idnits 2.17.1 draft-ietf-eman-energy-monitoring-mib-06.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- == The page length should not exceed 58 lines per page, but there was 1 longer page, the longest (page 1) being 60 lines Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Line 309 has weird spacing: '...tiplier eoP...' == Line 323 has weird spacing: '...tateSet eoPow...' == Line 347 has weird spacing: '...wStatus eoEne...' == Line 366 has weird spacing: '...exed by entPh...' == Line 701 has weird spacing: '...ributes measu...' == (12 more instances...) == The document seems to lack the recommended RFC 2119 boilerplate, even if it appears to use RFC 2119 keywords -- however, there's a paragraph with a matching beginning. Boilerplate error? (The document does seem to have the reference to RFC 2119 which the ID-Checklist requires). -- The document date (July 15, 2013) is 3910 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'I-D.sheffer-running-code' is mentioned on line 3199, but not defined == Unused Reference: 'ACPI' is defined on line 3451, but no explicit reference was found in the text ** Obsolete normative reference: RFC 4133 (Obsoleted by RFC 6933) -- Possible downref: Non-RFC (?) normative reference: ref. 'LLDP-MED-MIB' -- Possible downref: Non-RFC (?) normative reference: ref. 'EMAN-AWARE-MIB' -- Obsolete informational reference (is this intentional?): RFC 5226 (Obsoleted by RFC 8126) == Outdated reference: A later version (-19) exists of draft-ietf-eman-framework-08 == Outdated reference: A later version (-13) exists of draft-ietf-eman-energy-monitoring-mib-05 == Outdated reference: A later version (-11) exists of draft-ietf-eman-applicability-statement-03 Summary: 1 error (**), 0 flaws (~~), 14 warnings (==), 4 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group M. Chandramouli 3 Internet-Draft Cisco Systems, Inc. 4 Intended Status: Standards Track B. Schoening 5 Expires: February 15, 2014 Independent Consultant 6 J. Quittek 7 T. Dietz 8 NEC Europe Ltd. 9 B. Claise 10 Cisco Systems, Inc. 11 July 15, 2013 13 Power and Energy Monitoring MIB 14 draft-ietf-eman-energy-monitoring-mib-06 16 Status of this Memo 18 This Internet-Draft is submitted to IETF in full conformance 19 with the provisions of BCP 78 and BCP 79. 21 Internet-Drafts are working documents of the Internet 22 Engineering Task Force (IETF), its areas, and its working 23 groups. Note that other groups may also distribute working 24 documents as Internet-Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six 27 months and may be updated, replaced, or obsoleted by other 28 documents at any time. It is inappropriate to use Internet- 29 Drafts as reference material or to cite them other than as 30 "work in progress." 32 The list of current Internet-Drafts can be accessed at 33 http://www.ietf.org/ietf/1id-abstracts.txt 35 The list of Internet-Draft Shadow Directories can be accessed 36 at http://www.ietf.org/shadow.html 38 This Internet-Draft will expire on January 2014. 40 Copyright Notice 42 Copyright (c) 2011 IETF Trust and the persons identified as the 43 document authors. All rights reserved. 45 This document is subject to BCP 78 and the IETF Trust's Legal 46 Provisions Relating to IETF Documents 47 (http://trustee.ietf.org/license-info) in effect on the date of 48 publication of this document. Please review these documents 49 carefully, as they describe your rights and restrictions with 50 respect to this document. Code Components extracted from this 51 document must include Simplified BSD License text as described 52 in Section 4.e of the Trust Legal Provisions and are provided 53 without warranty as described in the Simplified BSD License. 55 Abstract 57 This document defines a subset of the Management Information 58 Base (MIB) for power and energy monitoring of devices. 60 Conventions used in this document 62 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL 63 NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED" 64 "MAY", and "OPTIONAL" in this document are to be interpreted as 65 described in RFC 2119 [RFC2119]. 67 Table of Contents 69 1. Introduction............................................. 3 70 2. The Internet-Standard Management Framework............... 4 71 3. Use Cases................................................ 4 72 4. Terminology.............................................. 5 73 5. Architecture Concepts Applied to the MIB Module.......... 6 74 5.1. Energy Object Information............................. 13 75 5.2. Power State........................................... 14 76 5.2.1. Power State Set................................14 77 5.3. Energy Object Usage Information....................... 15 78 5.4. Optional Power Usage Attributes....................... 16 79 5.5. Optional Energy Measurement........................... 17 80 5.6. Fault Management...................................... 21 81 6. Discovery............................................... 21 82 7. Link with the other IETF MIBs........................... 22 83 7.1. Link with the ENTITY-MIB and the ENTITY-SENSOR MIB..22 84 7.2. Link with the ENTITY-STATE MIB......................23 85 7.3. Link with the POWER-OVER-ETHERNET MIB...............24 86 7.4. Link with the UPS MIB...............................24 87 7.5. Link with the LLDP and LLDP-MED MIBs................25 88 8. Implementation Scenario................................. 26 89 9. Structure of the MIB.................................... 28 90 10. MIB Definitions........................................ 29 91 11. Implementation Status.................................. 70 92 12. Security Considerations................................ 70 93 13. IANA Considerations.................................... 71 94 13.1. IANA Considerations for the MIB Modules.............. 71 95 13.2. IANA Registration of new Power State Set............. 72 96 13.2.1. IANA Registration of the IEEE1621 Power State Set..72 97 13.2.2. IANA Registration of the DMTF Power State Set......72 98 13.2.3. IANA Registration of the EMAN Power State Set.....73 99 13.3. Updating the Registration of Existing Power State 100 Sets....................................................... 73 101 12. Contributors........................................... 73 102 13. Acknowledgment......................................... 74 103 14. Open Issues............................................ 74 104 15. References............................................. 74 105 15.2. Normative References...............................74 106 15.3. Informative References.............................75 108 1. Introduction 110 This document defines a subset of the Management Information 111 Base (MIB) for use in energy management of devices within or 112 connected to communication networks. The MIB modules in this 113 document are designed to provide a model for energy management, 114 which includes monitoring for power state and energy consumption 115 of networked elements. This MIB takes into account the Energy 116 Management Framework [EMAN-FMWK], which in turn, is based on the 117 Requirements for Energy Management [EMAN-REQ]. 119 Energy management is applicable to devices in communication 120 networks. Target devices for this specification include (but 121 are not limited to): routers, switches, Power over Ethernet 122 (PoE) endpoints, protocol gateways for building management 123 systems, intelligent meters, home energy gateways, hosts and 124 servers, sensor proxies, etc. Target devices and the use cases 125 for Energy Management are discussed in Energy Management 126 Applicability Statement [EMAN-AS]. 128 Where applicable, device monitoring extends to the individual 129 components of the device and to any attached dependent devices. 130 For example: A device can contain components that are 131 independent from a power-state point of view, such as line 132 cards, processor cards, hard drives. A device can also have 133 dependent attached devices, such as a switch with PoE endpoints 134 or a power distribution unit with attached endpoints. 136 Devices and their sub-components can be modeled using the 137 containment tree of the ENTITY-MIB [RFC6933]. In addition, 138 ENERGY-AWARE-MIB module [EMAN-AWARE-MIB] provides a framework 139 for modeling the relationship between Energy Objects. It is 140 conceivable to have implementations of ENERGY-AWARE-MIB and 141 ENERGY-OBJECT-MIB for modeling the relationships between Energy 142 Objects and also monitoring the Energy consumption. In some 143 stuations, it is possible to have implementation of ENERGY- 144 OBJECT-MIB along with the requirement of Module Compliance of 145 ENTITY-MIB V4 [RFC6933] with respect to entity4CRCompliance 146 should be supported which requires 3 MIB objects 147 (entPhysicalIndex, entPhysicalName and entPhysicalUUID) MUST be 148 implemented. 150 2. The Internet-Standard Management Framework 152 For a detailed overview of the documents that describe the 153 current Internet-Standard Management Framework, please refer to 154 section 7 of RFC 3410 [RFC3410]. 156 Managed objects are accessed via a virtual information store, 157 termed the Management Information Base or MIB. MIB objects are 158 generally accessed through the Simple Network Management 159 Protocol (SNMP). Objects in the MIB are defined using the 160 mechanisms defined in the Structure of Management Information 161 (SMI). This memo specifies MIB modules that are compliant to 162 SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, 163 RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580]. 165 3. Use Cases 167 Requirements for power and energy monitoring for networking 168 devices are specified in [EMAN-REQ]. The requirements in [EMAN- 169 REQ] cover devices typically found in communications networks, 170 such as switches, routers, and various connected endpoints. For 171 a power monitoring architecture to be useful, it should also 172 apply to facility meters, power distribution units, gateway 173 proxies for commercial building control, home automation 174 devices, and devices that interface with the utility and/or 175 smart grid. Accordingly, the scope of the MIB modules in this 176 document is broader than that specified in [EMAN-REQ]. Several 177 use cases for Energy Management have been identified in the 178 "Energy Management (EMAN) Applicability Statement" [EMAN-AS]. An 179 illustrative example scenario is presented in Section 8. 181 4. Terminology 183 Please refer to [EMAN-FMWK] for the definitions of the 184 following terminology used in this draft. 186 Device 188 Component 190 Energy Management 192 Energy Management System (EnMS) 194 ISO Energy Management System 196 Energy 198 Power 200 Demand 202 Power Attributes 204 Electrical Equipment 206 Non-Electrical Equipment (Mechanical Equipment) 208 Energy Object 210 Electrical Energy Object 212 Non-Electrical Energy Object 214 Energy Monitoring 216 Energy Control 218 Provide Energy: 220 Receive Energy: 222 Power Interface 224 Power Inlet 226 Power Outlet 228 Energy Management Domain 230 Energy Object Identification 232 Energy Object Context 234 Energy Object Relationship 236 Aggregation Relationship 238 Metering Relationship 240 Power Source Relationship 242 Proxy Relationship 244 Energy Object Parent 246 Energy Object Child 248 Power State 250 Power State Set 252 Nameplate Power 254 5. Architecture Concepts Applied to the MIB Module 256 This section describes the concepts specified in the Energy 257 Management Framework [EMAN-FMWK] that pertain to power usage, 258 with specific information related to the MIB module specified in 259 this document. This subsection maps to the section 260 "Architecture High Level Concepts" in the Power Monitoring 261 Architecture [EMAN-FMWK]. 263 The Energy Monitoring MIB has 2 independent MIB modules. The 264 first MIB module energyObjectMib is focused on measurement of 265 power and energy. The second MIB module powerCharMIB is focused 266 on Power Attributes measurements. 268 The energyObjectMib MIB module consists of five tables. 270 The first table is the eoMeterCapabilitiesTable. It indicates 271 the instrumentation available for each energy object. Thus, the 272 entries in this table indicate to the EnMS which other tables 273 from the ENERGY-OBJECT-MIB and POWER-ATTRIBUTES-MIB are 274 available for each energy object. The eoMeterCapabilitiesTable 275 is indexed by entPhysicalIndex. 277 The second table is the eoPowerTable. It returns the power 278 consumption of each energy object, as well as the units, sign, 279 measurement accuracy, and related objects. The eoPowerTable is 280 indexed by entPhysicalIndex. 282 The third table is the eoPowerStateTable. For each energy 283 object, it provides information and statistics about the 284 supported power states. The eoPowerStateTable is indexed by 285 entPhysicalIndex and eoPowerStateIndex. 287 The fourth table is the eoEnergyParametersTable. The entries in 288 this table configure the parameters of energy and demand 289 measurement collection. This table is indexed by 290 eoEnergyParametersIndex. 292 The fifth table is the eoEnergyTable. The entries in this table 293 provide the log the energy and demand information. This table 294 is indexed by eoEnergyParametersIndex. 296 eoMeterCapabilitiesTable(1) 297 | 298 +---eoMeterCapabilitiesEntry(1)[entPhysicalIndex] 299 | | 300 | +---r-n BITS eoMeterCapability 301 | 303 eoPowerTable(2) 304 | 305 +---eoPowerEntry(1) [entPhysicalIndex] 306 | | 307 | +---r-n Integer32 eoPower(1) 308 | +-- r-n Integer32 eoPowerNamePlate(2) 309 | +-- r-n UnitMultiplier eoPowerUnitMultiplier(3) 310 | +-- r-n Integer32 eoPowerAccuracy(4) 311 | +-- r-n INTEGER eoMeasurementCaliber(5) 312 | +-- r-n INTEGER eoPowerCurrentType(6) 313 | +-- r-n INTEGER eoPowerOrigin(7) 314 | +-- rwn IANAPowerStateSet eoPowerAdminState(8) 315 | +-- r-n IANAPowerStateSet eoPowerOperState(9) 316 | +-- r-n OwnerString eoPowerStateEnterReason(10) 317 | 318 | 319 +---eoPowerStateTable(3) 320 | +--eoPowerStateEntry(1) 321 | | [entPhysicalIndex, eoPowerStateIndex] 322 | | 323 | +-- --n IANAPowerStateSet eoPowerStateIndex(1) 324 | +-- r-n Interger32 eoPowerStateMaxPower (2) 325 | +-- r-n UnitMultiplier 326 | eoPowerStatePowerUnitMultiplier (3) 327 | +-- r-n TimeTicks eoPowerStateTotalTime(4) 328 | +-- r-n Counter32 eoPowerStateEnterCount(5) 329 | 331 +eoEnergyParametersTable(4) 332 +---eoEnergyParametersEntry(1) [eoEnergyParametersIndex] 333 | 335 | +-- --n PhysicalIndex eoEnergyObjectIndex (1) 336 | + r-n Integer32 eoEnergyParametersIndex (2) 337 | +-- r-n TimeInterval 338 | eoEnergyParametersIntervalLength (3) 339 | +-- r-n Integer32 340 | eoEnergyParametersIntervalNumber (4) 341 | +-- r-n Integer32 342 | eoEnergyParametersIntervalMode (5) 343 | +-- r-n TimeInterval 344 | eoEnergyParametersIntervalWindow (6) 345 | +-- r-n Integer32 346 | eoEnergyParametersSampleRate (7) 347 | +-- r-n RowStatus eoEnergyParametersStatus (8) 348 | 349 +eoEnergyTable(5) 350 +---eoEnergyEntry(1) [ eoEnergyParametersIndex, 351 eoEnergyCollectionStartTime] 352 | 353 | +-- r-n TimeTicks eoEnergyCollectionStartTime (1) 354 | +-- r-n Integer32 eoEnergyConsumed (2) 355 | +-- r-n Integer32 eoEnergyProduced (3) 356 | +-- r-n Integer32 eoEnergyNet (4) 357 | +-- r-n UnitMultiplier 358 | eoEnergyUnitMultiplier (5) 359 | +-- r-n Integer32 eoEnergyAccuracy(6) 360 | +-- r-n Integer32 eoEnergyMaxConsumed (7) 361 | +-- r-n Integer32 eoEnergyMaxProduced (8) 362 | +-- r-n TimeTicks 363 | eoEnergyDiscontinuityTime(9) 365 The powerAttributesMIB consists of four tables. 366 eoACPwrAttributesTable is indexed by entPhysicalIndex. 367 eoACPwrAttributesPhaseTable is indexed by entPhysicalIndex and 368 eoPhaseIndex. eoACPwrAttributesWyePhaseTable and 369 eoACPwrAttributesDelPhaseTable are indexed by entPhysicalIndex 370 and eoPhaseIndex. 372 eoACPwrAttributesTable(1) 373 | 374 +---eoACPwrAttributesEntry(1) [ entPhysicalIndex] 375 | | 376 | | 377 | +---r-n INTEGER eoACPwrAttributesConfiguration (1) 378 | +-- r-n Interger32 eoACPwrAttributesAvgVoltage (2) 379 | +-- r-n Integer32 eoACPwrAttributesAvgCurrent (3) 380 | +-- r-n Integer32 eoACPwrAttributesFrequency (4) 381 | +-- r-n UnitMultiplier 382 | eoACPwrAttributesPowerUnitMultiplier (5) 383 | +-- r-n Integer32 eoACPwrAttributesPowerAccuracy (6) 384 | +-- r-n Interger32 385 eoACPwrAttributesTotalActivePower (7) 386 | +-- r-n Integer32 387 | eoACPwrAttributesTotalReactivePower (8) 388 | +-- r-n Integer32 389 eoACPwrAttributesTotalApparentPower (9) 390 | +-- r-n Integer32 391 eoACPwrAttributesTotalPowerFactor (10) 392 | +-- r-n Integer32 eoACPwrAttributesThdAmpheres (11) 393 | 394 +eoACPwrAttributesPhaseTable(2) 395 +---EoACPwrAttributesPhaseEntry(1)[ entPhysicalIndex, 396 | | eoPhaseIndex] 397 | | 398 | +-- r-n Integer32 eoPhaseIndex (1) 399 | +-- r-n Integer32 400 | | eoACPwrAttributesPhaseAvgCurrent (2) 401 | +-- r-n Integer32 402 | | eoACPwrAttributesPhaseActivePower (3) 403 | +-- r-n Integer32 404 | | eoACPwrAttributesPhaseReactivePower (4) 405 | +-- r-n Integer32 406 | | eoACPwrAttributesPhaseApparentPower (5) 407 | +-- r-n Integer32 408 | | eoACPwrAttributesPhasePowerFactor (6) 409 | +-- r-n Integer32 410 | | eoACPwrAttributesPhaseImpedance (7) 411 | | 412 +eoACPwrAttributesDelPhaseTable(3) 413 +-- eoACPwrAttributesDelPhaseEntry(1) 414 | | [entPhysicalIndex, 415 | | eoPhaseIndex] 416 | +-- r-n Integer32 417 | | eoACPwrAttributesDelPhaseToNextPhaseVoltage (1) 418 | +-- r-n Integer32 419 | |eoACPwrAttributesDelThdPhaseToNextPhaseVoltage (2) 420 | +-- r-n Integer32 421 eoACPwrAttributesDelThdCurrent (3) 422 | | 423 +eoACPwrAttributesWyePhaseTable(4) 424 +-- eoACPwrAttributesWyePhaseEntry(1) 425 | | [entPhysicalIndex, 426 | | eoPhaseIndex] 427 | +-- r-n Integer32 428 | | eoACPwrAttributesWyePhaseToNeutralVoltage (1) 429 | +-- r-n Integer32 430 | | eoACPwrAttributesWyePhaseCurrent (2) 431 | +-- r-n Integer32 432 | | eoACPwrAttributesWyeThdPhaseToNeutralVoltage (3) 433 | . 435 A UML representation of the MIB objects in the two MIB modules 436 are energyObjectMib and powerAttributesMIB are presented. 438 +-------------------------+ 439 | Energy Object State | 440 | ----------------------- | 441 | eoPowerAdminState | 442 | eoPowerOperState | 443 | eoPowerStateEnterReason | 444 +-------------------------+ 445 | 446 | 447 v 448 +-----------------------+ 449 |---> | Energy Object ID (*) | 450 | | --------------------- | 451 | | entPhysicalIndex | 452 | | entPhysicalName | 453 | | entPhysicalUUID | 454 | +-----------------------+ 455 | 456 | +-----------------------------+ 457 |---- | Energy Object Measurement | 458 | | --------------------------- | 459 | | eoPower | 460 | | eoPowerUnitMultiplier | 461 | | eoPowerAccuracy | 462 | +-----------------------------+ 463 | 464 | +---------------------------+ 465 |---- | Energy Object Attributes | 466 | | ------------------------- | 467 | | eoPowerNamePlate | 468 | | eoPowerMeasurementCaliber | 469 | | eoPowerCurrentType | 470 | | eoPowerOrigin | 471 | +---------------------------+ 472 | 473 | +---------------------------------+ 474 |---- | Energy Object State Statistics | 475 |-------------------------------- | 476 | eoPowerStateMaxPower | 477 | eoPowerStatePowerUnitMultiplier | 478 | eoPowerStateTotalTime | 479 | eoPowerStateEnterCount | 480 +---------------------------------+ 482 Figure 1:UML diagram for energyObjectMib 484 (*) Compliance with the ENERGY-AWARE-MIB 486 +----------------------------------+ 487 | Energy ParametersTable | 488 | -------------------------------- | 489 | eoEnergyObjectIndex | 490 | eoEnergyParametersIndex | 491 | eoEnergyParametersIntervalLength | 492 | eoEnergyParametersIntervalNumber | 493 | eoEnergyParametersIntervalMode | 494 | eoEnergyParametersIntervalWindow | 495 | eoEnergyParametersSampleRate | 496 | eoEnergyParametersStatus | 497 +----------------------------------+ 498 | 499 V 501 +----------------------------------+ 502 | Energy Table | 503 | -------------------------------- | 504 | eoEnergyCollectionStartTime | 505 | eoEnergyConsumed | 506 | eoEnergyProduced | 507 | eoEnergyNet | 508 | eoEnergyUnitMultiplier | 509 | eoEnergyAccuracy | 510 | eoEnergyMaxConsumed | 511 | eoEnergyMaxProduced | 512 | eoDiscontinuityTime | 513 +----------------------------------+ 515 +-----------------------+ 516 |---> | Energy Object ID (*) | 517 | | --------------------- | 518 | | entPhysicalIndex | 519 | | entPhysicalName | 520 | | entPhysicalUUID | 521 | +-----------------------+ 522 | 523 | +--------------------------------------+ 524 |---- | Power Attributes | 525 | | ------------------------------------ | 526 | | eoACPwrAttributesConfiguration | 527 | | eoACPwrAttributesAvgVoltage | 528 | | eoACPwrAttributesAvgCurrent | 529 | | eoACPwrAttributesFrequency | 530 | | eoACPwrAttributesPowerUnitMultiplier | 531 | | eoACPwrAttributesPowerAccuracy | 532 | | eoACPwrAttributesTotalActivePower | 533 | | eoACPwrAttributesTotalReactivePower | 534 | | eoACPwrAttributesTotalApparentPower | 535 | | eoACPwrAttributesTotalPowerFactor | 536 | | eoACPwrAttributesThdAmpheres | 537 | +--------------------------------------+ 538 | 539 | 540 | +--------------------------------------+ 541 |---- | Power Phase Attributes | 542 | | ------------------------------------ | 543 | | eoPhaseIndex | 544 | | eoACPwrAttributesPhaseAvgCurrent | 545 | | eoACPwrAttributesPhaseActivePower | 546 | | eoACPwrAttributesPhaseReactivePower | 547 | | eoACPwrAttributesPhaseApparentPower | 548 | | eoACPwrAttributesPhasePowerFactor | 549 | | eoACPwrAttributesPhaseImpedance | 550 | +--------------------------------------+ 551 | 552 | 553 | +------------------------------------------------+ 554 |---- | AC Input DEL Configuration | 555 | | ---------------------------------------------- | 556 | | eoACPwrAttributesDelPhaseToNextPhaseVoltage | 557 | | eoACPwrAttributesDelThdPhaseToNextPhaseVoltage | 558 | | eoACPwrAttributesDelThdCurrent | 559 | +------------------------------------------------+ 560 | 561 | +----------------------------------------------+ 562 |---- | AC Input WYE Configuration | 563 | -------------------------------------------- | 564 | eoACPwrAttributesWyePhaseToNeutralVoltage | 565 | eoACPwrAttributesWyePhaseCurrent | 566 | eoACPwrAttributesWyeThdPhaseToNeutralVoltage | 567 +----------------------------------------------+ 569 Figure 2: UML diagram for the powerAttributesMIB 571 (*) Compliance with the ENERGY-AWARE-MIB 573 5.1. Energy Object Information 575 Refer to the "Energy Object Information" section in [EMAN-FMWK] 576 for background information. An energy aware device is 577 considered as an instance of a Energy Object as defined in the 578 [EMAN-FMWK]. 580 The Energy Object identity information is specified in the MIB 581 ENERGY-AWARE-MIB module [EMAN-AWARE-MIB] primary table, i.e. the 582 eoTable. In this table, the context of the Energy Object such as 583 Domain, RoleDescription, Importance are specified. In addition, 584 the ENERGY-AWARE-MIB module returns the relationship between 585 Objects. There are several possible relationships between Parent 586 and Child as defined in [EMAN-AWARE-MIB] such as MeteredBy, 587 PoweredBy, and AggregatedBy. 589 5.2. Power State 591 Refer to the "Power States" section in [EMAN-FMWK] for 592 background information. 594 An Energy Object may have energy conservation modes called Power 595 States. Between the ON and OFF states of a device, there can be 596 several intermediate energy saving modes. Those energy saving 597 modes are called as Power States. 599 Power States, which represent universal states of power 600 management of an Energy Object, are specified by the 601 eoPowerState MIB object. The actual Power State is specified by 602 the eoPowerOperState MIB object, while the eoPowerAdminState MIB 603 object specifies the Power State requested for the Energy 604 Object. The difference between the values of eoPowerOperState 605 and eoPowerAdminState can be attributed that the Energy Object 606 is busy transitioning from eoPowerAdminState into the 607 eoPowerOperState, at which point it will update the content of 608 eoPowerOperState. In addition, the possible reason for change 609 in Power State is reported in eoPowerStateEnterReason. 610 Regarding eoPowerStateEnterReason, management stations and 611 Energy Objects should support any format of the owner string 612 dictated by the local policy of the organization. It is 613 suggested that this name contain at least the reason for the 614 transition change, and one or more of the following: IP address, 615 management station name, network manager's name, location, or 616 phone number. 618 The MIB objects eoPowerOperState, eoPowerAdminState , and 619 eoPowerStateEnterReason are contained in the eoPowerTable MIB 620 table. 622 The eoPowerStateTable table enumerates the maximum power usage 623 in watts, for every single supported Power State of each Power 624 State Set supported by the Energy Object. In addition, 625 PowerStateTable provides additional statistics: 626 eoPowerStateEnterCount, the number of times an entity has 627 visited a particular Power State, and eoPowerStateTotalTime, the 628 total time spent in a particular Power State of an Energy 629 Object. 631 5.2.1. Power State Set 633 There are several standards and implementations of Power State 634 Sets. A Energy Object can support one or multiple Power State 635 Set implementation(s) concurrently. 637 There are currently three Power State Sets advocated: 639 unknown(0) 640 IEEE1621(256) - [IEEE1621] 641 DMTF(512) - [DMTF] 642 EMAN(1024) - [EMAN-MONITORING-MIB] 644 The respective specific states related to each Power State Set 645 are specified in the following sections. The guidelines for 646 addition of new Power State Sets have been specified in the IANA 647 Considerations Section. 649 The Power States within each Power State Set are listed in 650 [EMAN-FMWK]. The Textual Convention IANAPowerStateSet provides 651 the proposed numbering of the Power States within the IEEE1621 652 Power State Set, DMTF Power State Set and the EMAN Power State 653 Set. 655 5.3. Energy Object Usage Information 657 Refer to the "Energy Object Usage Measurement" section in [EMAN- 658 FMWK] for background information. 660 For an Energy Object, power usage is reported using eoPower. 661 The magnitude of measurement is based on the 662 eoPowerUnitMultiplier MIB variable, based on the UnitMultiplier 663 Textual Convention (TC). Power measurement magnitude should 664 conform to the IEC 62053-21 [IEC.62053-21] and IEC 62053-22 665 [IEC.62053-22] definition of unit multiplier for the SI (System 666 International) units of measure. Measured values are 667 represented in SI units obtained by BaseValue * 10 raised to the 668 power of the scale. 670 For example, if current power usage of an Energy Object is 3, it 671 could be 3 W, 3 mW, 3 KW, or 3 MW, depending on the value of 672 eoPowerUnitMultiplier. Note that other measurements throughout 673 the two MIB modules in this document use the same mechanism, 674 including eoPowerStatePowerUnitMultiplier, 675 eoEnergyUnitMultiplier, and 676 eoACPwrAttributesPowerUnitMultiplier. 678 In addition to knowing the usage and magnitude, it is useful to 679 know how a eoPower measurement was obtained. An NMS can use 680 this to account for the accuracy and nature of the reading 681 between different implementations. For this eoPowerOrigin 682 describes whether the measurements were made at the device 683 itself or from a remote source. The eoPowerMeasurementCaliber 684 describes the method that was used to measure the power and can 685 distinguish actual or estimated values. There may be devices in 686 the network, which may not be able to measure or report power 687 consumption. For those devices, the object 688 eoPowerMeasurementCaliber shall report that measurement 689 mechanism is "unavailable" and the eoPower measurement shall be 690 "0". 692 The nameplate power rating of an Energy Object is specified in 693 eoPowerNameplate MIB object. 695 5.4. Optional Power Usage Attributes 697 Refer to the "Optional Power Usage Attributes" section in 698 [EMAN-FMWK] for background information. 700 The optional powerAttributesMIB MIB module can be implemented to 701 further describe power usage attributes measurement. The 702 powerAttributesMIB MIB module adheres closely to the IEC 61850 703 7-2 standard to describe AC measurements. 705 The powerAttributesMIB MIB module contains a primary table, the 706 eoACPwrAttributesTable table, that defines power attributes 707 measurements for supported entPhysicalIndex entities, as a 708 sparse extension of the eoPowerTable (with entPhysicalIndex as 709 primary index). This eoACPwrAttributesTable table contains such 710 information as the configuration (single phase, DEL 3 phases, 711 WYE 3 phases), voltage, frequency, power accuracy, total 712 active/reactive power/apparent power, amperage, and voltage. 714 In case of 3-phase power, the eoACPwrAttributesPhaseTable 715 additional table is populated with Power Attributes measurements 716 per phase (so double indexed by the entPhysicalIndex and 717 eoPhaseIndex). This table, which describes attributes common to 718 both WYE and DEL configurations, contains the average current, 719 active/reactive/apparent power, power factor, and impedance. 721 In case of 3-phase power with a DEL configuration, the 722 eoACPwrAttributesDelPhaseTable table describes the phase-to- 723 phase power attributes measurements, i.e., voltage and current. 725 In case of 3-phase power with a Wye configuration, the 726 eoACPwrAttributesWyePhaseTable table describes the phase-to- 727 neutral power attributes measurements, i.e., voltage and 728 current. 730 5.5. Optional Energy Measurement 732 Refer to the "Optional Energy and demand Measurement" section in 733 [EMAN-FMWK] for the definition and terminology information. 735 It is relevant to measure energy and demand only when there are 736 actual power measurements obtained from measurement hardware. If 737 the eoPowerMeasurementCaliber MIB object has values of 738 unavailable, unknown, estimated, or presumed, then the energy 739 and demand values are not useful. 741 Two tables are introduced to characterize energy measurement of 742 an Energy Object: eoEnergyTable and eoEnergyParametersTable. 743 Both energy and demand information can be represented via the 744 eoEnergyTable. Energy information will be an accumulation with 745 no interval. Demand information can be represented. 746 The eoEnergyParametersTable consists of the parameters defining 747 eoEnergyParametersIndex an index of that specifies the setting 748 for collection of energy measurements for an Energy Object, 749 eoEnergyObjectIndex linked to the entPhysicalIndex of the 750 Energy Object, the duration of measurement intervals in seconds, 751 (eoEnergyParametersIntervalLength), the number of successive 752 intervals to be stored in the eoEnergyTable, 753 (eoEnergyParametersIntervalNumber), the type of measurement 754 technique (eoEnergyParametersIntervalMode), and a sample rate 755 used to calculate the average (eoEnergyParametersSampleRate). 756 Judicious choice of the sampling rate will ensure accurate 757 measurement of energy while not imposing an excessive polling 758 burden. 760 There are three eoEnergyParametersIntervalMode types used for 761 energy measurement collection: period, sliding, and total. The 762 choices of the the three different modes of collection are based 763 on IEC standard 61850-7-4. Note that multiple 764 eoEnergyParametersIntervalMode types MAY be configured 765 simultaneously. It is important to note that for a given Energy 766 Object, multiple modes (periodic, total, sliding window) of 767 energy measurement collection can be configured with the use of 768 eoEnergyParametersIndex. However, simultaneous measurement in 769 multiple modes for a given Energy Object depends on the Energy 770 Object capability. 772 These three eoEnergyParametersIntervalMode types are illustrated 773 by the following three figures, for which: 775 - The horizontal axis represents the current time, with the 776 symbol <--- L ---> expressing the 777 eoEnergyParametersIntervalLength, and the 778 eoEnergyCollectionStartTime is represented by S1, S2, S3, S4, 779 ..., Sx where x is the value of 780 eoEnergyParametersIntervalNumber. 782 - The vertical axis represents the time interval of sampling and 783 the value of eoEnergyConsumed can be obtained at the end of the 784 sampling period. The symbol =========== denotes the duration of 785 the sampling period. 787 | | | =========== | 788 |============ | | | 789 | | | | 790 | |============ | | 791 | | | | 792 | <--- L ---> | <--- L ---> | <--- L ---> | 793 | | | | 794 S1 S2 S3 S4 796 Figure 4 : Period eoEnergyParametersIntervalMode 798 A eoEnergyParametersIntervalMode type of 'period' specifies non- 799 overlapping periodic measurements. Therefore, the next 800 eoEnergyCollectionStartTime is equal to the previous 801 eoEnergyCollectionStartTime plus 802 eoEnergyParametersIntervalLength. S2=S1+L; S3=S2+L, ... 804 |============ | 805 | | 806 | <--- L ---> | 807 | | 808 | |============ | 809 | | | 810 | | <--- L ---> | 811 | | | 812 | | |============ | 813 | | | | 814 | | | <--- L ---> | 815 | | | | 816 | | | |============ | 817 | | | | | 818 | | | | <--- L ---> | 819 S1 | | | | 820 | | | | 821 | | | | 822 S2 | | | 823 | | | 824 | | | 825 S3 | | 826 | | 827 | | 828 S4 830 Figure 5 : Sliding eoEnergyParametersIntervalMode 832 A eoEnergyParametersIntervalMode type of 'sliding' specifies 833 overlapping periodic measurements. 835 | | 836 |========================= | 837 | | 838 | | 839 | | 840 | <--- Total length ---> | 841 | | 842 S1 844 Figure 6 : Total eoEnergyParametersIntervalMode 846 A eoEnergyParametersIntervalMode type of 'total' specifies a 847 continuous measurement since the last reset. The value of 848 eoEnergyParametersIntervalNumber should be (1) one and 849 eoEnergyParametersIntervalLength is ignored. 851 The eoEnergyParametersStatus is used to start and stop energy 852 usage logging. The status of this variable is "active" when 853 all the objects in eoEnergyParametersTable are appropriate which 854 in turn indicates if eoEnergyTable entries exist or not. 856 The eoEnergyTable consists of energy measurements in 857 eoEnergyConsumed, eoEnergyProduced and eoEnergyNet, the units of 858 the measured energy eoEnergyUnitMultiplier, and the maximum 859 observed energy within a window eoEnergyMaxConsumed, 860 eoEnergyMaxProduced. 862 Measurements of the total energy consumed by an Energy Object 863 may suffer from interruptions in the continuous measurement of 864 energy consumption. In order to indicate such interruptions, 865 the object eoEnergyDiscontinuityTime is provided for indicating 866 the time of the last interruption of total energy measurement. 867 eoEnergyDiscontinuityTime shall indicate the sysUpTime [RFC3418] 868 when the device was reset. 870 The following example illustrates the eoEnergyTable and 871 eoEnergyParametersTable: 873 First, in order to estimate energy, a time interval to sample 874 energy should be specified, i.e. 875 eoEnergyParametersIntervalLength can be set to "900 seconds" or 876 15 minutes and the number of consecutive intervals over which 877 the maximum energy is calculated 878 (eoEnergyParametersIntervalNumber) as "10". The sampling rate 879 internal to the Energy Object for measurement of power usage 880 (eoEnergyParametersSampleRate) can be "1000 milliseconds", as 881 set by the Energy Object as a reasonable value. Then, the 882 eoEnergyParametersStatus is set to active (value 1) to indicate 883 that the Energy Object should start monitoring the usage per the 884 eoEnergyTable. 886 The indices for the eoEnergyTable are eoEnergyParametersIndex 887 which identifies the index for the setting of energy measurement 888 collection Energy Object, and eoEnergyCollectionStartTime, which 889 denotes the start time of the energy measurement interval based 890 on sysUpTime [RFC3418]. The value of eoEnergyComsumed is the 891 measured energy consumption over the time interval specified 892 (eoEnergyParametersIntervalLength) based on the Energy Object 893 internal sampling rate (eoEnergyParametersSampleRate). While 894 choosing the values for the eoEnergyParametersIntervalLength and 895 eoEnergyParametersSampleRate, it is recommended to take into 896 consideration either the network element resources adequate to 897 process and store the sample values, and the mechanism used to 898 calculate the eoEnergyConsumed. The units are derived from 899 eoEnergyUnitMultiplier. For example, eoEnergyConsumed can be 900 "100" with eoEnergyUnitMultiplier equal to 0, the measured 901 energy consumption of the Energy Object is 100 watt-hours. The 902 eoEnergyMaxConsumed is the maximum energy observed and that can 903 be "150 watt-hours". 905 The eoEnergyTable has a buffer to retain a certain number of 906 intervals, as defined by eoEnergyParametersIntervalNumber. 907 If the default value of "10" is kept, then the eoEnergyTable 908 contains 10 energy measurements, including the maximum. 910 Here is a brief explanation of how the maximum energy can be 911 calculated. The first observed energy measurement value is 912 taken to be the initial maximum. With each subsequent 913 measurement, based on numerical comparison, maximum energy may 914 be updated. The maximum value is retained as long as the 915 measurements are taking place. Based on periodic polling of 916 this table, an NMS could compute the maximum over a longer 917 period, i.e. a month, 3 months, or a year. 919 5.6. Fault Management 921 [EMAN-REQ] specifies requirements about Power States such as 922 "the current power state" , "the time of the last state change", 923 "the total time spent in each state", "the number of transitions 924 to each state" etc. Some of these requirements are fulfilled 925 explicitly by MIB objects such as eoPowerOperState, 926 eoPowerStateTotalTime and eoPowerStateEnterCount. Some of the 927 other requirements are met via the SNMP NOTIFICATION mechanism. 928 eoPowerStateChange SNMP notification which is generated when the 929 value(s) of ,eoPowerStateIndex, eoPowerOperState, 930 eoPowerAdminState have changed. 932 6. Discovery 934 It is foreseen that most Energy Objects will require the 935 implementation of the ENERGY-AWARE MIB [EMAN-AWARE-MIB] as a 936 prerequisite for this MIB module. In such a case, eoPowerTable 937 of the EMAN-MON-MIB is a sparse extension of the eoTable of 938 ENERGY-AWARE-MIB. Every Energy Object MUST implement 939 entPhysicalIndex, entPhysicalUUID and entPhysicalName from the 940 ENTITY-MIB [RFC6933]. As the primary index for the Energy 941 Object, entPhysicalIndex is used. 943 The NMS must first poll the ENERGY-AWARE-MIB module [EMAN-AWARE- 944 MIB], if available, in order to discover all the Energy Objects 945 and the relationships between those (notion of Parent/Child). 946 In the ENERGY-AWARE-MIB module tables, the Energy Objects are 947 indexed by the entPhysicalIndex. 949 If an implementation of the ENERGY-AWARE-MIB module is available 950 in the local SNMP context, for the same Energy Object, the 951 entPhysicalIndex value (EMAN-AWARE-MIB) shall be used. The 952 entPhysicalIndex characterizes the Energy Object in the 953 energyObjectMib and the powerAttributesMIB MIB modules (this 954 document). 956 From there, the NMS must poll the eoPowerStateTable (specified 957 in the energyObjectMib module in this document), which 958 enumerates, amongst other things, the maximum power usage. As 959 the entries in eoPowerStateTable table are indexed by the 960 Energy Object ( entPhysicalIndex), by the Power State Set 961 (eoPowerStateIndex), the maximum power usage is discovered per 962 Energy Object, and the power usage per Power State of the Power 963 State Set. In other words, polling the eoPowerStateTable allows 964 the discovery of each Power State within every Power State Set 965 supported by the Energy Object. 967 If the Energy Object is an Aggregator or a Proxy, the MIB module 968 would be populated with the Energy Object Parent and Children 969 information, which have their own Energy Object index value 970 (entPhysicalIndex). However, the parent/child relationship must 971 be discovered thanks to the ENERGY-AWARE-MIB module. 973 Finally, the NMS can monitor the power attributes thanks to the 974 powerAttributesMIB MIB module, which reuses the entPhysicalIndex 975 to index the Energy Object. 977 7. Link with the other IETF MIBs 979 7.1. Link with the ENTITY-MIB and the ENTITY-SENSOR MIB 981 RFC 4133 [RFC4133] defines the ENTITY-MIB module that lists the 982 physical entities of a networking device (router, switch, etc.) 983 and those physical entities indexed by entPhysicalIndex. From 984 an energy-management standpoint, the physical entities that 985 consume or produce energy are of interest. 987 RFC 3433 [RFC3433] defines the ENTITY-SENSOR MIB module that 988 provides a standardized way of obtaining information (current 989 value of the sensor, operational status of the sensor, and the 990 data units precision) from sensors embedded in networking 991 devices. Sensors are associated with each index of 992 entPhysicalIndex of the ENTITY-MIB [RFC4133]. While the focus 993 of the Power and Energy Monitoring MIB is on measurement of 994 power usage of networking equipment indexed by the ENTITY-MIB, 995 this MIB proposes a customized power scale for power measurement 996 and different power state states of networking equipment, and 997 functionality to configure the power state states. 999 When this MIB module is used to monitor the power usage of 1000 devices like routers and switches, the ENTITY-MIB and ENTITY- 1001 SENSOR MIB SHOULD be implemented. In such cases, the Energy 1002 Objects are modeled by the entPhysicalIndex through the 1003 entPhysicalEntity MIB object specified in the eoTable in the 1004 ENERGY-AWARE-MIB MIB module [EMAN-AWARE-MIB]. 1006 However, the ENTITY-SENSOR MIB [RFC3433] does not have the ANSI 1007 C12.x accuracy classes required for electricity (i.e., 1%, 2%, 1008 0.5% accuracy classes). Indeed, entPhySensorPrecision [RFC3433] 1009 represents "The number of decimal places of precision in fixed- 1010 point sensor values returned by the associated entPhySensorValue 1011 object". The ANSI and IEC Standards are used for power 1012 measurement and these standards require that we use an accuracy 1013 class, not the scientific-number precision model specified in 1014 RFC3433. The eoPowerAccuracy MIB object models this accuracy. 1015 Note that eoPowerUnitMultipler represents the scale factor per 1016 IEC 62053-21 [IEC.62053-21] and IEC 62053-22 [IEC.62053-22], 1017 which is a more logical representation for power measurements 1018 (compared to entPhySensorScale), with the mantissa and the 1019 exponent values X * 10 ^ Y. 1021 Power measurements specifying the qualifier 'UNITS' for each 1022 measured value in watts are used in the LLDP-EXT-MED-MIB, POE 1023 [RFC3621], and UPS [RFC1628] MIBs. The same 'UNITS' qualifier 1024 is used for the power measurement values. 1026 One cannot assume that the ENTITY-MIB and ENTITY-SENSOR MIB are 1027 implemented for all Energy Objects that need to be monitored. A 1028 typical example is a converged building gateway, monitoring 1029 several other devices in the building, doing the proxy between 1030 SNMP and a protocol like BACNET. Another example is the home 1031 energy controller. In such cases, the eoPhysicalEntity value 1032 contains the zero value, thanks to PhysicalIndexOrZero textual 1033 convention. 1035 The eoPower is similar to entPhySensorValue [RFC3433] and the 1036 eoPowerUnitMultipler is similar to entPhySensorScale. 1038 7.2. Link with the ENTITY-STATE MIB 1040 For each entity in the ENTITY-MIB [RFC4133], the ENTITY-STATE 1041 MIB [RFC4268] specifies the operational states (entStateOper: 1042 unknown, enabled, disabled, testing), the alarm (entStateAlarm: 1043 unknown, underRepair, critical, major, minor, warning, 1044 indeterminate) and the possible values of standby states 1045 (entStateStandby: unknown, hotStandby, coldStandby, 1046 providingService). 1048 From a power monitoring point of view, in contrast to the entity 1049 operational states of entities, Power States are required, as 1050 proposed in the Power and Energy Monitoring MIB module. Those 1051 Power States can be mapped to the different operational states 1052 in the ENTITY-STATE MIB, if a formal mapping is required. For 1053 example, the entStateStandby "unknown", "hotStandby", 1054 "coldStandby", states could map to the Power State "unknown", 1055 "ready", "standby", respectively, while the entStateStandby 1056 "providingService" could map to any "low" to "high" Power State. 1058 7.3. Link with the POWER-OVER-ETHERNET MIB 1060 Power-over-Ethernet MIB [RFC3621] provides an energy monitoring 1061 and configuration framework for power over Ethernet devices. 1062 The RFC introduces a concept of a port group on a switch to 1063 define power monitoring and management policy and does not use 1064 the entPhysicalIndex as the index. Indeed, the 1065 pethMainPseConsumptionPower is indexed by the 1066 pethMainPseGroupIndex, which has no mapping with the 1067 entPhysicalIndex. 1069 One cannot assume that the Power-over-Ethernet MIB is 1070 implemented for all Energy Objects that need to be monitored. 1071 A typical example is a converged building gateway, monitoring 1072 several other devices in the building, doing the proxy between 1073 SNMP and a protocol like BACNET. Another example is the home 1074 energy controller. In such cases, the eoethPortIndex and 1075 eoethPortGrpIndex values contain the zero value, thanks to new 1076 PethPsePortIndexOrZero and textual PethPsePortGroupIndexOrZero 1077 conventions. 1079 However, if the Power-over-Ethernet MIB [RFC3621] is supported, 1080 the Energy Object eoethPortIndex and eoethPortGrpIndex contain 1081 the pethPsePortIndex and pethPsePortGroupIndex, respectively. 1083 As a consequence, the entPhysicalIndex MIB object has been kept 1084 as the unique Energy Object index. 1086 Note that, even though the Power-over-Ethernet MIB [RFC3621] was 1087 created after the ENTITY-SENSOR MIB [RFC3433], it does not reuse 1088 the precision notion from the ENTITY-SENSOR MIB, i.e. the 1089 entPhySensorPrecision MIB object. 1091 7.4. Link with the UPS MIB 1093 To protect against unexpected power disruption, data centers and 1094 buildings make use of Uninterruptible Power Supplies (UPS). To 1095 protect critical assets, a UPS can be restricted to a particular 1096 subset or domain of the network. UPS usage typically lasts only 1097 for a finite period of time, until normal power supply is 1098 restored. Planning is required to decide on the capacity of the 1099 UPS based on output power and duration of probable power outage. 1100 To properly provision UPS power in a data center or building, it 1101 is important to first understand the total demand required to 1102 support all the entities in the site. This demand can be 1103 assessed and monitored via the Power and Energy Monitoring MIB. 1105 UPS MIB [RFC1628] provides information on the state of the UPS 1106 network. Implementation of the UPS MIB is useful at the 1107 aggregate level of a data center or a building. The MIB module 1108 contains several groups of variables: 1110 - upsIdent: Identifies the UPS entity (name, model, etc.). 1112 - upsBattery group: Indicates the battery state 1113 (upsbatteryStatus, upsEstimatedMinutesRemaining, etc.) 1115 - upsInput group: Characterizes the input load to the UPS 1116 (number of input lines, voltage, current, etc.). 1118 - upsOutput: Characterizes the output from the UPS (number of 1119 output lines, voltage, current, etc.) 1121 - upsAlarms: Indicates the various alarm events. 1123 The measurement of power in the UPS MIB is in Volts, Amperes and 1124 Watts. The units of power measurement are RMS volts and RMS 1125 Amperes. They are not based on the EntitySensorDataScale and 1126 EntitySensorDataPrecision of ENTITY-SENSOR-MIB. 1128 Both the Power and Energy Monitoring MIB and the UPS MIB may be 1129 implemented on the same UPS SNMP agent, without conflict. In 1130 this case, the UPS device itself is the Energy Object Parent and 1131 any of the UPS meters or submeters are the Energy Object 1132 Children. 1134 7.5. Link with the LLDP and LLDP-MED MIBs 1136 The LLDP Protocol is a Data Link Layer protocol used by network 1137 devices to advertise their identities, capabilities, and 1138 interconnections on a LAN network. 1140 The Media Endpoint Discovery is an enhancement of LLDP, known as 1141 LLDP-MED. The LLDP-MED enhancements specifically address voice 1142 applications. LLDP-MED covers 6 basic areas: capability 1143 discovery, LAN speed and duplex discovery, network policy 1144 discovery, location identification discovery, inventory 1145 discovery, and power discovery. 1147 Of particular interest to the current MIB module is the power 1148 discovery, which allows the endpoint device (such as a PoE 1149 phone) to convey power requirements to the switch. In power 1150 discovery, LLDP-MED has four Type Length Values (TLVs): power 1151 type, power source, power priority and power value. 1152 Respectively, those TLVs provide information related to the type 1153 of power (power sourcing entity versus powered device), how the 1154 device is powered (from the line, from a backup source, from 1155 external power source, etc.), the power priority (how important 1156 is it that this device has power?), and how much power the 1157 device needs. 1159 The power priority specified in the LLDP-MED MIB [LLDP-MED-MIB] 1160 actually comes from the Power-over-Ethernet MIB [RFC3621]. If 1161 the Power-over-Ethernet MIB [RFC3621] is supported, the exact 1162 value from the pethPsePortPowerPriority [RFC3621] is copied over 1163 in the lldpXMedRemXPoEPDPowerPriority [LLDP-MED-MIB]; otherwise 1164 the value in lldpXMedRemXPoEPDPowerPriority is "unknown". From 1165 the Power and Energy Monitoring MIB, it is possible to identify 1166 the pethPsePortPowerPriority [RFC3621], thanks to the 1167 eoethPortIndex and eoethPortGrpIndex. 1169 The lldpXMedLocXPoEPDPowerSource [LLDP-MED-MIB] is similar to 1170 eoPowerOrigin in indicating if the power for an attached device 1171 is local or from a remote device. If the LLDP-MED MIB is 1172 supported, the following mapping can be applied to the 1173 eoPowerOrigin: lldpXMedLocXPoEPDPowerSource fromPSE(2) and 1174 local(3) can be mapped to remote(2) and self(1), respectively. 1176 8. Implementation Scenario 1178 This section provides an illustrative example scenario for the 1179 implementation of the Energy Object, including Energy Object 1180 Parent and Energy Object Child relationships. 1182 Example Scenario of a campus network: Switch with PoE Endpoints 1183 with further connected devices. 1185 The campus network consists of switches that provide LAN 1186 connectivity. The switch with PoE ports is located in wiring 1187 closet. PoE IP phones are connected to the switch. The IP 1188 phones draw power from the PoE ports of the switch. In 1189 addition, a PC is daisy-chained from the IP phone for LAN 1190 connectivity. 1192 The IP phone consumes power from the PoE switch, while the PC 1193 consumes power from the wall outlet. 1195 The switch has implementations of ENTITY-MIB [RFC6933] and 1196 ENERGY-AWARE MIB [EMAN-AWARE-MIB] while the PC does not have 1197 implementation of the ENTITY-MIB, but has an implementation of 1198 ENERGY-AWARE MIB [EMAN-AWARE-MIB]. The switch has the following 1199 attributes, entPhysicalIndex "1", and entPhysicalUUID "UUID 1200 1000". The power usage of the switch is "440 Watts". The 1201 switch does not have an Energy Object Parent. 1203 The PoE switch port has the following attributes: The switch 1204 port has entPhysicalIndex "3", and entPhysicalUUID is "UUID 1205 1000:3". The power metered at the POE switch port is "12 1206 watts". In this example, the POE switch port has the switch as 1207 the Energy Object Parent, with its eoParentID of "1000". 1209 The attributes of the PC are given below. The PC does not have 1210 an entPhysicalIndex, and the entPhysicalUUID is "UUID 1000:57 ". 1211 The PC has an Energy Object Parent, i.e. the switch port whose 1212 entPhysicalUUID is "UUID 1000:3". The power usage of the PC is 1213 "120 Watts" and is communicated to the switch port. 1215 This example illustrates the important distinction between the 1216 Energy Object Children: The IP phone draws power from the 1217 switch, while the PC has LAN connectivity from the phone, but is 1218 powered from the wall outlet. However, the Energy Object Parent 1219 sends power control messages to both the Energy Object Children 1220 (IP phone and PC) and the Children react to those messages. 1222 |-------------------------------------------------------| 1223 | Switch | 1224 |=======================================================| 1225 | Switch | Switch | Switch | Switch | 1226 | entPhyIndx | UUID |eoParentId | eoPower | 1227 | ===================================================== | 1228 | 1 | UUID 1000 | null | 440 | 1229 | ===================================================== | 1230 | | 1231 | SWITCH PORT | 1232 | ===================================================== | 1233 | | Switch | Switch | Switch | Switch | 1234 | | Port | Port | Port | Port | 1235 | | entPhyIndx | UUID | eoParentId | eoPower | 1236 | ===================================================== | 1237 | | 3 | UUID 1000:3 | 1000 | 12 | 1238 | ======================================================| 1239 | ^ 1240 | | 1241 |-----------------------------------|------------------- 1242 | 1243 | 1244 POE IP PHONE | 1245 | 1246 | 1247 ====================================================== 1248 | IP phone | IP phone | IP phone | IP phone | 1249 | entPhyIndx | UUID | eoParentID | eoPower | 1250 ====================================================== 1251 | Null | UUID 1000:31| UUID 1000:3 | 12 | 1252 ======================================================= 1253 | 1254 | 1255 PC connected to switch via IP phone | 1256 | 1257 ===================================================== 1258 | PC | PC | PC | PC | 1259 |entPhyIndx | UUID | eoParentID | eoPower | 1260 ===================================================== 1261 | 7 | UUID 1000:57| UUID 1000:3 | 120 | 1262 ===================================================== 1264 Figure 1: Example scenario 1266 9. Structure of the MIB 1268 The primary MIB object in this MIB module is the 1269 energyObjectMibObject. The eoPowerTable table of 1270 energyObjectMibObject describes the power measurement attributes 1271 of an Energy Object entity. The notion of identity of the device 1272 in terms of uniquely identification of the Energy Object and its 1273 relationship to other entities in the network are addressed in 1274 [EMAN-AWARE-MIB]. 1276 Logically, this MIB module is a sparse extension of the 1277 [EMAN-AWARE-MIB] module. Thus the following requirements which 1278 are applied to [EMAN-AWARE-MIB] are also applicable. As a 1279 requirement for this MIB module, [EMAN-AWARE-MIB] should be 1280 implemented and as Module Compliance of ENTITY-MIB V4 [RFC6933] 1281 with respect to entity4CRCompliance should be supported which 1282 requires 3 MIB objects (entPhysicalIndex, entPhysicalName and 1283 entPhysicalUUID ) MUST be implemented. 1285 eoMeterCapabilitiesTable is useful to enable applications to 1286 determine the capabilities supported by the local management 1287 agent. This table indicates the energy monitoring MIB groups 1288 that are supported by the local management system. By reading 1289 the value of this object, it is possible for applications to 1290 know which tables contain the information and are usable without 1291 walking through the table and querying every element which 1292 involves a trial-and-error process. 1294 The power measurement of an Energy Object contains information 1295 describing its power usage (eoPower) and its current power state 1296 (eoPowerOperState). In addition to power usage, additional 1297 information describing the units of measurement 1298 (eoPowerAccuracy, eoPowerUnitMultiplier), how power usage 1299 measurement was obtained (eoPowerMeasurementCaliber), the 1300 source of power (eoPowerOrigin) and the type of power 1301 (eoPowerCurrentTtype) are described. 1303 An Energy Object may contain an optional eoPowerAttributes table 1304 that describes the electrical characteristics associated with 1305 the current power state and usage. 1307 An Energy Object may contain an optional eoEnergyTable to 1308 describe energy measurement information over time. 1310 An Energy Object may also contain optional battery information 1311 associated with this entity. 1313 10. MIB Definitions 1315 -- ************************************************************ 1316 -- 1317 -- 1318 -- This MIB is used to monitor power usage of network 1319 -- devices 1320 -- 1321 -- ************************************************************* 1323 ENERGY-OBJECT-MIB DEFINITIONS ::= BEGIN 1324 IMPORTS 1325 MODULE-IDENTITY, 1326 OBJECT-TYPE, 1327 NOTIFICATION-TYPE, 1328 mib-2, 1329 Integer32, Counter32, TimeTicks 1330 FROM SNMPv2-SMI 1331 TEXTUAL-CONVENTION, DisplayString, RowStatus, TimeInterval, 1332 TimeStamp, TruthValue 1333 FROM SNMPv2-TC 1334 MODULE-COMPLIANCE, NOTIFICATION-GROUP, OBJECT-GROUP 1335 FROM SNMPv2-CONF 1336 OwnerString 1337 FROM RMON-MIB 1338 entPhysicalIndex, PhysicalIndex 1339 FROM ENTITY-MIB; 1341 energyObjectMib MODULE-IDENTITY 1342 LAST-UPDATED "201306300000Z" -- 30 June 2013 1344 ORGANIZATION "IETF EMAN Working Group" 1345 CONTACT-INFO 1346 "WG charter: 1347 http://datatracker.ietf.org/wg/eman/charter/ 1349 Mailing Lists: 1350 General Discussion: eman@ietf.org 1352 To Subscribe: 1353 https://www.ietf.org/mailman/listinfo/eman 1355 Archive: 1356 http://www.ietf.org/mail-archive/web/eman 1358 Editors: 1359 Mouli Chandramouli 1360 Cisco Systems, Inc. 1361 Sarjapur Outer Ring Road 1362 Bangalore 560103 1363 IN 1364 Phone: +91 80 4429 2409 1365 Email: moulchan@cisco.com 1367 Brad Schoening 1368 44 Rivers Edge Drive 1369 Little Silver, NJ 07739 1370 US 1371 Email: brad.schoening@verizon.net 1373 Juergen Quittek 1374 NEC Europe Ltd. 1375 NEC Laboratories Europe 1376 Network Research Division 1377 Kurfuersten-Anlage 36 1378 Heidelberg 69115 1379 DE 1380 Phone: +49 6221 4342-115 1381 Email: quittek@neclab.eu 1383 Thomas Dietz 1384 NEC Europe Ltd. 1385 NEC Laboratories Europe 1386 Network Research Division 1387 Kurfuersten-Anlage 36 1388 69115 Heidelberg 1389 DE 1390 Phone: +49 6221 4342-128 1391 Email: Thomas.Dietz@nw.neclab.eu 1393 Benoit Claise 1394 Cisco Systems, Inc. 1395 De Kleetlaan 6a b1 1396 Degem 1831 1397 Belgium 1398 Phone: +32 2 704 5622 1399 Email: bclaise@cisco.com" 1401 DESCRIPTION 1402 "This MIB is used to monitor power and energy in 1403 devices. 1405 This table sparse extension of the eoTable 1406 from the ENERGY-AWARE-MIB. As a requirement 1407 [EMAN-AWARE-MIB] should be implemented. 1409 Module Compliance of ENTITY-MIB v4 1410 with respect to entity4CRCompliance should 1411 be supported which requires implementation 1412 of 3 MIB objects (entPhysicalIndex, 1413 entPhysicalName and entPhysicalUUID)." 1415 REVISION 1416 "201306300000Z" -- 30 June 2013 1418 DESCRIPTION 1419 "Initial version, published as RFC XXXX." 1421 ::= { mib-2 xxx } 1423 energyObjectMibNotifs OBJECT IDENTIFIER 1424 ::= { energyObjectMib 0 } 1426 energyObjectMibObjects OBJECT IDENTIFIER 1427 ::= { energyObjectMib 1 } 1429 energyObjectMibConform OBJECT IDENTIFIER 1430 ::= { energyObjectMib 2 } 1432 -- Textual Conventions 1434 IANAPowerStateSet ::= TEXTUAL-CONVENTION 1435 STATUS current 1436 DESCRIPTION 1438 "IANAPowerState is a textual convention that describes 1439 Power State Sets and Power State Set Values an Energy Object 1440 supports. IANA has created a registry of Power State supported 1441 by an Energy Object and IANA shall administer the list of Power 1442 State Sets and Power States. 1444 The textual convention assumes that power states in a power 1445 state set are limited to 255 distinct values. For a Power 1446 State Set S, the named number with the value S * 256 is 1447 allocated to indicate the power state set. For a Power State X 1448 in the Power State S, the named number with the value S * 256 1449 + X + 1 is allocated to represent the power state." 1451 REFERENCE 1452 "http://www.iana.org/assignments/eman 1453 RFC EDITOR NOTE: please change the previous URL if this is 1454 not the correct one after IANA assigned it." 1456 SYNTAX INTEGER { 1457 other(0), -- indicates other set 1458 unknown(255), -- unknown power state 1459 ieee1621(256), -- indicates IEEE1621 set 1460 ieee1621On(257), 1461 ieee1621Off(258), 1462 ieee1621Sleep(259), 1464 dmtf(512), -- indicates DMTF set 1465 dmtfOn(513), 1466 dmtfSleepLight(514), 1467 dmtfSleepDeep(515), 1468 dmtfOffHard(516), 1469 dmtfOffSoft(517), 1470 dmtfHibernate(518), 1471 dmtfPowerOffSoft(519), 1472 dmtfPowerOffHard(520), 1473 dmtfMasterBusReset(521), 1474 dmtfDiagnosticInterrapt(522), 1475 dmtfOffSoftGraceful(523), 1476 dmtfOffHardGraceful(524), 1477 dmtfMasterBusResetGraceful(525), 1478 dmtfPowerCycleOffSoftGraceful(526), 1479 dmtfPowerCycleHardGraceful(527), 1481 eman(1024), -- indicates EMAN set 1482 emanmechoff(1025), 1483 emansoftoff(1026), 1484 emanhibernate(1027), 1485 emansleep(1028), 1486 emanstandby(1029), 1487 emanready(1030), 1488 emanlowMinus(1031), 1489 emanlow(1032), 1490 emanmediumMinus(1033), 1491 emanmedium(1034), 1492 emanhighMinus(1035), 1493 emanhigh(1036) 1494 } 1496 UnitMultiplier ::= TEXTUAL-CONVENTION 1497 STATUS current 1498 DESCRIPTION 1499 "The Unit Multiplier is an integer value that represents 1500 the IEEE 61850 Annex A units multiplier associated with 1501 the integer units used to measure the power or energy. 1503 For example, when used with eoPowerUnitMultiplier, -3 1504 represents 10^-3 or milliwatts." 1505 REFERENCE 1506 "The International System of Units (SI), 1507 National Institute of Standards and Technology, 1508 Spec. Publ. 330, August 1991." 1509 SYNTAX INTEGER { 1510 yocto(-24), -- 10^-24 1511 zepto(-21), -- 10^-21 1512 atto(-18), -- 10^-18 1513 femto(-15), -- 10^-15 1514 pico(-12), -- 10^-12 1515 nano(-9), -- 10^-9 1516 micro(-6), -- 10^-6 1517 milli(-3), -- 10^-3 1518 units(0), -- 10^0 1519 kilo(3), -- 10^3 1520 mega(6), -- 10^6 1521 giga(9), -- 10^9 1522 tera(12), -- 10^12 1523 peta(15), -- 10^15 1524 exa(18), -- 10^18 1525 zetta(21), -- 10^21 1526 yotta(24) -- 10^24 1527 } 1529 -- Objects 1531 eoMeterCapabilitiesTable OBJECT-TYPE 1532 SYNTAX SEQUENCE OF EoMeterCapabilitiesEntry 1533 MAX-ACCESS not-accessible 1534 STATUS current 1535 DESCRIPTION 1536 "This table is useful for helping applications determine the 1537 monitoring capabilities supported by the local management 1538 agents. It is possible for applications to know which tables 1539 are usable without going through a trial-and-error process." 1540 ::= { energyObjectMibObjects 1 } 1542 eoMeterCapabilitiesEntry OBJECT-TYPE 1543 SYNTAX EoMeterCapabilitiesEntry 1544 MAX-ACCESS not-accessible 1545 STATUS current 1546 DESCRIPTION 1547 "An entry describes the metering capability of an Energy 1548 Object." 1549 INDEX { entPhysicalIndex } 1550 ::= { eoMeterCapabilitiesTable 1 } 1551 EoMeterCapabilitiesEntry ::= SEQUENCE { 1552 eoMeterCapability BITS 1553 } 1555 eoMeterCapability OBJECT-TYPE 1556 SYNTAX BITS { 1557 none(0), 1558 powermetering(1), -- power measurement 1559 energymetering(2), -- energy measurement 1560 powerattributes(3) -- power attributes 1561 } 1562 MAX-ACCESS read-only 1563 STATUS current 1564 DESCRIPTION 1565 "An indication of the Energy monitoring capabilities supported 1566 by this agent. This object use a BITS syntax and indicate the 1567 MIB groups supported by the probe. By reading the value of this 1568 object, it is possible to determine the MIB tables supported. " 1569 ::= { eoMeterCapabilitiesEntry 1 } 1571 eoPowerTable OBJECT-TYPE 1572 SYNTAX SEQUENCE OF EoPowerEntry 1573 MAX-ACCESS not-accessible 1574 STATUS current 1575 DESCRIPTION 1576 "This table lists Energy Objects." 1577 ::= { energyObjectMibObjects 2 } 1579 eoPowerEntry OBJECT-TYPE 1580 SYNTAX EoPowerEntry 1581 MAX-ACCESS not-accessible 1582 STATUS current 1583 DESCRIPTION 1584 "An entry describes the power usage of an Energy Object." 1586 INDEX { entPhysicalIndex } 1587 ::= { eoPowerTable 1 } 1589 EoPowerEntry ::= SEQUENCE { 1591 eoPower Integer32, 1592 eoPowerNameplate Integer32, 1593 eoPowerUnitMultiplier UnitMultiplier, 1594 eoPowerAccuracy Integer32, 1595 eoPowerMeasurementCaliber INTEGER, 1596 eoPowerCurrentType INTEGER, 1597 eoPowerOrigin INTEGER, 1598 eoPowerAdminState IANAPowerStateSet, 1599 eoPowerOperState IANAPowerStateSet, 1600 eoPowerStateEnterReason OwnerString 1601 } 1603 eoPower OBJECT-TYPE 1604 SYNTAX Integer32 1605 UNITS "Watts" 1606 MAX-ACCESS read-only 1607 STATUS current 1608 DESCRIPTION 1609 "This object indicates the power measured for the Energy 1610 Object. For alternating current, this value is obtained 1611 as an average over fixed number of AC cycles. . This 1612 value is specified in SI units of watts with the 1613 magnitude of watts (milliwatts, kilowatts, etc.) 1614 indicated separately in eoPowerUnitMultiplier. The 1615 accuracy of the measurement is specfied in 1616 eoPowerAccuracy. The direction of power flow is indicated 1617 by the sign on eoPower. If the Energy Object is consuming 1618 power, the eoPower value will be positive. If the Energy 1619 Object is producing power, the eoPower value will be 1620 negative. 1622 The eoPower MUST be less than or equal to the maximum 1623 power that can be consumed at the power state specified 1624 by eoPowerState. 1626 The eoPowerMeasurementCaliber object specifies how the 1627 usage value reported by eoPower was obtained. The eoPower 1628 value must report 0 if the eoPowerMeasurementCaliber is 1629 'unavailable'. For devices that can not measure or 1630 report power, this option can be used." 1631 ::= { eoPowerEntry 1 } 1633 eoPowerNameplate OBJECT-TYPE 1634 SYNTAX Integer32 1635 UNITS "Watts" 1636 MAX-ACCESS read-only 1637 STATUS current 1638 DESCRIPTION 1639 "This object indicates the rated maximum consumption for 1640 the fully populated Energy Object. The nameplate power 1641 requirements are the maximum power numbers and, in almost 1642 all cases, are well above the expected operational 1643 consumption. The eoPowerNameplate is widely used for 1644 power provisioning. This value is specified in either 1645 units of watts or voltage and current. The units are 1646 therefore SI watts or equivalent Volt-Amperes with the 1647 magnitude (milliwatts, kilowatts, etc.) indicated 1648 separately in eoPowerUnitMultiplier." 1649 ::= { eoPowerEntry 2 } 1651 eoPowerUnitMultiplier OBJECT-TYPE 1652 SYNTAX UnitMultiplier 1653 MAX-ACCESS read-only 1654 STATUS current 1655 DESCRIPTION 1656 "The magnitude of watts for the usage value in eoPower 1657 and eoPowerNameplate." 1658 ::= { eoPowerEntry 3 } 1660 eoPowerAccuracy OBJECT-TYPE 1661 SYNTAX Integer32 (0..10000) 1662 UNITS "hundredths of percent" 1663 MAX-ACCESS read-only 1664 STATUS current 1665 DESCRIPTION 1666 "This object indicates a percentage value, in 100ths of a 1667 percent, representing the assumed accuracy of the usage 1668 reported by eoPower. For example: The value 1010 means 1669 the reported usage is accurate to +/- 10.1 percent. This 1670 value is zero if the accuracy is unknown or not 1671 applicable based upon the measurement method. 1673 ANSI and IEC define the following accuracy classes for 1674 power measurement: 1675 IEC 62053-22 60044-1 class 0.1, 0.2, 0.5, 1 3. 1676 ANSI C12.20 class 0.2, 0.5" 1677 ::= { eoPowerEntry 4 } 1679 eoPowerMeasurementCaliber OBJECT-TYPE 1680 SYNTAX INTEGER { 1681 unavailable(1) , 1682 unknown(2), 1683 actual(3) , 1684 estimated(4), 1685 presumed(5) } 1687 MAX-ACCESS read-only 1688 STATUS current 1689 DESCRIPTION 1690 "This object specifies how the usage value reported by 1691 eoPower was obtained: 1693 - unavailable(1): Indicates that the usage is not 1694 available. In such a case, the eoPower value must be 0 1695 for devices that can not measure or report power this 1696 option can be used. 1698 - unknown(2): Indicates that the way the usage was 1699 determined is unknown. In some cases, entities report 1700 aggregate power on behalf of another device. In such 1701 cases it is not known whether the usage reported is 1702 actual(2), estimated(3) or presumed (4). 1704 - actual(3): Indicates that the reported usage was 1705 measured by the entity through some hardware or direct 1706 physical means. The usage data reported is not presumed 1707 (4) or estimated (3) but is the measured consumption 1708 rate. 1710 - estimated(4): Indicates that the usage was not 1711 determined by physical measurement. The value is a 1712 derivation based upon the device type, state, and/or 1713 current utilization using some algorithm or heuristic. It 1714 is presumed that the entity's state and current 1715 configuration were used to compute the value. 1717 - presumed(5): Indicates that the usage was not 1718 determined by physical measurement, algorithm or 1719 derivation. The usage was reported based upon external 1720 tables, specifications, and/or model information. For 1721 example, a PC Model X draws 200W, while a PC Model Y 1722 draws 210W" 1724 ::= { eoPowerEntry 5 } 1726 eoPowerCurrentType OBJECT-TYPE 1727 SYNTAX INTEGER { 1728 ac(1), 1729 dc(2), 1730 unknown(3) 1731 } 1732 MAX-ACCESS read-only 1733 STATUS current 1734 DESCRIPTION 1735 "This object indicates whether the eoPower for the 1736 Energy Object reports alternating current AC(1), direct 1737 current DC(2), or that the current type is unknown(3)." 1738 ::= { eoPowerEntry 6 } 1740 eoPowerOrigin OBJECT-TYPE 1741 SYNTAX INTEGER { 1742 self (1), 1743 remote (2) 1744 } 1745 MAX-ACCESS read-only 1746 STATUS current 1747 DESCRIPTION 1748 "This object indicates the source of power measurement 1749 and can be useful when modeling the power usage of 1750 attached devices. The power measurement can be performed 1751 by the entity itself or the power measurement of the 1752 entity can be reported by another trusted entity using a 1753 protocol extension. A value of self(1) indicates the 1754 measurement is performed by the entity, whereas remote(2) 1755 indicates that the measurement was performed by another 1756 entity." 1757 ::= { eoPowerEntry 7 } 1759 eoPowerAdminState OBJECT-TYPE 1760 SYNTAX IANAPowerStateSet 1761 MAX-ACCESS read-write 1762 STATUS current 1763 DESCRIPTION 1764 "This object specifies the desired Power State and the 1765 Power State Set for the Energy Object. Note that 1766 other(0) is not a Power State Set and unknown(255) is 1767 not a Power State as such, but simply an indication that 1768 the Power State of the Energy Object is unknown. 1769 Possible values of eoPowerAdminState within the Power 1770 State Set are registered at IANA. 1771 A current list of assignments can be found at 1772 1773 RFC-EDITOR: please check the location after IANA" 1774 ::= { eoPowerEntry 8 } 1776 eoPowerOperState OBJECT-TYPE 1777 SYNTAX IANAPowerStateSet 1778 MAX-ACCESS read-only 1779 STATUS current 1780 DESCRIPTION 1781 "This object specifies the current operational Power 1782 State and the Power State Set for the Energy Object. 1783 other(0) is not a Power State Set and unknown(255) is 1784 not a Power State as such, but simply an indication that 1785 the Power State of the Energy Object is unknown. 1787 Possible values of eoPowerAdminState within the Power 1788 State Set are registered at IANA. 1789 A current list of assignments can be found at 1790 1791 RFC-EDITOR: please check the location after IANA" 1793 ::= { eoPowerEntry 9 } 1795 eoPowerStateEnterReason OBJECT-TYPE 1796 SYNTAX OwnerString 1797 MAX-ACCESS read-write 1798 STATUS current 1799 DESCRIPTION 1800 "This string object describes the reason for the 1801 eoPowerAdminState 1802 transition Alternatively, this string may contain with 1803 the entity that configured this Energy Object to this 1804 Power State." 1805 DEFVAL { "" } 1806 ::= { eoPowerEntry 10 } 1808 eoPowerStateTable OBJECT-TYPE 1809 SYNTAX SEQUENCE OF EoPowerStateEntry 1810 MAX-ACCESS not-accessible 1811 STATUS current 1812 DESCRIPTION 1813 "This table enumerates the maximum power usage, in watts, 1814 for every single supported Power State of each Energy 1815 Object. 1817 This table has an expansion-dependent relationship on the 1818 eoPowerTable, containing rows describing each Power State 1819 for the corresponding Energy Object. For every Energy 1820 Object in the eoPowerTable, there is a corresponding 1821 entry in this table." 1822 ::= { energyObjectMibObjects 3 } 1824 eoPowerStateEntry OBJECT-TYPE 1825 SYNTAX EoPowerStateEntry 1826 MAX-ACCESS not-accessible 1827 STATUS current 1828 DESCRIPTION 1829 "A eoPowerStateEntry extends a corresponding 1830 eoPowerEntry. This entry displays max usage values at 1831 every single possible Power State supported by the Energy 1832 Object. 1833 For example, given the values of a Energy Object 1834 corresponding to a maximum usage of 0 W at the 1835 state 1 (mechoff), 8 W at state 6 (ready), 11 W at state 1836 9 (mediumMinus),and 11 W at state 12 (high): 1838 State MaxUsage Units 1839 1 (mechoff 0 W 1840 2 (softoff) 0 W 1841 3 (hibernate) 0 W 1842 4 (sleep) 0 W 1843 5 (standby) 0 W 1844 6 (ready) 8 W 1845 7 (lowMinus) 8 W 1846 8 (low) 11 W 1847 9 (mediumMinus) 11 W 1848 10 (medium) 11 W 1849 11 (highMinus) 11 W 1850 12 (high) 11 W 1852 Furthermore, this table extends to return the total time 1853 in each Power State, along with the number of times a 1854 particular Power State was entered." 1856 INDEX { entPhysicalIndex, 1857 eoPowerStateIndex 1858 } 1859 ::= { eoPowerStateTable 1 } 1861 EoPowerStateEntry ::= SEQUENCE { 1862 eoPowerStateIndex IANAPowerStateSet, 1863 eoPowerStateMaxPower Integer32, 1864 eoPowerStatePowerUnitMultiplier UnitMultiplier, 1865 eoPowerStateTotalTime TimeTicks, 1866 eoPowerStateEnterCount Counter32 1867 } 1869 eoPowerStateIndex OBJECT-TYPE 1870 SYNTAX IANAPowerStateSet 1871 MAX-ACCESS not-accessible 1872 STATUS current 1873 DESCRIPTION 1874 " 1875 This object specifies the index of the Power State of 1876 the Energy Object within a Power State Set. The 1877 semantics of the specific Power State can be obtained 1878 from the Power State Set definition." 1879 ::= { eoPowerStateEntry 1 } 1881 eoPowerStateMaxPower OBJECT-TYPE 1882 SYNTAX Integer32 1883 UNITS "Watts" 1884 MAX-ACCESS read-only 1885 STATUS current 1886 DESCRIPTION 1887 "This object indicates the maximum power for the Energy 1888 Object at the particular Power State. This value is 1889 specified in SI units of watts with the magnitude of the 1890 units (milliwatts, kilowatts, etc.) indicated separately 1891 in eoPowerStatePowerUnitMultiplier. If the maximum power 1892 is not known for a certain Power State, then the value is 1893 encoded as 0xFFFF. 1895 For Power States not enumerated, the value of 1896 eoPowerStateMaxPower might be interpolated by using the 1897 next highest supported Power State." 1898 ::= { eoPowerStateEntry 2 } 1900 eoPowerStatePowerUnitMultiplier OBJECT-TYPE 1901 SYNTAX UnitMultiplier 1902 MAX-ACCESS read-only 1903 STATUS current 1904 DESCRIPTION 1905 "The magnitude of watts for the usage value in 1906 eoPowerStateMaxPower." 1907 ::= { eoPowerStateEntry 3 } 1909 eoPowerStateTotalTime OBJECT-TYPE 1910 SYNTAX TimeTicks 1911 MAX-ACCESS read-only 1912 STATUS current 1913 DESCRIPTION 1914 "This object indicates the total time in hundredth 1915 of second that the Energy Object has been in this power 1916 state since the last reset, as specified in the 1917 sysUpTime." 1918 ::= { eoPowerStateEntry 4 } 1920 eoPowerStateEnterCount OBJECT-TYPE 1921 SYNTAX Counter32 1922 MAX-ACCESS read-only 1923 STATUS current 1924 DESCRIPTION 1925 "This object indicates how often the Energy 1926 Object has 1927 entered this power state, since the last reset of the 1928 device as specified in the sysUpTime." 1929 ::= { eoPowerStateEntry 5 } 1931 eoEnergyParametersTable OBJECT-TYPE 1932 SYNTAX SEQUENCE OF EoEnergyParametersEntry 1933 MAX-ACCESS not-accessible 1934 STATUS current 1935 DESCRIPTION 1936 "This table is used to configure the parameters for 1937 Energy measurement collection in the table 1938 eoEnergyTable. This table allows the configuration of 1939 different measurement settings on the same Energy Object. 1940 Implementation of this table only sense for energy 1941 objects that an eoPowerMeasurementCaliber of actual(3)." 1942 ::= { energyObjectMibObjects 4 } 1944 eoEnergyParametersEntry OBJECT-TYPE 1945 SYNTAX EoEnergyParametersEntry 1946 MAX-ACCESS not-accessible 1947 STATUS current 1948 DESCRIPTION 1949 "An entry controls an energy measurement in 1950 eoEnergyTable." 1951 INDEX { eoEnergyObjectIndex, eoEnergyParametersIndex } 1952 ::= { eoEnergyParametersTable 1 } 1954 EoEnergyParametersEntry ::= SEQUENCE { 1955 eoEnergyObjectIndex PhysicalIndex, 1956 eoEnergyParametersIndex Integer32, 1957 eoEnergyParametersIntervalLength TimeInterval, 1958 eoEnergyParametersIntervalNumber Integer32, 1959 eoEnergyParametersIntervalMode INTEGER, 1960 eoEnergyParametersIntervalWindow TimeInterval, 1961 eoEnergyParametersSampleRate Integer32, 1962 eoEnergyParametersStatus RowStatus 1963 } 1965 eoEnergyObjectIndex OBJECT-TYPE 1966 SYNTAX PhysicalIndex 1967 MAX-ACCESS not-accessible 1968 STATUS current 1969 DESCRIPTION 1970 "The unique value, to identify the specific Energy Object 1971 on which the measurement is applied, the same index used 1972 in the eoPowerTable to identify the Energy Object." 1973 ::= { eoEnergyParametersEntry 1 } 1975 eoEnergyParametersIndex OBJECT-TYPE 1976 SYNTAX Integer32 (0..2147483647) 1977 MAX-ACCESS read-create 1978 STATUS current 1979 DESCRIPTION 1980 "This object specifies the index of the Energy 1981 Parameters setting for collection of energy measurements 1982 for an Energy Object. An Energy Object can have multiple 1983 eoEnergyParametersIndex, depending on the capability of 1984 the Energy Object" 1985 ::= { eoEnergyParametersEntry 2 } 1987 eoEnergyParametersIntervalLength OBJECT-TYPE 1988 SYNTAX TimeInterval 1989 MAX-ACCESS read-create 1990 STATUS current 1991 DESCRIPTION 1992 "This object indicates the length of time in hundredth of 1993 seconds over which to compute the average 1994 eoEnergyConsumed measurement in the eoEnergyTable table. 1995 The computation is based on the Energy Object's internal 1996 sampling rate of power consumed or produced by the Energy 1997 Object. The sampling rate is the rate at which the Energy 1998 Object can read the power usage and may differ based on 1999 device capabilities. The average energy consumption is 2000 then computed over the length of the interval." 2001 DEFVAL { 90000 } 2002 ::= { eoEnergyParametersEntry 3 } 2004 eoEnergyParametersIntervalNumber OBJECT-TYPE 2005 SYNTAX Integer32 2006 MAX-ACCESS read-create 2007 STATUS current 2008 DESCRIPTION 2010 "The number of intervals maintained in the eoEnergyTable. 2011 Each interval is characterized by a specific 2012 eoEnergyCollectionStartTime, used as an index to the 2013 table eoEnergyTable. Whenever the maximum number of 2014 entries is reached, the measurement over the new interval 2015 replaces the oldest measurement. There is one exception 2016 to this rule: when the eoEnergyMaxConsumed and/or 2017 eoEnergyMaxProduced are in (one of) the two oldest 2018 measurement(s), they are left untouched and the next 2019 oldest measurement is replaced." 2020 DEFVAL { 10 } 2021 ::= { eoEnergyParametersEntry 4 } 2023 eoEnergyParametersIntervalMode OBJECT-TYPE 2024 SYNTAX INTEGER { 2025 period(1), 2026 sliding(2), 2027 total(3) 2028 } 2029 MAX-ACCESS read-create 2030 STATUS current 2031 DESCRIPTION 2032 "A control object to define the mode of interval calculation 2033 for the computation of the average eoEnergyConsumed or 2034 eoEnergyProduced measurement in the eoEnergyTable table. 2036 A mode of period(1) specifies non-overlapping periodic 2037 measurements. 2039 A mode of sliding(2) specifies overlapping sliding windows 2040 where the interval between the start of one interval and 2041 the next is defined in eoEnergyParametersIntervalWindow. 2043 A mode of total(3) specifies non-periodic measurement. In 2044 this mode only one interval is used as this is a 2045 continuous measurement since the last reset. The value of 2046 eoEnergyParametersIntervalNumber should be (1) one and 2047 eoEnergyParametersIntervalLength is ignored. " 2048 ::= { eoEnergyParametersEntry 5 } 2050 eoEnergyParametersIntervalWindow OBJECT-TYPE 2051 SYNTAX TimeInterval 2052 MAX-ACCESS read-create 2053 STATUS current 2054 DESCRIPTION 2055 "The length of the duration window between the starting 2056 time of one sliding window and the next starting time in 2057 hundredth of seconds, in order to compute the average of 2058 eoEnergyConsumed, eoEnergyProduced measurements in the 2059 eoEnergyTable table. This is valid only when the 2060 eoEnergyParametersIntervalMode is sliding(2). The 2061 eoEnergyParametersIntervalWindow value should be a multiple 2062 of eoEnergyParametersSampleRate." 2063 ::= { eoEnergyParametersEntry 6 } 2065 eoEnergyParametersSampleRate OBJECT-TYPE 2066 SYNTAX Integer32 2067 UNITS "Milliseconds" 2068 MAX-ACCESS read-create 2069 STATUS current 2070 DESCRIPTION 2071 "The sampling rate, in milliseconds, at which the Energy 2072 Object should poll power usage in order to compute the 2073 average eoEnergyConsumed, eoEnergyProduced measurements 2074 in the table eoEnergyTable. The Energy Object should 2075 initially set this sampling rate to a reasonable value, 2076 i.e., a compromise between intervals that will provide 2077 good accuracy by not being too long, but not so short 2078 that they affect the Energy Object performance by 2079 requesting continuous polling. If the sampling rate is 2080 unknown, the value 0 is reported. The sampling rate 2081 should be selected so that 2082 eoEnergyParametersIntervalWindow is a multiple of 2083 eoEnergyParametersSampleRate." 2084 DEFVAL { 1000 } 2085 ::= { eoEnergyParametersEntry 7 } 2087 eoEnergyParametersStatus OBJECT-TYPE 2088 SYNTAX RowStatus 2089 MAX-ACCESS read-create 2090 STATUS current 2091 DESCRIPTION 2092 "The status of this row. The eoEnergyParametersStatus is 2093 used to start or stop energy usage logging. An entry 2094 status may not be active(1) unless all objects in the 2095 entry have an appropriate value. If this object is not 2096 equal to active(1), all associated usage-data logged into 2097 the eoEnergyTable will be deleted. The data can be 2098 destroyed by setting up the eoEnergyParametersStatus to 2099 destroy(2)." 2100 ::= {eoEnergyParametersEntry 8 } 2102 eoEnergyTable OBJECT-TYPE 2103 SYNTAX SEQUENCE OF EoEnergyEntry 2104 MAX-ACCESS not-accessible 2105 STATUS current 2106 DESCRIPTION 2107 "This table lists Energy Object energy measurements. 2108 Entries in this table are only created if the 2109 corresponding value of object eoPowerMeasurementCaliber 2110 is active(3), i.e., if the power is actually metered." 2111 ::= { energyObjectMibObjects 5 } 2113 eoEnergyEntry OBJECT-TYPE 2114 SYNTAX EoEnergyEntry 2115 MAX-ACCESS not-accessible 2116 STATUS current 2117 DESCRIPTION 2118 "An entry describing energy measurements." 2119 INDEX { eoEnergyParametersIndex, 2120 eoEnergyCollectionStartTime } 2121 ::= { eoEnergyTable 1 } 2123 EoEnergyEntry ::= SEQUENCE { 2124 eoEnergyCollectionStartTime TimeTicks, 2125 eoEnergyConsumed Integer32, 2126 eoEnergyProduced Integer32, 2127 eoEnergyNet Integer32, 2128 eoEnergyUnitMultiplier UnitMultiplier, 2129 eoEnergyAccuracy Integer32, 2130 eoEnergyMaxConsumed Integer32, 2131 eoEnergyMaxProduced Integer32, 2132 eoEnergyDiscontinuityTime TimeStamp 2133 } 2135 eoEnergyCollectionStartTime OBJECT-TYPE 2136 SYNTAX TimeTicks 2137 UNITS "hundredths of seconds" 2138 MAX-ACCESS not-accessible 2139 STATUS current 2140 DESCRIPTION 2141 "The time (in hundredths of a second) since the 2142 network management portion of the system was last 2143 re-initialized, as specified in the sysUpTime [RFC3418]. 2144 This object specifies the start time of the energy 2145 measurement sample. " 2146 ::= { eoEnergyEntry 1 } 2148 eoEnergyConsumed OBJECT-TYPE 2149 SYNTAX Integer32 2150 UNITS "Watt-hours" 2151 MAX-ACCESS read-only 2152 STATUS current 2153 DESCRIPTION 2154 "This object indicates the energy consumed in units of watt- 2155 hours for the Energy Object over the defined interval. 2156 This value is specified in the common billing units of watt- 2157 hours with the magnitude of watt-hours (kW-Hr, MW-Hr, etc.) 2158 indicated separately in eoEnergyUnitMultiplier." 2159 ::= { eoEnergyEntry 2 } 2161 eoEnergyProduced OBJECT-TYPE 2162 SYNTAX Integer32 2163 UNITS "Watt-hours" 2164 MAX-ACCESS read-only 2165 STATUS current 2166 DESCRIPTION 2167 "This object indicates the energy produced in units of watt- 2168 hours for the Energy Object over the defined interval. 2169 This value is specified in the common billing units of watt- 2170 hours with the magnitude of watt-hours (kW-Hr, MW-Hr, etc.) 2171 indicated separately in eoEnergyUnitMultiplier." 2172 ::= { eoEnergyEntry 3 } 2174 eoEnergyNet OBJECT-TYPE 2175 SYNTAX Integer32 2176 UNITS "Watt-hours" 2177 MAX-ACCESS read-only 2178 STATUS current 2179 DESCRIPTION 2180 "This object indicates the resultant of the energy consumed and 2181 energy produced for an energy object in units of watt-hours for 2182 the Energy Object over the defined interval. This value is 2183 specified in the common billing units of watt-hours 2184 with the magnitude of watt-hours (kW-Hr, MW-Hr, etc.) 2185 indicated separately in eoEnergyUnitMultiplier." 2186 ::= { eoEnergyEntry 4 } 2188 eoEnergyUnitMultiplier OBJECT-TYPE 2189 SYNTAX UnitMultiplier 2190 MAX-ACCESS read-only 2191 STATUS current 2192 DESCRIPTION 2193 "This object is the magnitude of watt-hours for the 2194 energy field in eoEnergyConsumed, eoEnergyProduced, 2195 eoEnergyNet, eoEnergyMaxConsumed, and eoEnergyMaxProduced 2196 ." 2197 ::= { eoEnergyEntry 5 } 2199 eoEnergyAccuracy OBJECT-TYPE 2200 SYNTAX Integer32 (0..10000) 2201 UNITS "hundredths of percent" 2202 MAX-ACCESS read-only 2203 STATUS current 2204 DESCRIPTION 2206 "This object indicates a percentage value, in 100ths of a 2207 percent, representing the presumed accuracy of Energy usage 2208 reporting. eoEnergyAccuracy is applicable to all Energy 2209 measurements in the eoEnergyTable. 2211 For example: 1010 means the reported usage is accurate to +/- 2212 10.1 percent. 2213 This value is zero if the accuracy is unknown." 2215 ::= { eoEnergyEntry 6 } 2217 eoEnergyMaxConsumed OBJECT-TYPE 2218 SYNTAX Integer32 2219 UNITS "Watt-hours" 2220 MAX-ACCESS read-only 2221 STATUS current 2222 DESCRIPTION 2223 "This object is the maximum energy ever observed in 2224 eoEnergyConsumed since the monitoring started. This value 2225 is specified in the common billing units of watt-hours 2226 with the magnitude of watt-hours (kW-Hr, MW-Hr, etc.) 2227 indicated separately in eoEnergyUnitMultiplier." 2228 ::= { eoEnergyEntry 7 } 2230 eoEnergyMaxProduced OBJECT-TYPE 2231 SYNTAX Integer32 2232 UNITS "Watt-hours" 2233 MAX-ACCESS read-only 2234 STATUS current 2235 DESCRIPTION 2236 "This object is the maximum energy ever observed in 2237 eoEnergyEnergyProduced since the monitoring started. This 2238 value is specified in the units of watt-hours with the 2239 magnitude of watt-hours (kW-Hr, MW-Hr, etc.) indicated 2240 separately in eoEnergyEnergyUnitMultiplier." 2241 ::= { eoEnergyEntry 8 } 2243 eoEnergyDiscontinuityTime OBJECT-TYPE 2244 SYNTAX TimeStamp 2245 MAX-ACCESS read-only 2246 STATUS current 2247 DESCRIPTION 2249 "The value of sysUpTime [RFC3418] on the most recent 2250 occasion at which any one or more of this entity's energy 2251 counters in this table suffered a discontinuity: 2252 eoEnergyConsumed, eoEnergyProduced or eoEnergyNet. If no 2253 such discontinuities have occurred since the last re- 2254 initialization of the local management subsystem, then 2255 this object contains a zero value." 2256 ::= { eoEnergyEntry 9 } 2258 -- Notifications 2260 eoPowerEnableStatusNotification OBJECT-TYPE 2261 SYNTAX TruthValue 2262 MAX-ACCESS read-write 2263 STATUS current 2264 DESCRIPTION "This variable indicates whether the 2265 system produces the following notifications: 2266 eoPowerStateChange. 2268 A false value will prevent these notifications 2269 from being generated." 2270 DEFVAL { false } 2271 ::= { energyObjectMibNotifs 1 } 2273 eoPowerStateChange NOTIFICATION-TYPE 2274 OBJECTS {eoPowerAdminState, eoPowerOperState, 2275 eoPowerStateEnterReason} 2276 STATUS current 2277 DESCRIPTION 2278 "The SNMP entity generates the eoPowerStateChange when 2279 the value(s) of eoPowerAdminState or eoPowerOperState, 2280 in the context of the Power State Set, have changed for 2281 the Energy Object represented by the entPhysicalIndex." 2282 ::= { energyObjectMibNotifs 2 } 2284 -- Conformance 2286 energyObjectMibCompliances OBJECT IDENTIFIER 2287 ::= { energyObjectMib 3 } 2289 energyObjectMibGroups OBJECT IDENTIFIER 2290 ::= { energyObjectMib 4 } 2292 energyObjectMibFullCompliance MODULE-COMPLIANCE 2293 STATUS current 2294 DESCRIPTION 2295 "When this MIB is implemented with support for 2296 read-create, then such an implementation can 2297 claim full compliance. Such devices can then 2298 be both monitored and configured with this MIB. 2300 Module Compliance of [RFC6933] 2301 with respect to entity4CRCompliance should 2302 be supported which requires implementation 2303 of 3 MIB objects (entPhysicalIndex, 2304 entPhysicalName and entPhysicalUUID)." 2306 MODULE -- this module 2307 MANDATORY-GROUPS { 2308 energyObjectMibTableGroup, 2309 energyObjectMibStateTableGroup, 2310 eoPowerEnableStatusNotificationGroup, 2311 energyObjectMibNotifGroup 2312 } 2314 GROUP energyObjectMibEnergyTableGroup 2316 DESCRIPTION "A compliant implementation does not 2317 have to implement. 2319 Module Compliance of [RFC6933] 2320 with respect to entity4CRCompliance should 2321 be supported which requires implementation 2322 of 3 MIB objects (entPhysicalIndex, 2323 entPhysicalName and entPhysicalUUID)." 2325 GROUP energyObjectMibEnergyParametersTableGroup 2327 DESCRIPTION "A compliant implementation does not 2328 have to implement. 2330 Module Compliance of {RFC6933] 2331 with respect to entity4CRCompliance should 2332 be supported which requires implementation 2333 of 3 MIB objects (entPhysicalIndex, 2334 entPhysicalName and entPhysicalUUID)." 2336 GROUP energyObjectMibMeterCapabilitiesTableGroup 2338 DESCRIPTION "A compliant implementation does not 2339 have to implement. 2341 Module Compliance of [RFC6933] 2342 with respect to entity4CRCompliance should 2343 be supported which requires implementation 2344 of 3 MIB objects (entPhysicalIndex, 2345 entPhysicalName and entPhysicalUUID)." 2347 ::= { energyObjectMibCompliances 1 } 2349 energyObjectMibReadOnlyCompliance MODULE-COMPLIANCE 2350 STATUS current 2351 DESCRIPTION 2352 "When this MIB is implemented without support for 2353 read-create (i.e. in read-only mode), then such an 2354 implementation can claim read-only compliance. Such a 2355 device can then be monitored but cannot be 2356 configured with this MIB. 2358 Module Compliance of [RFC6933] 2359 with respect to entity4CRCompliance should 2360 be supported which requires implementation 2361 of 3 MIB objects (entPhysicalIndex, 2362 entPhysicalName and entPhysicalUUID)." 2364 MODULE -- this module 2365 MANDATORY-GROUPS { 2366 energyObjectMibTableGroup, 2367 energyObjectMibStateTableGroup, 2368 energyObjectMibNotifGroup 2369 } 2371 OBJECT eoPowerOperState 2372 MIN-ACCESS read-only 2373 DESCRIPTION 2374 "Write access is not required." 2375 ::= { energyObjectMibCompliances 2 } 2377 -- Units of Conformance 2379 energyObjectMibTableGroup OBJECT-GROUP 2380 OBJECTS { 2381 eoPower, 2382 eoPowerNameplate, 2383 eoPowerUnitMultiplier, 2384 eoPowerAccuracy, 2385 eoPowerMeasurementCaliber, 2386 eoPowerCurrentType, 2387 eoPowerOrigin, 2388 eoPowerAdminState, 2389 eoPowerOperState, 2390 eoPowerStateEnterReason 2391 } 2392 STATUS current 2393 DESCRIPTION 2394 "This group contains the collection of all the objects 2395 related to the Energy Object." 2396 ::= { energyObjectMibGroups 1 } 2398 energyObjectMibStateTableGroup OBJECT-GROUP 2399 OBJECTS { 2400 eoPowerStateMaxPower, 2401 eoPowerStatePowerUnitMultiplier, 2402 eoPowerStateTotalTime, 2403 eoPowerStateEnterCount 2404 } 2405 STATUS current 2406 DESCRIPTION 2407 "This group contains the collection of all the 2408 objects related to the Power State." 2409 ::= { energyObjectMibGroups 2 } 2411 energyObjectMibEnergyParametersTableGroup OBJECT-GROUP 2412 OBJECTS { 2414 eoEnergyParametersIndex, 2415 eoEnergyParametersIntervalLength, 2416 eoEnergyParametersIntervalNumber, 2417 eoEnergyParametersIntervalMode, 2418 eoEnergyParametersIntervalWindow, 2419 eoEnergyParametersSampleRate, 2420 eoEnergyParametersStatus 2421 } 2422 STATUS current 2423 DESCRIPTION 2424 "This group contains the collection of all the objects 2425 related to the configuration of the Energy Table." 2426 ::= { energyObjectMibGroups 3 } 2428 energyObjectMibEnergyTableGroup OBJECT-GROUP 2429 OBJECTS { 2430 -- Note that object 2431 -- eoEnergyCollectionStartTime is not 2432 -- included since it is not-accessible 2433 eoEnergyConsumed, 2434 eoEnergyProduced, 2435 eoEnergyNet, 2436 eoEnergyUnitMultiplier, 2437 eoEnergyAccuracy, 2438 eoEnergyMaxConsumed, 2439 eoEnergyMaxProduced, 2440 eoEnergyDiscontinuityTime 2441 } 2442 STATUS current 2443 DESCRIPTION 2444 "This group contains the collection of all the objects 2445 related to the Energy Table." 2446 ::= { energyObjectMibGroups 4 } 2448 energyObjectMibMeterCapabilitiesTableGroup OBJECT-GROUP 2449 OBJECTS { 2450 eoMeterCapability 2451 } 2452 STATUS current 2453 DESCRIPTION 2454 "This group contains the object indicating the 2455 capability of the Energy Object" 2456 ::= { energyObjectMibGroups 5 } 2458 eoPowerEnableStatusNotificationGroup OBJECT-GROUP 2459 OBJECTS { eoPowerEnableStatusNotification } 2460 STATUS current 2461 DESCRIPTION "The collection of objects which are used 2462 to enable notification." 2463 ::= { energyObjectMibGroups 6 } 2465 energyObjectMibNotifGroup NOTIFICATION-GROUP 2466 NOTIFICATIONS { 2467 eoPowerStateChange 2468 } 2469 STATUS current 2470 DESCRIPTION "This group contains the notifications for 2471 the power and energy monitoring MIB Module." 2472 ::= { energyObjectMibGroups 7 } 2474 END 2476 -- ************************************************************ 2477 -- 2478 -- This MIB module is used to monitor power attributes of 2479 -- networked devices with measurements. 2480 -- 2481 -- This MIB module is an extension of energyObjectMib module. 2482 -- 2483 -- ************************************************************* 2485 POWER- ATTRIBUTES -MIB DEFINITIONS ::= BEGIN 2487 IMPORTS 2488 MODULE-IDENTITY, 2489 OBJECT-TYPE, 2490 mib-2, 2491 Integer32 2492 FROM SNMPv2-SMI 2493 MODULE-COMPLIANCE, 2494 OBJECT-GROUP 2495 FROM SNMPv2-CONF 2496 UnitMultiplier 2497 FROM ENERGY-OBJECT-MIB 2498 OwnerString 2499 FROM RMON-MIB 2500 entPhysicalIndex 2501 FROM ENTITY-MIB; 2503 powerAttributesMIB MODULE-IDENTITY 2505 LAST-UPDATED "201306300000Z" -- 30 June 2013 2507 ORGANIZATION "IETF EMAN Working Group" 2508 CONTACT-INFO 2509 "WG charter: 2510 http://datatracker.ietf.org/wg/eman/charter/ 2512 Mailing Lists: 2513 General Discussion: eman@ietf.org 2515 To Subscribe: 2516 https://www.ietf.org/mailman/listinfo/eman 2518 Archive: 2519 http://www.ietf.org/mail-archive/web/eman 2521 Editors: 2523 Mouli Chandramouli 2524 Cisco Systems, Inc. 2525 Sarjapur Outer Ring Road 2526 Bangalore 560103 2527 IN 2528 Phone: +91 80 4429 2409 2529 Email: moulchan@cisco.com 2531 Brad Schoening 2532 44 Rivers Edge Drive 2533 Little Silver, NJ 07739 2534 US 2535 Email: brad.schoening@verizon.net 2537 Juergen Quittek 2538 NEC Europe Ltd. 2539 NEC Laboratories Europe 2540 Network Research Division 2541 Kurfuersten-Anlage 36 2542 Heidelberg 69115 2543 DE 2544 Phone: +49 6221 4342-115 2545 Email: quittek@neclab.eu 2547 Thomas Dietz 2548 NEC Europe Ltd. 2549 NEC Laboratories Europe 2550 Network Research Division 2551 Kurfuersten-Anlage 36 2552 69115 Heidelberg 2553 DE 2554 Phone: +49 6221 4342-128 2555 Email: Thomas.Dietz@nw.neclab.eu 2557 Benoit Claise 2558 Cisco Systems, Inc. 2559 De Kleetlaan 6a b1 2560 Degem 1831 2561 Belgium 2562 Phone: +32 2 704 5622 2563 Email: bclaise@cisco.com" 2565 DESCRIPTION 2566 "This MIB is used to report AC power attributes in 2567 devices. The table is a sparse augmentation of the 2568 eoPowerTable table from the energyObjectMib module. 2570 Both three-phase and single-phase power 2571 configurations are supported. 2573 As a requirement for this MIB module, 2574 [EMAN-AWARE-MIB] should be implemented. 2576 Module Compliance of ENTITY-MIB v4 2577 with respect to entity4CRCompliance should 2578 be supported which requires implementation 2579 of 3 MIB objects (entPhysicalIndex, 2580 entPhysicalName and entPhysicalUUID)." 2582 REVISION 2584 "201306300000Z" -- 30 June 2013 2586 DESCRIPTION 2587 "Initial version, published as RFC YYY." 2589 ::= { mib-2 yyy } 2591 powerAttributesMIBConform OBJECT IDENTIFIER 2592 ::= { powerAttributesMIB 0 } 2594 powerAttributesMIBObjects OBJECT IDENTIFIER 2595 ::= { powerAttributesMIB 1 } 2597 -- Objects 2599 eoACPwrAttributesTable OBJECT-TYPE 2600 SYNTAX SEQUENCE OF EoACPwrAttributesEntry 2601 MAX-ACCESS not-accessible 2602 STATUS current 2603 DESCRIPTION 2604 "This table defines power attributes measurements for 2605 supported entPhysicalIndex entities. It is a sparse 2606 extension of the eoPowerTable." 2607 ::= { powerAttributesMIBObjects 1 } 2609 eoACPwrAttributesEntry OBJECT-TYPE 2610 SYNTAX EoACPwrAttributesEntry 2611 MAX-ACCESS not-accessible 2612 STATUS current 2613 DESCRIPTION 2614 "This is a sparse extension of the eoPowerTable with 2615 entries for power attributes measurements or 2616 configuration. Each measured value corresponds to an 2617 attribute in IEC 61850-7-4 for non-phase measurements 2618 within the object MMUX." 2620 INDEX {entPhysicalIndex } 2621 ::= { eoACPwrAttributesTable 1 } 2623 EoACPwrAttributesEntry ::= SEQUENCE { 2624 eoACPwrAttributesConfiguration INTEGER, 2625 eoACPwrAttributesAvgVoltage Integer32, 2626 eoACPwrAttributesAvgCurrent Integer32, 2627 eoACPwrAttributesFrequency Integer32, 2628 eoACPwrAttributesPowerUnitMultiplier UnitMultiplier, 2629 eoACPwrAttributesPowerAccuracy Integer32, 2630 eoACPwrAttributesTotalActivePower Integer32, 2631 eoACPwrAttributesTotalReactivePower Integer32, 2632 eoACPwrAttributesTotalApparentPower Integer32, 2633 eoACPwrAttributesTotalPowerFactor Integer32, 2634 eoACPwrAttributesThdAmpheres Integer32, 2635 eoACPwrAttributesThdVoltage Integer32 2636 } 2638 eoACPwrAttributesConfiguration OBJECT-TYPE 2639 SYNTAX INTEGER { 2640 sngl(1), 2641 del(2), 2642 wye(3) 2643 } 2644 MAX-ACCESS read-only 2645 STATUS current 2646 DESCRIPTION 2647 "Configuration describes the physical configurations 2648 of the power supply lines: 2650 * alternating current, single phase (SNGL) 2651 * alternating current, three phase delta (DEL) 2652 * alternating current, three phase Y (WYE) 2654 Three-phase configurations can be either connected in 2655 a triangular delta (DEL) or star Y (WYE) system. WYE 2656 systems have a shared neutral voltage, while DEL 2657 systems do not. Each phase is offset 120 degrees to 2658 each other." 2659 ::= { eoACPwrAttributesEntry 1 } 2661 eoACPwrAttributesAvgVoltage OBJECT-TYPE 2662 SYNTAX Integer32 2663 UNITS "0.1 Volt AC" 2664 MAX-ACCESS read-only 2665 STATUS current 2666 DESCRIPTION 2667 "A measured value for average of the voltage measured 2668 over an integral number of AC cycles For a 3-phase 2669 system, this is the average voltage (V1+V2+V3)/3. IEC 2670 61850-7-4 measured value attribute 'Vol'" 2671 ::= { eoACPwrAttributesEntry 2 } 2673 eoACPwrAttributesAvgCurrent OBJECT-TYPE 2674 SYNTAX Integer32 2675 UNITS "Ampheres" 2676 MAX-ACCESS read-only 2677 STATUS current 2678 DESCRIPTION 2679 "A measured value of the current per phase. IEC 61850- 2680 7-4 attribute 'Amp'" 2681 ::= { eoACPwrAttributesEntry 3 } 2683 eoACPwrAttributesFrequency OBJECT-TYPE 2684 SYNTAX Integer32 (4500..6500) -- UNITS 0.01 Hertz 2685 UNITS "hertz" 2686 MAX-ACCESS read-only 2687 STATUS current 2688 DESCRIPTION 2689 "A measured value for the basic frequency of the AC 2690 circuit. IEC 61850-7-4 attribute 'Hz'." 2691 ::= { eoACPwrAttributesEntry 4 } 2693 eoACPwrAttributesPowerUnitMultiplier OBJECT-TYPE 2694 SYNTAX UnitMultiplier 2695 MAX-ACCESS read-only 2696 STATUS current 2697 DESCRIPTION 2698 "The magnitude of watts for the usage value in 2699 eoACPwrAttributesTotalActivePower, 2700 eoACPwrAttributesTotalReactivePower 2701 and eoACPwrAttributesTotalApparentPower measurements. 2702 For 3-phase power systems, this will also include 2703 eoACPwrAttributesPhaseActivePower, 2704 eoACPwrAttributesPhaseReactivePower and 2705 eoACPwrAttributesPhaseApparentPower" 2706 ::= { eoACPwrAttributesEntry 5 } 2708 eoACPwrAttributesPowerAccuracy OBJECT-TYPE 2709 SYNTAX Integer32 (0..10000) 2710 UNITS "hundredths of percent" 2711 MAX-ACCESS read-only 2712 STATUS current 2713 DESCRIPTION 2714 "This object indicates a percentage value, in 100ths of 2715 a percent, representing the presumed accuracy of 2716 active, reactive, and apparent power usage reporting. 2717 For example: 1010 means the reported usage is accurate 2718 to +/- 10.1 percent. This value is zero if the 2719 accuracy is unknown. 2721 ANSI and IEC define the following accuracy classes for 2722 power measurement: IEC 62053-22 & 60044-1 class 0.1, 2723 0.2, 0.5, 1 & 3. 2724 ANSI C12.20 class 0.2 & 0.5" 2725 ::= { eoACPwrAttributesEntry 6 } 2727 eoACPwrAttributesTotalActivePower OBJECT-TYPE 2728 SYNTAX Integer32 2729 UNITS " watts" 2730 MAX-ACCESS read-only 2731 STATUS current 2732 DESCRIPTION 2733 "A measured value of the actual power delivered to or 2734 consumed by the load. IEC 61850-7-4 attribute 'TotW'." 2735 ::= { eoACPwrAttributesEntry 7 } 2737 eoACPwrAttributesTotalReactivePower OBJECT-TYPE 2738 SYNTAX Integer32 2739 UNITS "volt-amperes reactive" 2740 MAX-ACCESS read-only 2741 STATUS current 2742 DESCRIPTION 2743 "A mesured value of the reactive portion of the 2744 apparent power. IEC 61850-7-4 attribute 'TotVAr'." 2745 ::= { eoACPwrAttributesEntry 8 } 2747 eoACPwrAttributesTotalApparentPower OBJECT-TYPE 2748 SYNTAX Integer32 2749 UNITS "volt-amperes" 2750 MAX-ACCESS read-only 2751 STATUS current 2752 DESCRIPTION 2753 "A measured value of the voltage and current which 2754 determines the apparent power. The apparent power is 2755 the vector sum of real and reactive power. 2757 Note: watts and volt-ampheres are equivalent units and 2758 may be combined. IEC 61850-7-4 attribute 'TotVA'." 2759 ::= { eoACPwrAttributesEntry 9 } 2761 eoACPwrAttributesTotalPowerFactor OBJECT-TYPE 2762 SYNTAX Integer32 (-10000..10000) 2763 UNITS "hundredths of percent" 2764 MAX-ACCESS read-only 2765 STATUS current 2766 DESCRIPTION 2767 "A measured value ratio of the real power flowing to 2768 the load versus the apparent power. It is dimensionless 2769 and expressed here as a percentage value in 100ths of a 2770 percent. A power factor of 100% indicates there is no 2771 inductance load and thus no reactive power. Power 2772 Factor can be positive or negative, where the sign 2773 should be in lead/lag (IEEE) form. IEC 61850-7-4 2774 attribute 'TotPF'." 2775 ::= { eoACPwrAttributesEntry 10 } 2777 eoACPwrAttributesThdAmpheres OBJECT-TYPE 2778 SYNTAX Integer32 (0..10000) 2779 UNITS "hundredths of percent" 2780 MAX-ACCESS read-only 2781 STATUS current 2782 DESCRIPTION 2783 "A calculated value for the current total harmonic 2784 distortion (THD). Method of calculation is not 2785 specified. IEC 61850-7-4 attribute 'ThdAmp'." 2786 ::= { eoACPwrAttributesEntry 11 } 2788 eoACPwrAttributesThdVoltage OBJECT-TYPE 2789 SYNTAX Integer32 (0..10000) 2790 UNITS "hundredths of percent" 2791 MAX-ACCESS read-only 2792 STATUS current 2793 DESCRIPTION 2794 "A calculated value for the voltage total harmonic 2795 distortion (THD). Method of calculation is not 2796 specified. IEC 61850-7-4 attribute 'ThdVol'." 2797 ::= { eoACPwrAttributesEntry 12 } 2799 eoACPwrAttributesPhaseTable OBJECT-TYPE 2800 SYNTAX SEQUENCE OF EoACPwrAttributesPhaseEntry 2801 MAX-ACCESS not-accessible 2802 STATUS current 2803 DESCRIPTION 2804 "This table describes 3-phase power attributes 2805 measurements. It is a sparse extension of the 2806 eoACPwrAttributesTable." 2807 ::= { powerAttributesMIBObjects 2 } 2809 eoACPwrAttributesPhaseEntry OBJECT-TYPE 2810 SYNTAX EoACPwrAttributesPhaseEntry 2811 MAX-ACCESS not-accessible 2812 STATUS current 2813 DESCRIPTION 2814 "An entry describes common 3-phase power attributes 2815 measurements. 2817 This optional table describes 3-phase power attributes 2818 measurements, with three entries for each supported 2819 entPhysicalIndex entity. Entities having single phase 2820 power shall not have any entities. 2822 This table describes attributes common to both WYE and 2823 DEL. Entities having single phase power shall not have 2824 any entries here. It is a sparse extension of the 2825 eoACPwrAttributesTable. 2827 These attributes correspond to IEC 61850-7.4 MMXU phase 2828 measurements." 2829 INDEX { entPhysicalIndex, eoPhaseIndex } 2830 ::= { eoACPwrAttributesPhaseTable 1 } 2832 EoACPwrAttributesPhaseEntry ::= SEQUENCE { 2833 eoPhaseIndex Integer32, 2834 eoACPwrAttributesPhaseAvgCurrent Integer32, 2835 eoACPwrAttributesPhaseActivePower Integer32, 2836 eoACPwrAttributesPhaseReactivePower Integer32, 2837 eoACPwrAttributesPhaseApparentPower Integer32, 2838 eoACPwrAttributesPhasePowerFactor Integer32, 2839 eoACPwrAttributesPhaseImpedance Integer32 2840 } 2842 eoPhaseIndex OBJECT-TYPE 2843 SYNTAX Integer32 (0..359) 2844 MAX-ACCESS not-accessible 2845 STATUS current 2846 DESCRIPTION 2847 "A phase angle typically corresponding to 0, 120, 240." 2848 ::= { eoACPwrAttributesPhaseEntry 1 } 2850 eoACPwrAttributesPhaseAvgCurrent OBJECT-TYPE 2851 SYNTAX Integer32 2852 UNITS "Ampheres" 2853 MAX-ACCESS read-only 2854 STATUS current 2855 DESCRIPTION 2856 "A measured value of the current per phase. IEC 61850- 2857 7-4 attribute 'A'" 2858 ::= { eoACPwrAttributesPhaseEntry 2 } 2860 eoACPwrAttributesPhaseActivePower OBJECT-TYPE 2861 SYNTAX Integer32 2862 UNITS " watts" 2863 MAX-ACCESS read-only 2864 STATUS current 2865 DESCRIPTION 2866 "A measured value of the actual power delivered to or 2867 consumed by the load. IEC 61850-7-4 attribute 'W'" 2868 ::= { eoACPwrAttributesPhaseEntry 3 } 2870 eoACPwrAttributesPhaseReactivePower OBJECT-TYPE 2871 SYNTAX Integer32 2872 UNITS "volt-amperes reactive" 2873 MAX-ACCESS read-only 2874 STATUS current 2875 DESCRIPTION 2876 "A measured value of the reactive portion of the 2877 apparent power. IEC 61850-7-4 attribute 'VAr'" 2878 ::= { eoACPwrAttributesPhaseEntry 4 } 2880 eoACPwrAttributesPhaseApparentPower OBJECT-TYPE 2881 SYNTAX Integer32 2882 UNITS "volt-amperes" 2883 MAX-ACCESS read-only 2884 STATUS current 2885 DESCRIPTION 2886 "A measured value of the voltage and current determines 2887 the apparent power. Active plus reactive power equals 2888 the total apparent power. 2890 Note: Watts and volt-ampheres are equivalent units and 2891 may be combined. IEC 61850-7-4 attribute 'VA'." 2892 ::= { eoACPwrAttributesPhaseEntry 5 } 2894 eoACPwrAttributesPhasePowerFactor OBJECT-TYPE 2895 SYNTAX Integer32 (-10000..10000) 2896 UNITS "hundredths of percent" 2897 MAX-ACCESS read-only 2898 STATUS current 2899 DESCRIPTION 2900 "A measured value ratio of the real power flowing to 2901 the load versus the apparent power for this phase. IEC 2902 61850-7-4 attribute 'PF'. Power Factor can be positive 2903 or negative where the sign should be in lead/lag (IEEE) 2904 form." 2905 ::= { eoACPwrAttributesPhaseEntry 6 } 2907 eoACPwrAttributesPhaseImpedance OBJECT-TYPE 2908 SYNTAX Integer32 2909 UNITS "volt-amperes" 2910 MAX-ACCESS read-only 2911 STATUS current 2912 DESCRIPTION 2913 "A measured value of the impedance. IEC 61850-7-4 attribute 2914 'Z'." 2915 ::= { eoACPwrAttributesPhaseEntry 7 } 2917 eoACPwrAttributesDelPhaseTable OBJECT-TYPE 2918 SYNTAX SEQUENCE OF EoACPwrAttributesDelPhaseEntry 2919 MAX-ACCESS not-accessible 2920 STATUS current 2921 DESCRIPTION 2922 "This table describes DEL configuration phase-to-phase 2923 power attributes measurements. This is a sparse 2924 extension of the eoACPwrAttributesPhaseTable." 2925 ::= { powerAttributesMIBObjects 3 } 2927 eoACPwrAttributesDelPhaseEntry OBJECT-TYPE 2928 SYNTAX EoACPwrAttributesDelPhaseEntry 2929 MAX-ACCESS not-accessible 2930 STATUS current 2931 DESCRIPTION 2932 "An entry describes power attributes attributes of a 2933 phase in a DEL 3-phase power system. Voltage 2934 measurements are provided both relative to each other 2935 and zero. 2937 Measured values are from IEC 61850-7-2 MMUX and THD from 2938 MHAI objects. 2940 For phase-to-phase measurements, the eoPhaseIndex is 2941 compared against the following phase at +120 degrees. 2942 Thus, the possible values are: 2944 eoPhaseIndex Next Phase Angle 2945 0 120 2946 120 240 2947 240 0 2948 " 2949 INDEX { entPhysicalIndex, eoPhaseIndex} 2950 ::= { eoACPwrAttributesDelPhaseTable 1} 2952 EoACPwrAttributesDelPhaseEntry ::= SEQUENCE { 2953 eoACPwrAttributesDelPhaseToNextPhaseVoltage Integer32, 2954 eoACPwrAttributesDelThdPhaseToNextPhaseVoltage Integer32, 2955 eoACPwrAttributesDelThdCurrent Integer32 2956 } 2958 eoACPwrAttributesDelPhaseToNextPhaseVoltage OBJECT-TYPE 2959 SYNTAX Integer32 2960 UNITS "0.1 Volt AC" 2961 MAX-ACCESS read-only 2962 STATUS current 2963 DESCRIPTION 2964 "A measured value of phase to next phase voltages, where 2965 the next phase is IEC 61850-7-4 attribute 'PPV'." 2966 ::= { eoACPwrAttributesDelPhaseEntry 2 } 2968 eoACPwrAttributesDelThdPhaseToNextPhaseVoltage OBJECT-TYPE 2969 SYNTAX Integer32 (0..10000) 2970 UNITS "hundredths of percent" 2971 MAX-ACCESS read-only 2972 STATUS current 2973 DESCRIPTION 2974 "A calculated value for the voltage total harmonic 2975 disortion for phase to next phase. Method of calculation 2976 is not specified. IEC 61850-7-4 attribute 'ThdPPV'." 2977 ::= { eoACPwrAttributesDelPhaseEntry 3 } 2979 eoACPwrAttributesDelThdCurrent OBJECT-TYPE 2980 SYNTAX Integer32 (0..10000) 2981 UNITS "hundredths of percent" 2982 MAX-ACCESS read-only 2983 STATUS current 2984 DESCRIPTION 2985 "A calculated value for the voltage total harmonic 2986 disortion (THD) for phase to phase. Method of 2987 calculation is not specified. 2988 IEC 61850-7-4 attribute 'ThdPPV'." 2989 ::= { eoACPwrAttributesDelPhaseEntry 4 } 2991 eoACPwrAttributesWyePhaseTable OBJECT-TYPE 2992 SYNTAX SEQUENCE OF EoACPwrAttributesWyePhaseEntry 2993 MAX-ACCESS not-accessible 2994 STATUS current 2995 DESCRIPTION 2996 "This table describes WYE configuration phase-to-neutral 2997 power attributes measurements. This is a sparse 2998 extension of the eoACPwrAttributesPhaseTable." 2999 ::= { powerAttributesMIBObjects 4 } 3001 eoACPwrAttributesWyePhaseEntry OBJECT-TYPE 3002 SYNTAX EoACPwrAttributesWyePhaseEntry 3003 MAX-ACCESS not-accessible 3004 STATUS current 3005 DESCRIPTION 3006 "This table describes measurements of WYE configuration 3007 with phase to neutral power attributes attributes. Three 3008 entries are required for each supported entPhysicalIndex 3009 entry. Voltage measurements are relative to neutral. 3011 This is a sparse extension of the 3012 eoACPwrAttributesPhaseTable. 3014 Each entry describes power attributes attributes of one 3015 phase of a WYE 3-phase power system. 3017 Measured values are from IEC 61850-7-2 MMUX and THD from 3018 MHAI objects." 3019 INDEX { entPhysicalIndex, eoPhaseIndex } 3020 ::= { eoACPwrAttributesWyePhaseTable 1} 3022 EoACPwrAttributesWyePhaseEntry ::= SEQUENCE { 3023 eoACPwrAttributesWyePhaseToNeutralVoltage Integer32, 3024 eoACPwrAttributesWyePhaseCurrent Integer32, 3025 eoACPwrAttributesWyeThdPhaseToNeutralVoltage 3026 Integer32 3027 } 3029 eoACPwrAttributesWyePhaseToNeutralVoltage OBJECT-TYPE 3030 SYNTAX Integer32 3031 UNITS "0.1 Volt AC" 3032 MAX-ACCESS read-only 3033 STATUS current 3034 DESCRIPTION 3035 "A measured value of phase to neutral voltage. IEC 3036 61850-7-4 attribute 'PhV'." 3037 ::= { eoACPwrAttributesWyePhaseEntry 1 } 3039 eoACPwrAttributesWyePhaseCurrent OBJECT-TYPE 3040 SYNTAX Integer32 3041 UNITS "0.1 ampheres AC" 3042 MAX-ACCESS read-only 3043 STATUS current 3044 DESCRIPTION 3045 "A measured value of phase currents. IEC 61850-7-4 3046 attribute 'A'." 3047 ::= { eoACPwrAttributesWyePhaseEntry 2 } 3049 eoACPwrAttributesWyeThdPhaseToNeutralVoltage OBJECT-TYPE 3050 SYNTAX Integer32 (0..10000) 3051 UNITS "hundredths of percent" 3052 MAX-ACCESS read-only 3053 STATUS current 3054 DESCRIPTION 3055 "A calculated value of the voltage total harmonic 3056 distortion (THD) for phase to neutral. IEC 61850-7-4 3057 attribute 'ThdPhV'." 3058 ::= { eoACPwrAttributesWyePhaseEntry 3 } 3060 -- Conformance 3062 powerAttributesMIBCompliances OBJECT IDENTIFIER 3063 ::= { powerAttributesMIB 2 } 3065 powerAttributesMIBGroups OBJECT IDENTIFIER 3066 ::= { powerAttributesMIB 3 } 3068 powerAttributesMIBFullCompliance MODULE-COMPLIANCE 3069 STATUS current 3070 DESCRIPTION 3071 "When this MIB is implemented with support for read-create, 3072 then such an implementation can claim full compliance. 3073 Such devices can then be both monitored and configured with 3074 this MIB. 3076 Module Compliance of [RFC6933] with respect to 3077 entity4CRCompliance should be supported which requires 3078 implementation of 3 MIB objects (entPhysicalIndex, 3079 entPhysicalName and entPhysicalUUID)." 3081 MODULE -- this module 3082 MANDATORY-GROUPS { 3083 powerACPwrAttributesMIBTableGroup 3084 } 3086 GROUP powerACPwrAttributesOptionalMIBTableGroup 3087 DESCRIPTION 3088 "A compliant implementation does not have 3089 to implement." 3091 GROUP powerACPwrAttributesPhaseMIBTableGroup 3092 DESCRIPTION 3093 "A compliant implementation does not have to 3094 implement." 3096 GROUP powerACPwrAttributesDelPhaseMIBTableGroup 3097 DESCRIPTION 3098 "A compliant implementation does not have to 3099 implement." 3101 GROUP powerACPwrAttributesWyePhaseMIBTableGroup 3102 DESCRIPTION 3103 "A compliant implementation does not have to 3104 implement." 3106 ::= { powerAttributesMIBCompliances 1 } 3108 -- Units of Conformance 3110 powerACPwrAttributesMIBTableGroup OBJECT-GROUP 3111 OBJECTS { 3112 -- Note that object entPhysicalIndex is NOT 3113 -- included since it is not-accessible 3115 eoACPwrAttributesAvgVoltage, 3116 eoACPwrAttributesAvgCurrent, 3117 eoACPwrAttributesFrequency, 3118 eoACPwrAttributesPowerUnitMultiplier, 3119 eoACPwrAttributesPowerAccuracy, 3120 eoACPwrAttributesTotalActivePower, 3121 eoACPwrAttributesTotalReactivePower, 3122 eoACPwrAttributesTotalApparentPower, 3123 eoACPwrAttributesTotalPowerFactor 3124 } 3125 STATUS current 3126 DESCRIPTION 3127 "This group contains the collection of all the power 3128 attributes objects related to the Energy Object." 3129 ::= { powerAttributesMIBGroups 1 } 3131 powerACPwrAttributesOptionalMIBTableGroup OBJECT-GROUP 3132 OBJECTS { 3133 eoACPwrAttributesConfiguration, 3134 eoACPwrAttributesThdAmpheres, 3135 eoACPwrAttributesThdVoltage 3136 } 3137 STATUS current 3138 DESCRIPTION 3139 "This group contains the collection of all the power 3140 attributes objects related to the Energy Object." 3141 ::= { powerAttributesMIBGroups 2 } 3143 powerACPwrAttributesPhaseMIBTableGroup OBJECT-GROUP 3144 OBJECTS { 3145 -- Note that object entPhysicalIndex is 3146 -- NOT included since it is 3147 -- not-accessible 3148 eoACPwrAttributesPhaseAvgCurrent, 3149 eoACPwrAttributesPhaseActivePower, 3150 eoACPwrAttributesPhaseReactivePower, 3151 eoACPwrAttributesPhaseApparentPower, 3152 eoACPwrAttributesPhasePowerFactor, 3153 eoACPwrAttributesPhaseImpedance 3154 } 3155 STATUS current 3156 DESCRIPTION 3157 "This group contains the collection of all 3-phase power 3158 attributes objects related to the Power State." 3159 ::= { powerAttributesMIBGroups 3 } 3161 powerACPwrAttributesDelPhaseMIBTableGroup OBJECT-GROUP 3162 OBJECTS { 3163 -- Note that object entPhysicalIndex and 3164 -- eoPhaseIndex are NOT included 3165 -- since they are not-accessible 3166 eoACPwrAttributesDelPhaseToNextPhaseVoltage, 3167 eoACPwrAttributesDelThdPhaseToNextPhaseVoltage, 3168 eoACPwrAttributesDelThdCurrent 3169 } 3170 STATUS current 3171 DESCRIPTION 3172 "This group contains the collection of all power 3173 characteristic attributes of a phase in a DEL 3-phase 3174 power system." 3175 ::= { powerAttributesMIBGroups 4 } 3177 powerACPwrAttributesWyePhaseMIBTableGroup OBJECT-GROUP 3178 OBJECTS { 3179 -- Note that object entPhysicalIndex and 3180 -- eoPhaseIndex are NOT included 3181 -- since they are not-accessible 3183 eoACPwrAttributesWyePhaseToNeutralVoltage, 3184 eoACPwrAttributesWyePhaseCurrent, 3185 eoACPwrAttributesWyeThdPhaseToNeutralVoltage 3186 } 3187 STATUS current 3188 DESCRIPTION 3189 "This group contains the collection of all WYE 3190 configuration phase-to-neutral power attributes 3191 measurements." 3192 ::= { powerAttributesMIBGroups 5 } 3194 END 3196 11. Implementation Status 3198 [RFC Editor: before publication please remove this section and 3199 the reference to [I-D.sheffer-running-code], along the offered 3200 experiment of which this section exists to assist document 3201 reviewers.] 3203 At the time of this writing the mandatory tables of the MIB 3204 module eoPowerTable.and eoPowerStateTable have been implemented 3205 as a standalone prototype for monitoring the energy consumption 3206 of routers and switches. Network Management support for querying 3207 MIB objects is under development. 3209 12. Security Considerations 3211 Some of the readable objects in these MIB modules (i.e., objects 3212 with a MAX-ACCESS other than not-accessible) may be considered 3213 sensitive or vulnerable in some network environments. It is 3214 thus important to control even GET and/or NOTIFY access to these 3215 objects and possibly to even encrypt the values of these objects 3216 when sending them over the network via SNMP. 3218 There are a number of management objects defined in these MIB 3219 modules with a MAX-ACCESS clause of read-write and/or read- 3220 create. Such objects MAY be considered sensitive or vulnerable 3221 in some network environments. The support for SET operations in 3222 a non-secure environment without proper protection can have a 3223 negative effect on network operations. The following are the 3224 tables and objects and their sensitivity/vulnerability: 3226 - Unauthorized changes to the eoPowerOperState (via 3227 theeoPowerAdminState ) MAY disrupt the power settings of the 3228 differentEnergy Objects, and therefore the state of 3229 functionality of the respective Energy Objects. 3230 - Unauthorized changes to the eoEnergyParametersTable MAY 3231 disrupt energy measurement in the eoEnergyTable table. 3233 SNMP versions prior to SNMPv3 did not include adequate security. 3234 Even if the network itself is secure (for example, by using 3235 IPsec), there is still no secure control over who on the secure 3236 network is allowed to access and GET/SET 3237 (read/change/create/delete) the objects in these MIB modules. 3239 It is RECOMMENDED that implementers consider the security 3240 features as provided by the SNMPv3 framework (see [RFC3410], 3241 section 8), including full support for the SNMPv3 cryptographic 3242 mechanisms (for authentication and privacy). 3244 Further, deployment of SNMP versions prior to SNMPv3 is NOT 3245 RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to 3246 enable cryptographic security. It is then a customer/operator 3247 responsibility to ensure that the SNMP entity giving access to 3248 an instance of these MIB modules is properly configured to give 3249 access to the objects only to those principals (users) that have 3250 legitimate rights to GET or SET (change/create/delete) them. 3252 13. IANA Considerations 3254 13.1. IANA Considerations for the MIB Modules 3256 The MIB modules in this document uses the following IANA- 3257 assigned OBJECT IDENTIFIER values recorded in the SMI Numbers 3258 registry: 3260 Descriptor OBJECT IDENTIFIER value 3261 ---------- ----------------------- 3262 energyObjectMib { mib-2 xxx } 3263 powerAttributesMIB { mib-2 yyy } 3265 Additions to the MIB modules are subject to Expert Review 3266 [RFC5226], i.e., review by one of a group of experts designated 3267 by an IETF Area Director. The group of experts MUST check the 3268 requested MIB objects for completeness and accuracy of the 3269 description. Requests for MIB objects that duplicate the 3270 functionality of existing objects SHOULD be declined. The 3271 smallest available OIDs SHOULD be assigned to the new MIB 3272 objects. The specification of new MIB objects SHOULD follow the 3273 structure specified in Section 10. and MUST be published using 3274 a well-established and persistent publication medium. 3276 13.2. IANA Registration of new Power State Set 3278 The initial set of Power State Sets are specified in [EMAN- 3279 FMWK]. IANA maintains a Textual Convention IANAPowerStateSet 3280 with the initial set of Power State Sets and the Power States 3281 within those Power State Sets as proposed in the [EMAN-FMWK]. 3282 The current version of IANAPowerStateSet Textual convention can 3283 be accessed http://www.iana.org/assignments/IANAPowerStateSet 3285 New Assignments to Power State Sets shall be administered by 3286 IANA and the guidelines and procedures are specified in [EMAN- 3287 FMWK]. 3289 13.2.1. IANA Registration of the IEEE1621 Power State Set 3291 The Internet Assigned Numbers Authority (IANA) has created a new 3292 registry for IEEE1621 Power State Set identifiers and filled it 3293 with the initial list in the Textual Convention 3294 IANAPowerStateSet. 3296 Guidelines for new assignments (or potentially deprecation) for 3297 IEEE1621 Power State Set are specified in [EMAN-FMWK]. 3299 13.2.2. IANA Registration of the DMTF Power State Set 3301 The Internet Assigned Numbers Authority (IANA) has created a new 3302 registry for DMTF Power State Set identifiers and filled it in 3303 the Textual Convention IANAPowerStateSet. 3305 Guidelines for new assignments (or potentially deprecation) for 3306 DMTF Power State Set are specified in [EMAN-FMWK]. 3308 13.2.3. IANA Registration of the EMAN Power State Set 3310 The Internet Assigned Numbers Authority (IANA) has created a new 3311 registry for EMAN Power State Set identifiers and filled it in 3312 the Textual Convention IANAPowerStateSet. 3314 Guidelines for new assignments (or potentially deprecation) for 3315 EMAN Power State Set are specified in [EMAN-FMWK]. 3317 13.3. Updating the Registration of Existing Power State Sets 3319 IANA maintains a Textual Convention IANAPowerStateSet with the 3320 initial set of Power State Sets and the Power States within 3321 those Power State Sets. The current version of Textual 3322 convention can be accessed 3323 http://www.iana.org/assignments/IANAPowerStateSet 3325 With the evolution of standards, over time, it may be important 3326 to deprecate of some of the existing the Power State Sets or 3327 some of the states within a Power State Set. 3329 The registrant shall publish an Internet-draft or an individual 3330 submission with the clear specification on deprecation of Power 3331 State Sets or Power States registered with IANA. The 3332 deprecation shall be administered by IANA through Expert Review 3333 [RFC5226], i.e., review by one of a group of experts designated 3334 by an IETF Area Director. The process should also allow for a 3335 mechanism for cases where others have significant objections to 3336 claims on deprecation of a registration. In cases, where the 3337 registrant cannot be reached, IESG can designate an Expert to 3338 modify the IANA registry for the deprecation. 3340 12. Contributors 3342 This document results from the merger of two initial proposals. 3343 The following persons made significant contributions either in 3344 one of the initial proposals or in this document. 3346 John Parello 3348 Rolf Winter 3349 Dominique Dudkowski 3351 13. Acknowledgment 3353 The authors would like to thank Shamita Pisal for her prototype 3354 of this MIB module, and her valuable feedback. The authors 3355 would like to Michael Brown for improving the text dramatically. 3357 We would like to thank Juergen Schoenwalder for proposing the 3358 design of the Textual Convention for IANAPowerStateSet and Ira 3359 McDonald for his feedback. Thanks for the many comments on the 3360 design of the EnergyTable from Minoru Teraoka and Hiroto Ogaki. 3362 14. Open Issues 3364 OPEN ISSUE 1 check if all the requirements from [EMAN-REQ] are 3365 covered. Nominal Voltage to be reported as a range ? 3367 OPEN ISSUE 2 IANA Registered Power State Sets deferred to [EMAN- 3368 FMWK] 3370 15. References 3372 15.2. Normative References 3374 [RFC2119] S. Bradner, Key words for use in RFCs to Indicate 3375 Requirement Levels, BCP 14, RFC 2119, March 1997. 3377 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J. 3378 Schoenwaelder, Ed., "Structure of Management 3379 Information Version 2 (SMIv2)", STD 58, RFC 2578, April 3380 1999. 3382 [RFC2579] McCloghrie, K., Ed., Perkins, D., Ed., and J. 3383 Schoenwaelder, Ed., "Textual Conventions for SMIv2", 3384 STD 58, RFC 2579, April 1999. 3386 [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder, 3387 "Conformance Statements for SMIv2", STD 58, RFC 2580, 3388 April 1999. 3390 [RFC3621] Berger, A., and D. Romascanu, "Power Ethernet MIB", 3391 RFC3621, December 2003. 3393 [RFC4133] Bierman, A. and K. McCloghrie, "Entity MIB (Version 3394 3)", RFC 4133, August 2005. 3396 [LLDP-MED-MIB] ANSI/TIA-1057, "The LLDP Management Information 3397 Base extension module for TIA-TR41.4 media endpoint 3398 discovery information", July 2005. 3400 [EMAN-AWARE-MIB] J. Parello, B. Claise and M. Chandramoili, 3401 "draft-ietf-eman-energy-aware-mib-09 ", work in 3402 progress, July 2013. 3404 15.3. Informative References 3406 [RFC1628] S. Bradner, "UPS Management Information Base", RFC 3407 1628, May 1994 3409 [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart, 3410 "Introduction and Applicability Statements for Internet 3411 Standard Management Framework ", RFC 3410, December 3412 2002. 3414 [RFC3418] Presun, R., Case, J., McCloghrie, K., Rose, M, and S. 3415 Waldbusser, "Management Information Base (MIB) for the 3416 Simple Network Management Protocol (SNMP)", RFC3418, 3417 December 2002. 3419 [RFC3433] Bierman, A., Romascanu, D., and K. Norseth, "Entity 3420 Sensor Management Information Base", RFC 3433, December 3421 2002. 3423 [RFC4268] Chisholm, S. and D. Perkins, "Entity State MIB", RFC 3424 4268, November 2005. 3426 [RFC5226] Narten, T. Alverstrand, H., A. and K. McCloghrie, 3427 "Guidelines for Writing an IANA Considerations Section 3428 in RFCs ", BCP 26, RFC 5226, May 2008. 3430 [EMAN-REQ] Quittek, J., Winter, R., Dietz, T., Claise, B., and 3431 M. Chandramouli, " Requirements for Energy Management", 3432 draft-ietf-eman-requirements-14, May 2013. 3434 [EMAN-FMWK] Claise, B., Parello, J., Schoening, B., Quittek, J. 3435 and Nordman, B, "Energy Management Framework", draft- 3436 ietf-eman-framework-08, July 2013. 3438 [EMAN-MONITORING-MIB] M. Chandramouli, Schoening, B., Dietz, T., 3439 Quittek, J. and B. Claise "Energy and Power Monitoring 3440 MIB ", draft-ietf-eman-energy-monitoring-mib-05, April 3441 2013. 3443 [EMAN-AS] Schoening, B., Chandramouli, M. and Nordman, B. 3444 "Energy Management (EMAN) Applicability Statement", 3445 draft-ietf-eman-applicability-statement-03, April 2013. 3447 [RFC6933] A. Bierman, D. Romascanu, J. Quittek and M. 3448 Chandramouli " Entity MIB (Version 4)", RFC 6933, May 3449 2013. 3451 [ACPI] "Advanced Configuration and Power Interface 3452 Specification",http://www.acpi.info/DOWNLOADS/ACPIspec3 3453 0b.pdf 3455 [DMTF] "Power State Management Profile DMTF DSP1027 Version 3456 2.0" December 2009 3457 http://www.dmtf.org/sites/default/files/standards/docum 3458 ents/DSP1027_2.0.0.pdf 3460 [IEEE1621] "Standard for User Interface Elements in Power 3461 Control of Electronic Devices Employed in 3462 Office/Consumer Environments", IEEE 1621, December 3463 2004. 3465 [IEC.61850-7-4] International Electrotechnical Commission, 3466 "Communication networks and systems for power utility 3467 automation Part 7-4: Basic communication structure 3468 Compatible logical node classes and data object 3469 classes", 2010. 3471 [IEC.62053-21] International Electrotechnical Commission, 3472 "Electricity metering equipment (a.c.) Particular 3473 requirements Part 22: Static meters for active energy 3474 (classes 1 and 2)", 2003. 3476 [IEC.62053-22]International Electrotechnical Commission, 3477 "Electricity metering equipment (a.c.) Particular 3478 requirements Part 22: Static meters for active energy 3479 (classes 0,2 S and 0,5 S)", 2003. 3481 Authors' Addresses 3483 Mouli Chandramouli 3484 Cisco Systems, Inc. 3485 Sarjapur Outer Ring Road 3486 Bangalore 560103 3487 IN 3489 Phone: +91 80 4429 2409 3490 Email: moulchan@cisco.com 3492 Brad Schoening 3493 44 Rivers Edge Drive 3494 Little Silver, NJ 07739 3495 US 3496 Email: brad.schoening@verizon.net 3498 Juergen Quittek 3499 NEC Europe Ltd. 3500 NEC Laboratories Europe 3501 Network Research Division 3502 Kurfuersten-Anlage 36 3503 Heidelberg 69115 3504 DE 3506 Phone: +49 6221 4342-115 3507 Email: quittek@neclab.eu 3509 Thomas Dietz 3510 NEC Europe Ltd. 3511 NEC Laboratories Europe 3512 Network Research Division 3513 Kurfuersten-Anlage 36 3514 Heidelberg 69115 3515 DE 3517 Phone: +49 6221 4342-128 3518 Email: Thomas.Dietz@neclab.eu 3519 Benoit Claise 3520 Cisco Systems, Inc. 3521 De Kleetlaan 6a b1 3522 Diegem 1813 3523 BE 3525 Phone: +32 2 704 5622 3526 Email: bclaise@cisco.com