 MAX-ACCESS not-accessible 2003 STATUS current 2004 DESCRIPTION 2005 "This table enumerates the maximum power usage, in watts, 2006 for every single supported Power State of each Energy 2007 Object. 2009 This table has an expansion-dependent relationship on the 2010 eoPowerTable, containing rows describing each Power State 2011 for the corresponding Energy Object. For every Energy 2012 Object in the eoPowerTable, there is a corresponding 2013 entry in this table." 2014 ::= { energyObjectMibObjects 3 } 2016 eoPowerStateEntry OBJECT-TYPE 2017 SYNTAX EoPowerStateEntry 2018 MAX-ACCESS not-accessible 2019 STATUS current 2020 DESCRIPTION 2021 "A eoPowerStateEntry extends a corresponding 2022 eoPowerEntry. This entry displays max usage values at 2023 every single possible Power State supported by the Energy 2024 Object. 2025 For example, given the values of a Energy Object 2026 corresponding to a maximum usage of 0 W at the 2027 state 1 (mechoff), 8 W at state 6 (ready), 11 W at state 2028 8 (mediumMinus),and 11 W at state 12 (high): 2030 State MaxUsage Units 2031 1 (mechoff 0 W 2032 2 (softoff) 0 W 2033 3 (hibernate) 0 W 2034 4 (sleep) 0 W 2035 5 (standby) 0 W 2036 6 (ready) 8 W 2037 7 (lowMinus) 8 W 2038 8 (low) 11 W 2039 9 (medimMinus) 11 W 2040 10 (medium) 11 W 2041 11 (highMinus) 11 W 2042 12 (high) 11 W 2044 Furthermore, this table extends to return the total time 2045 in each Power State, along with the number of times a 2046 particular Power State was entered." 2048 INDEX { entPhysicalIndex, 2049 eoPowerStateIndex 2051 } 2052 ::= { eoPowerStateTable 1 } 2054 EoPowerStateEntry ::= SEQUENCE { 2055 eoPowerStateIndex IANAPowerStateSet, 2056 eoPowerStateMaxPower Integer32, 2057 eoPowerStatePowerUnitMultiplier UnitMultiplier, 2058 eoPowerStateTotalTime TimeTicks, 2059 eoPowerStateEnterCount Counter32 2060 } 2062 eoPowerStateIndex OBJECT-TYPE 2063 SYNTAX IANAPowerStateSet 2064 MAX-ACCESS not-accessible 2065 STATUS current 2066 DESCRIPTION 2067 " 2068 This object specifies the index of the Power State of 2069 the Energy Object within a Power State Set. The 2070 semantics of the specific Power State can be obtained 2071 from the Power State Set definition." 2072 ::= { eoPowerStateEntry 1 } 2074 eoPowerStateMaxPower OBJECT-TYPE 2075 SYNTAX Integer32 2076 UNITS "Watts" 2077 MAX-ACCESS read-only 2078 STATUS current 2079 DESCRIPTION 2080 "This object indicates the maximum power for the Energy 2081 Object at the particular Power State. This value is 2082 specified in SI units of watts with the magnitude of the 2083 units (milliwatts, kilowatts, etc.) indicated separately 2084 in eoPowerStatePowerUnitMultiplier. If the maximum power 2085 is not known for a certain Power State, then the value is 2086 encoded as 0xFFFF. 2088 For Power States not enumerated, the value of 2089 eoPowerStateMaxPower might be interpolated by using the 2090 next highest supported Power State." 2091 ::= { eoPowerStateEntry 2 } 2093 eoPowerStatePowerUnitMultiplier OBJECT-TYPE 2094 SYNTAX UnitMultiplier 2095 MAX-ACCESS read-only 2096 STATUS current 2097 DESCRIPTION 2098 "The magnitude of watts for the usage value in 2099 eoPowerStateMaxPower." 2100 ::= { eoPowerStateEntry 3 } 2102 eoPowerStateTotalTime OBJECT-TYPE 2103 SYNTAX TimeTicks 2104 MAX-ACCESS read-only 2105 STATUS current 2106 DESCRIPTION 2107 "This object indicates the total time in hundredth 2108 of second that the Energy Object has been in this power 2109 state since the last reset, as specified in the 2110 sysUpTime." 2111 ::= { eoPowerStateEntry 4 } 2113 eoPowerStateEnterCount OBJECT-TYPE 2114 SYNTAX Counter32 2115 MAX-ACCESS read-only 2116 STATUS current 2117 DESCRIPTION 2118 "This object indicates how often the Energy 2119 Object has 2120 entered this power state, since the last reset of the 2121 device as specified in the sysUpTime." 2122 ::= { eoPowerStateEntry 5 } 2124 eoEnergyParametersTable OBJECT-TYPE 2125 SYNTAX SEQUENCE OF EoEnergyParametersEntry 2126 MAX-ACCESS not-accessible 2127 STATUS current 2128 DESCRIPTION 2129 "This table is used to configure the parameters for 2130 Energy measurement collection in the table 2131 eoEnergyTable. This table allows the configuration of 2132 different measurement settings on the same Energy Object. 2133 Implementation of this table only sense for energy 2134 objects that an eoPowerMeasurementCaliber of actual(3)." 2135 ::= { energyObjectMibObjects 4 } 2137 eoEnergyParametersEntry OBJECT-TYPE 2138 SYNTAX EoEnergyParametersEntry 2139 MAX-ACCESS not-accessible 2140 STATUS current 2141 DESCRIPTION 2142 "An entry controls an energy measurement in 2143 eoEnergyTable." 2145 INDEX { eoEnergyObjectIndex, eoEnergyParametersIndex } 2146 ::= { eoEnergyParametersTable 1 } 2148 EoEnergyParametersEntry ::= SEQUENCE { 2149 eoEnergyObjectIndex PhysicalIndex, 2150 eoEnergyParametersIndex Integer32, 2151 eoEnergyParametersIntervalLength TimeInterval, 2152 eoEnergyParametersIntervalNumber Integer32, 2153 eoEnergyParametersIntervalMode INTEGER, 2154 eoEnergyParametersIntervalWindow TimeInterval, 2155 eoEnergyParametersSampleRate Integer32, 2156 eoEnergyParametersStatus RowStatus 2157 } 2159 eoEnergyObjectIndex OBJECT-TYPE 2160 SYNTAX PhysicalIndex 2161 MAX-ACCESS not-accessible 2162 STATUS current 2163 DESCRIPTION 2164 "The unique value, to identify the specific Energy Object 2165 on which the measurement is applied, the same index used 2166 in the eoPowerTable to identify the Energy Object." 2167 ::= { eoEnergyParametersEntry 1 } 2169 eoEnergyParametersIndex OBJECT-TYPE 2170 SYNTAX Integer32 (0..2147483647) 2171 MAX-ACCESS not-accessible 2172 STATUS current 2173 DESCRIPTION 2174 "This object specifies the index of the Energy 2175 Parameters setting for collection of energy measurements 2176 for an Energy Object. An Energy Object can have multiple 2177 eoEnergyParametersIndex, depending on the capability of 2178 the Energy Object" 2179 ::= { eoEnergyParametersEntry 2 } 2181 eoEnergyParametersIntervalLength OBJECT-TYPE 2182 SYNTAX TimeInterval 2183 MAX-ACCESS read-create 2184 STATUS current 2185 DESCRIPTION 2186 "This object indicates the length of time in hundredth of 2187 seconds over which to compute the average 2188 eoEnergyConsumed measurement in the eoEnergyTable table. 2189 The computation is based on the Energy Object's internal 2190 sampling rate of power consumed or produced by the Energy 2191 Object. The sampling rate is the rate at which the Energy 2192 Object can read the power usage and may differ based on 2193 device capabilities. The average energy consumption is 2194 then computed over the length of the interval." 2195 DEFVAL { 90000 } 2196 ::= { eoEnergyParametersEntry 3 } 2198 eoEnergyParametersIntervalNumber OBJECT-TYPE 2199 SYNTAX Integer32 2200 MAX-ACCESS read-create 2201 STATUS current 2202 DESCRIPTION 2204 "The number of intervals maintained in the eoEnergyTable. 2205 Each interval is characterized by a specific 2206 eoEnergyCollectionStartTime, used as an index to the 2207 table eoEnergyTable. Whenever the maximum number of 2208 entries is reached, the measurement over the new interval 2209 replacesthe oldest measurement. There is one exception to 2210 this rule: when the eoEnergyMaxConsumed and/or 2211 eoEnergyMaxProduced are in (one of) the two oldest 2212 measurement(s), they are left untouched and the next 2213 oldest measurement is replaced." 2214 DEFVAL { 10 } 2215 ::= { eoEnergyParametersEntry 4 } 2217 eoEnergyParametersIntervalMode OBJECT-TYPE 2218 SYNTAX INTEGER { 2219 period(1), 2220 sliding(2), 2221 total(3) 2222 } 2223 MAX-ACCESS read-create 2224 STATUS current 2225 DESCRIPTION 2226 "A control object to define the mode of interval calculation 2227 for the computation of the average eoEnergyConsumed or 2228 eoEnergyProduced measurement in the eoEnergyTable table. 2230 A mode of period(1) specifies non-overlapping periodic 2231 measurements. 2233 A mode of sliding(2) specifies overlapping sliding windows 2234 where the interval between the start of one interval and 2235 the next is defined in eoEnergyParametersIntervalWindow. 2237 A mode of total(3) specifies non-periodic measurement. In 2238 this mode only one interval is used as this is a 2239 continuous measurement since the last reset. The value of 2240 eoEnergyParametersIntervalNumber should be (1) one and 2241 eoEnergyParametersIntervalLength is ignored. " 2242 ::= { eoEnergyParametersEntry 5 } 2244 eoEnergyParametersIntervalWindow OBJECT-TYPE 2245 SYNTAX TimeInterval 2246 MAX-ACCESS read-create 2247 STATUS current 2248 DESCRIPTION 2249 "The length of the duration window between the starting 2250 time of one sliding window and the next starting time in 2251 hundredth of seconds, in order to compute the average of 2252 eoEnergyConsumed, eoEnergyProduced measurements in the 2253 eoEnergyTable table. This is valid only when the 2254 eoEnergyParametersIntervalMode is sliding(2). The 2255 eoEnergyParametersIntervalWindow value should be a multiple 2256 of eoEnergyParametersSampleRate." 2257 ::= { eoEnergyParametersEntry 6 } 2259 eoEnergyParametersSampleRate OBJECT-TYPE 2260 SYNTAX Integer32 2261 UNITS "Milliseconds" 2262 MAX-ACCESS read-create 2263 STATUS current 2264 DESCRIPTION 2265 "The sampling rate, in milliseconds, at which the Energy 2266 Object should poll power usage in order to compute the 2267 average eoEnergyConsumed, eoEnergyProduced measurements 2268 in the table eoEnergyTable. The Energy Object should 2269 initially set this sampling rate to a reasonable value, 2270 i.e., a compromise between intervals that will provide 2271 good accuracy by not being too long, but not so short 2272 that they affect the Energy Object performance by 2273 requesting continuous polling. If the sampling rate is 2274 unknown, the value 0 is reported. The sampling rate 2275 should be selected so that 2276 eoEnergyParametersIntervalWindow is a multiple of 2277 eoEnergyParametersSampleRate." 2278 DEFVAL { 1000 } 2279 ::= { eoEnergyParametersEntry 7 } 2281 eoEnergyParametersStatus OBJECT-TYPE 2282 SYNTAX RowStatus 2283 MAX-ACCESS read-create 2284 STATUS current 2285 DESCRIPTION 2286 "The status of this row. The eoEnergyParametersStatus is 2287 used to start or stop energy usage logging. An entry 2288 status may not be active(1) unless all objects in the 2289 entry have an appropriate value. If this object is not 2290 equal to active(1), all associated usage-data logged into 2291 the eoEnergyTable will be deleted. The data can be 2292 destroyed by setting up the eoEnergyParametersStatus to 2293 destroy(2)." 2294 ::= {eoEnergyParametersEntry 8 } 2296 eoEnergyTable OBJECT-TYPE 2297 SYNTAX SEQUENCE OF EoEnergyEntry 2298 MAX-ACCESS not-accessible 2299 STATUS current 2300 DESCRIPTION 2301 "This table lists Energy Object energy measurements. 2302 Entries in this table are only created if the 2303 corresponding value of object eoPowerMeasurementCaliber 2304 is active(3), i.e., if the power is actually metered." 2305 ::= { energyObjectMibObjects 5 } 2307 eoEnergyEntry OBJECT-TYPE 2308 SYNTAX EoEnergyEntry 2309 MAX-ACCESS not-accessible 2310 STATUS current 2311 DESCRIPTION 2312 "An entry describing energy measurements." 2313 INDEX { eoEnergyParametersIndex, 2314 eoEnergyCollectionStartTime } 2315 ::= { eoEnergyTable 1 } 2317 EoEnergyEntry ::= SEQUENCE { 2318 eoEnergyCollectionStartTime TimeTicks, 2319 eoEnergyConsumed Integer32, 2320 eoEnergyProduced Integer32, 2321 eoEnergyNet Integer32, 2322 eoEnergyUnitMultiplier UnitMultiplier, 2323 eoEnergyAccuracy Integer32, 2324 eoEnergyMaxConsumed Integer32, 2325 eoEnergyMaxProduced Integer32, 2326 eoEnergyDiscontinuityTime TimeStamp 2327 } 2329 eoEnergyCollectionStartTime OBJECT-TYPE 2330 SYNTAX TimeTicks 2331 UNITS "hundredths of seconds" 2332 MAX-ACCESS not-accessible 2333 STATUS current 2334 DESCRIPTION 2335 "The time (in hundredths of a second) since the 2336 network management portion of the system was last 2337 re-initialized, as specified in the sysUpTime [RFC3418]. 2338 This object specifies the start time of the energy 2339 measurement sample. " 2340 ::= { eoEnergyEntry 1 } 2342 eoEnergyConsumed OBJECT-TYPE 2343 SYNTAX Integer32 2344 UNITS "Watt-hours" 2345 MAX-ACCESS read-only 2346 STATUS current 2347 DESCRIPTION 2348 "This object indicates the energy consumed in units of watt- 2349 hours for the Energy Object over the defined interval. 2350 This value is specified in the common billing units of watt- 2351 hours with the magnitude of watt-hours (kW-Hr, MW-Hr, etc.) 2352 indicated separately in eoEnergyUnitMultiplier." 2353 ::= { eoEnergyEntry 2 } 2355 eoEnergyProduced OBJECT-TYPE 2356 SYNTAX Integer32 2357 UNITS "Watt-hours" 2358 MAX-ACCESS read-only 2359 STATUS current 2360 DESCRIPTION 2361 "This object indicates the energy produced in units of watt- 2362 hours for the Energy Object over the defined interval. 2363 This value is specified in the common billing units of watt- 2364 hours with the magnitude of watt-hours (kW-Hr, MW-Hr, etc.) 2365 indicated separately in eoEnergyUnitMultiplier." 2366 ::= { eoEnergyEntry 3 } 2368 eoEnergyNet OBJECT-TYPE 2369 SYNTAX Integer32 2370 UNITS "Watt-hours" 2371 MAX-ACCESS read-only 2372 STATUS current 2373 DESCRIPTION 2374 "This object indicates the resultant of the energy consumed and 2375 energy produced for an energy object in units of watt-hours for 2376 the Energy Object over the defined interval. This value is 2377 specified in the common billing units of watt-hours 2378 with the magnitude of watt-hours (kW-Hr, MW-Hr, etc.) 2379 indicated separately in eoEnergyUnitMultiplier." 2380 ::= { eoEnergyEntry 4 } 2382 eoEnergyUnitMultiplier OBJECT-TYPE 2383 SYNTAX UnitMultiplier 2384 MAX-ACCESS read-only 2385 STATUS current 2386 DESCRIPTION 2387 "This object is the magnitude of watt-hours for the 2388 energy field in eoEnergyConsumed, eoEnergyProduced, 2389 eoEnergyNet, eoEnergyMaxConsumed, and eoEnergyMaxProduced 2390 ." 2391 ::= { eoEnergyEntry 5 } 2393 eoEnergyAccuracy OBJECT-TYPE 2394 SYNTAX Integer32 (0..10000) 2395 UNITS "hundredths of percent" 2396 MAX-ACCESS read-only 2397 STATUS current 2398 DESCRIPTION 2399 "This object indicates a percentage value, in 100ths of a 2400 percent, representing the presumed accuracy of Energy usage 2401 reporting. eoEnergyAccuracy is applicable to all Energy 2402 measurements in the eoEnergyTable. 2404 For example: 1010 means the reported usage is accurate to +/- 2405 10.1 percent. 2406 This value is zero if the accuracy is unknown." 2408 ::= { eoEnergyEntry 6 } 2410 eoEnergyMaxConsumed OBJECT-TYPE 2411 SYNTAX Integer32 2412 UNITS "Watt-hours" 2413 MAX-ACCESS read-only 2414 STATUS current 2415 DESCRIPTION 2416 "This object is the maximum energy ever observed in 2417 eoEnergyConsumed since the monitoring started. This value 2418 is specified in the common billing units of watt-hours 2419 with the magnitude of watt-hours (kW-Hr, MW-Hr, etc.) 2420 indicated separately in eoEnergyUnitMultiplier." 2421 ::= { eoEnergyEntry 7 } 2423 eoEnergyMaxProduced OBJECT-TYPE 2424 SYNTAX Integer32 2425 UNITS "Watt-hours" 2426 MAX-ACCESS read-only 2427 STATUS current 2428 DESCRIPTION 2429 "This object is the maximum energy ever observed in 2430 eoEnergyEnergyProduced since the monitoring started. This 2431 value is specified in the units of watt-hours with the 2432 magnitude of watt-hours (kW-Hr, MW-Hr, etc.) indicated 2433 separately in eoEnergyEnergyUnitMultiplier." 2434 ::= { eoEnergyEntry 8 } 2436 eoEnergyDiscontinuityTime OBJECT-TYPE 2437 SYNTAX TimeStamp 2438 MAX-ACCESS read-only 2439 STATUS current 2440 DESCRIPTION 2442 "The value of sysUpTime [RFC3418] on the most recent 2443 occasion at which any one or more of this entity's energy 2444 counters in this table suffered a discontinuity: 2445 eoEnergyConsumed, eoEnergyProduced or eoEnergyNet. If no 2446 such discontinuities have occurred since the last re- 2447 initialization of the local management subsystem, then 2448 this object contains a zero value." 2449 ::= { eoEnergyEntry 9 } 2451 -- Notifications 2453 eoPowerStateChange NOTIFICATION-TYPE 2454 OBJECTS {eoPowerAdminState, eoPowerOperState, 2455 eoPowerStateEnterReason} 2456 STATUS current 2457 DESCRIPTION 2458 "The SNMP entity generates the eoPowerStateChange when 2459 the value(s) of eoPowerAdminState or eoPowerOperState, 2460 in the context of the Power State Set, have changed for 2461 the Energy Object represented by the entPhysicalIndex." 2462 ::= { energyObjectMibNotifs 1 } 2464 -- Conformance 2466 energyObjectMibCompliances OBJECT IDENTIFIER 2467 ::= { energyObjectMib 3 } 2469 energyObjectMibGroups OBJECT IDENTIFIER 2470 ::= { energyObjectMib 4 } 2472 energyObjectMibFullCompliance MODULE-COMPLIANCE 2473 STATUS current 2474 DESCRIPTION 2475 "When this MIB is implemented with support for 2476 read-create, then such an implementation can 2477 claim full compliance. Such devices can then 2478 be both monitored and configured with this MIB. 2480 Module Compliance of [EMAN-ENTITY] 2481 with respect to entity4CRCompliance should 2482 be supported which requires implementation 2483 of 3 MIB objects (entPhysicalIndex, 2484 entPhysicalName and entPhysicalUUID)." 2486 MODULE -- this module 2487 MANDATORY-GROUPS { 2488 energyObjectMibTableGroup, 2489 energyObjectMibStateTableGroup, 2490 energyObjectMibNotifGroup 2491 } 2493 GROUP energyObjectMibEnergyTableGroup 2495 DESCRIPTION "A compliant implementation does not 2496 have to implement. 2498 Module Compliance of [EMAN-ENTITY] 2499 with respect to entity4CRCompliance should 2500 be supported which requires implementation 2501 of 3 MIB objects (entPhysicalIndex, 2502 entPhysicalName and entPhysicalUUID)." 2504 GROUP energyObjectMibEnergyParametersTableGroup 2506 DESCRIPTION "A compliant implementation does not 2507 have to implement. 2509 Module Compliance of {EMAN-ENTITY] 2510 with respect to entity4CRCompliance should 2511 be supported which requires implementation 2512 of 3 MIB objects (entPhysicalIndex, 2513 entPhysicalName and entPhysicalUUID)." 2515 GROUP energyObjectMibMeterCapabilitiesTableGroup 2516 DESCRIPTION "A compliant implementation does not 2517 have to implement. 2519 Module Compliance of [EMAN-ENTITY] 2520 with respect to entity4CRCompliance should 2521 be supported which requires implementation 2522 of 3 MIB objects (entPhysicalIndex, 2523 entPhysicalName and entPhysicalUUID)." 2525 ::= { energyObjectMibCompliances 1 } 2527 energyObjectMibReadOnlyCompliance MODULE-COMPLIANCE 2528 STATUS current 2529 DESCRIPTION 2530 "When this MIB is implemented without support for 2531 read-create (i.e. in read-only mode), then such an 2532 implementation can claim read-only compliance. Such a 2533 device can then be monitored but cannot be 2534 configured with this MIB. 2536 Module Compliance of [EMAN-ENTITY] 2537 with respect to entity4CRCompliance should 2538 be supported which requires implementation 2539 of 3 MIB objects (entPhysicalIndex, 2540 entPhysicalName and entPhysicalUUID)." 2542 MODULE -- this module 2543 MANDATORY-GROUPS { 2544 energyObjectMibTableGroup, 2545 energyObjectMibStateTableGroup, 2546 energyObjectMibNotifGroup 2547 } 2549 OBJECT eoPowerOperState 2550 MIN-ACCESS read-only 2551 DESCRIPTION 2552 "Write access is not required." 2553 ::= { energyObjectMibCompliances 2 } 2555 -- Units of Conformance 2557 energyObjectMibTableGroup OBJECT-GROUP 2558 OBJECTS { 2559 eoPower, 2560 eoPowerNameplate, 2561 eoPowerUnitMultiplier, 2562 eoPowerAccuracy, 2563 eoPowerMeasurementCaliber, 2564 eoPowerCurrentType, 2565 eoPowerOrigin, 2566 eoPowerAdminState, 2567 eoPowerOperState, 2568 eoPowerStateEnterReason 2569 } 2570 STATUS current 2571 DESCRIPTION 2572 "This group contains the collection of all the objects 2573 related to the Energy Object." 2574 ::= { energyObjectMibGroups 1 } 2576 energyObjectMibStateTableGroup OBJECT-GROUP 2577 OBJECTS { 2578 eoPowerStateMaxPower, 2579 eoPowerStatePowerUnitMultiplier, 2580 eoPowerStateTotalTime, 2581 eoPowerStateEnterCount 2582 } 2583 STATUS current 2584 DESCRIPTION 2585 "This group contains the collection of all the 2586 objects related to the Power State." 2587 ::= { energyObjectMibGroups 2 } 2589 energyObjectMibEnergyParametersTableGroup OBJECT-GROUP 2590 OBJECTS { 2591 eoEnergyObjectIndex, 2592 eoEnergyParametersIndex, 2593 eoEnergyParametersIntervalLength, 2594 eoEnergyParametersIntervalNumber, 2595 eoEnergyParametersIntervalMode, 2596 eoEnergyParametersIntervalWindow, 2597 eoEnergyParametersSampleRate, 2598 eoEnergyParametersStatus 2599 } 2600 STATUS current 2601 DESCRIPTION 2602 "This group contains the collection of all the objects 2603 related to the configuration of the Energy Table." 2604 ::= { energyObjectMibGroups 3 } 2606 energyObjectMibEnergyTableGroup OBJECT-GROUP 2607 OBJECTS { 2608 -- Note that object 2609 -- eoEnergyCollectionStartTime is not 2610 -- included since it is not-accessible 2612 eoEnergyConsumed, 2613 eoEnergyProduced, 2614 eoEnergyNet, 2615 eoEnergyUnitMultiplier, 2616 eoEnergyAccuracy, 2617 eoEnergyMaxConsumed, 2618 eoEnergyMaxProduced, 2619 eoEnergyDiscontinuityTime 2620 } 2621 STATUS current 2622 DESCRIPTION 2623 "This group contains the collection of all the objects 2624 related to the Energy Table." 2625 ::= { energyObjectMibGroups 4 } 2627 energyObjectMibMeterCapabilitiesTableGroup OBJECT-GROUP 2628 OBJECTS { 2629 eoMeterCapability 2630 } 2631 STATUS current 2632 DESCRIPTION 2633 "This group contains the object indicating the 2634 capability of the Energy Object" 2635 ::= { energyObjectMibGroups 5 } 2637 energyObjectMibNotifGroup NOTIFICATION-GROUP 2638 NOTIFICATIONS { 2639 eoPowerStateChange 2640 } 2641 STATUS current 2642 DESCRIPTION 2643 "This group contains the notifications for the power and 2644 energy monitoring MIB Module." 2645 ::= { energyObjectMibGroups 6 } 2647 END 2649 -- ************************************************************ 2650 -- 2651 -- This MIB module is used to monitor power attributes of 2652 -- networked devices with measurements. 2653 -- 2654 -- This MIB module is an extension of energyObjectMib module. 2655 -- 2656 -- ************************************************************* 2658 POWER-ATTRIBUTES-MIB DEFINITIONS ::= BEGIN 2660 IMPORTS 2661 MODULE-IDENTITY, 2662 OBJECT-TYPE, 2663 mib-2, 2664 Integer32 2665 FROM SNMPv2-SMI 2666 MODULE-COMPLIANCE, 2667 OBJECT-GROUP 2668 FROM SNMPv2-CONF 2669 UnitMultiplier 2670 FROM ENERGY-OBJECT-MIB 2671 OwnerString 2672 FROM RMON-MIB 2673 entPhysicalIndex 2674 FROM ENTITY-MIB; 2676 powerAttributesMIB MODULE-IDENTITY 2678 LAST-UPDATED "201210220000Z" -- 22 October 2012 2680 ORGANIZATION "IETF EMAN Working Group" 2681 CONTACT-INFO 2682 "WG charter: 2683 http://datatracker.ietf.org/wg/eman/charter/ 2685 Mailing Lists: 2686 General Discussion: eman@ietf.org 2688 To Subscribe: 2689 https://www.ietf.org/mailman/listinfo/eman 2691 Archive: 2692 http://www.ietf.org/mail-archive/web/eman 2694 Editors: 2696 Mouli Chandramouli 2697 Cisco Systems, Inc. 2698 Sarjapur Outer Ring Road 2699 Bangalore 560103 2700 IN 2701 Phone: +91 80 4429 2409 2702 Email: moulchan@cisco.com 2704 Brad Schoening 2705 44 Rivers Edge Drive 2706 Little Silver, NJ 07739 2707 US 2708 Email: brad.schoening@verizon.net 2710 Juergen Quittek 2711 NEC Europe Ltd. 2712 NEC Laboratories Europe 2713 Network Research Division 2714 Kurfuersten-Anlage 36 2715 Heidelberg 69115 2716 DE 2717 Phone: +49 6221 4342-115 2718 Email: quittek@neclab.eu 2720 Thomas Dietz 2721 NEC Europe Ltd. 2722 NEC Laboratories Europe 2723 Network Research Division 2724 Kurfuersten-Anlage 36 2725 69115 Heidelberg 2726 DE 2727 Phone: +49 6221 4342-128 2728 Email: Thomas.Dietz@nw.neclab.eu 2730 Benoit Claise 2731 Cisco Systems, Inc. 2732 De Kleetlaan 6a b1 2733 Degem 1831 2734 Belgium 2735 Phone: +32 2 704 5622 2736 Email: bclaise@cisco.com" 2738 DESCRIPTION 2739 "This MIB is used to report AC power attributes in 2740 devices. The table is a sparse augmentation of the 2741 eoPowerTable table from the energyObjectMib module. 2742 Both three-phase and single-phase power 2743 configurations are supported. 2745 As a requirement for this MIB module, 2746 [EMAN-AWARE-MIB] should be implemented. 2748 Module Compliance of ENTITY-MIB v4 2749 with respect to entity4CRCompliance should 2750 be supported which requires implementation 2751 of 3 MIB objects (entPhysicalIndex, 2752 entPhysicalName and entPhysicalUUID)." 2754 REVISION 2756 "201210220000Z" -- 22 2012 2758 DESCRIPTION 2759 "Initial version, published as RFC YYY." 2761 ::= { mib-2 yyy } 2763 powerAttributesMIBConform OBJECT IDENTIFIER 2764 ::= { powerAttributesMIB 0 } 2766 powerAttributesMIBObjects OBJECT IDENTIFIER 2767 ::= { powerAttributesMIB 1 } 2769 -- Objects 2771 eoACPwrAttributesTable OBJECT-TYPE 2772 SYNTAX SEQUENCE OF EoACPwrAttributesEntry 2773 MAX-ACCESS not-accessible 2774 STATUS current 2775 DESCRIPTION 2776 "This table defines power attributes measurements for 2777 supported entPhysicalIndex entities. It is a sparse 2778 extension of the eoPowerTable." 2779 ::= { powerAttributesMIBObjects 1 } 2781 eoACPwrAttributesEntry OBJECT-TYPE 2782 SYNTAX EoACPwrAttributesEntry 2783 MAX-ACCESS not-accessible 2784 STATUS current 2785 DESCRIPTION 2786 "This is a sparse extension of the eoPowerTable with 2787 entries for power attributes measurements or 2788 configuration. Each measured value corresponds to an 2789 attribute in IEC 61850-7-4 for non-phase measurements 2790 within the object MMUX." 2792 INDEX {entPhysicalIndex } 2793 ::= { eoACPwrAttributesTable 1 } 2795 EoACPwrAttributesEntry ::= SEQUENCE { 2796 eoACPwrAttributesConfiguration INTEGER, 2797 eoACPwrAttributesAvgVoltage Integer32, 2798 eoACPwrAttributesAvgCurrent Integer32, 2799 eoACPwrAttributesFrequency Integer32, 2800 eoACPwrAttributesPowerUnitMultiplier UnitMultiplier, 2801 eoACPwrAttributesPowerAccuracy Integer32, 2802 eoACPwrAttributesTotalActivePower Integer32, 2803 eoACPwrAttributesTotalReactivePower Integer32, 2804 eoACPwrAttributesTotalApparentPower Integer32, 2805 eoACPwrAttributesTotalPowerFactor Integer32, 2806 eoACPwrAttributesThdAmpheres Integer32, 2807 eoACPwrAttributesThdVoltage Integer32 2808 } 2810 eoACPwrAttributesConfiguration OBJECT-TYPE 2811 SYNTAX INTEGER { 2812 sngl(1), 2813 del(2), 2814 wye(3) 2815 } 2816 MAX-ACCESS read-only 2817 STATUS current 2818 DESCRIPTION 2819 "Configuration describes the physical configurations 2820 of the power supply lines: 2822 * alternating current, single phase (SNGL) 2823 * alternating current, three phase delta (DEL) 2824 * alternating current, three phase Y (WYE) 2826 Three-phase configurations can be either connected in 2827 a triangular delta (DEL) or star Y (WYE) system. WYE 2828 systems have a shared neutral voltage, while DEL 2829 systems do not. Each phase is offset 120 degrees to 2830 each other." 2831 ::= { eoACPwrAttributesEntry 1 } 2833 eoACPwrAttributesAvgVoltage OBJECT-TYPE 2834 SYNTAX Integer32 2835 UNITS "0.1 Volt AC" 2836 MAX-ACCESS read-only 2837 STATUS current 2838 DESCRIPTION 2839 "A measured value for average of the voltage measured 2840 over an integral number of AC cycles For a 3-phase 2841 system, this is the average voltage (V1+V2+V3)/3. IEC 2842 61850-7-4 measured value attribute 'Vol'" 2843 ::= { eoACPwrAttributesEntry 2 } 2845 eoACPwrAttributesAvgCurrent OBJECT-TYPE 2846 SYNTAX Integer32 2847 UNITS "Ampheres" 2848 MAX-ACCESS read-only 2849 STATUS current 2850 DESCRIPTION 2851 "A measured value of the current per phase. IEC 61850- 2852 7-4 attribute 'Amp'" 2853 ::= { eoACPwrAttributesEntry 3 } 2855 eoACPwrAttributesFrequency OBJECT-TYPE 2856 SYNTAX Integer32 (4500..6500) -- UNITS 0.01 Hertz 2857 UNITS "hertz" 2858 MAX-ACCESS read-only 2859 STATUS current 2860 DESCRIPTION 2861 "A measured value for the basic frequency of the AC 2862 circuit. IEC 61850-7-4 attribute 'Hz'." 2863 ::= { eoACPwrAttributesEntry 4 } 2865 eoACPwrAttributesPowerUnitMultiplier OBJECT-TYPE 2866 SYNTAX UnitMultiplier 2867 MAX-ACCESS read-only 2868 STATUS current 2869 DESCRIPTION 2870 "The magnitude of watts for the usage value in 2871 eoACPwrAttributesTotalActivePower, 2872 eoACPwrAttributesTotalReactivePower 2873 and eoACPwrAttributesTotalApparentPower measurements. 2874 For 3-phase power systems, this will also include 2875 eoACPwrAttributesPhaseActivePower, 2876 eoACPwrAttributesPhaseReactivePower and 2877 eoACPwrAttributesPhaseApparentPower" 2878 ::= { eoACPwrAttributesEntry 5 } 2880 eoACPwrAttributesPowerAccuracy OBJECT-TYPE 2881 SYNTAX Integer32 (0..10000) 2882 UNITS "hundredths of percent" 2883 MAX-ACCESS read-only 2884 STATUS current 2885 DESCRIPTION 2886 "This object indicates a percentage value, in 100ths of 2887 a percent, representing the presumed accuracy of 2888 active, reactive, and apparent power usage reporting. 2889 For example: 1010 means the reported usage is accurate 2890 to +/- 10.1 percent. This value is zero if the 2891 accuracy is unknown. 2893 ANSI and IEC define the following accuracy classes for 2894 power measurement: IEC 62053-22 & 60044-1 class 0.1, 2895 0.2, 0.5, 1 & 3. 2896 ANSI C12.20 class 0.2 & 0.5" 2897 ::= { eoACPwrAttributesEntry 6 } 2899 eoACPwrAttributesTotalActivePower OBJECT-TYPE 2900 SYNTAX Integer32 2901 UNITS " watts" 2902 MAX-ACCESS read-only 2903 STATUS current 2904 DESCRIPTION 2905 "A measured value of the actual power delivered to or 2906 consumed by the load. IEC 61850-7-4 attribute 'TotW'." 2907 ::= { eoACPwrAttributesEntry 7 } 2909 eoACPwrAttributesTotalReactivePower OBJECT-TYPE 2910 SYNTAX Integer32 2911 UNITS "volt-amperes reactive" 2912 MAX-ACCESS read-only 2913 STATUS current 2914 DESCRIPTION 2915 "A mesured value of the reactive portion of the 2916 apparent power. IEC 61850-7-4 attribute 'TotVAr'." 2917 ::= { eoACPwrAttributesEntry 8 } 2919 eoACPwrAttributesTotalApparentPower OBJECT-TYPE 2920 SYNTAX Integer32 2921 UNITS "volt-amperes" 2922 MAX-ACCESS read-only 2923 STATUS current 2924 DESCRIPTION 2925 "A measured value of the voltage and current which 2926 determines the apparent power. The apparent power is 2927 the vector sum of real and reactive power. 2929 Note: watts and volt-ampheres are equivalent units and 2930 may be combined. IEC 61850-7-4 attribute 'TotVA'." 2931 ::= { eoACPwrAttributesEntry 9 } 2933 eoACPwrAttributesTotalPowerFactor OBJECT-TYPE 2934 SYNTAX Integer32 (-10000..10000) 2935 UNITS "hundredths of percent" 2936 MAX-ACCESS read-only 2937 STATUS current 2938 DESCRIPTION 2939 "A measured value ratio of the real power flowing to 2940 the load versus the apparent power. It is dimensionless 2941 and expressed here as a percentage value in 100ths of a 2942 percent. A power factor of 100% indicates there is no 2943 inductance load and thus no reactive power. Power 2944 Factor can be positive or negative, where the sign 2945 should be in lead/lag (IEEE) form. IEC 61850-7-4 2946 attribute 'TotPF'." 2947 ::= { eoACPwrAttributesEntry 10 } 2949 eoACPwrAttributesThdAmpheres OBJECT-TYPE 2950 SYNTAX Integer32 (0..10000) 2951 UNITS "hundredths of percent" 2952 MAX-ACCESS read-only 2953 STATUS current 2954 DESCRIPTION 2955 "A calculated value for the current total harmonic 2956 distortion (THD). Method of calculation is not 2957 specified. IEC 61850-7-4 attribute 'ThdAmp'." 2958 ::= { eoACPwrAttributesEntry 11 } 2960 eoACPwrAttributesThdVoltage OBJECT-TYPE 2961 SYNTAX Integer32 (0..10000) 2962 UNITS "hundredths of percent" 2963 MAX-ACCESS read-only 2964 STATUS current 2965 DESCRIPTION 2966 "A calculated value for the voltage total harmonic 2967 distortion (THD). Method of calculation is not 2968 specified. IEC 61850-7-4 attribute 'ThdVol'." 2969 ::= { eoACPwrAttributesEntry 12 } 2971 eoACPwrAttributesPhaseTable OBJECT-TYPE 2972 SYNTAX SEQUENCE OF EoACPwrAttributesPhaseEntry 2973 MAX-ACCESS not-accessible 2974 STATUS current 2975 DESCRIPTION 2976 "This table describes 3-phase power attributes 2977 measurements. It is a sparse extension of the 2978 eoACPwrAttributesTable." 2979 ::= { powerAttributesMIBObjects 2 } 2981 eoACPwrAttributesPhaseEntry OBJECT-TYPE 2982 SYNTAX EoACPwrAttributesPhaseEntry 2983 MAX-ACCESS not-accessible 2984 STATUS current 2985 DESCRIPTION 2986 "An entry describes common 3-phase power attributes 2987 measurements. 2989 This optional table describes 3-phase power attributes 2990 measurements, with three entries for each supported 2991 entPhysicalIndex entity. Entities having single phase 2992 power shall not have any entities. 2994 This table describes attributes common to both WYE and 2995 DEL. Entities having single phase power shall not have 2996 any entries here. It is a sparse extension of the 2997 eoACPwrAttributesTable. 2999 These attributes correspond to IEC 61850-7.4 MMXU phase 3000 measurements." 3001 INDEX { entPhysicalIndex, eoPhaseIndex } 3002 ::= { eoACPwrAttributesPhaseTable 1 } 3004 EoACPwrAttributesPhaseEntry ::= SEQUENCE { 3005 eoPhaseIndex Integer32, 3006 eoACPwrAttributesPhaseAvgCurrent Integer32, 3007 eoACPwrAttributesPhaseActivePower Integer32, 3008 eoACPwrAttributesPhaseReactivePower Integer32, 3009 eoACPwrAttributesPhaseApparentPower Integer32, 3010 eoACPwrAttributesPhasePowerFactor Integer32, 3011 eoACPwrAttributesPhaseImpedance Integer32 3012 } 3014 eoPhaseIndex OBJECT-TYPE 3015 SYNTAX Integer32 (0..359) 3016 MAX-ACCESS not-accessible 3017 STATUS current 3018 DESCRIPTION 3019 "A phase angle typically corresponding to 0, 120, 240." 3020 ::= { eoACPwrAttributesPhaseEntry 1 } 3022 eoACPwrAttributesPhaseAvgCurrent OBJECT-TYPE 3023 SYNTAX Integer32 3024 UNITS "Ampheres" 3025 MAX-ACCESS read-only 3026 STATUS current 3027 DESCRIPTION 3028 "A measured value of the current per phase. IEC 61850- 3029 7-4 attribute 'A'" 3030 ::= { eoACPwrAttributesPhaseEntry 2 } 3032 eoACPwrAttributesPhaseActivePower OBJECT-TYPE 3033 SYNTAX Integer32 3034 UNITS " watts" 3035 MAX-ACCESS read-only 3036 STATUS current 3037 DESCRIPTION 3038 "A measured value of the actual power delivered to or 3039 consumed by the load. IEC 61850-7-4 attribute 'W'" 3040 ::= { eoACPwrAttributesPhaseEntry 3 } 3042 eoACPwrAttributesPhaseReactivePower OBJECT-TYPE 3043 SYNTAX Integer32 3044 UNITS "volt-amperes reactive" 3045 MAX-ACCESS read-only 3046 STATUS current 3047 DESCRIPTION 3048 "A measured value of the reactive portion of the 3049 apparent power. IEC 61850-7-4 attribute 'VAr'" 3050 ::= { eoACPwrAttributesPhaseEntry 4 } 3052 eoACPwrAttributesPhaseApparentPower OBJECT-TYPE 3053 SYNTAX Integer32 3054 UNITS "volt-amperes" 3055 MAX-ACCESS read-only 3056 STATUS current 3057 DESCRIPTION 3058 "A measured value of the voltage and current determines 3059 the apparent power. Active plus reactive power equals 3060 the total apparent power. 3062 Note: Watts and volt-ampheres are equivalent units and 3063 may be combined. IEC 61850-7-4 attribute 'VA'." 3064 ::= { eoACPwrAttributesPhaseEntry 5 } 3066 eoACPwrAttributesPhasePowerFactor OBJECT-TYPE 3067 SYNTAX Integer32 (-10000..10000) 3068 UNITS "hundredths of percent" 3069 MAX-ACCESS read-only 3070 STATUS current 3071 DESCRIPTION 3072 "A measured value ratio of the real power flowing to 3073 the load versus the apparent power for this phase. IEC 3074 61850-7-4 attribute 'PF'. Power Factor can be positive 3075 or negative where the sign should be in lead/lag (IEEE) 3076 form." 3077 ::= { eoACPwrAttributesPhaseEntry 6 } 3079 eoACPwrAttributesPhaseImpedance OBJECT-TYPE 3080 SYNTAX Integer32 3081 UNITS "volt-amperes" 3082 MAX-ACCESS read-only 3083 STATUS current 3084 DESCRIPTION 3085 "A measured value of the impedance. IEC 61850-7-4 attribute 3086 'Z'." 3087 ::= { eoACPwrAttributesPhaseEntry 7 } 3089 eoACPwrAttributesDelPhaseTable OBJECT-TYPE 3090 SYNTAX SEQUENCE OF EoACPwrAttributesDelPhaseEntry 3091 MAX-ACCESS not-accessible 3092 STATUS current 3093 DESCRIPTION 3094 "This table describes DEL configuration phase-to-phase 3095 power attributes measurements. This is a sparse 3096 extension of the eoACPwrAttributesPhaseTable." 3097 ::= { powerAttributesMIBObjects 3 } 3099 eoACPwrAttributesDelPhaseEntry OBJECT-TYPE 3100 SYNTAX EoACPwrAttributesDelPhaseEntry 3101 MAX-ACCESS not-accessible 3102 STATUS current 3103 DESCRIPTION 3104 "An entry describes power attributes attributes of a 3105 phase in a DEL 3-phase power system. Voltage 3106 measurements are provided both relative to each other 3107 and zero. 3109 Measured values are from IEC 61850-7-2 MMUX and THD from 3110 MHAI objects. 3112 For phase-to-phase measurements, the eoPhaseIndex is 3113 compared against the following phase at +120 degrees. 3114 Thus, the possible values are: 3116 eoPhaseIndex Next Phase Angle 3117 0 120 3118 120 240 3119 240 0 3120 " 3121 INDEX { entPhysicalIndex, eoPhaseIndex} 3122 ::= { eoACPwrAttributesDelPhaseTable 1} 3124 EoACPwrAttributesDelPhaseEntry ::= SEQUENCE { 3125 eoACPwrAttributesDelPhaseToNextPhaseVoltage Integer32, 3126 eoACPwrAttributesDelThdPhaseToNextPhaseVoltage Integer32, 3127 eoACPwrAttributesDelThdCurrent Integer32 3128 } 3130 eoACPwrAttributesDelPhaseToNextPhaseVoltage OBJECT-TYPE 3131 SYNTAX Integer32 3132 UNITS "0.1 Volt AC" 3133 MAX-ACCESS read-only 3134 STATUS current 3135 DESCRIPTION 3136 "A measured value of phase to next phase voltages, where 3137 the next phase is IEC 61850-7-4 attribute 'PPV'." 3138 ::= { eoACPwrAttributesDelPhaseEntry 2 } 3140 eoACPwrAttributesDelThdPhaseToNextPhaseVoltage OBJECT-TYPE 3141 SYNTAX Integer32 (0..10000) 3142 UNITS "hundredths of percent" 3143 MAX-ACCESS read-only 3144 STATUS current 3145 DESCRIPTION 3146 "A calculated value for the voltage total harmonic 3147 disortion for phase to next phase. Method of calculation 3148 is not specified. IEC 61850-7-4 attribute 'ThdPPV'." 3149 ::= { eoACPwrAttributesDelPhaseEntry 3 } 3151 eoACPwrAttributesDelThdCurrent OBJECT-TYPE 3152 SYNTAX Integer32 (0..10000) 3153 UNITS "hundredths of percent" 3154 MAX-ACCESS read-only 3155 STATUS current 3156 DESCRIPTION 3157 "A calculated value for the voltage total harmonic 3158 disortion (THD) for phase to phase. Method of 3159 calculation is not specified. 3160 IEC 61850-7-4 attribute 'ThdPPV'." 3161 ::= { eoACPwrAttributesDelPhaseEntry 4 } 3163 eoACPwrAttributesWyePhaseTable OBJECT-TYPE 3164 SYNTAX SEQUENCE OF EoACPwrAttributesWyePhaseEntry 3165 MAX-ACCESS not-accessible 3166 STATUS current 3167 DESCRIPTION 3168 "This table describes WYE configuration phase-to-neutral 3169 power attributes measurements. This is a sparse 3170 extension of the eoACPwrAttributesPhaseTable." 3172 ::= { powerAttributesMIBObjects 4 } 3174 eoACPwrAttributesWyePhaseEntry OBJECT-TYPE 3175 SYNTAX EoACPwrAttributesWyePhaseEntry 3176 MAX-ACCESS not-accessible 3177 STATUS current 3178 DESCRIPTION 3179 "This table describes measurements of WYE configuration 3180 with phase to neutral power attributes attributes. Three 3181 entries are required for each supported entPhysicalIndex 3182 entry. Voltage measurements are relative to neutral. 3184 This is a sparse extension of the 3185 eoACPwrAttributesPhaseTable. 3187 Each entry describes power attributes attributes of one 3188 phase of a WYE 3-phase power system. 3190 Measured values are from IEC 61850-7-2 MMUX and THD from 3191 MHAI objects." 3192 INDEX { entPhysicalIndex, eoPhaseIndex } 3193 ::= { eoACPwrAttributesWyePhaseTable 1} 3195 EoACPwrAttributesWyePhaseEntry ::= SEQUENCE { 3196 eoACPwrAttributesWyePhaseToNeutralVoltage Integer32, 3197 eoACPwrAttributesWyePhaseCurrent Integer32, 3198 eoACPwrAttributesWyeThdPhaseToNeutralVoltage Integer32 3199 } 3201 eoACPwrAttributesWyePhaseToNeutralVoltage OBJECT-TYPE 3202 SYNTAX Integer32 3203 UNITS "0.1 Volt AC" 3204 MAX-ACCESS read-only 3205 STATUS current 3206 DESCRIPTION 3207 "A measured value of phase to neutral voltage. IEC 3208 61850-7-4 attribute 'PhV'." 3209 ::= { eoACPwrAttributesWyePhaseEntry 1 } 3211 eoACPwrAttributesWyePhaseCurrent OBJECT-TYPE 3212 SYNTAX Integer32 3213 UNITS "0.1 ampheres AC" 3214 MAX-ACCESS read-only 3215 STATUS current 3216 DESCRIPTION 3217 "A measured value of phase currents. IEC 61850-7-4 3218 attribute 'A'." 3220 ::= { eoACPwrAttributesWyePhaseEntry 2 } 3222 eoACPwrAttributesWyeThdPhaseToNeutralVoltage OBJECT-TYPE 3223 SYNTAX Integer32 (0..10000) 3224 UNITS "hundredths of percent" 3225 MAX-ACCESS read-only 3226 STATUS current 3227 DESCRIPTION 3228 "A calculated value of the voltage total harmonic 3229 distortion (THD) for phase to neutral. IEC 61850-7-4 3230 attribute 'ThdPhV'." 3231 ::= { eoACPwrAttributesWyePhaseEntry 3 } 3233 -- Conformance 3235 powerAttributesMIBCompliances OBJECT IDENTIFIER 3236 ::= { powerAttributesMIB 2 } 3238 powerAttributesMIBGroups OBJECT IDENTIFIER 3239 ::= { powerAttributesMIB 3 } 3241 powerAttributesMIBFullCompliance MODULE-COMPLIANCE 3242 STATUS current 3243 DESCRIPTION 3244 "When this MIB is implemented with support for read-create, 3245 then such an implementation can claim full compliance. 3246 Such devices can then be both monitored and configured with 3247 this MIB. 3249 Module Compliance of [EMAN-ENTITY] with respect to 3250 entity4CRCompliance should be supported which requires 3251 implementation of 3 MIB objects (entPhysicalIndex, 3252 entPhysicalName and entPhysicalUUID)." 3254 MODULE -- this module 3255 MANDATORY-GROUPS { 3256 powerACPwrAttributesMIBTableGroup 3257 } 3259 GROUP powerACPwrAttributesOptionalMIBTableGroup 3260 DESCRIPTION 3261 "A compliant implementation does not have 3262 to implement." 3264 GROUP powerACPwrAttributesPhaseMIBTableGroup 3265 DESCRIPTION 3266 "A compliant implementation does not have to 3267 implement." 3269 GROUP powerACPwrAttributesDelPhaseMIBTableGroup 3270 DESCRIPTION 3271 "A compliant implementation does not have to 3272 implement." 3274 GROUP powerACPwrAttributesWyePhaseMIBTableGroup 3275 DESCRIPTION 3276 "A compliant implementation does not have to 3277 implement." 3279 ::= { powerAttributesMIBCompliances 1 } 3281 -- Units of Conformance 3283 powerACPwrAttributesMIBTableGroup OBJECT-GROUP 3284 OBJECTS { 3285 -- Note that object entPhysicalIndex is NOT 3286 -- included since it is not-accessible 3288 eoACPwrAttributesAvgVoltage, 3289 eoACPwrAttributesAvgCurrent, 3290 eoACPwrAttributesFrequency, 3291 eoACPwrAttributesPowerUnitMultiplier, 3292 eoACPwrAttributesPowerAccuracy, 3293 eoACPwrAttributesTotalActivePower, 3294 eoACPwrAttributesTotalReactivePower, 3295 eoACPwrAttributesTotalApparentPower, 3296 eoACPwrAttributesTotalPowerFactor 3297 } 3298 STATUS current 3299 DESCRIPTION 3300 "This group contains the collection of all the power 3301 attributes objects related to the Energy Object." 3302 ::= { powerAttributesMIBGroups 1 } 3304 powerACPwrAttributesOptionalMIBTableGroup OBJECT-GROUP 3305 OBJECTS { 3306 eoACPwrAttributesConfiguration, 3307 eoACPwrAttributesThdAmpheres, 3308 eoACPwrAttributesThdVoltage 3309 } 3310 STATUS current 3311 DESCRIPTION 3312 "This group contains the collection of all the power 3313 attributes objects related to the Energy Object." 3314 ::= { powerAttributesMIBGroups 2 } 3316 powerACPwrAttributesPhaseMIBTableGroup OBJECT-GROUP 3317 OBJECTS { 3318 -- Note that object entPhysicalIndex is 3319 -- NOT included since it is 3320 -- not-accessible 3321 eoACPwrAttributesPhaseAvgCurrent, 3322 eoACPwrAttributesPhaseActivePower, 3323 eoACPwrAttributesPhaseReactivePower, 3324 eoACPwrAttributesPhaseApparentPower, 3325 eoACPwrAttributesPhasePowerFactor, 3326 eoACPwrAttributesPhaseImpedance 3327 } 3328 STATUS current 3329 DESCRIPTION 3330 "This group contains the collection of all 3-phase power 3331 attributes objects related to the Power State." 3332 ::= { powerAttributesMIBGroups 3 } 3334 powerACPwrAttributesDelPhaseMIBTableGroup OBJECT-GROUP 3335 OBJECTS { 3336 -- Note that object entPhysicalIndex and 3337 -- eoPhaseIndex are NOT included 3338 -- since they are not-accessible 3339 eoACPwrAttributesDelPhaseToNextPhaseVoltage, 3340 eoACPwrAttributesDelThdPhaseToNextPhaseVoltage, 3341 eoACPwrAttributesDelThdCurrent 3342 } 3343 STATUS current 3344 DESCRIPTION 3345 "This group contains the collection of all power 3346 characteristic attributes of a phase in a DEL 3-phase 3347 power system." 3348 ::= { powerAttributesMIBGroups 4 } 3350 powerACPwrAttributesWyePhaseMIBTableGroup OBJECT-GROUP 3351 OBJECTS { 3352 -- Note that object entPhysicalIndex and 3353 -- eoPhaseIndex are NOT included 3354 -- since they are not-accessible 3356 eoACPwrAttributesWyePhaseToNeutralVoltage, 3357 eoACPwrAttributesWyePhaseCurrent, 3358 eoACPwrAttributesWyeThdPhaseToNeutralVoltage 3359 } 3360 STATUS current 3361 DESCRIPTION 3362 "This group contains the collection of all WYE 3363 configuration phase-to-neutral power attributes 3364 measurements." 3365 ::= { powerAttributesMIBGroups 5 } 3367 END 3369 11. Security Considerations 3371 Some of the readable objects in these MIB modules (i.e., objects 3372 with a MAX-ACCESS other than not-accessible) may be considered 3373 sensitive or vulnerable in some network environments. It is 3374 thus important to control even GET and/or NOTIFY access to these 3375 objects and possibly to even encrypt the values of these objects 3376 when sending them over the network via SNMP. 3378 There are a number of management objects defined in these MIB 3379 modules with a MAX-ACCESS clause of read-write and/or read- 3380 create. Such objects MAY be considered sensitive or vulnerable 3381 in some network environments. The support for SET operations in 3382 a non-secure environment without proper protection can have a 3383 negative effect on network operations. The following are the 3384 tables and objects and their sensitivity/vulnerability: 3386 - Unauthorized changes to the eoPowerOperState (via 3387 theeoPowerAdminState ) MAY disrupt the power settings of the 3388 differentEnergy Objects, and therefore the state of 3389 functionality of the respective Energy Objects. 3390 - Unauthorized changes to the eoEnergyParametersTable MAY 3391 disrupt energy measurement in the eoEnergyTable table. 3393 SNMP versions prior to SNMPv3 did not include adequate security. 3394 Even if the network itself is secure (for example, by using 3395 IPsec), there is still no secure control over who on the secure 3396 network is allowed to access and GET/SET 3397 (read/change/create/delete) the objects in these MIB modules. 3399 It is RECOMMENDED that implementers consider the security 3400 features as provided by the SNMPv3 framework (see [RFC3410], 3401 section 8), including full support for the SNMPv3 cryptographic 3402 mechanisms (for authentication and privacy). 3404 Further, deployment of SNMP versions prior to SNMPv3 is NOT 3405 RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to 3406 enable cryptographic security. It is then a customer/operator 3407 responsibility to ensure that the SNMP entity giving access to 3408 an instance of these MIB modules is properly configured to give 3409 access to the objects only to those principals (users) that have 3410 legitimate rights to GET or SET (change/create/delete) them. 3412 12. IANA Considerations 3414 12.1. IANA Considerations for the MIB Modules 3416 The MIB modules in this document uses the following IANA- 3417 assigned OBJECT IDENTIFIER values recorded in the SMI Numbers 3418 registry: 3420 Descriptor OBJECT IDENTIFIER value 3421 ---------- ----------------------- 3422 energyObjectMib { mib-2 xxx } 3423 powerAttributesMIB { mib-2 yyy } 3425 Additions to the MIB modules are subject to Expert Review 3426 [RFC5226], i.e., review by one of a group of experts designated 3427 by an IETF Area Director. The group of experts MUST check the 3428 requested MIB objects for completeness and accuracy of the 3429 description. Requests for MIB objects that duplicate the 3430 functionality of existing objects SHOULD be declined. The 3431 smallest available OIDs SHOULD be assigned to the new MIB 3432 objects. The specification of new MIB objects SHOULD follow the 3433 structure specified in Section 10. and MUST be published using 3434 a well-established and persistent publication medium. 3436 12.2. IANA Registration of new Power State Set 3438 This document specifies an initial set of Power State Sets. The 3439 list of these Power State Sets with their numeric identifiers is 3440 given in Section 5.2.1. IANA maintains a Textual Convention 3441 IANAPowerStateSet with the initial set of Power State Sets and 3442 the Power States within those Power State Sets. The current 3443 version of Textual convention can be accessed 3444 http://www.iana.org/assignments/IANAPowerStateSet 3446 New Assignments to Power State Sets shall be administered by 3447 IANA and the guidelines and procedures are listed in this 3448 Section. 3450 New assignments for Power State Set will be administered by IANA 3451 through Expert Review [RFC5226], i.e., review by one of a group 3452 of experts designated by an IETF Area Director. The group of 3453 experts MUST check the requested state for completeness and 3454 accuracy of the description. A pure vendor specific 3455 implementation of Power State Set shall not be adopted; since it 3456 would lead to proliferation of Power State Sets. 3458 12.2.1. IANA Registration of the IEEE1621 Power State Set 3460 This document specifies a set of values for the IEEE1621 Power 3461 State Set [IEEE1621]. The list of these values with their 3462 identifiers is given in Section 5.2.1. The Internet Assigned 3463 Numbers Authority (IANA) created a new registry for IEEE1621 3464 Power State Set identifiers and filled it with the initial 3465 listin the Textual Convention IANAPowerStateSet.. 3467 New assignments (or potentially deprecation) for IEEE1621 Power 3468 State Set will be administered by IANA through Expert Review 3469 [RFC5226], i.e., review by one of a group of experts designated 3470 by an IETF Area Director. The group of experts MUST check the 3471 requested state for completeness and accuracy of the 3472 description. 3474 12.2.2. IANA Registration of the DMTF Power State Set 3476 This document specifies a set of values for the DMTF Power State 3477 Set. The list of these values with their identifiers is given 3478 in Section 5.2.1. The Internet Assigned Numbers Authority 3479 (IANA) has created a new registry for DMTF Power State Set 3480 identifiers and filled it with the initial list in the Textual 3481 Convention IANAPowerStateSet. 3482 New assignments (or potentially deprecation) for DMTF Power 3483 State Set will be administered by IANA through Expert Review 3484 [RFC5226], i.e., review by one of a group of experts designated 3485 by an IETF Area Director. The group of experts MUST check the 3486 conformance with the DMTF standard [DMTF], on the top of 3487 checking for completeness and accuracy of the description. 3489 12.2.3. IANA Registration of the EMAN Power State Set 3491 This document specifies a set of values for the EMAN Power State 3492 Set. The list of these values with their identifiers is given 3493 in Section 5.2.1. The Internet Assigned Numbers Authority 3494 (IANA) has created a new registry for EMAN Power State Set 3495 identifiers and filled it with the initial list in the Textual 3496 Convention IANAPowerStateSet. 3497 New assignments (or potentially deprecation) for EMAN Power 3498 State Set will be administered by IANA through Expert Review 3499 [RFC5226], i.e., review by one of a group of experts designated 3500 by an IETF Area Director. The group of experts MUST check the 3501 requested state for completeness and accuracy of the 3502 description. 3504 12.3. Updating the Registration of Existing Power State Sets 3506 IANA maintains a Textual Convention IANAPowerStateSet with the 3507 initial set of Power State Sets and the Power States within 3508 those Power State Sets. The current version of Textual 3509 convention can be accessed 3510 http://www.iana.org/assignments/IANAPowerStateSet 3512 With the evolution of standards, over time, it may be important 3513 to deprecate of some of the existing the Power State Sets or 3514 some of the states within a Power State Set. 3516 The registrant shall publish an Internet-draft or an individual 3517 submission with the clear specification on deprecation of Power 3518 State Sets or Power States registered with IANA. The 3519 deprecation shall be administered by IANA through Expert Review 3520 [RFC5226], i.e., review by one of a group of experts designated 3521 by an IETF Area Director. The process should also allow for a 3522 mechanism for cases where others have significant objections to 3523 claims on deprecation of a registration. In cases, where the 3524 registrant cannot be reached, IESG can designate an Expert to 3525 modify the IANA registry for the deprecation. 3527 12. Contributors 3529 This document results from the merger of two initial proposals. 3530 The following persons made significant contributions either in 3531 one of the initial proposals or in this document. 3533 John Parello 3534 Rolf Winter 3536 Dominique Dudkowski 3538 13. Acknowledgment 3540 The authors would like to thank Shamita Pisal for her prototype 3541 of this MIB module, and her valuable feedback. The authors 3542 would like to Michael Brown for improving the text dramatically. 3544 We would like to thank Juergen Schoenwalder for proposing the 3545 design of the Textual Convention for IANAPowerStateSet and Ira 3546 McDonald for his feedback. Thanks for the many comments on the 3547 design of the EnergyTable from Minoru Teraoka and Hiroto Ogaki. 3549 14. Open Issues 3551 OPEN ISSUE 1 check if all the requirements from [EMAN-REQ] are 3552 covered. Nominal Voltage to be reported as a range ? 3554 OPEN ISSUE 2 IANA Registered Power State Sets deferred to [EMAN- 3555 FMWK] 3557 OPEN ISSUE 3 Disabling eoPowerStateNotification 3559 OPEN ISSUE 4 Units for eoParametersSampleRate in centiseconds to 3560 match the same time scale 3562 OPEN ISSUE 5 Windowing mechanism to determine the 3563 eoEnergyMaxConsumed 3565 15. References 3567 15.2. Normative References 3569 [RFC2119] S. Bradner, Key words for use in RFCs to Indicate 3570 Requirement Levels, BCP 14, RFC 2119, March 1997. 3572 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J. 3573 Schoenwaelder, Ed., "Structure of Management 3574 Information Version 2 (SMIv2)", STD 58, RFC 2578, April 3575 1999. 3577 [RFC2579] McCloghrie, K., Ed., Perkins, D., Ed., and J. 3578 Schoenwaelder, Ed., "Textual Conventions for SMIv2", 3579 STD 58, RFC 2579, April 1999. 3581 [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder, 3582 "Conformance Statements for SMIv2", STD 58, RFC 2580, 3583 April 1999. 3585 [RFC3621] Berger, A., and D. Romascanu, "Power Ethernet MIB", 3586 RFC3621, December 2003. 3588 [RFC4133] Bierman, A. and K. McCloghrie, "Entity MIB (Version 3589 3)", RFC 4133, August 2005. 3591 [LLDP-MED-MIB] ANSI/TIA-1057, "The LLDP Management Information 3592 Base extension module for TIA-TR41.4 media endpoint 3593 discovery information", July 2005. 3595 [EMAN-AWARE-MIB] J. Parello, and B. Claise, "draft-ietf-eman- 3596 energy-aware-mib-08 ", work in progress, April 2013. 3598 15.3. Informative References 3600 [RFC1628] S. Bradner, "UPS Management Information Base", RFC 3601 1628, May 1994 3603 [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart, 3604 "Introduction and Applicability Statements for Internet 3605 Standard Management Framework ", RFC 3410, December 3606 2002. 3608 [RFC3418] Presun, R., Case, J., McCloghrie, K., Rose, M, and S. 3609 Waldbusser, "Management Information Base (MIB) for the 3610 Simple Network Management Protocol (SNMP)", RFC3418, 3611 December 2002. 3613 [RFC3433] Bierman, A., Romascanu, D., and K. Norseth, "Entity 3614 Sensor Management Information Base", RFC 3433, December 3615 2002. 3617 [RFC4268] Chisholm, S. and D. Perkins, "Entity State MIB", RFC 3618 4268, November 2005. 3620 [RFC5226] Narten, T. Alverstrand, H., A. and K. McCloghrie, 3621 "Guidelines for Writing an IANA Considerations Section 3622 in RFCs ", BCP 26, RFC 5226, May 2008. 3624 [EMAN-REQ] Quittek, J., Winter, R., Dietz, T., Claise, B., and 3625 M. Chandramouli, " Requirements for Energy Management", 3626 draft-ietf-eman-requirements-12, February 2013. 3628 [EMAN-FMWK] Claise, B., Parello, J., Schoening, B., Quittek, J. 3629 and Nordman, B, "Energy Management Framework", draft- 3630 ietf-eman-framework-07, February 2013. 3632 [EMAN-MONITORING-MIB] M. Chandramouli, Schoening, B., Dietz, T., 3633 Quittek, J. and B. Claise "Energy and Power Monitoring 3634 MIB ", draft-ietf-eman-energy-monitoring-mib-04, 3635 October 2012. 3637 [EMAN-AS] Schoening, B., Chandramouli, M. and Nordman, B. 3638 "Energy Management (EMAN) Applicability Statement", 3639 draft-ietf-eman-applicability-statement-03, April 2013. 3641 [EMAN-ENTITY] A. Bierman, D. Romascanu, J. Quittek and M. 3642 Chandramouli " Entity MIB (Version 4)", draft-ietf- 3643 eman-rfc4133bis-06, February 2013. 3645 [EMAN-TERMINOLOGY] J. Parello, "Energy Management Terminology", 3646 draft-parello-eman-definitions-07, work in progress, 3647 October 2012. 3649 [ACPI] "Advanced Configuration and Power Interface 3650 Specification",http://www.acpi.info/DOWNLOADS/ACPIspec3 3651 0b.pdf 3653 [DMTF] "Power State Management Profile DMTF DSP1027 Version 3654 2.0" December 2009 3655 http://www.dmtf.org/sites/default/files/standards/docum 3656 ents/DSP1027_2.0.0.pdf 3658 [IEEE1621] "Standard for User Interface Elements in Power 3659 Control of Electronic Devices Employed in 3660 Office/Consumer Environments", IEEE 1621, December 3661 2004. 3663 [IEC.61850-7-4] International Electrotechnical Commission, 3664 "Communication networks and systems for power utility 3665 automation Part 7-4: Basic communication structure 3666 Compatible logical node classes and data object 3667 classes", 2010. 3669 [IEC.62053-21] International Electrotechnical Commission, 3670 "Electricity metering equipment (a.c.) Particular 3671 requirements Part 22: Static meters for active energy 3672 (classes 1 and 2)", 2003. 3674 [IEC.62053-22]International Electrotechnical Commission, 3675 "Electricity metering equipment (a.c.) Particular 3676 requirements Part 22: Static meters for active energy 3677 (classes 0,2 S and 0,5 S)", 2003. 3679 Authors' Addresses 3681 Mouli Chandramouli 3682 Cisco Systems, Inc. 3683 Sarjapur Outer Ring Road 3684 Bangalore 560103 3685 IN 3687 Phone: +91 80 4429 2409 3688 Email: moulchan@cisco.com 3690 Brad Schoening 3691 44 Rivers Edge Drive 3692 Little Silver, NJ 07739 3693 US 3694 Email: brad.schoening@verizon.net 3696 Juergen Quittek 3697 NEC Europe Ltd. 3698 NEC Laboratories Europe 3699 Network Research Division 3700 Kurfuersten-Anlage 36 3701 Heidelberg 69115 3702 DE 3703 Phone: +49 6221 4342-115 3704 Email: quittek@neclab.eu 3706 Thomas Dietz 3707 NEC Europe Ltd. 3708 NEC Laboratories Europe 3709 Network Research Division 3710 Kurfuersten-Anlage 36 3711 Heidelberg 69115 3712 DE 3714 Phone: +49 6221 4342-128 3715 Email: Thomas.Dietz@neclab.eu 3717 Benoit Claise 3718 Cisco Systems, Inc. 3719 De Kleetlaan 6a b1 3720 Diegem 1813 3721 BE 3723 Phone: +32 2 704 5622 3724 Email: bclaise@cisco.com