idnits 2.17.1 draft-ietf-eman-energy-monitoring-mib-08.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- == The page length should not exceed 58 lines per page, but there was 1 longer page, the longest (page 1) being 60 lines Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Line 280 has weird spacing: '...tiplier eoP...' == Line 329 has weird spacing: '...exed by entPh...' == Line 664 has weird spacing: '... phase power...' == Line 838 has weird spacing: '...tiplier equal...' == Line 1062 has weird spacing: '... Object and a...' == (6 more instances...) == The document seems to lack the recommended RFC 2119 boilerplate, even if it appears to use RFC 2119 keywords -- however, there's a paragraph with a matching beginning. Boilerplate error? (The document does seem to have the reference to RFC 2119 which the ID-Checklist requires). -- The document date (December 13, 2013) is 3785 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Unused Reference: 'ACPI' is defined on line 3448, but no explicit reference was found in the text ** Obsolete normative reference: RFC 4133 (Obsoleted by RFC 6933) -- Possible downref: Non-RFC (?) normative reference: ref. 'EMAN-AWARE-MIB' -- Possible downref: Non-RFC (?) normative reference: ref. 'LLDP-MED-MIB' -- Obsolete informational reference (is this intentional?): RFC 5226 (Obsoleted by RFC 8126) -- Obsolete informational reference (is this intentional?): RFC 6982 (Obsoleted by RFC 7942) == Outdated reference: A later version (-19) exists of draft-ietf-eman-framework-11 == Outdated reference: A later version (-11) exists of draft-ietf-eman-applicability-statement-04 Summary: 1 error (**), 0 flaws (~~), 12 warnings (==), 5 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group M. Chandramouli 3 B. Claise 4 Internet-Draft Cisco Systems, Inc. 5 Intended Status: Standards Track B. Schoening 6 Expires: June 13, 2014 Independent Consultant 7 J. Quittek 8 T. Dietz 9 NEC Europe Ltd. 10 December 13, 2013 12 Power and Energy Monitoring MIB 13 draft-ietf-eman-energy-monitoring-mib-08 15 Status of this Memo 17 This Internet-Draft is submitted to IETF in full conformance 18 with the provisions of BCP 78 and BCP 79. 20 Internet-Drafts are working documents of the Internet 21 Engineering Task Force (IETF), its areas, and its working 22 groups. Note that other groups may also distribute working 23 documents as Internet-Drafts. 25 Internet-Drafts are draft documents valid for a maximum of six 26 months and may be updated, replaced, or obsoleted by other 27 documents at any time. It is inappropriate to use Internet- 28 Drafts as reference material or to cite them other than as 29 "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed 35 at http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on June 2014. 39 Copyright Notice 41 Copyright (c) 2013 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents 46 (http://trustee.ietf.org/license-info) in effect on the date of 47 publication of this document. Please review these documents 48 carefully, as they describe your rights and restrictions with 49 respect to this document. Code Components extracted from this 50 document must include Simplified BSD License text as described 51 in Section 4.e of the Trust Legal Provisions and are provided 52 without warranty as described in the Simplified BSD License. 54 Abstract 56 This document defines a subset of the Management Information 57 Base (MIB) for power and energy monitoring of devices. 59 Conventions used in this document 61 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL 62 NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED" 63 "MAY", and "OPTIONAL" in this document are to be interpreted as 64 described in RFC 2119 [RFC2119]. 66 Table of Contents 68 1. Introduction............................................. 3 69 2. The Internet-Standard Management Framework............... 4 70 3. Use Cases................................................ 4 71 4. Terminology.............................................. 4 72 5. Architecture Concepts Applied to the MIB Modules......... 5 73 5.1. Energy Object Information............................. 12 74 5.2. Power State........................................... 13 75 5.2.1. Power State Set................................14 76 5.3. Energy Object Usage Information....................... 14 77 5.4. Optional Power Usage Attributes....................... 15 78 5.5. Optional Energy Measurement........................... 15 79 5.6. Fault Management...................................... 19 80 6. Discovery............................................... 20 81 7. Link with the other IETF MIBs........................... 21 82 7.1. Link with the ENTITY-MIB and the ENTITY-SENSOR MIB..21 83 7.2. Link with the ENTITY-STATE MIB......................22 84 7.3. Link with the POWER-OVER-ETHERNET MIB...............22 85 7.4. Link with the UPS MIB...............................23 86 7.5. Link with the LLDP and LLDP-MED MIBs................24 87 8. Implementation Scenario................................. 25 88 9. Structure of the MIB.................................... 27 89 10. MIB Definitions........................................ 28 90 11. Implementation Status.................................. 69 91 11.1. SNMP Research........................................ 70 92 11.2. Cisco Systems........................................ 70 93 12. Security Considerations................................ 71 94 13. IANA Considerations.................................... 72 95 14. Contributors........................................... 73 96 12. Acknowledgment......................................... 73 97 13. References............................................. 74 98 13.1. Normative References...............................74 99 13.2. Informative References.............................75 101 1. Introduction 103 This document defines a subset of the Management Information 104 Base (MIB) for use in energy management of devices within or 105 connected to communication networks. The MIB modules in this 106 document are designed to provide a model for energy management, 107 which includes monitoring for Power State and energy consumption 108 of networked elements. This MIB takes into account the Energy 109 Management Framework [EMAN-FMWK], which in turn, is based on the 110 Requirements for Energy Management [RFC6988]. 112 Energy management is applicable to devices in communication 113 networks. Target devices for this specification include (but are 114 not limited to): routers, switches, Power over Ethernet (PoE) 115 endpoints, protocol gateways for building management systems, 116 intelligent meters, home energy gateways, hosts and servers, 117 sensor proxies, etc. Target devices and the use cases for Energy 118 Management are discussed in Energy Management Applicability 119 Statement [EMAN-AS]. 121 Where applicable, device monitoring extends to the individual 122 components of the device and to any attached dependent devices. 123 For example: A device can contain components that are 124 independent from a power-state point of view, such as line 125 cards, processor cards, hard drives. A device can also have 126 dependent attached devices, such as a switch with PoE endpoints 127 or a power distribution unit with attached endpoints. 129 2. The Internet-Standard Management Framework 131 For a detailed overview of the documents that describe the 132 current Internet-Standard Management Framework, please refer to 133 section 7 of RFC 3410 [RFC3410]. 135 Managed objects are accessed via a virtual information store, 136 termed the Management Information Base or MIB. MIB objects are 137 generally accessed through the Simple Network Management 138 Protocol (SNMP). Objects in the MIB are defined using the 139 mechanisms defined in the Structure of Management Information 140 (SMI). This memo specifies MIB modules that are compliant to 141 SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, 142 RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580]. 144 3. Use Cases 146 Requirements for power and energy monitoring for networking 147 devices are specified in [RFC6988]. The requirements in 148 [RFC6988] cover devices typically found in communications 149 networks, such as switches, routers, and various connected 150 endpoints. For a power monitoring architecture to be useful, it 151 should also apply to facility meters, power distribution units, 152 gateway proxies for commercial building control, home automation 153 devices, and devices that interface with the utility and/or 154 smart grid. Accordingly, the scope of the MIB modules in this 155 document is broader than that specified in [RFC6988]. Several 156 use cases for Energy Management have been identified in the 157 "Energy Management (EMAN) Applicability Statement" [EMAN-AS]. An 158 illustrative example scenario is presented in Section 8. 160 4. Terminology 162 Please refer to [EMAN-FMWK] for the definitions of the 163 following terminology used in this draft. 165 Energy Management 167 Energy Management System (EnMS) 168 Energy Monitoring 170 Energy Control 172 electrical equipment 174 non-electrical equipment (mechanical equipment) 176 device 178 component 180 power inlet 182 power outlet 184 energy 186 power 188 demand 190 provide energy 192 receive energy 194 meter (energy meter) 196 battery 198 Power Interface 200 Nameplate Power 202 Power Attributes 204 Power Quality 206 Power State 208 Power State Set 210 5. Architecture Concepts Applied to the MIB Modules 212 This section describes the concepts specified in the Energy 213 Management Framework [EMAN-FMWK] that pertain to power usage, 214 with specific information related to the MIB module specified in 215 this document. This subsection maps to the different concepts 216 developed in the Energy Management Framework [EMAN-FMWK]. 218 The Energy Monitoring MIB has 2 independent MIB modules ENERGY- 219 OBJECT-MIB and POWER-ATTRIBUTES-MIB. The first MIB module 220 ENERGY-OBJECT-MIB is focused on measurement of power and energy. 221 The second MIB module POWER-ATTRIBUTES-MIB is focused on Power 222 Attributes measurements for Energy Objects. 224 Devices and their sub-components can be modeled using the 225 containment tree of the ENTITY-MIB [RFC6933]. In addition, 226 ENERGY-OBJECT-CONTEXT-MIB MIB module [EMAN-AWARE-MIB] provides a 227 framework for modeling the relationship between Energy Objects. 228 It is conceivable to have implementations of ENERGY-OBJECT- 229 CONTEXT-MIB and ENERGY-OBJECT-MIB for modeling the relationships 230 between Energy Objects and also monitoring the Energy 231 consumption of those Energy Objects. In some situations, it is 232 possible to have implementation of ENERGY-OBJECT-MIB along 233 ENTITY-MIB V4 [RFC6933] with the Module compliance of 234 entity4CRCompliance. This compliance requires that the 235 following 3 MIB objects from ENTITY-MIB [RFC6933] 236 (entPhysicalIndex, entPhysicalName and entPhysicalUUID) MUST be 237 implemented. 239 The ENERGY-OBJECT-MIB MIB module consists of five tables. 241 The first table is the eoMeterCapabilitiesTable. It indicates 242 the instrumentation available for each Energy Object. Thus, the 243 entries in this table indicate to the EnMS which other tables 244 from the ENERGY-OBJECT-MIB and POWER-ATTRIBUTES-MIB are 245 available for each Energy Object. The eoMeterCapabilitiesTable 246 is indexed by entPhysicalIndex [RFC6933]. 248 The second table is the eoPowerTable. It returns the power 249 consumption of each Energy Object, as well as the units, sign, 250 measurement accuracy, and related objects. The eoPowerTable is 251 indexed by entPhysicalIndex. 253 The third table is the eoPowerStateTable. For each Energy 254 Object, it provides information and statistics about the 255 supported Power States. The eoPowerStateTable is indexed by 256 entPhysicalIndex and eoPowerStateIndex. 258 The fourth table is the eoEnergyParametersTable. The entries in 259 this table configure the parameters of energy and demand 260 measurement collection. This table is indexed by 261 eoEnergyParametersIndex. 263 The fifth table is the eoEnergyTable. The entries in this table 264 provide the log the energy and demand information. This table 265 is indexed by eoEnergyParametersIndex. 267 eoMeterCapabilitiesTable(1) 268 | 269 +---eoMeterCapabilitiesEntry(1)[entPhysicalIndex] 270 | | 271 | +---r-n BITS eoMeterCapability 272 | 274 eoPowerTable(2) 275 | 276 +---eoPowerEntry(1) [entPhysicalIndex] 277 | | 278 | +---r-n Integer32 eoPower(1) 279 | +-- r-n Integer32 eoPowerNamePlate(2) 280 | +-- r-n UnitMultiplier eoPowerUnitMultiplier(3) 281 | +-- r-n Integer32 eoPowerAccuracy(4) 282 | +-- r-n INTEGER eoMeasurementCaliber(5) 283 | +-- r-n INTEGER eoPowerCurrentType(6) 284 | +-- r-n INTEGER eoPowerOrigin(7) 285 | +-- rwn IANAPowerStateSet eoPowerAdminState(8) 286 | +-- r-n IANAPowerStateSet eoPowerOperState(9) 287 | +-- r-n OwnerString eoPowerStateEnterReason(10) 288 | 289 | 290 +---eoPowerStateTable(3) 291 | +--eoPowerStateEntry(1) 292 | | [entPhysicalIndex, eoPowerStateIndex] 293 | | 294 | +-- --n IANAPowerStateSet eoPowerStateIndex(1) 295 | +-- r-n Interger32 eoPowerStateMaxPower(2) 296 | +-- r-n UnitMultiplier 297 | eoPowerStatePowerUnitMultiplier(3) 298 | +-- r-n TimeTicks eoPowerStateTotalTime(4) 299 | +-- r-n Counter32 eoPowerStateEnterCount(5) 300 | 302 +eoEnergyParametersTable(4) 303 +---eoEnergyParametersEntry(1) [eoEnergyParametersIndex] 304 | 305 | +-- --n PhysicalIndex eoEnergyObjectIndex(1) 306 | + r-n Integer32 eoEnergyParametersIndex(2) 307 | +-- r-n TimeInterval eoEnergyParametersIntervalLength(3) 308 | +-- r-n Integer32 eoEnergyParametersIntervalNumber(4) 309 | +-- r-n Integer32 eoEnergyParametersIntervalMode(5) 310 | +-- r-n TimeInterval eoEnergyParametersIntervalWindow(6) 311 | +-- r-n Integer32 eoEnergyParametersSampleRate(7) 312 | +-- r-n RowStatus eoEnergyParametersStatus(8) 313 | 314 +eoEnergyTable(5) 315 +---eoEnergyEntry(1) 316 | [eoEnergyParametersIndex,eoEnergyCollectionStartTime] 317 | 318 | +-- r-n TimeTicks eoEnergyCollectionStartTime(1) 319 | +-- r-n Integer32 eoEnergyConsumed(2) 320 | +-- r-n Integer32 eoEnergyProvided(3) 321 | +-- r-n Integer32 eoEnergyStored(4) 322 | +-- r-n UnitMultiplier eoEnergyUnitMultiplier(5) 323 | +-- r-n Integer32 eoEnergyAccuracy(6) 324 | +-- r-n Integer32 eoEnergyMaxConsumed(7) 325 | +-- r-n Integer32 eoEnergyMaxProduced(8) 326 | +-- r-n TimeTicks eoEnergyDiscontinuityTime(9) 328 The powerAttributesMIB consists of four tables. 329 eoACPwrAttributesTable is indexed by entPhysicalIndex. 330 eoACPwrAttributesPhaseTable is indexed by entPhysicalIndex and 331 eoPhaseIndex. eoACPwrAttributesWyePhaseTable and 332 eoACPwrAttributesDelPhaseTable are indexed by entPhysicalIndex 333 and eoPhaseIndex. 335 eoACPwrAttributesTable(1) 336 | 337 +---eoACPwrAttributesEntry(1) [ entPhysicalIndex] 338 | | 339 | +---r-n INTEGER eoACPwrAttributesConfiguration(1) 340 | +-- r-n Interger32 eoACPwrAttributesAvgVoltage(2) 341 | +-- r-n Integer32 eoACPwrAttributesAvgCurrent(3) 342 | +-- r-n Integer32 eoACPwrAttributesFrequency(4) 343 | +-- r-n UnitMultiplier 344 | eoACPwrAttributesPowerUnitMultiplier(5) 345 | +-- r-n Integer32 eoACPwrAttributesPowerAccuracy(6) 346 | +-- r-n Interger32 347 | eoACPwrAttributesTotalActivePower(7) 348 | +-- r-n Integer32 349 | eoACPwrAttributesTotalReactivePower(8) 350 | +-- r-n Integer32 351 | eoACPwrAttributesTotalApparentPower(9) 352 | +-- r-n Integer32 353 | eoACPwrAttributesTotalPowerFactor(10) 354 | +-- r-n Integer32 eoACPwrAttributesThdAmpheres(11) 355 | 356 +eoACPwrAttributesPhaseTable(2) 357 +---EoACPwrAttributesPhaseEntry(1) 358 | | [ entPhysicalIndex, eoPhaseIndex] 359 | | 360 | +-- r-n Integer32 eoPhaseIndex(1) 361 | +-- r-n Integer32 362 | | eoACPwrAttributesPhaseAvgCurrent(2) 363 | +-- r-n Integer32 364 | | eoACPwrAttributesPhaseActivePower(3) 365 | +-- r-n Integer32 366 | | eoACPwrAttributesPhaseReactivePower(4) 367 | +-- r-n Integer32 368 | | eoACPwrAttributesPhaseApparentPower(5) 369 | +-- r-n Integer32 370 | | eoACPwrAttributesPhasePowerFactor(6) 371 | +-- r-n Integer32 372 | | eoACPwrAttributesPhaseImpedance(7) 373 | | 374 +eoACPwrAttributesDelPhaseTable(3) 375 +-- eoACPwrAttributesDelPhaseEntry(1) 376 | | [entPhysicalIndex, eoPhaseIndex] 377 | | 378 | +-- r-n Integer32 379 | | eoACPwrAttributesDelPhaseToNextPhaseVoltage(1) 380 | +-- r-n Integer32 381 | | eoACPwrAttributesDelThdPhaseToNextPhaseVoltage(2) 382 | +-- r-n Integer32 383 eoACPwrAttributesDelThdCurrent(3) 384 | | 385 +eoACPwrAttributesWyePhaseTable(4) 386 +-- eoACPwrAttributesWyePhaseEntry(1) 387 | | [entPhysicalIndex, eoPhaseIndex] 388 | | 389 | +-- r-n Integer32 390 | | eoACPwrAttributesWyePhaseToNeutralVoltage(1) 391 | +-- r-n Integer32 392 | | eoACPwrAttributesWyePhaseCurrent(2) 393 | +-- r-n Integer32 394 | | eoACPwrAttributesWyeThdPhaseToNeutralVoltage(3) 395 | . 397 A UML representation of the MIB objects in the two MIB modules 398 ENERGY-OBJECT-MIB and POWER-ATTRIBUTES-MIB are presented. 400 +-------------------------+ 401 | Energy Object State | 402 | ----------------------- | 403 | eoPowerAdminState | 404 | eoPowerOperState | 405 | eoPowerStateEnterReason | 406 +-------------------------+ 407 | 408 | 409 v 410 +-----------------------+ 411 |---> | Energy Object ID (*) | 412 | | --------------------- | 413 | | entPhysicalIndex | 414 | | entPhysicalName | 415 | | entPhysicalUUID | 416 | +-----------------------+ 417 | 418 | +-----------------------------+ 419 |---- | Energy Object Measurement | 420 | | --------------------------- | 421 | | eoPower | 422 | | eoPowerUnitMultiplier | 423 | | eoPowerAccuracy | 424 | +-----------------------------+ 425 | 426 | +---------------------------+ 427 |---- | Energy Object Attributes | 428 | | ------------------------- | 429 | | eoPowerNamePlate | 430 | | eoPowerMeasurementCaliber | 431 | | eoPowerCurrentType | 432 | | eoPowerOrigin | 433 | +---------------------------+ 434 | 435 | +---------------------------------+ 436 |---- | Energy Object State Statistics | 437 |-------------------------------- | 438 | eoPowerStateMaxPower | 439 | eoPowerStatePowerUnitMultiplier | 440 | eoPowerStateTotalTime | 441 | eoPowerStateEnterCount | 442 +---------------------------------+ 444 Figure 1:UML diagram for energyObjectMIB 446 (*) Compliance with the ENERGY-OBJECT-CONTEXT-MIB 448 +----------------------------------+ 449 | Energy ParametersTable | 450 | -------------------------------- | 451 | eoEnergyObjectIndex | 452 | eoEnergyParametersIndex | 453 | eoEnergyParametersIntervalLength | 454 | eoEnergyParametersIntervalNumber | 455 | eoEnergyParametersIntervalMode | 456 | eoEnergyParametersIntervalWindow | 457 | eoEnergyParametersSampleRate | 458 | eoEnergyParametersStatus | 459 +----------------------------------+ 460 | 461 V 462 +----------------------------------+ 463 | Energy Table | 464 | -------------------------------- | 465 | eoEnergyCollectionStartTime | 466 | eoEnergyConsumed | 467 | eoEnergyProvided | 468 | eoEnergyStored | 469 | eoEnergyUnitMultiplier | 470 | eoEnergyAccuracy | 471 | eoEnergyMaxConsumed | 472 | eoEnergyMaxProduced | 473 | eoDiscontinuityTime | 474 +----------------------------------+ 476 +-----------------------+ 477 |---> | Energy Object ID (*) | 478 | | --------------------- | 479 | | entPhysicalIndex | 480 | | entPhysicalName | 481 | | entPhysicalUUID | 482 | +-----------------------+ 483 | 484 | +--------------------------------------+ 485 |---- | Power Attributes | 486 | | ------------------------------------ | 487 | | eoACPwrAttributesConfiguration | 488 | | eoACPwrAttributesAvgVoltage | 489 | | eoACPwrAttributesAvgCurrent | 490 | | eoACPwrAttributesFrequency | 491 | | eoACPwrAttributesPowerUnitMultiplier | 492 | | eoACPwrAttributesPowerAccuracy | 493 | | eoACPwrAttributesTotalActivePower | 494 | | eoACPwrAttributesTotalReactivePower | 495 | | eoACPwrAttributesTotalApparentPower | 496 | | eoACPwrAttributesTotalPowerFactor | 497 | | eoACPwrAttributesThdAmpheres | 498 | +--------------------------------------+ 499 | 500 | 501 | +--------------------------------------+ 502 |---- | Power Phase Attributes | 503 | | ------------------------------------ | 504 | | eoPhaseIndex | 505 | | eoACPwrAttributesPhaseAvgCurrent | 506 | | eoACPwrAttributesPhaseActivePower | 507 | | eoACPwrAttributesPhaseReactivePower | 508 | | eoACPwrAttributesPhaseApparentPower | 509 | | eoACPwrAttributesPhasePowerFactor | 510 | | eoACPwrAttributesPhaseImpedance | 511 | +--------------------------------------+ 512 | 513 | 514 | +------------------------------------------------+ 515 |---- | AC Input DEL Configuration | 516 | | ---------------------------------------------- | 517 | | eoACPwrAttributesDelPhaseToNextPhaseVoltage | 518 | | eoACPwrAttributesDelThdPhaseToNextPhaseVoltage | 519 | | eoACPwrAttributesDelThdCurrent | 520 | +------------------------------------------------+ 521 | 522 | 523 | +----------------------------------------------+ 524 |---- | AC Input WYE Configuration | 525 | -------------------------------------------- | 526 | eoACPwrAttributesWyePhaseToNeutralVoltage | 527 | eoACPwrAttributesWyePhaseCurrent | 528 | eoACPwrAttributesWyeThdPhaseToNeutralVoltage | 529 +----------------------------------------------+ 531 Figure 2: UML diagram for the powerAttributesMIB 533 (*) Compliance with the ENERGY-OBJECT-CONTEXT-MIB 535 5.1. Energy Object Information 537 The Energy Object identity information is specified in the 538 ENERGY-OBJECT-CONTEXT-MIB MIB module [EMAN-AWARE-MIB] primary 539 table, i.e. the eoTable. In this table, the context of the 540 Energy Object such as domain, role description, importance are 541 specified. In addition, the ENERGY-OBJECT-CONTEXT-MIB module 542 specifies the relationship between Energy Objects. There are 543 several possible relationships between Energy Objects such as 544 meteredBy, metering, poweredBy, powering, aggregatedBy, and 545 aggregating as defined in the IANA-ENERGY-RELATION-MIB MIB 546 module [EMAN-AWARE-MIB]. 548 5.2. Power State 550 An Energy Object may have energy conservation modes called Power 551 States. Between the ON and OFF states of a device, there can be 552 several intermediate energy saving modes. Those energy saving 553 modes are called as Power States. 555 Power States, which represent universal states of power 556 management of an Energy Object, are specified by the 557 eoPowerState MIB object. The actual Power State is specified by 558 the eoPowerOperState MIB object, while the eoPowerAdminState MIB 559 object specifies the Power State requested for the Energy 560 Object. The difference between the values of eoPowerOperState 561 and eoPowerAdminState can be attributed that the Energy Object 562 is busy transitioning from eoPowerAdminState into the 563 eoPowerOperState, at which point it will update the content of 564 eoPowerOperState. In addition, the possible reason for change 565 in Power State is reported in eoPowerStateEnterReason. 566 Regarding eoPowerStateEnterReason, management stations and 567 Energy Objects should support any format of the owner string 568 dictated by the local policy of the organization. It is 569 suggested that this name contain at least the reason for the 570 transition change, and one or more of the following: IP address, 571 management station name, network manager's name, location, or 572 phone number. 574 The MIB objects eoPowerOperState, eoPowerAdminState , and 575 eoPowerStateEnterReason are contained in the eoPowerTable MIB 576 table. 578 The eoPowerStateTable table enumerates the maximum power usage 579 in watts, for every single supported Power State of each Power 580 State Set supported by the Energy Object. In addition, 581 PowerStateTable provides additional statistics: 582 eoPowerStateEnterCount, the number of times an entity has 583 visited a particular Power State, and eoPowerStateTotalTime, the 584 total time spent in a particular Power State of an Energy 585 Object. 587 5.2.1. Power State Set 589 There are several standards and implementations of Power State 590 Sets. An Energy Object can support one or multiple Power State 591 Set implementation(s) concurrently. 593 There are currently three Power State Sets advocated: 595 IEEE1621 - [IEEE1621] 596 DMTF - [DMTF] 597 EMAN - [EMAN-FMWK] 599 The Power State Sets, along with each Power State within the 600 Power Set are listed in [EMAN-FMWK]. 602 5.3. Energy Object Usage Information 604 For an Energy Object, power usage is reported using eoPower. 605 The magnitude of measurement is based on the 606 eoPowerUnitMultiplier MIB variable, based on the UnitMultiplier 607 Textual Convention (TC). Power measurement magnitude should 608 conform to the IEC 62053-21 [IEC.62053-21] and IEC 62053-22 609 [IEC.62053-22] definition of unit multiplier for the SI (System 610 International) units of measure. Measured values are 611 represented in SI units obtained by BaseValue * 10 raised to the 612 power of the scale. 614 For example, if current power usage of an Energy Object is 3, it 615 could be 3 W, 3 mW, 3 KW, or 3 MW, depending on the value of 616 eoPowerUnitMultiplier. Note that other measurements throughout 617 the two MIB modules in this document use the same mechanism, 618 including eoPowerStatePowerUnitMultiplier, 619 eoEnergyUnitMultiplier, and 620 eoACPwrAttributesPowerUnitMultiplier. 622 In addition to knowing the usage and magnitude, it is useful to 623 know how a eoPower measurement was obtained. An NMS can use 624 this to account for the accuracy and nature of the reading 625 between different implementations. For this eoPowerOrigin 626 describes whether the measurements were made at the device 627 itself or from a remote source. The eoPowerMeasurementCaliber 628 describes the method that was used to measure the power and can 629 distinguish actual or estimated values. There may be devices in 630 the network, which may not be able to measure or report power 631 consumption. For those devices, the object 632 eoPowerMeasurementCaliber shall report that measurement 633 mechanism is "unavailable" and the eoPower measurement shall be 634 "0". 636 The nameplate power rating of an Energy Object is specified in 637 eoPowerNameplate MIB object. 639 5.4. Optional Power Usage Attributes 641 The optional powerAttributesMIB MIB module can be implemented to 642 further describe power usage attributes measurement. The 643 powerAttributesMIB MIB module adheres closely to the IEC 61850 644 7-2 standard to describe AC measurements. 646 The powerAttributesMIB MIB module contains a primary table, the 647 eoACPwrAttributesTable table, that defines power attributes 648 measurements for supported entPhysicalIndex entities, as a 649 sparse extension of the eoPowerTable (with entPhysicalIndex as 650 primary index). This eoACPwrAttributesTable table contains such 651 information as the configuration (single phase, DEL 3 phases, 652 WYE 3 phases), voltage, frequency, power accuracy, total 653 active/reactive power/apparent power, amperage, and voltage. 655 In case of 3-phase power, the eoACPwrAttributesPhaseTable 656 additional table is populated with Power Attributes measurements 657 per phase (so double indexed by the entPhysicalIndex and 658 eoPhaseIndex). This table, which describes attributes common to 659 both WYE and DEL configurations, contains the average current, 660 active/reactive/apparent power, power factor, and impedance. 662 In case of 3-phase power with a DEL configuration, the 663 eoACPwrAttributesDelPhaseTable table describes the phase-to- 664 phase power attributes measurements, i.e., voltage and current. 666 In case of 3-phase power with a WYE configuration, the 667 eoACPwrAttributesWyePhaseTable table describes the phase-to- 668 neutral power attributes measurements, i.e., voltage and 669 current. 671 5.5. Optional Energy Measurement 673 It is relevant to measure energy and demand only when there are 674 actual power measurements obtained from measurement hardware. If 675 the eoPowerMeasurementCaliber MIB object has values of 676 unavailable, unknown, estimated, or presumed, then the energy 677 and demand values are not useful. 679 Two tables are introduced to characterize energy measurement of 680 an Energy Object: eoEnergyTable and eoEnergyParametersTable. 681 Both energy and demand information can be represented via the 682 eoEnergyTable. Energy information will be an accumulation with 683 no interval. Demand information can be represented. 684 The eoEnergyParametersTable consists of the parameters defining 685 eoEnergyParametersIndex an index of that specifies the setting 686 for collection of energy measurements for an Energy Object, 687 eoEnergyObjectIndex linked to the entPhysicalIndex of the 688 Energy Object, the duration of measurement intervals in seconds, 689 (eoEnergyParametersIntervalLength), the number of successive 690 intervals to be stored in the eoEnergyTable, 691 (eoEnergyParametersIntervalNumber), the type of measurement 692 technique (eoEnergyParametersIntervalMode), and a sample rate 693 used to calculate the average (eoEnergyParametersSampleRate). 694 Judicious choice of the sampling rate will ensure accurate 695 measurement of energy while not imposing an excessive polling 696 burden. 698 There are three eoEnergyParametersIntervalMode types used for 699 energy measurement collection: period, sliding, and total. The 700 choices of the three different modes of collection are based on 701 IEC standard 61850-7-4. Note that multiple 702 eoEnergyParametersIntervalMode types MAY be configured 703 simultaneously. It is important to note that for a given Energy 704 Object, multiple modes (periodic, total, sliding window) of 705 energy measurement collection can be configured with the use of 706 eoEnergyParametersIndex. However, simultaneous measurement in 707 multiple modes for a given Energy Object depends on the Energy 708 Object capability. 710 These three eoEnergyParametersIntervalMode types are illustrated 711 by the following three figures, for which: 713 - The horizontal axis represents the current time, with the 714 symbol <--- L ---> expressing the 715 eoEnergyParametersIntervalLength, and the 716 eoEnergyCollectionStartTime is represented by S1, S2, S3, S4, 717 ..., Sx where x is the value of 718 eoEnergyParametersIntervalNumber. 720 - The vertical axis represents the time interval of sampling and 721 the value of eoEnergyConsumed can be obtained at the end of the 722 sampling period. The symbol =========== denotes the duration of 723 the sampling period. 725 | | | =========== | 726 |============ | | | 727 | | | | 728 | |============ | | 729 | | | | 730 | <--- L ---> | <--- L ---> | <--- L ---> | 731 | | | | 732 S1 S2 S3 S4 734 Figure 3 : Period eoEnergyParametersIntervalMode 736 A eoEnergyParametersIntervalMode type of 'period' specifies non- 737 overlapping periodic measurements. Therefore, the next 738 eoEnergyCollectionStartTime is equal to the previous 739 eoEnergyCollectionStartTime plus 740 eoEnergyParametersIntervalLength. S2=S1+L; S3=S2+L, ... 742 |============ | 743 | | 744 | <--- L ---> | 745 | | 746 | |============ | 747 | | | 748 | | <--- L ---> | 749 | | | 750 | | |============ | 751 | | | | 752 | | | <--- L ---> | 753 | | | | 754 | | | |============ | 755 | | | | | 756 | | | | <--- L ---> | 757 S1 | | | | 758 | | | | 759 | | | | 760 S2 | | | 761 | | | 762 | | | 763 S3 | | 764 | | 765 | | 766 S4 768 Figure 4 : Sliding eoEnergyParametersIntervalMode 770 A eoEnergyParametersIntervalMode type of 'sliding' specifies 771 overlapping periodic measurements. 773 | | 774 |========================= | 775 | | 776 | | 777 | | 778 | <--- Total length ---> | 779 | | 780 S1 782 Figure 5 : Total eoEnergyParametersIntervalMode 784 A eoEnergyParametersIntervalMode type of 'total' specifies a 785 continuous measurement since the last reset. The value of 786 eoEnergyParametersIntervalNumber should be (1) one and 787 eoEnergyParametersIntervalLength is ignored. 789 The eoEnergyParametersStatus is used to start and stop energy 790 usage logging. The status of this variable is "active" when all 791 the objects in eoEnergyParametersTable are appropriate which in 792 turn indicates if eoEnergyTable entries exist or not. 794 The eoEnergyTable consists of energy measurements in 795 eoEnergyConsumed, eoEnergyProvided and eoEnergyStored, the units 796 of the measured energy eoEnergyUnitMultiplier, and the maximum 797 observed energy within a window eoEnergyMaxConsumed, 798 eoEnergyMaxProduced. 800 Measurements of the total energy consumed by an Energy Object 801 may suffer from interruptions in the continuous measurement of 802 energy consumption. In order to indicate such interruptions, 803 the object eoEnergyDiscontinuityTime is provided for indicating 804 the time of the last interruption of total energy measurement. 805 eoEnergyDiscontinuityTime shall indicate the sysUpTime [RFC3418] 806 when the device was reset. 808 The following example illustrates the eoEnergyTable and 809 eoEnergyParametersTable: 811 First, in order to estimate energy, a time interval to sample 812 energy should be specified, i.e. 813 eoEnergyParametersIntervalLength can be set to "900 seconds" or 814 15 minutes and the number of consecutive intervals over which 815 the maximum energy is calculated 816 (eoEnergyParametersIntervalNumber) as "10". The sampling rate 817 internal to the Energy Object for measurement of power usage 818 (eoEnergyParametersSampleRate) can be "1000 milliseconds", as 819 set by the Energy Object as a reasonable value. Then, the 820 eoEnergyParametersStatus is set to active (value 1) to indicate 821 that the Energy Object should start monitoring the usage per the 822 eoEnergyTable. 824 The indices for the eoEnergyTable are eoEnergyParametersIndex 825 which identifies the index for the setting of energy measurement 826 collection Energy Object, and eoEnergyCollectionStartTime, which 827 denotes the start time of the energy measurement interval based 828 on sysUpTime [RFC3418]. The value of eoEnergyComsumed is the 829 measured energy consumption over the time interval specified 830 (eoEnergyParametersIntervalLength) based on the Energy Object 831 internal sampling rate (eoEnergyParametersSampleRate). While 832 choosing the values for the eoEnergyParametersIntervalLength and 833 eoEnergyParametersSampleRate, it is recommended to take into 834 consideration either the network element resources adequate to 835 process and store the sample values, and the mechanism used to 836 calculate the eoEnergyConsumed. The units are derived from 837 eoEnergyUnitMultiplier. For example, eoEnergyConsumed can be 838 "100" with eoEnergyUnitMultiplier equal to 0, the measured 839 energy consumption of the Energy Object is 100 watt-hours. The 840 eoEnergyMaxConsumed is the maximum energy observed and that can 841 be "150 watt-hours". 843 The eoEnergyTable has a buffer to retain a certain number of 844 intervals, as defined by eoEnergyParametersIntervalNumber. 845 If the default value of "10" is kept, then the eoEnergyTable 846 contains 10 energy measurements, including the maximum. 848 Here is a brief explanation of how the maximum energy can be 849 calculated. The first observed energy measurement value is 850 taken to be the initial maximum. With each subsequent 851 measurement, based on numerical comparison, maximum energy may 852 be updated. The maximum value is retained as long as the 853 measurements are taking place. Based on periodic polling of 854 this table, an NMS could compute the maximum over a longer 855 period, i.e. a month, 3 months, or a year. 857 5.6. Fault Management 859 [RFC6988] specifies requirements about Power States such as "the 860 current Power State" , "the time of the last state change", "the 861 total time spent in each state", "the number of transitions to 862 each state" etc. Some of these requirements are fulfilled 863 explicitly by MIB objects such as eoPowerOperState, 864 eoPowerStateTotalTime and eoPowerStateEnterCount. Some of the 865 other requirements are met via the SNMP NOTIFICATION mechanism. 866 eoPowerStateChange SNMP notification which is generated when the 867 value(s) of ,eoPowerStateIndex, eoPowerOperState, 868 eoPowerAdminState have changed. 870 6. Discovery 872 It is foreseen that most Energy Objects will require the 873 implementation of the ENERGY-OBJECT-CONTEXT-MIB MIB [EMAN-AWARE- 874 MIB] as a prerequisite for this MIB module. In such a case, 875 eoPowerTable of the EMAN-MON-MIB is a sparse extension of the 876 eoTable of ENERGY-OBJECT-CONTEXT-MIB. Every Energy Object MUST 877 implement entPhysicalIndex, entPhysicalUUID and entPhysicalName 878 from the ENTITY-MIB [RFC6933]. As the primary index for the 879 Energy Object, entPhysicalIndex is used: It characterizes the 880 Energy Object in the ENERGY-OBJECT-MIB and the POWER-ATTRIBUTES- 881 MIB MIB modules (this document). 883 The NMS must first poll the ENERGY-OBJECT-CONTEXT-MIB MIB module 884 [EMAN-AWARE-MIB], if available, in order to discover all the 885 Energy Objects and the relationships between those Energy 886 Objects. In the ENERGY-OBJECT-CONTEXT-MIB module tables, the 887 Energy Objects are indexed by the entPhysicalIndex. 889 From there, the NMS must poll the eoPowerStateTable (specified 890 in the ENERGY-OBJECT-MIB module in this document), which 891 enumerates, amongst other things, the maximum power usage. As 892 the entries in eoPowerStateTable table are indexed by the 893 Energy Object ( entPhysicalIndex), by the Power State Set 894 (eoPowerStateIndex), the maximum power usage is discovered per 895 Energy Object, and the power usage per Power State of the Power 896 State Set. In other words, polling the eoPowerStateTable allows 897 the discovery of each Power State within every Power State Set 898 supported by the Energy Object. 900 If the Energy Object has an Aggregation Relationship with 901 another Energy Object, the MIB module would be populated with 902 the Energy Object relationship information, which have their own 903 Energy Object index value (entPhysicalIndex). However, the 904 Energy Object relationship must be discovered thanks to the 905 ENERGY-OBJECT-CONTEXT-MIB module. 907 Finally, the NMS can monitor the power attributes thanks to the 908 powerAttributesMIB MIB module, which reuses the entPhysicalIndex 909 to index the Energy Object. 911 7. Link with the other IETF MIBs 913 7.1. Link with the ENTITY-MIB and the ENTITY-SENSOR MIB 915 RFC 4133 [RFC4133] defines the ENTITY-MIB module that lists the 916 physical entities of a networking device (router, switch, etc.) 917 and those physical entities indexed by entPhysicalIndex. From 918 an energy-management standpoint, the physical entities that 919 consume or produce energy are of interest. 921 RFC 3433 [RFC3433] defines the ENTITY-SENSOR MIB module that 922 provides a standardized way of obtaining information (current 923 value of the sensor, operational status of the sensor, and the 924 data units precision) from sensors embedded in networking 925 devices. Sensors are associated with each index of 926 entPhysicalIndex of the ENTITY-MIB [RFC4133]. While the focus 927 of the Power and Energy Monitoring MIB is on measurement of 928 power usage of networking equipment indexed by the ENTITY-MIB, 929 this MIB proposes a customized power scale for power measurement 930 and different Power States of networking equipment, and 931 functionality to configure the Power States. 933 The Energy Objects are modeled by the entPhysicalIndex through 934 the entPhysicalEntity MIB object specified in the eoTable in the 935 ENERGY-OBJECT-CONTEXT-MIB MIB module [EMAN-AWARE-MIB]. 937 The ENTITY-SENSOR MIB [RFC3433] does not have the ANSI C12.x 938 accuracy classes required for electricity (i.e., 1%, 2%, 0.5% 939 accuracy classes). Indeed, entPhySensorPrecision [RFC3433] 940 represents "The number of decimal places of precision in fixed- 941 point sensor values returned by the associated entPhySensorValue 942 object". The ANSI and IEC Standards are used for power 943 measurement and these standards require that we use an accuracy 944 class, not the scientific-number precision model specified in 945 RFC3433. The eoPowerAccuracy MIB object models this accuracy. 946 Note that eoPowerUnitMultipler represents the scale factor per 947 IEC 62053-21 [IEC.62053-21] and IEC 62053-22 [IEC.62053-22], 948 which is a more logical representation for power measurements 949 (compared to entPhySensorScale), with the mantissa and the 950 exponent values X * 10 ^ Y. 952 Power measurements specifying the qualifier 'UNITS' for each 953 measured value in watts are used in the LLDP-EXT-MED-MIB, POE 954 [RFC3621], and UPS [RFC1628] MIBs. The same 'UNITS' qualifier 955 is used for the power measurement values. 957 One cannot assume that the ENTITY-MIB and ENTITY-SENSOR MIB are 958 implemented for all Energy Objects that need to be monitored. A 959 typical example is a converged building gateway, monitoring 960 several other devices in the building, doing the proxy between 961 SNMP and a protocol like BACNET. Another example is the home 962 energy controller. In such cases, the eoPhysicalEntity value 963 contains the zero value, thanks to PhysicalIndexOrZero textual 964 convention. 966 The eoPower is similar to entPhySensorValue [RFC3433] and the 967 eoPowerUnitMultipler is similar to entPhySensorScale. 969 7.2. Link with the ENTITY-STATE MIB 971 For each entity in the ENTITY-MIB [RFC4133], the ENTITY-STATE 972 MIB [RFC4268] specifies the operational states (entStateOper: 973 unknown, enabled, disabled, testing), the alarm (entStateAlarm: 974 unknown, underRepair, critical, major, minor, warning, 975 indeterminate) and the possible values of standby states 976 (entStateStandby: unknown, hotStandby, coldStandby, 977 providingService). 979 From a power monitoring point of view, in contrast to the entity 980 operational states of entities, Power States are required, as 981 proposed in the Power and Energy Monitoring MIB module. Those 982 Power States can be mapped to the different operational states 983 in the ENTITY-STATE MIB, if a formal mapping is required. For 984 example, the entStateStandby "unknown", "hotStandby", 985 "coldStandby", states could map to the Power State "unknown", 986 "ready", "standby", respectively, while the entStateStandby 987 "providingService" could map to any "low" to "high" Power State. 989 7.3. Link with the POWER-OVER-ETHERNET MIB 991 Power-over-Ethernet MIB [RFC3621] provides an energy monitoring 992 and configuration framework for power over Ethernet devices. 993 The RFC introduces a concept of a port group on a switch to 994 define power monitoring and management policy and does not use 995 the entPhysicalIndex as the index. Indeed, the 996 pethMainPseConsumptionPower is indexed by the 997 pethMainPseGroupIndex, which has no mapping with the 998 entPhysicalIndex. 1000 One cannot assume that the Power-over-Ethernet MIB is 1001 implemented for all Energy Objects that need to be monitored. 1003 A typical example is a converged building gateway, monitoring 1004 several other devices in the building, doing the proxy between 1005 SNMP and a protocol like BACNET. Another example is the home 1006 energy controller. In such cases, the eoethPortIndex and 1007 eoethPortGrpIndex values contain the zero value, thanks to new 1008 PethPsePortIndexOrZero and textual PethPsePortGroupIndexOrZero 1009 conventions. 1011 However, if the Power-over-Ethernet MIB [RFC3621] is supported, 1012 the Energy Object eoethPortIndex and eoethPortGrpIndex contain 1013 the pethPsePortIndex and pethPsePortGroupIndex, respectively. 1015 As a consequence, the entPhysicalIndex MIB object has been kept 1016 as the unique Energy Object index. 1018 Note that, even though the Power-over-Ethernet MIB [RFC3621] was 1019 created after the ENTITY-SENSOR MIB [RFC3433], it does not reuse 1020 the precision notion from the ENTITY-SENSOR MIB, i.e. the 1021 entPhySensorPrecision MIB object. 1023 7.4. Link with the UPS MIB 1025 To protect against unexpected power disruption, data centers and 1026 buildings make use of Uninterruptible Power Supplies (UPS). To 1027 protect critical assets, a UPS can be restricted to a particular 1028 subset or domain of the network. UPS usage typically lasts only 1029 for a finite period of time, until normal power supply is 1030 restored. Planning is required to decide on the capacity of the 1031 UPS based on output power and duration of probable power outage. 1032 To properly provision UPS power in a data center or building, it 1033 is important to first understand the total demand required to 1034 support all the entities in the site. This demand can be 1035 assessed and monitored via the Power and Energy Monitoring MIB. 1037 UPS MIB [RFC1628] provides information on the state of the UPS 1038 network. Implementation of the UPS MIB is useful at the 1039 aggregate level of a data center or a building. The MIB module 1040 contains several groups of variables: 1042 - upsIdent: Identifies the UPS entity (name, model, etc.). 1044 - upsBattery group: Indicates the battery state 1045 (upsbatteryStatus, upsEstimatedMinutesRemaining, etc.) 1047 - upsInput group: Characterizes the input load to the UPS 1048 (number of input lines, voltage, current, etc.). 1050 - upsOutput: Characterizes the output from the UPS (number of 1051 output lines, voltage, current, etc.) 1053 - upsAlarms: Indicates the various alarm events. 1055 The measurement of power in the UPS MIB is in Volts, Amperes and 1056 Watts. The units of power measurement are RMS volts and RMS 1057 Amperes. They are not based on the EntitySensorDataScale and 1058 EntitySensorDataPrecision of ENTITY-SENSOR-MIB. 1060 Both the Power and Energy Monitoring MIB and the UPS MIB may be 1061 implemented on the same UPS SNMP agent, without conflict. In 1062 this case, the UPS device itself is the Energy Object and any 1063 of the UPS meters or submeters are the Energy Objects with a 1064 possible relationship as defined in [EMAN-FMWK]. 1066 7.5. Link with the LLDP and LLDP-MED MIBs 1068 The LLDP Protocol is a Data Link Layer protocol used by network 1069 devices to advertise their identities, capabilities, and 1070 interconnections on a LAN network. 1072 The Media Endpoint Discovery is an enhancement of LLDP, known as 1073 LLDP-MED. The LLDP-MED enhancements specifically address voice 1074 applications. LLDP-MED covers 6 basic areas: capability 1075 discovery, LAN speed and duplex discovery, network policy 1076 discovery, location identification discovery, inventory 1077 discovery, and power discovery. 1079 Of particular interest to the current MIB module is the power 1080 discovery, which allows the endpoint device (such as a PoE 1081 phone) to convey power requirements to the switch. In power 1082 discovery, LLDP-MED has four Type Length Values (TLVs): power 1083 type, power source, power priority and power value. 1084 Respectively, those TLVs provide information related to the type 1085 of power (power sourcing entity versus powered device), how the 1086 device is powered (from the line, from a backup source, from 1087 external power source, etc.), the power priority (how important 1088 is it that this device has power?), and how much power the 1089 device needs. 1091 The power priority specified in the LLDP-MED MIB [LLDP-MED-MIB] 1092 actually comes from the Power-over-Ethernet MIB [RFC3621]. If 1093 the Power-over-Ethernet MIB [RFC3621] is supported, the exact 1094 value from the pethPsePortPowerPriority [RFC3621] is copied over 1095 in the lldpXMedRemXPoEPDPowerPriority [LLDP-MED-MIB]; otherwise 1096 the value in lldpXMedRemXPoEPDPowerPriority is "unknown". From 1097 the Power and Energy Monitoring MIB, it is possible to identify 1098 the pethPsePortPowerPriority [RFC3621], thanks to the 1099 eoethPortIndex and eoethPortGrpIndex. 1101 The lldpXMedLocXPoEPDPowerSource [LLDP-MED-MIB] is similar to 1102 eoPowerOrigin in indicating if the power for an attached device 1103 is local or from a remote device. If the LLDP-MED MIB is 1104 supported, the following mapping can be applied to the 1105 eoPowerOrigin: lldpXMedLocXPoEPDPowerSource fromPSE(2) and 1106 local(3) can be mapped to remote(2) and self(1), respectively. 1108 8. Implementation Scenario 1110 This section provides an illustrative example scenario for the 1111 implementation of the Energy Object, including Energy Object 1112 relationships. 1114 Example Scenario of a campus network: Switch with PoE Endpoints 1115 with further connected devices. 1117 The campus network consists of switches that provide LAN 1118 connectivity. The switch with PoE ports is located in wiring 1119 closet. PoE IP phones are connected to the switch. The IP 1120 phones draw power from the PoE ports of the switch. In 1121 addition, a PC is daisy-chained from the IP phone for LAN 1122 connectivity. 1124 The IP phone consumes power from the PoE switch, while the PC 1125 consumes power from the wall outlet. 1127 The switch has implementations of ENTITY-MIB [RFC6933] and 1128 ENERGY-OBJECT-CONTEXT-MIB MIB [EMAN-AWARE-MIB]. while the PC 1129 has an implementation of the ENTITY-MIB with 1130 entity4CRCompliance, and an implementation of ENERGY-OBJECT- 1131 CONTEXT-MIB MIB [EMAN-AWARE-MIB]. The switch has the following 1132 attributes, entPhysicalIndex "1", and entPhysicalUUID "UUID 1133 1000". The power usage of the switch is "440 Watts". 1135 The PoE switch port has the following attributes: The switch 1136 port has entPhysicalIndex "3", and entPhysicalUUID is "UUID 1137 1000:3". The power metered at the POE switch port is "12 1138 watts". In this example, the POE switch port has an Energy 1139 Object relationship with the switch with Energy Object index 1140 "1000". 1142 The attributes of the PC are given below. The PC has an 1143 entPhysicalIndex "7" and its entPhysicalUUID is "UUID 1000:57 ". 1144 The PC has an Energy Object relationship with the switch port 1145 whose entPhysicalUUID is "UUID 1000:3". The power usage of the 1146 PC is "120 Watts" and is communicated to the switch port. 1148 The IP phone draws power from the switch, while the PC has LAN 1149 connectivity from the phone, but is powered from the wall 1150 outlet. However, the Energy Object switch sends power control 1151 messages to both the Energy Object (IP phone and PC) and the 1152 attached remote Energy Objects react to those messages. 1154 |-------------------------------------------------------| 1155 | Switch | 1156 |=======================================================| 1157 | Switch | Switch | | Switch | 1158 | entPhyIndx | UUID | | eoPower | 1159 | ===================================================== | 1160 | 1 | UUID 1000 | null | 440 | 1161 | ===================================================== | 1162 | | 1163 | SWITCH PORT | 1164 | ===================================================== | 1165 | | Switch | Switch | Switch | Switch | 1166 | | Port | Port | UUID | Port | 1167 | | entPhyIndx | UUID | | eoPower | 1168 | ===================================================== | 1169 | | 3 | UUID 1000:3 | 1000 | 12 | 1170 | ======================================================| 1171 | ^ | 1172 | | | 1173 |-----------------------------------|-------------------| 1174 | 1175 | 1176 POE IP PHONE | 1177 | 1178 | 1179 ====================================================== 1180 | IP phone | IP phone | Port | IP phone | 1181 | entPhyIndx | UUID | UUID | eoPower | 1182 ====================================================== 1183 | Null | UUID 1000:31| UUID 1000:3 | 12 | 1184 ======================================================= 1185 | 1186 | 1187 PC connected to switch via IP phone | 1188 | 1189 ===================================================== 1190 | PC | PC | Port | PC | 1191 |entPhyIndx | UUID | UUID | eoPower | 1192 ===================================================== 1193 | 7 | UUID 1000:57| UUID 1000:3 | 120 | 1194 ===================================================== 1196 Figure 6: Example scenario 1198 9. Structure of the MIB 1200 The primary MIB object in this MIB module is the 1201 energyObjectMIBObject. The eoPowerTable table of 1202 energyObjectMIBObject describes the power measurement attributes 1203 of an Energy Object entity. The notion of identity of the device 1204 in terms of uniquely identification of the Energy Object and its 1205 relationship to other entities in the network are addressed in 1206 [EMAN-AWARE-MIB]. 1208 Logically, this MIB module is a sparse extension of the 1209 ENERGY-OBJECT-CONTEXT-MIB module [EMAN-AWARE-MIB]. Thus the 1210 following requirements which are applied to [EMAN-AWARE-MIB] are 1211 also applicable. As a requirement for this MIB module, [EMAN- 1212 AWARE-MIB] should be implemented and as Module Compliance of 1213 ENTITY-MIB V4 [RFC6933] with respect to entity4CRCompliance 1214 should be supported which requires 3 MIB objects 1215 (entPhysicalIndex, entPhysicalName and entPhysicalUUID ) MUST be 1216 implemented. 1218 eoMeterCapabilitiesTable is useful to enable applications to 1219 determine the capabilities supported by the local management 1220 agent. This table indicates the energy monitoring MIB groups 1221 that are supported by the local management system. By reading 1222 the value of this object, it is possible for applications to 1223 know which tables contain the information and are usable without 1224 walking through the table and querying every element which 1225 involves a trial-and-error process. 1227 The power measurement of an Energy Object contains information 1228 describing its power usage (eoPower) and its current Power State 1229 (eoPowerOperState). In addition to power usage, additional 1230 information describing the units of measurement 1231 (eoPowerAccuracy, eoPowerUnitMultiplier), how power usage 1232 measurement was obtained (eoPowerMeasurementCaliber), the 1233 source of power (eoPowerOrigin) and the type of power 1234 (eoPowerCurrentTtype) are described. 1236 An Energy Object may contain an optional eoPowerAttributes table 1237 that describes the electrical characteristics associated with 1238 the current Power State and usage. 1240 An Energy Object may contain an optional eoEnergyTable to 1241 describe energy measurement information over time. 1243 An Energy Object may also contain optional battery information 1244 associated with this entity. 1246 10. MIB Definitions 1248 -- ************************************************************ 1249 -- 1250 -- 1251 -- This MIB is used to monitor power usage of network 1252 -- devices 1253 -- 1254 -- ************************************************************* 1256 ENERGY-OBJECT-MIB DEFINITIONS ::= BEGIN 1258 IMPORTS 1259 MODULE-IDENTITY, 1260 OBJECT-TYPE, 1261 NOTIFICATION-TYPE, 1262 mib-2, 1263 Integer32, Counter32, TimeTicks 1264 FROM SNMPv2-SMI 1265 TEXTUAL-CONVENTION, DisplayString, RowStatus, TimeInterval, 1266 TimeStamp, TruthValue 1267 FROM SNMPv2-TC 1268 MODULE-COMPLIANCE, NOTIFICATION-GROUP, OBJECT-GROUP 1269 FROM SNMPv2-CONF 1270 OwnerString 1271 FROM RMON-MIB 1272 entPhysicalIndex, PhysicalIndex 1273 FROM ENTITY-MIB 1274 IANAPowerStateSet 1275 FROM IANA-POWERSTATE-SET-MIB; 1277 energyObjectMIB MODULE-IDENTITY 1278 LAST-UPDATED "201312130000Z" -- 13 December 2013 1279 ORGANIZATION "IETF EMAN Working Group" 1280 CONTACT-INFO 1281 "WG charter: 1282 http://datatracker.ietf.org/wg/eman/charter/ 1284 Mailing Lists: 1285 General Discussion: eman@ietf.org 1287 To Subscribe: 1288 https://www.ietf.org/mailman/listinfo/eman 1290 Archive: 1291 http://www.ietf.org/mail-archive/web/eman 1293 Editors: 1294 Mouli Chandramouli 1295 Cisco Systems, Inc. 1296 Sarjapur Outer Ring Road 1297 Bangalore 560103 1298 IN 1299 Phone: +91 80 4429 2409 1300 Email: moulchan@cisco.com 1302 Benoit Claise 1303 Cisco Systems, Inc. 1304 De Kleetlaan 6a b1 1305 Degem 1831 1306 Belgium 1307 Phone: +32 2 704 5622 1308 Email: bclaise@cisco.com 1310 Brad Schoening 1311 44 Rivers Edge Drive 1312 Little Silver, NJ 07739 1313 US 1314 Email: brad.schoening@verizon.net 1316 Juergen Quittek 1317 NEC Europe Ltd. 1318 NEC Laboratories Europe 1319 Network Research Division 1320 Kurfuersten-Anlage 36 1321 Heidelberg 69115 1322 DE 1323 Phone: +49 6221 4342-115 1324 Email: quittek@neclab.eu 1325 Thomas Dietz 1326 NEC Europe Ltd. 1327 NEC Laboratories Europe 1328 Network Research Division 1329 Kurfuersten-Anlage 36 1330 69115 Heidelberg 1331 DE 1332 Phone: +49 6221 4342-128 1333 Email: Thomas.Dietz@nw.neclab.eu" 1335 DESCRIPTION 1336 "This MIB is used to monitor power and energy in 1337 devices. 1339 This table sparse extension of the eoTable 1340 from the ENERGY-OBJECT-CONTEXT-MIB. As a requirement 1341 [EMAN-AWARE-MIB] must be implemented. 1343 Module Compliance of ENTITY-MIB v4 1344 with respect to entity4CRCompliance should 1345 be supported which requires implementation 1346 of 3 MIB objects (entPhysicalIndex, 1347 entPhysicalName and entPhysicalUUID)." 1349 REVISION 1350 "201312130000Z" -- 13 December 2013 1352 DESCRIPTION 1353 "Initial version, published as RFC YYY." 1355 ::= { energyMIB 3 } 1357 energyObjectMIBNotifs OBJECT IDENTIFIER 1358 ::= { energyObjectMIB 0 } 1360 energyObjectMIBObjects OBJECT IDENTIFIER 1361 ::= { energyObjectMIB 1 } 1363 energyObjectMIBConform OBJECT IDENTIFIER 1364 ::= { energyObjectMIB 2 } 1366 -- Textual Conventions 1368 UnitMultiplier ::= TEXTUAL-CONVENTION 1369 STATUS current 1370 DESCRIPTION 1371 "The Unit Multiplier is an integer value that represents 1372 the IEEE 61850 Annex A units multiplier associated with 1373 the integer units used to measure the power or energy. 1375 For example, when used with eoPowerUnitMultiplier, -3 1376 represents 10^-3 or milliwatts." 1377 REFERENCE 1378 "The International System of Units (SI), 1379 National Institute of Standards and Technology, 1380 Spec. Publ. 330, August 1991." 1381 SYNTAX INTEGER { 1382 yocto(-24), -- 10^-24 1383 zepto(-21), -- 10^-21 1384 atto(-18), -- 10^-18 1385 femto(-15), -- 10^-15 1386 pico(-12), -- 10^-12 1387 nano(-9), -- 10^-9 1388 micro(-6), -- 10^-6 1389 milli(-3), -- 10^-3 1390 units(0), -- 10^0 1391 kilo(3), -- 10^3 1392 mega(6), -- 10^6 1393 giga(9), -- 10^9 1394 tera(12), -- 10^12 1395 peta(15), -- 10^15 1396 exa(18), -- 10^18 1397 zetta(21), -- 10^21 1398 yotta(24) -- 10^24 1399 } 1401 -- Objects 1403 eoMeterCapabilitiesTable OBJECT-TYPE 1404 SYNTAX SEQUENCE OF EoMeterCapabilitiesEntry 1405 MAX-ACCESS not-accessible 1406 STATUS current 1407 DESCRIPTION 1408 "This table is useful for helping applications determine the 1409 monitoring capabilities supported by the local management 1410 agents. It is possible for applications to know which tables 1411 are usable without going through a trial-and-error process." 1412 ::= { energyObjectMIBObjects 1 } 1414 eoMeterCapabilitiesEntry OBJECT-TYPE 1415 SYNTAX EoMeterCapabilitiesEntry 1416 MAX-ACCESS not-accessible 1417 STATUS current 1418 DESCRIPTION 1419 "An entry describes the metering capability of an Energy 1420 Object." 1421 INDEX { entPhysicalIndex } 1422 ::= { eoMeterCapabilitiesTable 1 } 1424 EoMeterCapabilitiesEntry ::= SEQUENCE { 1425 eoMeterCapability BITS 1426 } 1428 eoMeterCapability OBJECT-TYPE 1429 SYNTAX BITS { 1430 none(0), 1431 powermetering(1), -- power measurement 1432 energymetering(2), -- energy measurement 1433 powerattributes(3) -- power attributes 1434 } 1435 MAX-ACCESS read-only 1436 STATUS current 1437 DESCRIPTION 1438 "An indication of the Energy monitoring capabilities supported 1439 by this agent. This object use a BITS syntax and indicate the 1440 MIB groups supported by the probe. By reading the value of this 1441 object, it is possible to determine the MIB tables supported. " 1442 ::= { eoMeterCapabilitiesEntry 1 } 1444 eoPowerTable OBJECT-TYPE 1445 SYNTAX SEQUENCE OF EoPowerEntry 1446 MAX-ACCESS not-accessible 1447 STATUS current 1448 DESCRIPTION 1449 "This table lists Energy Objects." 1450 ::= { energyObjectMIBObjects 2 } 1452 eoPowerEntry OBJECT-TYPE 1453 SYNTAX EoPowerEntry 1454 MAX-ACCESS not-accessible 1455 STATUS current 1456 DESCRIPTION 1457 "An entry describes the power usage of an Energy Object." 1459 INDEX { entPhysicalIndex } 1460 ::= { eoPowerTable 1 } 1462 EoPowerEntry ::= SEQUENCE { 1464 eoPower Integer32, 1465 eoPowerNameplate Integer32, 1466 eoPowerUnitMultiplier UnitMultiplier, 1467 eoPowerAccuracy Integer32, 1468 eoPowerMeasurementCaliber INTEGER, 1469 eoPowerCurrentType INTEGER, 1470 eoPowerOrigin INTEGER, 1471 eoPowerAdminState IANAPowerStateSet, 1472 eoPowerOperState IANAPowerStateSet, 1473 eoPowerStateEnterReason OwnerString 1474 } 1476 eoPower OBJECT-TYPE 1477 SYNTAX Integer32 1478 UNITS "Watts" 1479 MAX-ACCESS read-only 1480 STATUS current 1481 DESCRIPTION 1482 "This object indicates the power measured for the Energy 1483 Object. For alternating current, this value is obtained 1484 as an average over fixed number of AC cycles. . This 1485 value is specified in SI units of watts with the 1486 magnitude of watts (milliwatts, kilowatts, etc.) 1487 indicated separately in eoPowerUnitMultiplier. The 1488 accuracy of the measurement is specfied in 1489 eoPowerAccuracy. The direction of power flow is indicated 1490 by the sign on eoPower. If the Energy Object is consuming 1491 power, the eoPower value will be positive. If the Energy 1492 Object is producing power, the eoPower value will be 1493 negative. 1495 The eoPower MUST be less than or equal to the maximum 1496 power that can be consumed at the power state specified 1497 by eoPowerState. 1499 The eoPowerMeasurementCaliber object specifies how the 1500 usage value reported by eoPower was obtained. The eoPower 1501 value must report 0 if the eoPowerMeasurementCaliber is 1502 'unavailable'. For devices that can not measure or 1503 report power, this option can be used." 1505 ::= { eoPowerEntry 1 } 1507 eoPowerNameplate OBJECT-TYPE 1508 SYNTAX Integer32 1509 UNITS "Watts" 1510 MAX-ACCESS read-only 1511 STATUS current 1512 DESCRIPTION 1513 "This object indicates the rated maximum consumption for 1514 the fully populated Energy Object. The nameplate power 1515 requirements are the maximum power numbers and, in almost 1516 all cases, are well above the expected operational 1517 consumption. The eoPowerNameplate is widely used for 1518 power provisioning. This value is specified in either 1519 units of watts or voltage and current. The units are 1520 therefore SI watts or equivalent Volt-Amperes with the 1521 magnitude (milliwatts, kilowatts, etc.) indicated 1522 separately in eoPowerUnitMultiplier." 1523 ::= { eoPowerEntry 2 } 1525 eoPowerUnitMultiplier OBJECT-TYPE 1526 SYNTAX UnitMultiplier 1527 MAX-ACCESS read-only 1528 STATUS current 1529 DESCRIPTION 1530 "The magnitude of watts for the usage value in eoPower 1531 and eoPowerNameplate." 1532 ::= { eoPowerEntry 3 } 1534 eoPowerAccuracy OBJECT-TYPE 1535 SYNTAX Integer32 (0..10000) 1536 UNITS "hundredths of percent" 1537 MAX-ACCESS read-only 1538 STATUS current 1539 DESCRIPTION 1540 "This object indicates a percentage value, in 100ths of a 1541 percent, representing the assumed accuracy of the usage 1542 reported by eoPower. For example: The value 1010 means 1543 the reported usage is accurate to +/- 10.1 percent. This 1544 value is zero if the accuracy is unknown or not 1545 applicable based upon the measurement method. 1547 ANSI and IEC define the following accuracy classes for 1548 power measurement: 1549 IEC 62053-22 60044-1 class 0.1, 0.2, 0.5, 1 3. 1550 ANSI C12.20 class 0.2, 0.5" 1551 ::= { eoPowerEntry 4 } 1553 eoPowerMeasurementCaliber OBJECT-TYPE 1554 SYNTAX INTEGER { 1555 unavailable(1) , 1556 unknown(2), 1557 actual(3) , 1558 estimated(4), 1559 static(5) } 1560 MAX-ACCESS read-only 1561 STATUS current 1562 DESCRIPTION 1563 "This object specifies how the usage value reported by 1564 eoPower was obtained: 1566 - unavailable(1): Indicates that the usage is not 1567 available. In such a case, the eoPower value must be 0 1568 for devices that can not measure or report power this 1569 option can be used. 1571 - unknown(2): Indicates that the way the usage was 1572 determined is unknown. In some cases, entities report 1573 aggregate power on behalf of another device. In such 1574 cases it is not known whether the usage reported is 1575 actual(2), estimated(3) or presumed (4). 1577 - actual(3): Indicates that the reported usage was 1578 measured by the entity through some hardware or direct 1579 physical means. The usage data reported is not presumed 1580 (4) or estimated (3) but is the measured consumption 1581 rate. 1583 - estimated(4): Indicates that the usage was not 1584 determined by physical measurement. The value is a 1585 derivation based upon the device type, state, and/or 1586 current utilization using some algorithm or heuristic. It 1587 is presumed that the entity's state and current 1588 configuration were used to compute the value. 1590 - static(5): Indicates that the usage was not determined 1591 by physical measurement, algorithm or derivation. The 1592 usage was reported based upon external tables, 1593 specifications, and/or model information. For example, a 1594 PC Model X draws 200W, while a PC Model Y draws 210W" 1596 ::= { eoPowerEntry 5 } 1598 eoPowerCurrentType OBJECT-TYPE 1599 SYNTAX INTEGER { 1600 ac(1), 1601 dc(2), 1602 unknown(3) 1603 } 1604 MAX-ACCESS read-only 1605 STATUS current 1606 DESCRIPTION 1607 "This object indicates whether the eoPower for the 1608 Energy Object reports alternating current AC(1), direct 1609 current DC(2), or that the current type is unknown(3)." 1610 ::= { eoPowerEntry 6 } 1612 eoPowerOrigin OBJECT-TYPE 1613 SYNTAX INTEGER { 1614 self (1), 1615 remote (2) 1616 } 1617 MAX-ACCESS read-only 1618 STATUS current 1619 DESCRIPTION 1620 "This object indicates the source of power measurement 1621 and can be useful when modeling the power usage of 1622 attached devices. The power measurement can be performed 1623 by the entity itself or the power measurement of the 1624 entity can be reported by another trusted entity using a 1625 protocol extension. A value of self(1) indicates the 1626 measurement is performed by the entity, whereas remote(2) 1627 indicates that the measurement was performed by another 1628 entity." 1629 ::= { eoPowerEntry 7 } 1631 eoPowerAdminState OBJECT-TYPE 1632 SYNTAX IANAPowerStateSet 1633 MAX-ACCESS read-write 1634 STATUS current 1635 DESCRIPTION 1636 "This object specifies the desired Power State and the 1637 Power State Set for the Energy Object. Note that 1638 other(0) is not a Power State Set and unknown(255) is 1639 not a Power State as such, but simply an indication that 1640 the Power State of the Energy Object is unknown. 1641 Possible values of eoPowerAdminState within the Power 1642 State Set are registered at IANA. 1643 A current list of assignments can be found at 1644 1645 RFC-EDITOR: please check the location after IANA" 1646 ::= { eoPowerEntry 8 } 1648 eoPowerOperState OBJECT-TYPE 1649 SYNTAX IANAPowerStateSet 1650 MAX-ACCESS read-only 1651 STATUS current 1652 DESCRIPTION 1654 "This object specifies the current operational Power 1655 State and the Power State Set for the Energy Object. 1656 other(0) is not a Power State Set and unknown(255) is 1657 not a Power State as such, but simply an indication that 1658 the Power State of the Energy Object is unknown. 1660 Possible values of eoPowerAdminState within the Power 1661 State Set are registered at IANA. 1662 A current list of assignments can be found at 1663 1664 RFC-EDITOR: please check the location after IANA" 1666 ::= { eoPowerEntry 9 } 1668 eoPowerStateEnterReason OBJECT-TYPE 1669 SYNTAX OwnerString 1670 MAX-ACCESS read-write 1671 STATUS current 1672 DESCRIPTION 1673 "This string object describes the reason for the 1674 eoPowerAdminState 1675 transition Alternatively, this string may contain with 1676 the entity that configured this Energy Object to this 1677 Power State." 1678 DEFVAL { "" } 1679 ::= { eoPowerEntry 10 } 1681 eoPowerStateTable OBJECT-TYPE 1682 SYNTAX SEQUENCE OF EoPowerStateEntry 1683 MAX-ACCESS not-accessible 1684 STATUS current 1685 DESCRIPTION 1686 "This table enumerates the maximum power usage, in watts, 1687 for every single supported Power State of each Energy 1688 Object. 1690 This table has an expansion-dependent relationship on the 1691 eoPowerTable, containing rows describing each Power State 1692 for the corresponding Energy Object. For every Energy 1693 Object in the eoPowerTable, there is a corresponding 1694 entry in this table." 1695 ::= { energyObjectMIBObjects 3 } 1697 eoPowerStateEntry OBJECT-TYPE 1698 SYNTAX EoPowerStateEntry 1699 MAX-ACCESS not-accessible 1700 STATUS current 1701 DESCRIPTION 1702 "A eoPowerStateEntry extends a corresponding 1703 eoPowerEntry. This entry displays max usage values at 1704 every single possible Power State supported by the Energy 1705 Object. 1706 For example, given the values of a Energy Object 1707 corresponding to a maximum usage of 0 W at the 1708 state 1 (mechoff), 8 W at state 6 (ready), 11 W at state 1709 9 (mediumMinus),and 11 W at state 12 (high): 1711 State MaxUsage Units 1712 1 (mechoff 0 W 1713 2 (softoff) 0 W 1714 3 (hibernate) 0 W 1715 4 (sleep) 0 W 1716 5 (standby) 0 W 1717 6 (ready) 8 W 1718 7 (lowMinus) 8 W 1719 8 (low) 11 W 1720 9 (mediumMinus) 11 W 1721 10 (medium) 11 W 1722 11 (highMinus) 11 W 1723 12 (high) 11 W 1725 Furthermore, this table extends to return the total time 1726 in each Power State, along with the number of times a 1727 particular Power State was entered." 1729 INDEX { entPhysicalIndex, 1730 eoPowerStateIndex 1731 } 1732 ::= { eoPowerStateTable 1 } 1734 EoPowerStateEntry ::= SEQUENCE { 1735 eoPowerStateIndex IANAPowerStateSet, 1736 eoPowerStateMaxPower Integer32, 1737 eoPowerStatePowerUnitMultiplier UnitMultiplier, 1738 eoPowerStateTotalTime TimeTicks, 1739 eoPowerStateEnterCount Counter32 1740 } 1741 eoPowerStateIndex OBJECT-TYPE 1742 SYNTAX IANAPowerStateSet 1743 MAX-ACCESS not-accessible 1744 STATUS current 1745 DESCRIPTION 1746 " 1747 This object specifies the index of the Power State of 1748 the Energy Object within a Power State Set. The 1749 semantics of the specific Power State can be obtained 1750 from the Power State Set definition." 1751 ::= { eoPowerStateEntry 1 } 1753 eoPowerStateMaxPower OBJECT-TYPE 1754 SYNTAX Integer32 1755 UNITS "Watts" 1756 MAX-ACCESS read-only 1757 STATUS current 1758 DESCRIPTION 1759 "This object indicates the maximum power for the Energy 1760 Object at the particular Power State. This value is 1761 specified in SI units of watts with the magnitude of the 1762 units (milliwatts, kilowatts, etc.) indicated separately 1763 in eoPowerStatePowerUnitMultiplier. If the maximum power 1764 is not known for a certain Power State, then the value is 1765 encoded as 0xFFFF. 1767 For Power States not enumerated, the value of 1768 eoPowerStateMaxPower might be interpolated by using the 1769 next highest supported Power State." 1770 ::= { eoPowerStateEntry 2 } 1772 eoPowerStatePowerUnitMultiplier OBJECT-TYPE 1773 SYNTAX UnitMultiplier 1774 MAX-ACCESS read-only 1775 STATUS current 1776 DESCRIPTION 1777 "The magnitude of watts for the usage value in 1778 eoPowerStateMaxPower." 1779 ::= { eoPowerStateEntry 3 } 1781 eoPowerStateTotalTime OBJECT-TYPE 1782 SYNTAX TimeTicks 1783 MAX-ACCESS read-only 1784 STATUS current 1785 DESCRIPTION 1786 "This object indicates the total time in hundredth 1787 of second that the Energy Object has been in this power 1788 state since the last reset, as specified in the 1789 sysUpTime." 1790 ::= { eoPowerStateEntry 4 } 1792 eoPowerStateEnterCount OBJECT-TYPE 1793 SYNTAX Counter32 1794 MAX-ACCESS read-only 1795 STATUS current 1796 DESCRIPTION 1797 "This object indicates how often the Energy 1798 Object has 1799 entered this power state, since the last reset of the 1800 device as specified in the sysUpTime." 1801 ::= { eoPowerStateEntry 5 } 1803 eoEnergyParametersTable OBJECT-TYPE 1804 SYNTAX SEQUENCE OF EoEnergyParametersEntry 1805 MAX-ACCESS not-accessible 1806 STATUS current 1807 DESCRIPTION 1808 "This table is used to configure the parameters for 1809 Energy measurement collection in the table 1810 eoEnergyTable. This table allows the configuration of 1811 different measurement settings on the same Energy Object. 1812 Implementation of this table only sense for Energy 1813 Objects that an eoPowerMeasurementCaliber of actual(3)." 1814 ::= { energyObjectMIBObjects 4 } 1816 eoEnergyParametersEntry OBJECT-TYPE 1817 SYNTAX EoEnergyParametersEntry 1818 MAX-ACCESS not-accessible 1819 STATUS current 1820 DESCRIPTION 1821 "An entry controls an energy measurement in 1822 eoEnergyTable." 1823 INDEX { eoEnergyObjectIndex, eoEnergyParametersIndex } 1824 ::= { eoEnergyParametersTable 1 } 1826 EoEnergyParametersEntry ::= SEQUENCE { 1827 eoEnergyObjectIndex PhysicalIndex, 1828 eoEnergyParametersIndex Integer32, 1829 eoEnergyParametersIntervalLength TimeInterval, 1830 eoEnergyParametersIntervalNumber Integer32, 1831 eoEnergyParametersIntervalMode INTEGER, 1832 eoEnergyParametersIntervalWindow TimeInterval, 1833 eoEnergyParametersSampleRate Integer32, 1834 eoEnergyParametersStatus RowStatus 1835 } 1837 eoEnergyObjectIndex OBJECT-TYPE 1838 SYNTAX PhysicalIndex 1839 MAX-ACCESS not-accessible 1840 STATUS current 1841 DESCRIPTION 1842 "The unique value, to identify the specific Energy Object 1843 on which the measurement is applied, the same index used 1844 in the eoPowerTable to identify the Energy Object." 1845 ::= { eoEnergyParametersEntry 1 } 1847 eoEnergyParametersIndex OBJECT-TYPE 1848 SYNTAX Integer32 (0..2147483647) 1849 MAX-ACCESS read-create 1850 STATUS current 1851 DESCRIPTION 1852 "This object specifies the index of the Energy 1853 Parameters setting for collection of energy measurements 1854 for an Energy Object. An Energy Object can have multiple 1855 eoEnergyParametersIndex, depending on the capability of 1856 the Energy Object" 1857 ::= { eoEnergyParametersEntry 2 } 1859 eoEnergyParametersIntervalLength OBJECT-TYPE 1860 SYNTAX TimeInterval 1861 MAX-ACCESS read-create 1862 STATUS current 1863 DESCRIPTION 1864 "This object indicates the length of time in hundredth of 1865 seconds over which to compute the average 1866 eoEnergyConsumed measurement in the eoEnergyTable table. 1867 The computation is based on the Energy Object's internal 1868 sampling rate of power consumed or produced by the Energy 1869 Object. The sampling rate is the rate at which the Energy 1870 Object can read the power usage and may differ based on 1871 device capabilities. The average energy consumption is 1872 then computed over the length of the interval." 1873 DEFVAL { 90000 } 1874 ::= { eoEnergyParametersEntry 3 } 1876 eoEnergyParametersIntervalNumber OBJECT-TYPE 1877 SYNTAX Integer32 1878 MAX-ACCESS read-create 1879 STATUS current 1880 DESCRIPTION 1881 "The number of intervals maintained in the eoEnergyTable. 1882 Each interval is characterized by a specific 1883 eoEnergyCollectionStartTime, used as an index to the 1884 table eoEnergyTable. Whenever the maximum number of 1885 entries is reached, the measurement over the new interval 1886 replaces the oldest measurement. There is one exception 1887 to this rule: when the eoEnergyMaxConsumed and/or 1888 eoEnergyMaxProduced are in (one of) the two oldest 1889 measurement(s), they are left untouched and the next 1890 oldest measurement is replaced." 1891 DEFVAL { 10 } 1892 ::= { eoEnergyParametersEntry 4 } 1894 eoEnergyParametersIntervalMode OBJECT-TYPE 1895 SYNTAX INTEGER { 1896 period(1), 1897 sliding(2), 1898 total(3) 1899 } 1900 MAX-ACCESS read-create 1901 STATUS current 1902 DESCRIPTION 1903 "A control object to define the mode of interval calculation 1904 for the computation of the average eoEnergyConsumed or 1905 eoEnergyProvided measurement in the eoEnergyTable table. 1907 A mode of period(1) specifies non-overlapping periodic 1908 measurements. 1910 A mode of sliding(2) specifies overlapping sliding windows 1911 where the interval between the start of one interval and 1912 the next is defined in eoEnergyParametersIntervalWindow. 1914 A mode of total(3) specifies non-periodic measurement. In 1915 this mode only one interval is used as this is a 1916 continuous measurement since the last reset. The value of 1917 eoEnergyParametersIntervalNumber should be (1) one and 1918 eoEnergyParametersIntervalLength is ignored. " 1919 ::= { eoEnergyParametersEntry 5 } 1921 eoEnergyParametersIntervalWindow OBJECT-TYPE 1922 SYNTAX TimeInterval 1923 MAX-ACCESS read-create 1924 STATUS current 1925 DESCRIPTION 1926 "The length of the duration window between the starting 1927 time of one sliding window and the next starting time in 1928 hundredth of seconds, in order to compute the average of 1929 eoEnergyConsumed, eoEnergyProvided measurements in the 1930 eoEnergyTable table. This is valid only when the 1931 eoEnergyParametersIntervalMode is sliding(2). The 1932 eoEnergyParametersIntervalWindow value should be a multiple 1933 of eoEnergyParametersSampleRate." 1934 ::= { eoEnergyParametersEntry 6 } 1936 eoEnergyParametersSampleRate OBJECT-TYPE 1937 SYNTAX Integer32 1938 UNITS "Milliseconds" 1939 MAX-ACCESS read-create 1940 STATUS current 1941 DESCRIPTION 1942 "The sampling rate, in milliseconds, at which the Energy 1943 Object should poll power usage in order to compute the 1944 average eoEnergyConsumed, eoEnergyProvided measurements 1945 in the table eoEnergyTable. The Energy Object should 1946 initially set this sampling rate to a reasonable value, 1947 i.e., a compromise between intervals that will provide 1948 good accuracy by not being too long, but not so short 1949 that they affect the Energy Object performance by 1950 requesting continuous polling. If the sampling rate is 1951 unknown, the value 0 is reported. The sampling rate 1952 should be selected so that 1953 eoEnergyParametersIntervalWindow is a multiple of 1954 eoEnergyParametersSampleRate." 1955 DEFVAL { 1000 } 1956 ::= { eoEnergyParametersEntry 7 } 1958 eoEnergyParametersStatus OBJECT-TYPE 1959 SYNTAX RowStatus 1960 MAX-ACCESS read-create 1961 STATUS current 1962 DESCRIPTION 1963 "The status of this row. The eoEnergyParametersStatus is 1964 used to start or stop energy usage logging. An entry 1965 status may not be active(1) unless all objects in the 1966 entry have an appropriate value. If this object is not 1967 equal to active(1), all associated usage-data logged into 1968 the eoEnergyTable will be deleted. The data can be 1969 destroyed by setting up the eoEnergyParametersStatus to 1970 destroy(2)." 1971 ::= {eoEnergyParametersEntry 8 } 1973 eoEnergyTable OBJECT-TYPE 1974 SYNTAX SEQUENCE OF EoEnergyEntry 1975 MAX-ACCESS not-accessible 1976 STATUS current 1977 DESCRIPTION 1978 "This table lists Energy Object energy measurements. 1979 Entries in this table are only created if the 1980 corresponding value of object eoPowerMeasurementCaliber 1981 is active(3), i.e., if the power is actually metered." 1982 ::= { energyObjectMIBObjects 5 } 1984 eoEnergyEntry OBJECT-TYPE 1985 SYNTAX EoEnergyEntry 1986 MAX-ACCESS not-accessible 1987 STATUS current 1988 DESCRIPTION 1989 "An entry describing energy measurements." 1990 INDEX { eoEnergyParametersIndex, 1991 eoEnergyCollectionStartTime } 1992 ::= { eoEnergyTable 1 } 1994 EoEnergyEntry ::= SEQUENCE { 1995 eoEnergyCollectionStartTime TimeTicks, 1996 eoEnergyConsumed Integer32, 1997 eoEnergyProvided Integer32, 1998 eoEnergyStored Integer32, 1999 eoEnergyUnitMultiplier UnitMultiplier, 2000 eoEnergyAccuracy Integer32, 2001 eoEnergyMaxConsumed Integer32, 2002 eoEnergyMaxProduced Integer32, 2003 eoEnergyDiscontinuityTime TimeStamp 2004 } 2006 eoEnergyCollectionStartTime OBJECT-TYPE 2007 SYNTAX TimeTicks 2008 UNITS "hundredths of seconds" 2009 MAX-ACCESS not-accessible 2010 STATUS current 2011 DESCRIPTION 2012 "The time (in hundredths of a second) since the 2013 network management portion of the system was last 2014 re-initialized, as specified in the sysUpTime [RFC3418]. 2015 This object specifies the start time of the energy 2016 measurement sample. " 2017 ::= { eoEnergyEntry 1 } 2019 eoEnergyConsumed OBJECT-TYPE 2020 SYNTAX Integer32 2021 UNITS "Watt-hours" 2022 MAX-ACCESS read-only 2023 STATUS current 2024 DESCRIPTION 2025 "This object indicates the energy consumed in units of watt- 2026 hours for the Energy Object over the defined interval. 2027 This value is specified in the common billing units of watt- 2028 hours with the magnitude of watt-hours (kW-Hr, MW-Hr, etc.) 2029 indicated separately in eoEnergyUnitMultiplier." 2030 ::= { eoEnergyEntry 2 } 2032 eoEnergyProvided OBJECT-TYPE 2033 SYNTAX Integer32 2034 UNITS "Watt-hours" 2035 MAX-ACCESS read-only 2036 STATUS current 2037 DESCRIPTION 2038 "This object indicates the energy produced in units of watt- 2039 hours for the Energy Object over the defined interval. 2040 This value is specified in the common billing units of watt- 2041 hours with the magnitude of watt-hours (kW-Hr, MW-Hr, etc.) 2042 indicated separately in eoEnergyUnitMultiplier." 2043 ::= { eoEnergyEntry 3 } 2045 eoEnergyStored OBJECT-TYPE 2046 SYNTAX Integer32 2047 UNITS "Watt-hours" 2048 MAX-ACCESS read-only 2049 STATUS current 2050 DESCRIPTION 2051 "This object indicates the resultant of the energy consumed and 2052 energy produced for an Energy Object in units of watt-hours for 2053 the Energy Object over the defined interval. This value is 2054 specified in the common billing units of watt-hours 2055 with the magnitude of watt-hours (kW-Hr, MW-Hr, etc.) 2056 indicated separately in eoEnergyUnitMultiplier." 2057 ::= { eoEnergyEntry 4 } 2059 eoEnergyUnitMultiplier OBJECT-TYPE 2060 SYNTAX UnitMultiplier 2061 MAX-ACCESS read-only 2062 STATUS current 2063 DESCRIPTION 2064 "This object is the magnitude of watt-hours for the 2065 energy field in eoEnergyConsumed, eoEnergyProvided, 2066 eoEnergyStored, eoEnergyMaxConsumed, and 2067 eoEnergyMaxProduced ." 2069 ::= { eoEnergyEntry 5 } 2071 eoEnergyAccuracy OBJECT-TYPE 2072 SYNTAX Integer32 (0..10000) 2073 UNITS "hundredths of percent" 2074 MAX-ACCESS read-only 2075 STATUS current 2076 DESCRIPTION 2077 "This object indicates a percentage value, in 100ths of a 2078 percent, representing the presumed accuracy of Energy usage 2079 reporting. eoEnergyAccuracy is applicable to all Energy 2080 measurements in the eoEnergyTable. 2082 For example: 1010 means the reported usage is accurate to +/- 2083 10.1 percent. 2084 This value is zero if the accuracy is unknown." 2086 ::= { eoEnergyEntry 6 } 2088 eoEnergyMaxConsumed OBJECT-TYPE 2089 SYNTAX Integer32 2090 UNITS "Watt-hours" 2091 MAX-ACCESS read-only 2092 STATUS current 2093 DESCRIPTION 2094 "This object is the maximum energy ever observed in 2095 eoEnergyConsumed since the monitoring started. This value 2096 is specified in the common billing units of watt-hours 2097 with the magnitude of watt-hours (kW-Hr, MW-Hr, etc.) 2098 indicated separately in eoEnergyUnitMultiplier." 2099 ::= { eoEnergyEntry 7 } 2101 eoEnergyMaxProduced OBJECT-TYPE 2102 SYNTAX Integer32 2103 UNITS "Watt-hours" 2104 MAX-ACCESS read-only 2105 STATUS current 2106 DESCRIPTION 2107 "This object is the maximum energy ever observed in 2108 eoEnergyEnergyProduced since the monitoring started. This 2109 value is specified in the units of watt-hours with the 2110 magnitude of watt-hours (kW-Hr, MW-Hr, etc.) indicated 2111 separately in eoEnergyEnergyUnitMultiplier." 2112 ::= { eoEnergyEntry 8 } 2114 eoEnergyDiscontinuityTime OBJECT-TYPE 2115 SYNTAX TimeStamp 2116 MAX-ACCESS read-only 2117 STATUS current 2118 DESCRIPTION 2120 "The value of sysUpTime [RFC3418] on the most recent 2121 occasion at which any one or more of this entity's energy 2122 counters in this table suffered a discontinuity: 2123 eoEnergyConsumed, eoEnergyProvided or eoEnergyStored. If 2124 no such discontinuities have occurred since the last re- 2125 initialization of the local management subsystem, then 2126 this object contains a zero value." 2127 ::= { eoEnergyEntry 9 } 2129 -- Notifications 2131 eoPowerEnableStatusNotification OBJECT-TYPE 2132 SYNTAX TruthValue 2133 MAX-ACCESS read-write 2134 STATUS current 2135 DESCRIPTION "This variable indicates whether the 2136 system produces the following notifications: 2137 eoPowerStateChange. 2139 A false value will prevent these notifications 2140 from being generated." 2141 DEFVAL { false } 2142 ::= { energyObjectMIBNotifs 1 } 2144 eoPowerStateChange NOTIFICATION-TYPE 2145 OBJECTS {eoPowerAdminState, eoPowerOperState, 2146 eoPowerStateEnterReason} 2147 STATUS current 2148 DESCRIPTION 2149 "The SNMP entity generates the eoPowerStateChange when 2150 the value(s) of eoPowerAdminState or eoPowerOperState, 2151 in the context of the Power State Set, have changed for 2152 the Energy Object represented by the entPhysicalIndex." 2153 ::= { energyObjectMIBNotifs 2 } 2155 -- Conformance 2157 energyObjectMIBCompliances OBJECT IDENTIFIER 2158 ::= { energyObjectMIBConform 1 } 2160 energyObjectMIBGroups OBJECT IDENTIFIER 2161 ::= { energyObjectMIBConform 2 } 2163 energyObjectMIBFullCompliance MODULE-COMPLIANCE 2164 STATUS current 2165 DESCRIPTION 2166 "When this MIB is implemented with support for 2167 read-create, then such an implementation can 2168 claim full compliance. Such devices can then 2169 be both monitored and configured with this MIB. 2171 Module Compliance of [RFC6933] 2172 with respect to entity4CRCompliance should 2173 be supported which requires implementation 2174 of 3 MIB objects (entPhysicalIndex, 2175 entPhysicalName and entPhysicalUUID)." 2177 MODULE -- this module 2178 MANDATORY-GROUPS { 2179 energyObjectMIBTableGroup, 2180 energyObjectMIBStateTableGroup, 2181 eoPowerEnableStatusNotificationGroup, 2182 energyObjectMIBNotifGroup 2183 } 2185 GROUP energyObjectMIBEnergyTableGroup 2187 DESCRIPTION "A compliant implementation does not 2188 have to implement. 2190 Module Compliance of [RFC6933] 2191 with respect to entity4CRCompliance should 2192 be supported which requires implementation 2193 of 3 MIB objects (entPhysicalIndex, 2194 entPhysicalName and entPhysicalUUID)." 2196 GROUP energyObjectMIBEnergyParametersTableGroup 2198 DESCRIPTION "A compliant implementation does not 2199 have to implement. 2201 Module Compliance of {RFC6933] 2202 with respect to entity4CRCompliance should 2203 be supported which requires implementation 2204 of 3 MIB objects (entPhysicalIndex, 2205 entPhysicalName and entPhysicalUUID)." 2207 GROUP energyObjectMIBMeterCapabilitiesTableGroup 2209 DESCRIPTION "A compliant implementation does not 2210 have to implement. 2212 Module Compliance of [RFC6933] 2213 with respect to entity4CRCompliance should 2214 be supported which requires implementation 2215 of 3 MIB objects (entPhysicalIndex, 2216 entPhysicalName and entPhysicalUUID)." 2218 ::= { energyObjectMIBCompliances 1 } 2220 energyObjectMIBReadOnlyCompliance MODULE-COMPLIANCE 2221 STATUS current 2222 DESCRIPTION 2223 "When this MIB is implemented without support for 2224 read-create (i.e. in read-only mode), then such an 2225 implementation can claim read-only compliance. Such a 2226 device can then be monitored but cannot be 2227 configured with this MIB. 2229 Module Compliance of [RFC6933] 2230 with respect to entity4CRCompliance should 2231 be supported which requires implementation 2232 of 3 MIB objects (entPhysicalIndex, 2233 entPhysicalName and entPhysicalUUID)." 2235 MODULE -- this module 2236 MANDATORY-GROUPS { 2237 energyObjectMIBTableGroup, 2238 energyObjectMIBStateTableGroup, 2239 energyObjectMIBNotifGroup 2240 } 2242 OBJECT eoPowerOperState 2243 MIN-ACCESS read-only 2244 DESCRIPTION 2245 "Write access is not required." 2246 ::= { energyObjectMIBCompliances 2 } 2248 -- Units of Conformance 2250 energyObjectMIBTableGroup OBJECT-GROUP 2251 OBJECTS { 2252 eoPower, 2253 eoPowerNameplate, 2254 eoPowerUnitMultiplier, 2255 eoPowerAccuracy, 2256 eoPowerMeasurementCaliber, 2257 eoPowerCurrentType, 2258 eoPowerOrigin, 2259 eoPowerAdminState, 2260 eoPowerOperState, 2261 eoPowerStateEnterReason 2262 } 2263 STATUS current 2264 DESCRIPTION 2265 "This group contains the collection of all the objects 2266 related to the Energy Object." 2267 ::= { energyObjectMIBGroups 1 } 2269 energyObjectMIBStateTableGroup OBJECT-GROUP 2270 OBJECTS { 2271 eoPowerStateMaxPower, 2272 eoPowerStatePowerUnitMultiplier, 2273 eoPowerStateTotalTime, 2274 eoPowerStateEnterCount 2275 } 2276 STATUS current 2277 DESCRIPTION 2278 "This group contains the collection of all the 2279 objects related to the Power State." 2280 ::= { energyObjectMIBGroups 2 } 2282 energyObjectMIBEnergyParametersTableGroup OBJECT-GROUP 2283 OBJECTS { 2285 eoEnergyParametersIndex, 2286 eoEnergyParametersIntervalLength, 2287 eoEnergyParametersIntervalNumber, 2288 eoEnergyParametersIntervalMode, 2289 eoEnergyParametersIntervalWindow, 2290 eoEnergyParametersSampleRate, 2291 eoEnergyParametersStatus 2292 } 2293 STATUS current 2294 DESCRIPTION 2295 "This group contains the collection of all the objects 2296 related to the configuration of the Energy Table." 2298 ::= { energyObjectMIBGroups 3 } 2300 energyObjectMIBEnergyTableGroup OBJECT-GROUP 2301 OBJECTS { 2302 -- Note that object 2303 -- eoEnergyCollectionStartTime is not 2304 -- included since it is not-accessible 2306 eoEnergyConsumed, 2307 eoEnergyProvided, 2308 eoEnergyStored, 2309 eoEnergyUnitMultiplier, 2310 eoEnergyAccuracy, 2311 eoEnergyMaxConsumed, 2312 eoEnergyMaxProduced, 2313 eoEnergyDiscontinuityTime 2314 } 2315 STATUS current 2316 DESCRIPTION 2317 "This group contains the collection of all the objects 2318 related to the Energy Table." 2319 ::= { energyObjectMIBGroups 4 } 2321 energyObjectMIBMeterCapabilitiesTableGroup OBJECT-GROUP 2322 OBJECTS { 2323 eoMeterCapability 2324 } 2325 STATUS current 2326 DESCRIPTION 2327 "This group contains the object indicating the 2328 capability of the Energy Object" 2329 ::= { energyObjectMIBGroups 5 } 2331 eoPowerEnableStatusNotificationGroup OBJECT-GROUP 2332 OBJECTS { eoPowerEnableStatusNotification } 2333 STATUS current 2334 DESCRIPTION "The collection of objects which are used 2335 to enable notification." 2336 ::= { energyObjectMIBGroups 6 } 2338 energyObjectMIBNotifGroup NOTIFICATION-GROUP 2339 NOTIFICATIONS { 2340 eoPowerStateChange 2341 } 2342 STATUS current 2343 DESCRIPTION "This group contains the notifications for 2344 the power and energy monitoring MIB Module." 2345 ::= { energyObjectMIBGroups 7 } 2347 END 2349 -- ************************************************************ 2350 -- 2351 -- This MIB module is used to monitor power attributes of 2352 -- networked devices with measurements. 2353 -- 2354 -- This MIB module is an extension of energyObjectMIB module. 2355 -- 2356 -- ************************************************************* 2358 POWER-ATTRIBUTES-MIB DEFINITIONS ::= BEGIN 2360 IMPORTS 2361 MODULE-IDENTITY, 2362 OBJECT-TYPE, 2363 mib-2, 2364 Integer32 2365 FROM SNMPv2-SMI 2366 MODULE-COMPLIANCE, 2367 OBJECT-GROUP 2368 FROM SNMPv2-CONF 2369 UnitMultiplier 2370 FROM ENERGY-OBJECT-MIB 2371 OwnerString 2372 FROM RMON-MIB 2373 entPhysicalIndex 2374 FROM ENTITY-MIB; 2376 powerAttributesMIB MODULE-IDENTITY 2378 LAST-UPDATED "201312130000Z" -- 13 December 2013 2380 ORGANIZATION "IETF EMAN Working Group" 2381 CONTACT-INFO 2382 "WG charter: 2383 http://datatracker.ietf.org/wg/eman/charter/ 2385 Mailing Lists: 2386 General Discussion: eman@ietf.org 2387 To Subscribe: 2388 https://www.ietf.org/mailman/listinfo/eman 2390 Archive: 2391 http://www.ietf.org/mail-archive/web/eman 2393 Editors: 2395 Mouli Chandramouli 2396 Cisco Systems, Inc. 2397 Sarjapur Outer Ring Road 2398 Bangalore 560103 2399 IN 2400 Phone: +91 80 4429 2409 2401 Email: moulchan@cisco.com 2403 Benoit Claise 2404 Cisco Systems, Inc. 2405 De Kleetlaan 6a b1 2406 Degem 1831 2407 Belgium 2408 Phone: +32 2 704 5622 2409 Email: bclaise@cisco.com 2411 Brad Schoening 2412 44 Rivers Edge Drive 2413 Little Silver, NJ 07739 2414 US 2415 Email: brad.schoening@verizon.net 2417 Juergen Quittek 2418 NEC Europe Ltd. 2419 NEC Laboratories Europe 2420 Network Research Division 2421 Kurfuersten-Anlage 36 2422 Heidelberg 69115 2423 DE 2424 Phone: +49 6221 4342-115 2425 Email: quittek@neclab.eu 2427 Thomas Dietz 2428 NEC Europe Ltd. 2429 NEC Laboratories Europe 2430 Network Research Division 2431 Kurfuersten-Anlage 36 2432 69115 Heidelberg 2433 DE 2434 Phone: +49 6221 4342-128 2435 Email: Thomas.Dietz@nw.neclab.eu" 2437 DESCRIPTION 2438 "This MIB is used to report AC power attributes in 2439 devices. The table is a sparse augmentation of the 2440 eoPowerTable table from the energyObjectMIB module. 2441 Both three-phase and single-phase power 2442 configurations are supported. 2444 As a requirement for this MIB module, 2445 [EMAN-AWARE-MIB] should be implemented. 2447 Module Compliance of ENTITY-MIB v4 2448 with respect to entity4CRCompliance should 2449 be supported which requires implementation 2450 of 3 MIB objects (entPhysicalIndex, 2451 entPhysicalName and entPhysicalUUID)." 2453 REVISION 2455 "201312130000Z" -- 13 December 2013 2457 DESCRIPTION 2458 "Initial version, published as RFC YYY." 2460 ::= { energyMIB 4 } 2462 powerAttributesMIBConform OBJECT IDENTIFIER 2463 ::= { powerAttributesMIB 0 } 2465 powerAttributesMIBObjects OBJECT IDENTIFIER 2466 ::= { powerAttributesMIB 1 } 2468 -- Objects 2470 eoACPwrAttributesTable OBJECT-TYPE 2471 SYNTAX SEQUENCE OF EoACPwrAttributesEntry 2472 MAX-ACCESS not-accessible 2473 STATUS current 2474 DESCRIPTION 2475 "This table defines power attributes measurements for 2476 supported entPhysicalIndex entities. It is a sparse 2477 extension of the eoPowerTable." 2478 ::= { powerAttributesMIBObjects 1 } 2480 eoACPwrAttributesEntry OBJECT-TYPE 2481 SYNTAX EoACPwrAttributesEntry 2482 MAX-ACCESS not-accessible 2483 STATUS current 2484 DESCRIPTION 2485 "This is a sparse extension of the eoPowerTable with 2486 entries for power attributes measurements or 2487 configuration. Each measured value corresponds to an 2488 attribute in IEC 61850-7-4 for non-phase measurements 2489 within the object MMUX." 2491 INDEX {entPhysicalIndex } 2492 ::= { eoACPwrAttributesTable 1 } 2494 EoACPwrAttributesEntry ::= SEQUENCE { 2495 eoACPwrAttributesConfiguration INTEGER, 2496 eoACPwrAttributesAvgVoltage Integer32, 2497 eoACPwrAttributesAvgCurrent Integer32, 2498 eoACPwrAttributesFrequency Integer32, 2499 eoACPwrAttributesPowerUnitMultiplier UnitMultiplier, 2500 eoACPwrAttributesPowerAccuracy Integer32, 2501 eoACPwrAttributesTotalActivePower Integer32, 2502 eoACPwrAttributesTotalReactivePower Integer32, 2503 eoACPwrAttributesTotalApparentPower Integer32, 2504 eoACPwrAttributesTotalPowerFactor Integer32, 2505 eoACPwrAttributesThdAmpheres Integer32, 2506 eoACPwrAttributesThdVoltage Integer32 2507 } 2509 eoACPwrAttributesConfiguration OBJECT-TYPE 2510 SYNTAX INTEGER { 2511 sngl(1), 2512 del(2), 2513 wye(3) 2514 } 2515 MAX-ACCESS read-only 2516 STATUS current 2517 DESCRIPTION 2518 "Configuration describes the physical configurations 2519 of the power supply lines: 2521 * alternating current, single phase (SNGL) 2522 * alternating current, three phase delta (DEL) 2523 * alternating current, three phase Y (WYE) 2525 Three-phase configurations can be either connected in 2526 a triangular delta (DEL) or star Y (WYE) system. WYE 2527 systems have a shared neutral voltage, while DEL 2528 systems do not. Each phase is offset 120 degrees to 2529 each other." 2530 ::= { eoACPwrAttributesEntry 1 } 2532 eoACPwrAttributesAvgVoltage OBJECT-TYPE 2533 SYNTAX Integer32 2534 UNITS "0.1 Volt AC" 2535 MAX-ACCESS read-only 2536 STATUS current 2537 DESCRIPTION 2538 "A measured value for average of the voltage measured 2539 over an integral number of AC cycles For a 3-phase 2540 system, this is the average voltage (V1+V2+V3)/3. IEC 2541 61850-7-4 measured value attribute 'Vol'" 2542 ::= { eoACPwrAttributesEntry 2 } 2544 eoACPwrAttributesAvgCurrent OBJECT-TYPE 2545 SYNTAX Integer32 2546 UNITS "Ampheres" 2547 MAX-ACCESS read-only 2548 STATUS current 2549 DESCRIPTION 2550 "A measured value of the current per phase. IEC 61850- 2551 7-4 attribute 'Amp'" 2552 ::= { eoACPwrAttributesEntry 3 } 2554 eoACPwrAttributesFrequency OBJECT-TYPE 2555 SYNTAX Integer32 (4500..6500) -- UNITS 0.01 Hertz 2556 UNITS "hertz" 2557 MAX-ACCESS read-only 2558 STATUS current 2559 DESCRIPTION 2560 "A measured value for the basic frequency of the AC 2561 circuit. IEC 61850-7-4 attribute 'Hz'." 2562 ::= { eoACPwrAttributesEntry 4 } 2564 eoACPwrAttributesPowerUnitMultiplier OBJECT-TYPE 2565 SYNTAX UnitMultiplier 2566 MAX-ACCESS read-only 2567 STATUS current 2568 DESCRIPTION 2569 "The magnitude of watts for the usage value in 2570 eoACPwrAttributesTotalActivePower, 2571 eoACPwrAttributesTotalReactivePower 2572 and eoACPwrAttributesTotalApparentPower measurements. 2573 For 3-phase power systems, this will also include 2574 eoACPwrAttributesPhaseActivePower, 2575 eoACPwrAttributesPhaseReactivePower and 2576 eoACPwrAttributesPhaseApparentPower" 2577 ::= { eoACPwrAttributesEntry 5 } 2579 eoACPwrAttributesPowerAccuracy OBJECT-TYPE 2580 SYNTAX Integer32 (0..10000) 2581 UNITS "hundredths of percent" 2582 MAX-ACCESS read-only 2583 STATUS current 2584 DESCRIPTION 2585 "This object indicates a percentage value, in 100ths of 2586 a percent, representing the presumed accuracy of 2587 active, reactive, and apparent power usage reporting. 2588 For example: 1010 means the reported usage is accurate 2589 to +/- 10.1 percent. This value is zero if the 2590 accuracy is unknown. 2592 ANSI and IEC define the following accuracy classes for 2593 power measurement: IEC 62053-22 & 60044-1 class 0.1, 2594 0.2, 0.5, 1 & 3. 2595 ANSI C12.20 class 0.2 & 0.5" 2596 ::= { eoACPwrAttributesEntry 6 } 2598 eoACPwrAttributesTotalActivePower OBJECT-TYPE 2599 SYNTAX Integer32 2600 UNITS " watts" 2601 MAX-ACCESS read-only 2602 STATUS current 2603 DESCRIPTION 2604 "A measured value of the actual power delivered to or 2605 consumed by the load. IEC 61850-7-4 attribute 'TotW'." 2606 ::= { eoACPwrAttributesEntry 7 } 2608 eoACPwrAttributesTotalReactivePower OBJECT-TYPE 2609 SYNTAX Integer32 2610 UNITS "volt-amperes reactive" 2611 MAX-ACCESS read-only 2612 STATUS current 2613 DESCRIPTION 2614 "A mesured value of the reactive portion of the 2615 apparent power. IEC 61850-7-4 attribute 'TotVAr'." 2616 ::= { eoACPwrAttributesEntry 8 } 2618 eoACPwrAttributesTotalApparentPower OBJECT-TYPE 2619 SYNTAX Integer32 2620 UNITS "volt-amperes" 2621 MAX-ACCESS read-only 2622 STATUS current 2623 DESCRIPTION 2624 "A measured value of the voltage and current which 2625 determines the apparent power. The apparent power is 2626 the vector sum of real and reactive power. 2628 Note: watts and volt-ampheres are equivalent units and 2629 may be combined. IEC 61850-7-4 attribute 'TotVA'." 2630 ::= { eoACPwrAttributesEntry 9 } 2632 eoACPwrAttributesTotalPowerFactor OBJECT-TYPE 2633 SYNTAX Integer32 (-10000..10000) 2634 UNITS "hundredths of percent" 2635 MAX-ACCESS read-only 2636 STATUS current 2637 DESCRIPTION 2638 "A measured value ratio of the real power flowing to 2639 the load versus the apparent power. It is dimensionless 2640 and expressed here as a percentage value in 100ths of a 2641 percent. A power factor of 100% indicates there is no 2642 inductance load and thus no reactive power. Power 2643 Factor can be positive or negative, where the sign 2644 should be in lead/lag (IEEE) form. IEC 61850-7-4 2645 attribute 'TotPF'." 2646 ::= { eoACPwrAttributesEntry 10 } 2648 eoACPwrAttributesThdAmpheres OBJECT-TYPE 2649 SYNTAX Integer32 (0..10000) 2650 UNITS "hundredths of percent" 2651 MAX-ACCESS read-only 2652 STATUS current 2653 DESCRIPTION 2654 "A calculated value for the current total harmonic 2655 distortion (THD). Method of calculation is not 2656 specified. IEC 61850-7-4 attribute 'ThdAmp'." 2657 ::= { eoACPwrAttributesEntry 11 } 2659 eoACPwrAttributesThdVoltage OBJECT-TYPE 2660 SYNTAX Integer32 (0..10000) 2661 UNITS "hundredths of percent" 2662 MAX-ACCESS read-only 2663 STATUS current 2664 DESCRIPTION 2665 "A calculated value for the voltage total harmonic 2666 distortion (THD). Method of calculation is not 2667 specified. IEC 61850-7-4 attribute 'ThdVol'." 2668 ::= { eoACPwrAttributesEntry 12 } 2670 eoACPwrAttributesPhaseTable OBJECT-TYPE 2671 SYNTAX SEQUENCE OF EoACPwrAttributesPhaseEntry 2672 MAX-ACCESS not-accessible 2673 STATUS current 2674 DESCRIPTION 2675 "This table describes 3-phase power attributes 2676 measurements. It is a sparse extension of the 2677 eoACPwrAttributesTable." 2678 ::= { powerAttributesMIBObjects 2 } 2680 eoACPwrAttributesPhaseEntry OBJECT-TYPE 2681 SYNTAX EoACPwrAttributesPhaseEntry 2682 MAX-ACCESS not-accessible 2683 STATUS current 2684 DESCRIPTION 2685 "An entry describes common 3-phase power attributes 2686 measurements. 2688 This optional table describes 3-phase power attributes 2689 measurements, with three entries for each supported 2690 entPhysicalIndex entity. Entities having single phase 2691 power shall not have any entities. 2693 This table describes attributes common to both WYE and 2694 DEL. Entities having single phase power shall not have 2695 any entries here. It is a sparse extension of the 2696 eoACPwrAttributesTable. 2698 These attributes correspond to IEC 61850-7.4 MMXU phase 2699 measurements." 2700 INDEX { entPhysicalIndex, eoPhaseIndex } 2701 ::= { eoACPwrAttributesPhaseTable 1 } 2703 EoACPwrAttributesPhaseEntry ::= SEQUENCE { 2704 eoPhaseIndex Integer32, 2705 eoACPwrAttributesPhaseAvgCurrent Integer32, 2706 eoACPwrAttributesPhaseActivePower Integer32, 2707 eoACPwrAttributesPhaseReactivePower Integer32, 2708 eoACPwrAttributesPhaseApparentPower Integer32, 2709 eoACPwrAttributesPhasePowerFactor Integer32, 2710 eoACPwrAttributesPhaseImpedance Integer32 2711 } 2713 eoPhaseIndex OBJECT-TYPE 2714 SYNTAX Integer32 (0..359) 2715 MAX-ACCESS not-accessible 2716 STATUS current 2717 DESCRIPTION 2718 "A phase angle typically corresponding to 0, 120, 240." 2719 ::= { eoACPwrAttributesPhaseEntry 1 } 2721 eoACPwrAttributesPhaseAvgCurrent OBJECT-TYPE 2722 SYNTAX Integer32 2723 UNITS "Ampheres" 2724 MAX-ACCESS read-only 2725 STATUS current 2726 DESCRIPTION 2727 "A measured value of the current per phase. IEC 61850- 2728 7-4 attribute 'A'" 2729 ::= { eoACPwrAttributesPhaseEntry 2 } 2731 eoACPwrAttributesPhaseActivePower OBJECT-TYPE 2732 SYNTAX Integer32 2733 UNITS " watts" 2734 MAX-ACCESS read-only 2735 STATUS current 2736 DESCRIPTION 2737 "A measured value of the actual power delivered to or 2738 consumed by the load. IEC 61850-7-4 attribute 'W'" 2739 ::= { eoACPwrAttributesPhaseEntry 3 } 2741 eoACPwrAttributesPhaseReactivePower OBJECT-TYPE 2742 SYNTAX Integer32 2743 UNITS "volt-amperes reactive" 2744 MAX-ACCESS read-only 2745 STATUS current 2746 DESCRIPTION 2747 "A measured value of the reactive portion of the 2748 apparent power. IEC 61850-7-4 attribute 'VAr'" 2749 ::= { eoACPwrAttributesPhaseEntry 4 } 2751 eoACPwrAttributesPhaseApparentPower OBJECT-TYPE 2752 SYNTAX Integer32 2753 UNITS "volt-amperes" 2754 MAX-ACCESS read-only 2755 STATUS current 2756 DESCRIPTION 2757 "A measured value of the voltage and current determines 2758 the apparent power. Active plus reactive power equals 2759 the total apparent power. 2761 Note: Watts and volt-ampheres are equivalent units and 2762 may be combined. IEC 61850-7-4 attribute 'VA'." 2763 ::= { eoACPwrAttributesPhaseEntry 5 } 2765 eoACPwrAttributesPhasePowerFactor OBJECT-TYPE 2766 SYNTAX Integer32 (-10000..10000) 2767 UNITS "hundredths of percent" 2768 MAX-ACCESS read-only 2769 STATUS current 2770 DESCRIPTION 2771 "A measured value ratio of the real power flowing to 2772 the load versus the apparent power for this phase. IEC 2773 61850-7-4 attribute 'PF'. Power Factor can be positive 2774 or negative where the sign should be in lead/lag (IEEE) 2775 form." 2776 ::= { eoACPwrAttributesPhaseEntry 6 } 2778 eoACPwrAttributesPhaseImpedance OBJECT-TYPE 2779 SYNTAX Integer32 2780 UNITS "volt-amperes" 2781 MAX-ACCESS read-only 2782 STATUS current 2783 DESCRIPTION 2784 "A measured value of the impedance. IEC 61850-7-4 attribute 2785 'Z'." 2786 ::= { eoACPwrAttributesPhaseEntry 7 } 2788 eoACPwrAttributesDelPhaseTable OBJECT-TYPE 2789 SYNTAX SEQUENCE OF EoACPwrAttributesDelPhaseEntry 2790 MAX-ACCESS not-accessible 2791 STATUS current 2792 DESCRIPTION 2793 "This table describes DEL configuration phase-to-phase 2794 power attributes measurements. This is a sparse 2795 extension of the eoACPwrAttributesPhaseTable." 2796 ::= { powerAttributesMIBObjects 3 } 2798 eoACPwrAttributesDelPhaseEntry OBJECT-TYPE 2799 SYNTAX EoACPwrAttributesDelPhaseEntry 2800 MAX-ACCESS not-accessible 2801 STATUS current 2802 DESCRIPTION 2803 "An entry describes power attributes attributes of a 2804 phase in a DEL 3-phase power system. Voltage 2805 measurements are provided both relative to each other 2806 and zero. 2808 Measured values are from IEC 61850-7-2 MMUX and THD from 2809 MHAI objects. 2811 For phase-to-phase measurements, the eoPhaseIndex is 2812 compared against the following phase at +120 degrees. 2813 Thus, the possible values are: 2815 eoPhaseIndex Next Phase Angle 2816 0 120 2817 120 240 2818 240 0 2819 " 2820 INDEX { entPhysicalIndex, eoPhaseIndex} 2821 ::= { eoACPwrAttributesDelPhaseTable 1} 2823 EoACPwrAttributesDelPhaseEntry ::= SEQUENCE { 2824 eoACPwrAttributesDelPhaseToNextPhaseVoltage Integer32, 2825 eoACPwrAttributesDelThdPhaseToNextPhaseVoltage Integer32, 2826 eoACPwrAttributesDelThdCurrent Integer32 2827 } 2829 eoACPwrAttributesDelPhaseToNextPhaseVoltage OBJECT-TYPE 2830 SYNTAX Integer32 2831 UNITS "0.1 Volt AC" 2832 MAX-ACCESS read-only 2833 STATUS current 2834 DESCRIPTION 2835 "A measured value of phase to next phase voltages, where 2836 the next phase is IEC 61850-7-4 attribute 'PPV'." 2837 ::= { eoACPwrAttributesDelPhaseEntry 2 } 2839 eoACPwrAttributesDelThdPhaseToNextPhaseVoltage OBJECT-TYPE 2840 SYNTAX Integer32 (0..10000) 2841 UNITS "hundredths of percent" 2842 MAX-ACCESS read-only 2843 STATUS current 2844 DESCRIPTION 2845 "A calculated value for the voltage total harmonic 2846 disortion for phase to next phase. Method of calculation 2847 is not specified. IEC 61850-7-4 attribute 'ThdPPV'." 2848 ::= { eoACPwrAttributesDelPhaseEntry 3 } 2850 eoACPwrAttributesDelThdCurrent OBJECT-TYPE 2851 SYNTAX Integer32 (0..10000) 2852 UNITS "hundredths of percent" 2853 MAX-ACCESS read-only 2854 STATUS current 2855 DESCRIPTION 2856 "A calculated value for the voltage total harmonic 2857 disortion (THD) for phase to phase. Method of 2858 calculation is not specified. 2860 IEC 61850-7-4 attribute 'ThdPPV'." 2861 ::= { eoACPwrAttributesDelPhaseEntry 4 } 2863 eoACPwrAttributesWyePhaseTable OBJECT-TYPE 2864 SYNTAX SEQUENCE OF EoACPwrAttributesWyePhaseEntry 2865 MAX-ACCESS not-accessible 2866 STATUS current 2867 DESCRIPTION 2868 "This table describes WYE configuration phase-to-neutral 2869 power attributes measurements. This is a sparse 2870 extension of the eoACPwrAttributesPhaseTable." 2871 ::= { powerAttributesMIBObjects 4 } 2873 eoACPwrAttributesWyePhaseEntry OBJECT-TYPE 2874 SYNTAX EoACPwrAttributesWyePhaseEntry 2875 MAX-ACCESS not-accessible 2876 STATUS current 2877 DESCRIPTION 2878 "This table describes measurements of WYE configuration 2879 with phase to neutral power attributes attributes. Three 2880 entries are required for each supported entPhysicalIndex 2881 entry. Voltage measurements are relative to neutral. 2883 This is a sparse extension of the 2884 eoACPwrAttributesPhaseTable. 2886 Each entry describes power attributes attributes of one 2887 phase of a WYE 3-phase power system. 2889 Measured values are from IEC 61850-7-2 MMUX and THD from 2890 MHAI objects." 2891 INDEX { entPhysicalIndex, eoPhaseIndex } 2892 ::= { eoACPwrAttributesWyePhaseTable 1} 2894 EoACPwrAttributesWyePhaseEntry ::= SEQUENCE { 2895 eoACPwrAttributesWyePhaseToNeutralVoltage Integer32, 2896 eoACPwrAttributesWyePhaseCurrent Integer32, 2897 eoACPwrAttributesWyeThdPhaseToNeutralVoltage Integer32 2898 } 2900 eoACPwrAttributesWyePhaseToNeutralVoltage OBJECT-TYPE 2901 SYNTAX Integer32 2902 UNITS "0.1 Volt AC" 2903 MAX-ACCESS read-only 2904 STATUS current 2905 DESCRIPTION 2906 "A measured value of phase to neutral voltage. IEC 2907 61850-7-4 attribute 'PhV'." 2909 ::= { eoACPwrAttributesWyePhaseEntry 1 } 2911 eoACPwrAttributesWyePhaseCurrent OBJECT-TYPE 2912 SYNTAX Integer32 2913 UNITS "0.1 ampheres AC" 2914 MAX-ACCESS read-only 2915 STATUS current 2916 DESCRIPTION 2917 "A measured value of phase currents. IEC 61850-7-4 2918 attribute 'A'." 2919 ::= { eoACPwrAttributesWyePhaseEntry 2 } 2921 eoACPwrAttributesWyeThdPhaseToNeutralVoltage OBJECT-TYPE 2922 SYNTAX Integer32 (0..10000) 2923 UNITS "hundredths of percent" 2924 MAX-ACCESS read-only 2925 STATUS current 2926 DESCRIPTION 2927 "A calculated value of the voltage total harmonic 2928 distortion (THD) for phase to neutral. IEC 61850-7-4 2929 attribute 'ThdPhV'." 2930 ::= { eoACPwrAttributesWyePhaseEntry 3 } 2932 -- Conformance 2934 powerAttributesMIBCompliances OBJECT IDENTIFIER 2935 ::= { powerAttributesMIB 2 } 2937 powerAttributesMIBGroups OBJECT IDENTIFIER 2938 ::= { powerAttributesMIB 3 } 2940 powerAttributesMIBFullCompliance MODULE-COMPLIANCE 2941 STATUS current 2942 DESCRIPTION 2943 "When this MIB is implemented with support for read-create, 2944 then such an implementation can claim full compliance. 2945 Such devices can then be both monitored and configured with 2946 this MIB. 2948 Module Compliance of [RFC6933] with respect to 2949 entity4CRCompliance should be supported which requires 2950 implementation of 3 MIB objects (entPhysicalIndex, 2951 entPhysicalName and entPhysicalUUID)." 2953 MODULE -- this module 2954 MANDATORY-GROUPS { 2955 powerACPwrAttributesMIBTableGroup 2956 } 2958 GROUP powerACPwrAttributesOptionalMIBTableGroup 2959 DESCRIPTION 2960 "A compliant implementation does not have 2961 to implement." 2963 GROUP powerACPwrAttributesPhaseMIBTableGroup 2964 DESCRIPTION 2965 "A compliant implementation does not have to 2966 implement." 2968 GROUP powerACPwrAttributesDelPhaseMIBTableGroup 2969 DESCRIPTION 2970 "A compliant implementation does not have to 2971 implement." 2973 GROUP powerACPwrAttributesWyePhaseMIBTableGroup 2974 DESCRIPTION 2975 "A compliant implementation does not have to 2976 implement." 2978 ::= { powerAttributesMIBCompliances 1 } 2980 -- Units of Conformance 2982 powerACPwrAttributesMIBTableGroup OBJECT-GROUP 2983 OBJECTS { 2984 -- Note that object entPhysicalIndex is NOT 2985 -- included since it is not-accessible 2987 eoACPwrAttributesAvgVoltage, 2988 eoACPwrAttributesAvgCurrent, 2989 eoACPwrAttributesFrequency, 2990 eoACPwrAttributesPowerUnitMultiplier, 2991 eoACPwrAttributesPowerAccuracy, 2992 eoACPwrAttributesTotalActivePower, 2993 eoACPwrAttributesTotalReactivePower, 2994 eoACPwrAttributesTotalApparentPower, 2995 eoACPwrAttributesTotalPowerFactor 2996 } 2998 STATUS current 2999 DESCRIPTION 3000 "This group contains the collection of all the power 3001 attributes objects related to the Energy Object." 3002 ::= { powerAttributesMIBGroups 1 } 3004 powerACPwrAttributesOptionalMIBTableGroup OBJECT-GROUP 3005 OBJECTS { 3006 eoACPwrAttributesConfiguration, 3007 eoACPwrAttributesThdAmpheres, 3008 eoACPwrAttributesThdVoltage 3009 } 3010 STATUS current 3011 DESCRIPTION 3012 "This group contains the collection of all the power 3013 attributes objects related to the Energy Object." 3014 ::= { powerAttributesMIBGroups 2 } 3016 powerACPwrAttributesPhaseMIBTableGroup OBJECT-GROUP 3017 OBJECTS { 3018 -- Note that object entPhysicalIndex is 3019 -- NOT included since it is 3020 -- not-accessible 3021 eoACPwrAttributesPhaseAvgCurrent, 3022 eoACPwrAttributesPhaseActivePower, 3023 eoACPwrAttributesPhaseReactivePower, 3024 eoACPwrAttributesPhaseApparentPower, 3025 eoACPwrAttributesPhasePowerFactor, 3026 eoACPwrAttributesPhaseImpedance 3027 } 3028 STATUS current 3029 DESCRIPTION 3030 "This group contains the collection of all 3-phase power 3031 attributes objects related to the Power State." 3032 ::= { powerAttributesMIBGroups 3 } 3034 powerACPwrAttributesDelPhaseMIBTableGroup OBJECT-GROUP 3035 OBJECTS { 3036 -- Note that object entPhysicalIndex and 3037 -- eoPhaseIndex are NOT included 3038 -- since they are not-accessible 3039 eoACPwrAttributesDelPhaseToNextPhaseVoltage , 3040 eoACPwrAttributesDelThdPhaseToNextPhaseVoltage, 3041 eoACPwrAttributesDelThdCurrent 3042 } 3043 STATUS current 3044 DESCRIPTION 3045 "This group contains the collection of all power 3046 characteristic attributes of a phase in a DEL 3-phase 3047 power system." 3048 ::= { powerAttributesMIBGroups 4 } 3050 powerACPwrAttributesWyePhaseMIBTableGroup OBJECT-GROUP 3051 OBJECTS { 3052 -- Note that object entPhysicalIndex and 3053 -- eoPhaseIndex are NOT included 3054 -- since they are not-accessible 3055 eoACPwrAttributesWyePhaseToNeutralVoltage, 3056 eoACPwrAttributesWyePhaseCurrent, 3057 eoACPwrAttributesWyeThdPhaseToNeutralVoltage 3058 } 3059 STATUS current 3060 DESCRIPTION 3061 "This group contains the collection of all WYE 3062 configuration phase-to-neutral power attributes 3063 measurements." 3064 ::= { powerAttributesMIBGroups 5 } 3066 END 3068 IANA-POWERSTATE-SET-MIB DEFINITIONS ::= BEGIN 3069 IMPORTS 3070 MODULE-IDENTITY, mib-2 3071 FROM SNMPv2-SMI 3072 TEXTUAL-CONVENTION 3073 FROM SNMPv2-TC; 3075 ianaPowerStateSetMIB MODULE-IDENTITY 3076 LAST-UPDATED "201312130000Z" -- December 13, 2013 3077 ORGANIZATION "IANA" 3078 CONTACT-INFO " 3079 Internet Assigned Numbers Authority 3080 Postal: ICANN 3081 4676 Admiralty Way, Suite 330 3082 Marina del Rey, CA 90292 3083 Tel: +1-310-823-9358 3084 EMail: iana&iana.org" 3086 DESCRIPTION 3087 "This MIB module defines a TEXTUAL-CONVENTION that 3088 describes the relationships between Energy Objects. 3090 Copyright (C) The IETF Trust (2013). 3092 The initial version of this MIB module was published in 3093 RFC YYY; for full legal notices see the RFC itself. 3094 Supplementary information may be available at 3095 http://www.ietf.org/copyrights/ianamib.html" 3097 REVISION "201312130000Z" -- December 13, 2013 3098 DESCRIPTION "Initial version of this MIB as published in 3099 RFC YYY." 3100 ::= { energyMIB 5 } 3102 -- RFC Editor, please replace YYY with the IANA allocation 3103 -- for this MIB module and YYY with the number of the 3104 -- approved RFC 3106 -- Textual Conventions 3108 IANAPowerStateSet::= TEXTUAL-CONVENTION 3109 STATUS current 3110 DESCRIPTION 3112 "IANAPowerState is a textual convention that describes 3113 Power State Sets and Power State Set Values an Energy Object 3114 supports. IANA has created a registry of Power State supported 3115 by an Energy Object and IANA shall administer the list of 3116 Power State Sets and Power States. 3118 The textual convention assumes that Power States in a power 3119 state set are limited to 255 distinct values. For a Power 3120 State Set S, the named number with the value S * 256 is 3121 allocated to indicate the Power State set. For a Power State X 3122 in the Power State S, the named number with the value S * 256 3123 + X + 1 is allocated to represent the Power State." 3125 REFERENCE 3126 "http://www.iana.org/assignments/eman 3128 RFC EDITOR NOTE: please change the previous URL if this is 3129 not the correct one after IANA assigned it." 3131 SYNTAX INTEGER { 3132 other(0), -- indicates other set 3133 unknown(255), -- unknown 3135 ieee1621(256), -- indicates IEEE1621 set 3136 ieee1621On(257), 3137 ieee1621Off(258), 3138 ieee1621Sleep(259), 3140 dmtf(512), -- indicates DMTF set 3141 dmtfOn(513), 3142 dmtfSleepLight(514), 3143 dmtfSleepDeep(515), 3144 dmtfOffHard(516), 3145 dmtfOffSoft(517), 3146 dmtfHibernate(518), 3147 dmtfPowerOffSoft(519), 3148 dmtfPowerOffHard(520), 3149 dmtfMasterBusReset(521), 3150 dmtfDiagnosticInterrapt(522), 3151 dmtfOffSoftGraceful(523), 3152 dmtfOffHardGraceful(524), 3153 dmtfMasterBusResetGraceful(525), 3154 dmtfPowerCycleOffSoftGraceful(526), 3155 dmtfPowerCycleHardGraceful(527), 3157 eman(1024), -- indicates EMAN set 3158 emanmechoff(1025), 3159 emansoftoff(1026), 3160 emanhibernate(1027), 3161 emansleep(1028), 3162 emanstandby(1029), 3163 emanready(1030), 3164 emanlowMinus(1031), 3165 emanlow(1032), 3166 emanmediumMinus(1033), 3167 emanmedium(1034), 3168 emanhighMinus(1035), 3169 emanhigh(1036) 3170 } 3172 END 3174 11. Implementation Status 3176 [Note to RFC Editor: Please remove this section and the 3177 reference to [RFC6982] before publication.] 3179 This section records the status of known implementations of the 3180 EMAN-Monitoring MIB at the time of posting of this Internet- 3181 Draft, and is based on a proposal described in [RFC6982]. 3183 The description of implementations in this section is intended 3184 to assist the IETF in its decision processes in progressing 3185 drafts to RFCs. 3187 11.1. SNMP Research 3189 Organization: SNMP Research, Inc. 3191 Maturity: Prototype based upon early drafts of the MIBs. 3192 We anticipate updating it to more recent 3193 documents as development schedules allow. 3195 Coverage: Code was generated to implement all MIB objects 3196 in ENTITY-MIB (Version 4), 3197 ENERGY-OBJECT-CONTEXT-MIB, 3198 ENERGY-OBJECT-MIB, 3199 POWER-ATTRIBUTES-MIB, 3200 and BATTERY-MIB. 3202 Implementation experience: The documents are implementable. 3204 Comments: Technical comments about the 3205 ENERGY-OBJECT-CONTEXT-MIB, 3206 ENERGY-OBJECT-MIB, and 3207 BATTERY-MIB 3208 were submitted to the EMAN Working Group 3209 E-mail list. 3211 Licensing: Proprietary, royalty licensing 3213 Contact: Alan Luchuk, luchuk at snmp.com 3215 URL: http://www.snmp.com/ 3217 11.2. Cisco Systems 3219 Organization: Cisco Systems, Inc. 3221 Maturity: Prototype based upon early version drafts of 3222 the MIBs. We anticipate updating the MIB 3223 modules as when the drafts are updated. 3225 Coverage: Code was generated to implement all MIB objects 3226 in the ENTITY-MIB (Version 4), and 3227 ENERGY-OBJECT-MIB. 3229 Implementation experience: The MIB modules are implemented 3230 on Cisco router platforms to measure and report 3231 router energy measurements. The documents are 3232 implementable. 3234 Licensing: Proprietary 3236 URL: http://www.cisco.com 3238 12. Security Considerations 3240 Some of the readable objects in these MIB modules (i.e., objects 3241 with a MAX-ACCESS other than not-accessible) may be considered 3242 sensitive or vulnerable in some network environments. It is 3243 thus important to control even GET and/or NOTIFY access to these 3244 objects and possibly to even encrypt the values of these objects 3245 when sending them over the network via SNMP. 3247 There are a number of management objects defined in these MIB 3248 modules with a MAX-ACCESS clause of read-write and/or read- 3249 create. Such objects MAY be considered sensitive or vulnerable 3250 in some network environments. The support for SET operations in 3251 a non-secure environment without proper protection can have a 3252 negative effect on network operations. The following are the 3253 tables and objects and their sensitivity/vulnerability: 3255 - Unauthorized changes to the eoPowerOperState (via 3256 theeoPowerAdminState ) MAY disrupt the power settings of the 3257 differentEnergy Objects, and therefore the state of 3258 functionality of the respective Energy Objects. 3259 - Unauthorized changes to the eoEnergyParametersTable MAY 3260 disrupt energy measurement in the eoEnergyTable table. 3262 SNMP versions prior to SNMPv3 did not include adequate security. 3263 Even if the network itself is secure (for example, by using 3264 IPsec), there is still no secure control over who on the secure 3265 network is allowed to access and GET/SET 3266 (read/change/create/delete) the objects in these MIB modules. 3268 It is RECOMMENDED that implementers consider the security 3269 features as provided by the SNMPv3 framework (see [RFC3410], 3270 section 8), including full support for the SNMPv3 cryptographic 3271 mechanisms (for authentication and privacy). 3273 Further, deployment of SNMP versions prior to SNMPv3 is NOT 3274 RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to 3275 enable cryptographic security. It is then a customer/operator 3276 responsibility to ensure that the SNMP entity giving access to 3277 an instance of these MIB modules is properly configured to give 3278 access to the objects only to those principals (users) that have 3279 legitimate rights to GET or SET (change/create/delete) them. 3281 13. IANA Considerations 3283 Additions to the ENERGY-OBJECT-MIB MIB and POWER-ATTRIBUTES-MIB 3284 MIB modules are subject to Expert Review [RFC5226], i.e., review 3285 by one of a group of experts designated by an IETF Area 3286 Director. The group of experts MUST check the requested MIB 3287 objects for completeness and accuracy of the description. 3288 Requests for MIB objects that duplicate the functionality of 3289 existing objects SHOULD be declined. The smallest available 3290 OIDs SHOULD be assigned to the new MIB objects. The 3291 specification of new MIB objects SHOULD follow the structure 3292 specified in Section 10. and MUST be published using a well- 3293 established and persistent publication medium. 3295 13.1. IANA Registration of new Power State Set 3297 The initial set of Power State Sets are specified in [EMAN- 3298 FMWK]. IANA maintains a Textual Convention IANAPowerStateSet 3299 with the initial set of Power State Sets and the Power States 3300 within those Power State Sets as proposed in the [EMAN-FMWK]. 3301 The current version of IANAPowerStateSet Textual convention can 3302 be accessed http://www.iana.org/assignments/IANAPowerStateSet. 3304 New Assignments (and potential deprecation) to Power State Sets 3305 shall be administered by IANA and the guidelines and 3306 procedures are specified in [EMAN-FMWK], and will, as a 3307 consequence, the IANAPowerStateSet Textual Convention should be 3308 updated. 3310 13.1.1. IANA Registration of the IEEE1621 Power State Set 3311 The Internet Assigned Numbers Authority (IANA) has created a new 3312 registry for IEEE1621 Power State Set identifiers and filled it 3313 with the initial list in the Textual Convention 3314 IANAPowerStateSet. 3316 Guidelines for new assignments (or potentially deprecation) for 3317 IEEE1621 Power State Set are specified in [EMAN-FMWK]. 3319 13.1.2. IANA Registration of the DMTF Power State Set 3321 The Internet Assigned Numbers Authority (IANA) has created a new 3322 registry for DMTF Power State Set identifiers and filled it in 3323 the Textual Convention IANAPowerStateSet. 3325 Guidelines for new assignments (or potentially deprecation) for 3326 DMTF Power State Set are specified in [EMAN-FMWK]. 3328 13.1.3. IANA Registration of the EMAN Power State Set 3330 The Internet Assigned Numbers Authority (IANA) has created a new 3331 registry for EMAN Power State Set identifiers and filled it in 3332 the Textual Convention IANAPowerStateSet. 3334 Guidelines for new assignments (or potentially deprecation) for 3335 EMAN Power State Set are specified in [EMAN-FMWK]. 3337 14. Contributors 3339 This document results from the merger of two initial proposals. 3340 The following persons made significant contributions either in 3341 one of the initial proposals or in this document. 3343 John Parello 3345 Rolf Winter 3347 Dominique Dudkowski 3349 12. Acknowledgment 3351 The authors would like to thank Shamita Pisal for her prototype 3352 of this MIB module, and her valuable feedback. The authors 3353 would like to Michael Brown for improving the text dramatically. 3355 The authors would like to thank Juergen Schoenwalder for 3356 proposing the design of the Textual Convention for 3357 IANAPowerStateSet and Ira McDonald for his feedback. Thanks for 3358 the many comments on the design of the EnergyTable from Minoru 3359 Teraoka and Hiroto Ogaki. 3361 Many thanks to Alan Luchuk for the detailed review of the MIB 3362 and his comments. 3364 And finally, thanks to the EMAN chairs: Nevil Brownlee and Tom 3365 Nadeau. 3367 13. References 3369 13.1. Normative References 3371 [RFC2119] S. Bradner, Key words for use in RFCs to Indicate 3372 Requirement Levels, BCP 14, RFC 2119, March 1997. 3374 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J. 3375 Schoenwaelder, Ed., "Structure of Management 3376 Information Version 2 (SMIv2)", STD 58, RFC 2578, April 3377 1999. 3379 [RFC2579] McCloghrie, K., Ed., Perkins, D., Ed., and J. 3380 Schoenwaelder, Ed., "Textual Conventions for SMIv2", 3381 STD 58, RFC 2579, April 1999. 3383 [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder, 3384 "Conformance Statements for SMIv2", STD 58, RFC 2580, 3385 April 1999. 3387 [RFC3621] Berger, A., and D. Romascanu, "Power Ethernet MIB", 3388 RFC3621, December 2003. 3390 [RFC4133] Bierman, A. and K. McCloghrie, "Entity MIB (Version 3391 3)", RFC 4133, August 2005. 3393 [EMAN-AWARE-MIB] J. Parello, B. Claise and M. Chandramoili, 3394 "draft-ietf-eman-energy-aware-mib-11 ", work in 3395 progress, November 2013. 3397 [LLDP-MED-MIB] ANSI/TIA-1057, "The LLDP Management Information 3398 Base extension module for TIA-TR41.4 media endpoint 3399 discovery information", July 2005. 3401 13.2. Informative References 3403 [RFC1628] S. Bradner, "UPS Management Information Base", RFC 3404 1628, May 1994 3406 [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart, 3407 "Introduction and Applicability Statements for Internet 3408 Standard Management Framework ", RFC 3410, December 3409 2002. 3411 [RFC3418] Presun, R., Case, J., McCloghrie, K., Rose, M, and S. 3412 Waldbusser, "Management Information Base (MIB) for the 3413 Simple Network Management Protocol (SNMP)", RFC3418, 3414 December 2002. 3416 [RFC3433] Bierman, A., Romascanu, D., and K. Norseth, "Entity 3417 Sensor Management Information Base", RFC 3433, December 3418 2002. 3420 [RFC4268] Chisholm, S. and D. Perkins, "Entity State MIB", RFC 3421 4268, November 2005. 3423 [RFC5226] Narten, T. Alverstrand, H., A. and K. McCloghrie, 3424 "Guidelines for Writing an IANA Considerations Section 3425 in RFCs ", BCP 26, RFC 5226, May 2008. 3427 [RFC6933] A. Bierman, D. Romascanu, J. Quittek and M. 3428 Chandramouli " Entity MIB (Version 4)", RFC 6933, May 3429 2013. 3431 [RFC6982] Sheffer, Y. and A. Farrel, "Improving Awareness of 3432 Running Code: The Implementation Status Section", RFC 3433 6982, July 2013. 3435 [RFC6988] Quittek, J., Winter, R., Dietz, T., Claise, B., and M. 3436 Chandramouli, " Requirements for Energy Management", 3437 RFC 6988, September 2013. 3439 [EMAN-FMWK] Parello, J. Claise, B., Schoening, B. and Quittek, 3440 J., "Energy Management Framework", draft-ietf-eman- 3441 framework-11, October 2013. 3443 [EMAN-AS] Schoening, B., Chandramouli, M. and Nordman, B. 3444 "Energy Management (EMAN) Applicability Statement", 3445 draft-ietf-eman-applicability-statement-04, October 3446 2013. 3448 [ACPI] "Advanced Configuration and Power Interface 3449 Specification",http://www.acpi.info/DOWNLOADS/ACPIspec3 3450 0b.pdf 3452 [DMTF] "Power State Management Profile DMTF DSP1027 Version 3453 2.0" December 2009 3454 http://www.dmtf.org/sites/default/files/standards/docum 3455 ents/DSP1027_2.0.0.pdf 3457 [IEEE1621] "Standard for User Interface Elements in Power 3458 Control of Electronic Devices Employed in 3459 Office/Consumer Environments", IEEE 1621, December 3460 2004. 3462 [IEC.61850-7-4] International Electrotechnical Commission, 3463 "Communication networks and systems for power utility 3464 automation Part 7-4: Basic communication structure 3465 Compatible logical node classes and data object 3466 classes", 2010. 3468 [IEC.62053-21] International Electrotechnical Commission, 3469 "Electricity metering equipment (a.c.) Particular 3470 requirements Part 22: Static meters for active energy 3471 (classes 1 and 2)", 2003. 3473 [IEC.62053-22]International Electrotechnical Commission, 3474 "Electricity metering equipment (a.c.) Particular 3475 requirements Part 22: Static meters for active energy 3476 (classes 0,2 S and 0,5 S)", 2003. 3478 Authors' Addresses 3480 Mouli Chandramouli 3481 Cisco Systems, Inc. 3482 Sarjapur Outer Ring Road 3483 Bangalore 560103 3484 IN 3486 Phone: +91 80 4429 2409 3487 Email: moulchan@cisco.com 3489 Benoit Claise 3490 Cisco Systems, Inc. 3491 De Kleetlaan 6a b1 3492 Diegem 1813 3493 BE 3495 Phone: +32 2 704 5622 3496 Email: bclaise@cisco.com 3498 Brad Schoening 3499 44 Rivers Edge Drive 3500 Little Silver, NJ 07739 3501 US 3502 Email: brad.schoening@verizon.net 3504 Juergen Quittek 3505 NEC Europe Ltd. 3506 NEC Laboratories Europe 3507 Network Research Division 3508 Kurfuersten-Anlage 36 3509 Heidelberg 69115 3510 DE 3512 Phone: +49 6221 4342-115 3513 Email: quittek@neclab.eu 3515 Thomas Dietz 3516 NEC Europe Ltd. 3517 NEC Laboratories Europe 3518 Network Research Division 3519 Kurfuersten-Anlage 36 3520 Heidelberg 69115 3521 DE 3523 Phone: +49 6221 4342-128 3524 Email: Thomas.Dietz@neclab.eu