idnits 2.17.1 draft-ietf-eman-energy-monitoring-mib-09.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- == The page length should not exceed 58 lines per page, but there was 1 longer page, the longest (page 1) being 59 lines Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Line 263 has weird spacing: '...tiplier eoP...' == Line 638 has weird spacing: '...o-phase power...' == Line 813 has weird spacing: '...tiplier equal...' == Line 1030 has weird spacing: '... Object and a...' == Line 1793 has weird spacing: '...onsumed measu...' == (2 more instances...) -- The document date (February 14, 2014) is 3723 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Unused Reference: 'RFC5226' is defined on line 3149, but no explicit reference was found in the text == Unused Reference: 'ACPI' is defined on line 3169, but no explicit reference was found in the text -- Possible downref: Non-RFC (?) normative reference: ref. 'EMAN-AWARE-MIB' -- Possible downref: Non-RFC (?) normative reference: ref. 'LLDP-MED-MIB' -- Obsolete informational reference (is this intentional?): RFC 5226 (Obsoleted by RFC 8126) -- Obsolete informational reference (is this intentional?): RFC 6982 (Obsoleted by RFC 7942) == Outdated reference: A later version (-19) exists of draft-ietf-eman-framework-11 == Outdated reference: A later version (-11) exists of draft-ietf-eman-applicability-statement-04 Summary: 0 errors (**), 0 flaws (~~), 12 warnings (==), 5 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group M. Chandramouli 3 B. Claise 4 Internet-Draft Cisco Systems, Inc. 5 Intended Status: Standards Track B. Schoening 6 Expires: August 14 2014 Independent Consultant 7 J. Quittek 8 T. Dietz 9 NEC Europe Ltd. 10 February 14, 2014 12 Power and Energy Monitoring MIB 13 draft-ietf-eman-energy-monitoring-mib-09 15 Status of this Memo 17 This Internet-Draft is submitted to IETF in full conformance 18 with the provisions of BCP 78 and BCP 79. 20 Internet-Drafts are working documents of the Internet 21 Engineering Task Force (IETF), its areas, and its working 22 groups. Note that other groups may also distribute working 23 documents as Internet-Drafts. 25 Internet-Drafts are draft documents valid for a maximum of six 26 months and may be updated, replaced, or obsoleted by other 27 documents at any time. It is inappropriate to use Internet- 28 Drafts as reference material or to cite them other than as 29 "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed 35 at http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on August 2014. 39 Copyright Notice 41 Copyright (c) 2013 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents 46 (http://trustee.ietf.org/license-info) in effect on the date of 47 publication of this document. Please review these documents 48 carefully, as they describe your rights and restrictions with 49 respect to this document. Code Components extracted from this 50 document must include Simplified BSD License text as described 51 in Section 4.e of the Trust Legal Provisions and are provided 52 without warranty as described in the Simplified BSD License. 54 Abstract 56 This document defines a subset of the Management Information 57 Base (MIB) for power and energy monitoring of devices. 59 Conventions used in this document 61 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL 62 NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", 63 "MAY", and "OPTIONAL" in this document are to be interpreted as 64 described in RFC 2119 [RFC2119]. 66 Table of Contents 68 1. Introduction.............................................. 3 69 2. The Internet-Standard Management Framework................ 4 70 3. Use Cases................................................. 4 71 4. Terminology............................................... 4 72 5. Architecture Concepts Applied to the MIB Modules.......... 5 73 5.1. Energy Object Tables.................................... 5 74 5.1.1. ENERGY-OBJECT-MIB..................................... 5 75 5.1.2. POWER-ATTRIBUTES-MIB.................................. 7 76 5.1.3. UML Diagram........................................... 9 77 5.2. Energy Object Identity................................. 11 78 5.3. Power State............................................ 12 79 5.3.1. Power State Set.................................13 80 5.4. Energy Object Usage Information........................ 13 81 5.5. Optional Power Usage Attributes........................ 14 82 5.6. Optional Energy Measurement............................ 14 83 5.7. Fault Management....................................... 18 84 6. Discovery................................................ 18 85 7. Link with the other IETF MIBs............................ 19 86 7.1. Link with the ENTITY-MIB and the ENTITY-SENSOR MIB...19 87 7.2. Link with the ENTITY-STATE MIB.......................20 88 7.3. Link with the POWER-OVER-ETHERNET MIB................21 89 7.4. Link with the UPS MIB................................21 90 7.5. Link with the LLDP and LLDP-MED MIBs.................22 91 8. Structure of the MIB..................................... 23 92 9. MIB Definitions.......................................... 24 93 10. Implementation Status................................... 62 94 10.1. SNMP Research......................................... 62 95 10.2. Cisco Systems......................................... 62 96 11. Security Considerations................................. 63 97 12. IANA Considerations..................................... 64 98 13. Contributors............................................ 64 99 14. Acknowledgment.......................................... 65 100 15. References.............................................. 65 101 15.1. Normative References.................................. 65 102 15.2. Informative References................................ 66 104 1. Introduction 106 This document defines a subset of the Management Information 107 Base (MIB) for use in energy management of devices within or 108 connected to communication networks. The MIB modules in this 109 document are designed to provide a model for energy management, 110 which includes monitoring for Power State and energy consumption 111 of networked elements. This MIB takes into account the Energy 112 Management Framework [EMAN-FMWK], which, in turn, is based on 113 the Requirements for Energy Management [RFC6988]. 115 Energy management can be applied to devices in communication 116 networks. Target devices for this specification include (but are 117 not limited to): routers, switches, Power over Ethernet (PoE) 118 endpoints, protocol gateways for building management systems, 119 intelligent meters, home energy gateways, hosts and servers, 120 sensor proxies, etc. Target devices and the use cases for Energy 121 Management are discussed in Energy Management Applicability 122 Statement [EMAN-AS]. 124 Where applicable, device monitoring extends to the individual 125 components of the device and to any attached dependent devices. 126 For example: A device can contain components that are 127 independent from a power-state point of view, such as line 128 cards, processor cards, hard drives. A device can also have 129 dependent attached devices, such as a switch with PoE endpoints 130 or a power distribution unit with attached endpoints. 132 2. The Internet-Standard Management Framework 134 For a detailed overview of the documents that describe the 135 current Internet-Standard Management Framework, please refer to 136 section 7 of RFC 3410 [RFC3410]. 138 Managed objects are accessed via a virtual information store, 139 termed the Management Information Base or MIB. MIB objects are 140 generally accessed through the Simple Network Management 141 Protocol (SNMP). Objects in the MIB are defined using the 142 mechanisms defined in the Structure of Management Information 143 (SMI). This memo specifies MIB modules that are compliant to 144 SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, 145 RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580]. 147 3. Use Cases 149 Requirements for power and energy monitoring for networking 150 devices are specified in [RFC6988]. The requirements in 151 [RFC6988] cover devices typically found in communications 152 networks, such as switches, routers, and various connected 153 endpoints. For a power monitoring architecture to be useful, it 154 should also apply to facility meters, power distribution units, 155 gateway proxies for commercial building control, home automation 156 devices, and devices that interface with the utility and/or 157 smart grid. Accordingly, the scope of the MIB modules in this 158 document are broader than that specified in [RFC6988]. Several 159 use cases for Energy Management have been identified in the 160 "Energy Management (EMAN) Applicability Statement" [EMAN-AS]. 162 4. Terminology 164 Please refer to [EMAN-FMWK] for the definitions of the 165 following terminology used in this draft. 167 Energy Management 168 Energy Management System (EnMS) 169 Energy Monitoring 170 Energy Control 171 electrical equipment 173 non-electrical equipment (mechanical equipment) 174 device 175 component 176 power inlet 177 power outlet 178 energy 179 power 180 demand 181 provide energy 182 receive energy 183 meter (energy meter) 184 battery 185 Power Interface 186 Nameplate Power 187 Power Attributes 188 Power Quality 189 Power State 190 Power State Set 192 5. Architecture Concepts Applied to the MIB Modules 194 This section describes the concepts specified in the Energy 195 Management Framework [EMAN-FMWK] that pertain to power usage, 196 with specific information related to the MIB module specified in 197 this document. This subsection maps concepts developed in the 198 Energy Management Framework [EMAN-FMWK]. 200 The Energy Monitoring MIB has 2 independent MIB modules, ENERGY- 201 OBJECT-MIB and POWER-ATTRIBUTES-MIB. The first, ENERGY-OBJECT- 202 MIB, is focused on measurement of power and energy. The second, 203 POWER-ATTRIBUTES-MIB, is focused on power quality measurements 204 for Energy Objects. 206 Devices and their sub-components can be modeled using the 207 containment tree of the ENTITY-MIB [RFC6933]. 209 5.1. Energy Object Tables 211 5.1.1. ENERGY-OBJECT-MIB 213 The ENERGY-OBJECT-MIB module consists of five tables. 215 The first table is the eoMeterCapabilitiesTable. It indicates 216 the instrumentation available for each Energy Object. Entries 217 in this table indicate which other tables from the ENERGY- 218 OBJECT-MIB and POWER-ATTRIBUTES-MIB are available for each 219 Energy Object. The eoMeterCapabilitiesTable is indexed by 220 entPhysicalIndex [RFC6933]. 222 The second table is the eoPowerTable. It reports the power 223 consumption of each Energy Object, as well as the units, sign, 224 measurement accuracy, and related objects. The eoPowerTable is 225 indexed by entPhysicalIndex. 227 The third table is the eoPowerStateTable. For each Energy 228 Object, it reports information and statistics about the 229 supported Power States. The eoPowerStateTable is indexed by 230 entPhysicalIndex and eoPowerStateIndex. 232 The fourth table is the eoEnergyParametersTable. The entries in 233 this table configure the parameters of energy and demand 234 measurement collection. This table is indexed by 235 eoEnergyParametersIndex. 237 The fifth table is the eoEnergyTable. The entries in this table 238 provide a log of the energy and demand information. This table 239 is indexed by eoEnergyParametersIndex. 240 A "smidump-style" tree presentation of the MIB modules contained 241 in the draft is presented. The meaning of the three symbols in 242 is a compressed representation of the object's MAX-ACCESS clause 243 which may have the following values: 245 "not-accessible"->"---" 246 "accessible-for-notify"->"--n" 247 "read-only"->"r-n" 248 "read-write"->"rwn" 250 eoMeterCapabilitiesTable(1) 251 | 252 +---eoMeterCapabilitiesEntry(1)[entPhysicalIndex] 253 | | 254 | +---r-n BITS eoMeterCapability 255 | 257 eoPowerTable(2) 258 | 259 +---eoPowerEntry(1) [entPhysicalIndex] 260 | | 261 | +---r-n Integer32 eoPower(1) 262 | +-- r-n Integer32 eoPowerNamePlate(2) 263 | +-- r-n UnitMultiplier eoPowerUnitMultiplier(3) 264 | +-- r-n Integer32 eoPowerAccuracy(4) 265 | +-- r-n INTEGER eoPowerMeasurementCaliber(5) 266 | +-- r-n INTEGER eoPowerCurrentType(6) 267 | +-- r-n TruthValue eoPowerMeasurementLocal(7) 268 | +-- rwn IANAPowerStateSet eoPowerAdminState(8) 269 | +-- r-n IANAPowerStateSet eoPowerOperState(9) 270 | +-- r-n OwnerString eoPowerStateEnterReason(10) 271 | 272 | 273 +---eoPowerStateTable(3) 274 | +--eoPowerStateEntry(1) 275 | | [entPhysicalIndex, eoPowerStateIndex] 276 | | 277 | +-- --n IANAPowerStateSet eoPowerStateIndex(1) 278 | +-- r-n Integer32 eoPowerStateMaxPower(2) 279 | +-- r-n UnitMultiplier 280 | eoPowerStatePowerUnitMultiplier(3) 281 | +-- r-n TimeTicks eoPowerStateTotalTime(4) 282 | +-- r-n Counter32 eoPowerStateEnterCount(5) 283 | 284 +eoEnergyParametersTable(4) 285 +---eoEnergyParametersEntry(1) [eoEnergyParametersIndex] 286 | 287 | +-- --n PhysicalIndex eoEnergyObjectIndex(1) 288 | + r-n Integer32 eoEnergyParametersIndex(2) 289 | +-- r-n TimeInterval eoEnergyParametersIntervalLength(3) 290 | +-- r-n Integer32 eoEnergyParametersIntervalNumber(4) 291 | +-- r-n INTEGER eoEnergyParametersIntervalMode(5) 292 | +-- r-n TimeInterval eoEnergyParametersIntervalWindow(6) 293 | +-- r-n Integer32 eoEnergyParametersSampleRate(7) 294 | +-- r-n RowStatus eoEnergyParametersStatus(8) 295 | 296 +eoEnergyTable(5) 297 +---eoEnergyEntry(1) 298 | [eoEnergyParametersIndex,eoEnergyCollectionStartTime] 299 | 300 | +-- r-n TimeTicks eoEnergyCollectionStartTime(1) 301 | +-- r-n Integer32 eoEnergyConsumed(2) 302 | +-- r-n Integer32 eoEnergyProvided(3) 303 | +-- r-n Integer32 eoEnergyStored(4) 304 | +-- r-n UnitMultiplier eoEnergyUnitMultiplier(5) 305 | +-- r-n Integer32 eoEnergyAccuracy(6) 306 | +-- r-n Integer32 eoEnergyMaxConsumed(7) 307 | +-- r-n Integer32 eoEnergyMaxProduced(8) 308 | +-- r-n TimeTicks eoEnergyDiscontinuityTime(9) 310 5.1.2. POWER-ATTRIBUTES-MIB 312 The POWER-ATTRIBUTES-MIB module consists of three tables. 314 The first table is the eoACPwrAttributesTable. It indicates the 315 power quality available for each Energy Object. The 316 eoACPwrAttributesTable is indexed by entPhysicalIndex [RFC6933]. 318 The second table is the eoACPwrAttributesDelPhaseTable. The 319 entries in this table configure the parameters of energy and 320 demand measurement collection. This table is indexed by 321 eoEnergyParametersIndex. 323 The third table is the eoACPwrAttributesWyePhaseTable. For each 324 Energy Object, it reports information and statistics about the 325 supported Power States. The eoPowerStateTable is indexed by 326 entPhysicalIndex and eoPowerStateIndex. 328 eoACPwrAttributesTable(1) 329 | 330 +---eoACPwrAttributesEntry(1) [ entPhysicalIndex] 331 | | 332 | +---r-n INTEGER eoACPwrAttributesConfiguration(1) 333 | +-- r-n Integer32 eoACPwrAttributesAvgVoltage(2) 334 | +-- r-n Integer32 eoACPwrAttributesAvgCurrent(3) 335 | +-- r-n Integer32 eoACPwrAttributesFrequency(4) 336 | +-- r-n UnitMultiplier 337 | eoACPwrAttributesPowerUnitMultiplier(5) 338 | +-- r-n Integer32 eoACPwrAttributesPowerAccuracy(6) 339 | +-- r-n Integer32 340 | eoACPwrAttributesTotalActivePower(7) 341 | +-- r-n Integer32 342 | eoACPwrAttributesTotalReactivePower(8) 343 | +-- r-n Integer32 344 | eoACPwrAttributesTotalApparentPower(9) 345 | +-- r-n Integer32 346 | eoACPwrAttributesTotalPowerFactor(10) 347 | +-- r-n Integer32 eoACPwrAttributesThdCurrent(11) 348 | +-- r-n Integer32 eoACPwrAttributesThdVoltage(12) 349 | 350 +eoACPwrAttributesDelPhaseTable(2) 351 +-- eoACPwrAttributesDelPhaseEntry(1) 352 | | [entPhysicalIndex, eoACPwrAttributesDelPhaseIndex] 353 | | 354 | +-- r-n Integer32 355 | | eoACPwrAttributesDelPhaseIndex(1) 356 | +-- r-n Integer32 357 | | eoACPwrAttributesDelPhaseToNextPhaseVoltage(2) 358 | +-- r-n Integer32 359 | | eoACPwrAttributesDelThdPhaseToNextPhaseVoltage(3) 360 | | 361 +eoACPwrAttributesWyePhaseTable(3) 362 +-- eoACPwrAttributesWyePhaseEntry(1) 363 | | [entPhysicalIndex, eoACPwrAttributesWyePhaseIndex] 364 | | 365 | +-- r-n Integer32 366 | | eoACPwrAttributesWyePhaseIndex(1) 367 | +-- r-n Integer32 368 | | eoACPwrAttributesWyePhaseToNeutralVoltage(2) 369 | +-- r-n Integer32 370 | | eoACPwrAttributesWyeCurrent(3) 371 | +-- r-n Integer32 372 | | eoACPwrAttributesWyeActivePower(4) 373 | +-- r-n Integer32 374 | | eoACPwrAttributesWyeReactivePower(5) 375 | +-- r-n Integer32 376 | | eoACPwrAttributesWyeApparentPower(6) 377 | +-- r-n Integer32 378 | | eoACPwrAttributesWyePowerFactor(7) 379 | +-- r-n Integer32 380 | | eoACPwrAttributesWyeThdCurrent(9) 381 | +-- r-n Integer32 382 | | eoACPwrAttributesWyeThdPhaseToNeutralVoltage(10) 384 5.1.3. UML Diagram 386 A UML diagram representation of the MIB objects in the two MIB 387 modules ENERGY-OBJECT-MIB and POWER-ATTRIBUTES-MIB is presented. 389 +-----------------------+ 390 | Meter Capabilities | 391 | --------------------- | 392 | eoMeterCapability | 393 +-----------------------+ 395 +-----------------------+ 396 |---> | Energy Object ID (*) | 397 | | --------------------- | 398 | | entPhysicalIndex | 399 | | entPhysicalClass | 400 | | entPhysicalName | 401 | | entPhysicalUUID | 402 | +-----------------------+ 403 | | 404 | +---------------------------+ 405 |---- | Power Table | 406 | | ------------------------- | 407 | | eoPower | 408 | | eoPowerNamePlate | 409 | | eoPowerUnitMultiplier | 410 | | eoPowerAccuracy | 411 | | eoPowerMeasurementCaliber | 412 | | eoPowerCurrentType | 413 | | eoPowerMeasurementLocal | 414 | | eoPowerAdminState | 415 | | eoPowerOperState | 416 | | eoPowerStateEnterReason | 417 | +---------------------------+ 418 | 419 | +---------------------------------+ 420 |---- | Energy Object State Statistics | 421 | |-------------------------------- | 422 | | eoPowerStateIndex | 423 | | eoPowerStateMaxPower | 424 | | eoPowerStatePowerUnitMultiplier | 425 | | eoPowerStateTotalTime | 426 | | eoPowerStateEnterCount | 427 | +---------------------------------+ 428 | 429 | +----------------------------------+ 430 |---- | Energy ParametersTable | 431 | | -------------------------------- | 432 | | eoEnergyObjectIndex | 433 | | eoEnergyParametersIndex | 434 | | eoEnergyParametersIntervalLength | 435 | | eoEnergyParametersIntervalNumber | 436 | | eoEnergyParametersIntervalMode | 437 | | eoEnergyParametersIntervalWindow | 438 | | eoEnergyParametersSampleRate | 439 | | eoEnergyParametersStatus | 440 | +----------------------------------+ 441 | 442 | +----------------------------------+ 443 |---- | Energy Table | 444 | -------------------------------- | 445 | eoEnergyCollectionStartTime | 446 | eoEnergyConsumed | 447 | eoEnergyProvided | 448 | eoEnergyStored | 449 | eoEnergyUnitMultiplier | 450 | eoEnergyAccuracy | 451 | eoEnergyMaxConsumed | 452 | eoEnergyMaxProduced | 453 | eoDiscontinuityTime | 454 +----------------------------------+ 456 Figure 1:UML diagram for energyObjectMib 458 (*) Compliance with the ENERGY-OBJECT-CONTEXT-MIB 460 +-----------------------+ 461 |---> | Energy Object ID (*) | 462 | | --------------------- | 463 | | entPhysicalIndex | 464 | | entPhysicalName | 465 | | entPhysicalUUID | 466 | +-----------------------+ 467 | 468 | +--------------------------------------+ 469 |---- | Power Attributes | 470 | | ------------------------------------ | 471 | | eoACPwrAttributesConfiguration | 472 | | eoACPwrAttributesAvgVoltage | 473 | | eoACPwrAttributesAvgCurrent | 474 | | eoACPwrAttributesFrequency | 475 | | eoACPwrAttributesPowerUnitMultiplier | 476 | | eoACPwrAttributesPowerAccuracy | 477 | | eoACPwrAttributesTotalActivePower | 478 | | eoACPwrAttributesTotalReactivePower | 479 | | eoACPwrAttributesTotalApparentPower | 480 | | eoACPwrAttributesTotalPowerFactor | 481 | | eoACPwrAttributesThdCurrent | 482 | | eoACPwrAttributesThdVoltage | 483 | +--------------------------------------+ 484 | 485 | 486 | +------------------------------------------------+ 487 |---- | AC Input DEL Configuration | 488 | | ---------------------------------------------- | 489 | | eoACPwrAttributesDelPhaseIndex | 490 | | eoACPwrAttributesDelPhaseToNextPhaseVoltage | 491 | | eoACPwrAttributesDelThdPhaseToNextPhaseVoltage | 492 | +------------------------------------------------+ 493 | 494 | 495 | +----------------------------------------------+ 496 |---- | AC Input WYE Configuration | 497 | -------------------------------------------- | 498 | eoACPwrAttributesWyePhaseIndex | 499 | eoACPwrAttributesWyePhaseToNeutralVoltage | 500 | eoACPwrAttributesWyeCurrent | 501 | eoACPwrAttributesWyeActivePower | 502 | eoACPwrAttributesWyeReactivePower | 503 | eoACPwrAttributesWyeApparentPower | 504 | eoACPwrAttributesWyePowerFactor | 505 | eoACPwrAttributesWyeThdCurrent | 506 | eoACPwrAttributesWyeThdPhaseToNeutralVoltage | 507 +----------------------------------------------+ 509 Figure 2: UML diagram for the POWER-ATTRIBUTES-MIB 511 (*) Compliance with the ENERGY-OBJECT-CONTEXT-MIB 513 5.2. Energy Object Identity 515 The Energy Object identity information is specified in the 516 ENERGY-OBJECT-CONTEXT-MIB module [EMAN-AWARE-MIB] primary table, 517 i.e., the eoTable. In this table, Energy Object context such as 518 domain, role description, and importance are specified. In 519 addition, the ENERGY-OBJECT-CONTEXT-MIB module specifies the 520 relationship between Energy Objects. There are several possible 521 relationships between Energy Objects, such as meteredBy, 522 metering, poweredBy, powering, aggregatedBy, and aggregating as 523 defined in the IANA-ENERGY-RELATION-MIB module [EMAN-AWARE-MIB]. 525 5.3. Power State 527 An Energy Object may have energy conservation modes called Power 528 States. Between the ON and OFF states of a device, there can be 529 several intermediate energy saving modes. Those energy saving 530 modes are called Power States. 532 Power States, which represent universal states of power 533 management of an Energy Object, are specified by the 534 eoPowerState MIB object. The actual Power State is specified by 535 the eoPowerOperState MIB object, while the eoPowerAdminState MIB 536 object specifies the Power State requested for the Energy 537 Object. The difference between the values of eoPowerOperState 538 and eoPowerAdminState indicate that the Energy Object is busy 539 transitioning from eoPowerAdminState into the eoPowerOperState, 540 at which point it will update the content of eoPowerOperState. 541 In addition, the possible reason for change in Power State is 542 reported in eoPowerStateEnterReason. Regarding 543 eoPowerStateEnterReason, management stations and Energy Objects 544 should support any format of the owner string dictated by the 545 local policy of the organization. It is suggested that this 546 name contain at least the reason for the transition change, and 547 one or more of the following: IP address, management station 548 name, network manager's name, location, or phone number. 550 The MIB objects eoPowerOperState, eoPowerAdminState , and 551 eoPowerStateEnterReason are contained in the eoPowerTable MIB 552 table. 554 The eoPowerStateTable table enumerates the maximum power usage 555 in watts for every single supported Power State of each Power 556 State Set supported by the Energy Object. In addition, 557 PowerStateTable provides additional statistics such as 558 eoPowerStateEnterCount, i.e., the number of times an entity has 559 visited a particular Power State, and eoPowerStateTotalTime, 560 i.e., the total time spent in a particular Power State of an 561 Energy Object. 563 5.3.1. Power State Set 565 There are several standards and implementations of Power State 566 Sets. An Energy Object can support one or multiple Power State 567 Set implementations concurrently. 569 There are currently three Power State Sets defined: 571 IEEE1621(256) - [IEEE1621] 572 DMTF(512) - [DMTF] 573 EMAN(768) - [EMAN-FMWK] 575 The Power State Sets are listed in [EMAN-FMWK] along with each 576 Power State within the Power Set. 578 5.4. Energy Object Usage Information 580 For an Energy Object, power usage is reported using eoPower. 581 The magnitude of measurement is based on the 582 eoPowerUnitMultiplier MIB variable, based on the UnitMultiplier 583 Textual Convention (TC). Power measurement magnitude should 584 conform to the IEC 62053-21 [IEC.62053-21] and IEC 62053-22 585 [IEC.62053-22] definition of unit multiplier for the SI (System 586 International) units of measure. Measured values are 587 represented in SI units obtained by BaseValue * 10 raised to the 588 power of the unit multiplier. 590 For example, if current power usage of an Energy Object is 3, it 591 could be 3 W, 3 mW, 3 KW, or 3 MW, depending on the value of 592 eoPowerUnitMultiplier. Note that other measurements throughout 593 the two MIB modules in this document use the same mechanism, 594 including eoPowerStatePowerUnitMultiplier, 595 eoEnergyUnitMultiplier, and 596 eoACPwrAttributesPowerUnitMultiplier. 598 In addition to knowing the usage and magnitude, it is useful to 599 know how an eoPower measurement was obtained. An NMS can use 600 this to account for the accuracy and nature of the reading 601 between different implementations. For this 602 eoPowerMeasurementLocal describes whether the measurements were 603 made at the device itself or from a remote source. The 604 eoPowerMeasurementCaliber describes the method that was used to 605 measure the power and can distinguish actual or estimated 606 values. There may be devices in the network, which may not be 607 able to measure or report power consumption. For those devices, 608 the object eoPowerMeasurementCaliber shall report that the 609 measurement mechanism is "unavailable" and the eoPower 610 measurement shall be "0". 612 The nameplate power rating of an Energy Object is specified in 613 eoPowerNameplate MIB object. 615 5.5. Optional Power Usage Attributes 617 The optional POWER-ATTRIBUTES-MIB module can be implemented to 618 further describe power usage attributes measurement. The POWER- 619 ATTRIBUTES-MIB module is aligned with IEC 61850 7-2 standard to 620 describe AC measurements. 622 The POWER-ATTRIBUTES-MIB module contains a primary table, 623 eoACPwrAttributesTable, that defines power attributes 624 measurements for supported entPhysicalIndex entities, as a 625 sparse extension of the eoPowerTable (with entPhysicalIndex as 626 primary index). This eoACPwrAttributesTable table contains such 627 information as the configuration (single phase, DEL 3 phases, 628 WYE 3 phases), voltage, frequency, power accuracy, total 629 active/reactive power/apparent power, amperage, and voltage. 631 In case of 3-phase power, an additional table is populated with 632 Power Attributes measurements per phase (hence, double indexed 633 by the entPhysicalIndex and a phase index). This table, 634 describes attributes specific to either WYE or DEL 635 configurations. 637 In a DEL configuration, the eoACPwrAttributesDelPhaseTable 638 describes the phase-to-phase power attributes measurements, 639 i.e., voltage. In a DEL configuration, the current is equal in 640 all three phases. 642 In a WYE configuration, the eoACPwrAttributesWyePhaseTable 643 describes the phase-to-neutral power attributes measurements, 644 i.e., voltage, current, active/reactive/apparent power, and 645 power factor. 647 5.6. Optional Energy Measurement 649 It is only relevant to measure energy and demand when there are 650 actual power measurements obtained from measurement hardware. If 651 the eoPowerMeasurementCaliber MIB object has values of 652 unavailable, unknown, estimated, or presumed, then the energy 653 and demand values are not useful. 655 Two tables are introduced to characterize energy measurement of 656 an Energy Object: eoEnergyTable and eoEnergyParametersTable. 657 Both energy and demand information can be represented via the 658 eoEnergyTable. Energy information will be an accumulation with 659 no interval. Demand information can be represented. 660 The eoEnergyParametersTable consists of the parameters defining 661 eoEnergyParametersIndex - an index of that specifies the setting 662 for collection of energy measurements for an Energy Object, 663 eoEnergyObjectIndex - linked to the entPhysicalIndex of the 664 Energy Object, the duration of measurement intervals in seconds, 665 (eoEnergyParametersIntervalLength), the number of successive 666 intervals to be stored in the eoEnergyTable, 667 (eoEnergyParametersIntervalNumber), the type of measurement 668 technique (eoEnergyParametersIntervalMode), and a sample rate 669 used to calculate the average (eoEnergyParametersSampleRate). 670 Judicious choice of the sampling rate will ensure accurate 671 measurement of energy while not imposing an excessive polling 672 burden. 674 There are three eoEnergyParametersIntervalMode types used for 675 energy measurement collection: period, sliding, and total. The 676 choices of the three different modes of collection are based on 677 IEC standard 61850-7-4. Note that multiple 678 eoEnergyParametersIntervalMode types MAY be configured 679 simultaneously. It is important to note that for a given Energy 680 Object, multiple modes (periodic, total, sliding window) of 681 energy measurement collection can be configured with the use of 682 eoEnergyParametersIndex. However, simultaneous measurement in 683 multiple modes for a given Energy Object depends on the Energy 684 Object capability. 686 These three eoEnergyParametersIntervalMode types are illustrated 687 by the following three figures, for which: 689 - The horizontal axis represents the current time, with the 690 symbol <--- L ---> expressing the 691 eoEnergyParametersIntervalLength, and the 692 eoEnergyCollectionStartTime is represented by S1, S2, S3, S4, 693 ..., Sx where x is the value of 694 eoEnergyParametersIntervalNumber. 696 - The vertical axis represents the time interval of sampling and 697 the value of eoEnergyConsumed can be obtained at the end of the 698 sampling period. The symbol =========== denotes the duration of 699 the sampling period. 701 | | | =========== | 702 |============ | | | 703 | | | | 704 | |============ | | 705 | | | | 706 | <--- L ---> | <--- L ---> | <--- L ---> | 707 | | | | 708 S1 S2 S3 S4 709 Figure 3 : Period eoEnergyParametersIntervalMode 711 A eoEnergyParametersIntervalMode type of 'period' specifies non- 712 overlapping periodic measurements. Therefore, the next 713 eoEnergyCollectionStartTime is equal to the previous 714 eoEnergyCollectionStartTime plus 715 eoEnergyParametersIntervalLength. S2=S1+L; S3=S2+L, ... 717 |============ | 718 | | 719 | <--- L ---> | 720 | | 721 | |============ | 722 | | | 723 | | <--- L ---> | 724 | | | 725 | | |============ | 726 | | | | 727 | | | <--- L ---> | 728 | | | | 729 | | | |============ | 730 | | | | | 731 | | | | <--- L ---> | 732 S1 | | | | 733 | | | | 734 | | | | 735 S2 | | | 736 | | | 737 | | | 738 S3 | | 739 | | 740 | | 741 S4 743 Figure 4 : Sliding eoEnergyParametersIntervalMode 745 A eoEnergyParametersIntervalMode type of 'sliding' specifies 746 overlapping periodic measurements. 748 | | 749 |========================= | 750 | | 751 | | 752 | | 753 | <--- Total length ---> | 754 | | 755 S1 757 Figure 5 : Total eoEnergyParametersIntervalMode 759 A eoEnergyParametersIntervalMode type of 'total' specifies a 760 continuous measurement since the last reset. The value of 761 eoEnergyParametersIntervalNumber should be (1) one and 762 eoEnergyParametersIntervalLength is ignored. 764 The eoEnergyParametersStatus is used to start and stop energy 765 usage logging. The status of this variable is "active" when all 766 the objects in eoEnergyParametersTable are appropriate which in 767 turn indicates if eoEnergyTable entries exist or not. 769 The eoEnergyTable consists of energy measurements in 770 eoEnergyConsumed, eoEnergyProvided and eoEnergyStored, the units 771 of the measured energy eoEnergyUnitMultiplier, and the maximum 772 observed energy within a window eoEnergyMaxConsumed, 773 eoEnergyMaxProduced. 775 Measurements of the total energy consumed by an Energy Object 776 may suffer from interruptions in the continuous measurement of 777 energy consumption. In order to indicate such interruptions, 778 the object eoEnergyDiscontinuityTime is provided for indicating 779 the time of the last interruption of total energy measurement. 780 eoEnergyDiscontinuityTime shall indicate the sysUpTime [RFC3418] 781 when the device was reset. 783 The following example illustrates the eoEnergyTable and 784 eoEnergyParametersTable: 786 First, in order to estimate energy, a time interval to sample 787 energy should be specified, i.e., 788 eoEnergyParametersIntervalLength can be set to "900 seconds" or 789 15 minutes and the number of consecutive intervals over which 790 the maximum energy is calculated 791 (eoEnergyParametersIntervalNumber) as "10". The sampling rate 792 internal to the Energy Object for measurement of power usage 793 (eoEnergyParametersSampleRate) can be "1000 milliseconds", as 794 set by the Energy Object as a reasonable value. Then, the 795 eoEnergyParametersStatus is set to active to indicate that the 796 Energy Object should start monitoring the usage per the 797 eoEnergyTable. 799 The indices for the eoEnergyTable are eoEnergyParametersIndex, 800 which identifies the index for the setting of energy measurement 801 collection Energy Object, and eoEnergyCollectionStartTime, which 802 denotes the start time of the energy measurement interval based 803 on sysUpTime [RFC3418]. The value of eoEnergyComsumed is the 804 measured energy consumption over the time interval specified 805 (eoEnergyParametersIntervalLength) based on the Energy Object 806 internal sampling rate (eoEnergyParametersSampleRate). While 807 choosing the values for the eoEnergyParametersIntervalLength and 808 eoEnergyParametersSampleRate, it is recommended to take into 809 consideration either the network element resources adequate to 810 process and store the sample values, and the mechanism used to 811 calculate the eoEnergyConsumed. The units are derived from 812 eoEnergyUnitMultiplier. For example, eoEnergyConsumed can be 813 "100" with eoEnergyUnitMultiplier equal to 0, the measured 814 energy consumption of the Energy Object is 100 watt-hours. The 815 eoEnergyMaxConsumed is the maximum energy observed and that can 816 be "150 watt-hours". 818 The eoEnergyTable has a buffer to retain a certain number of 819 intervals, as defined by eoEnergyParametersIntervalNumber. 820 If the default value of "10" is kept, then the eoEnergyTable 821 contains 10 energy measurements, including the maximum. 823 Here is a brief explanation of how the maximum energy can be 824 calculated. The first observed energy measurement value is 825 taken to be the initial maximum. With each subsequent 826 measurement, based on numerical comparison, maximum energy may 827 be updated. The maximum value is retained as long as the 828 measurements are taking place. Based on periodic polling of 829 this table, an NMS could compute the maximum over a longer 830 period, e.g., a month, 3 months, or a year. 832 5.7. Fault Management 834 [RFC6988] specifies requirements about Power States such as "the 835 current Power State" , "the time of the last state change", "the 836 total time spent in each state", "the number of transitions to 837 each state" etc. Some of these requirements are fulfilled 838 explicitly by MIB objects such as eoPowerOperState, 839 eoPowerStateTotalTime and eoPowerStateEnterCount. Some of the 840 other requirements are met via the SNMP NOTIFICATION mechanism. 841 eoPowerStateChange SNMP notification which is generated when the 842 value of oPowerStateIndex, eoPowerOperState, or 843 eoPowerAdminState have changed. 845 6. Discovery 847 It is probable that most Energy Objects will require the 848 implementation of the ENERGY-OBJECT-CONTEXT-MIB [EMAN-AWARE-MIB] 849 as a prerequisite for this MIB module. In such a case, 850 eoPowerTable of the EMAN-ENERGY-OBJECT-MIB is cross-referenced 851 with the eoTable of ENERGY-OBJECT-CONTEXT-MIB via 852 entPhysicalIndex. Every Energy Object MUST implement 853 entPhysicalIndex, entPhysicalClass, entPhysicalName and 854 entPhysicalUUID from the ENTITY-MIB [RFC6933]. As the primary 855 index for the Energy Object, entPhysicalIndex is used: It 856 characterizes the Energy Object in the ENERGY-OBJECT-MIB and the 857 POWER-ATTRIBUTES-MIB MIB modules (this document). 859 The NMS must first poll the ENERGY-OBJECT-CONTEXT-MIB MIB module 860 [EMAN-AWARE-MIB], if available, in order to discover all the 861 Energy Objects and the relationships between those Energy 862 Objects. In the ENERGY-OBJECT-CONTEXT-MIB module tables, the 863 Energy Objects are indexed by the entPhysicalIndex. 865 From there, the NMS must poll the eoPowerStateTable (specified 866 in the ENERGY-OBJECT-MIB module in this document), which 867 enumerates, amongst other things, the maximum power usage. As 868 the entries in eoPowerStateTable table are indexed by the 869 Energy Object ( entPhysicalIndex) and by the Power State Set 870 (eoPowerStateIndex), the maximum power usage is discovered per 871 Energy Object, and the power usage per Power State of the Power 872 State Set. In other words, reading the eoPowerStateTable allows 873 the discovery of each Power State within every Power State Set 874 supported by the Energy Object. 876 If the Energy Object is an Aggregator, the MIB module would be 877 populated with the Energy Object relationship information, which 878 have its own Energy Object index value (entPhysicalIndex). 879 However, the Energy Object relationship must be discovered via 880 the ENERGY-OBJECT-CONTEXT-MIB module. 882 Finally, the NMS can monitor the power attributes with the 883 POWER-ATTRIBUTES-MIB MIB module, which reuses the 884 entPhysicalIndex to index the Energy Object. 886 7. Link with the other IETF MIBs 888 7.1. Link with the ENTITY-MIB and the ENTITY-SENSOR MIB 890 RFC 6933 [RFC6933] defines the ENTITY-MIB module that lists the 891 physical entities of a networking device (router, switch, etc.) 892 and those physical entities indexed by entPhysicalIndex. From 893 an energy-management standpoint, the physical entities that 894 consume or produce energy are of interest. 896 RFC 3433 [RFC3433] defines the ENTITY-SENSOR MIB module that 897 provides a standardized way of obtaining information (current 898 value of the sensor, operational status of the sensor, and the 899 data units precision) from sensors embedded in networking 900 devices. Sensors are associated with each index of 901 entPhysicalIndex of the ENTITY-MIB [RFC6933]. While the focus 902 of the Power and Energy Monitoring MIB is on measurement of 903 power usage of networking equipment indexed by the ENTITY-MIB, 904 this MIB supports a customized power scale for power measurement 905 and different Power States of networking equipment, and 906 functionality to configure the Power States. 908 The Energy Objects are modeled by the entPhysicalIndex through 909 the entPhysicalEntity MIB object specified in the eoTable in the 910 ENERGY-OBJECT-CONTEXT-MIB MIB module [EMAN-AWARE-MIB]. 912 The ENTITY-SENSOR MIB [RFC3433] does not have the ANSI C12.x 913 accuracy classes required for electricity (e.g., 1%, 2%, 0.5% 914 accuracy classes). Indeed, entPhySensorPrecision [RFC3433] 915 represents "The number of decimal places of precision in fixed- 916 point sensor values returned by the associated entPhySensorValue 917 object". The ANSI and IEC Standards are used for power 918 measurement and these standards require that we use an accuracy 919 class, not the scientific-number precision model specified in 920 RFC3433. The eoPowerAccuracy MIB object models this accuracy. 921 Note that eoPowerUnitMultipler represents the scale factor per 922 IEC 62053-21 [IEC.62053-21] and IEC 62053-22 [IEC.62053-22], 923 which is a more logical representation for power measurements 924 (compared to entPhySensorScale), with the mantissa and the 925 exponent values X * 10 ^ Y. 927 Power measurements specifying the qualifier 'UNITS' for each 928 measured value in watts are used in the LLDP-EXT-MED-MIB, POE 929 [RFC3621], and UPS [RFC1628] MIBs. The same 'UNITS' qualifier 930 is used for the power measurement values. 932 One cannot assume that the ENTITY-MIB and ENTITY-SENSOR MIB are 933 implemented for all Energy Objects that need to be monitored. A 934 typical example is a converged building gateway, which can 935 monitor other devices in a building and provides a proxy between 936 SNMP and a protocol like BACNET. Another example is the home 937 energy controller. In such cases, the eoPhysicalEntity value 938 contains the zero value, using the PhysicalIndexOrZero textual 939 convention. 941 The eoPower is similar to entPhySensorValue [RFC3433] and the 942 eoPowerUnitMultipler is similar to entPhySensorScale. 944 7.2. Link with the ENTITY-STATE MIB 946 For each entity in the ENTITY-MIB [RFC6933], the ENTITY-STATE 947 MIB [RFC4268] specifies the operational states (entStateOper: 948 unknown, enabled, disabled, testing), the alarm (entStateAlarm: 949 unknown, underRepair, critical, major, minor, warning, 950 indeterminate) and the possible values of standby states 951 (entStateStandby: unknown, hotStandby, coldStandby, 952 providingService). 954 From a power monitoring point of view, in contrast to the entity 955 operational states of entities, Power States are required, as 956 proposed in the Power and Energy Monitoring MIB module. Those 957 Power States can be mapped to the different operational states 958 in the ENTITY-STATE MIB, if a formal mapping is required. For 959 example, the entStateStandby "unknown", "hotStandby", 960 "coldStandby", states could map to the Power State "unknown", 961 "ready", "standby", respectively, while the entStateStandby 962 "providingService" could map to any "low" to "high" Power State. 964 7.3. Link with the POWER-OVER-ETHERNET MIB 966 Power-over-Ethernet MIB [RFC3621] provides an energy monitoring 967 and configuration framework for power over Ethernet devices. 968 RFC 3621 defines a port group entity on a switch for power 969 monitoring and management policy and does not use the 970 entPhysicalIndex index. Indeed, pethMainPseConsumptionPower is 971 indexed by the pethMainPseGroupIndex, which has no mapping with 972 the entPhysicalIndex. 974 If the Power-over-Ethernet MIB [RFC3621] is supported, the 975 Energy Object eoethPortIndex and eoethPortGrpIndex contain the 976 pethPsePortIndex and pethPsePortGroupIndex, respectively. 977 However, one cannot assume that the Power-over-Ethernet MIB is 978 implemented for most or all Energy Objects. In such cases, the 979 eoethPortIndex and eoethPortGrpIndex values contain the zero 980 value, via the new PethPsePortIndexOrZero and textual 981 PethPsePortGroupIndexOrZero conventions. 983 In either case, the entPhysicalIndex MIB object is used as the 984 unique Energy Object index. 986 Note that, even though the Power-over-Ethernet MIB [RFC3621] was 987 created after the ENTITY-SENSOR MIB [RFC3433], it does not reuse 988 the precision notion from the ENTITY-SENSOR MIB, i.e., the 989 entPhySensorPrecision MIB object. 991 7.4. Link with the UPS MIB 993 To protect against unexpected power disruption, data centers and 994 buildings make use of Uninterruptible Power Supplies (UPS). To 995 protect critical assets, a UPS can be restricted to a particular 996 subset or domain of the network. UPS usage typically lasts only 997 for a finite period of time, until normal power supply is 998 restored. Planning is required to decide on the capacity of the 999 UPS based on output power and duration of probable power outage. 1000 To properly provision UPS power in a data center or building, it 1001 is important to first understand the total demand required to 1002 support all the entities in the site. This demand can be 1003 assessed and monitored via the Power and Energy Monitoring MIB. 1005 UPS MIB [RFC1628] provides information on the state of the UPS 1006 network. Implementation of the UPS MIB is useful at the 1007 aggregate level of a data center or a building. The MIB module 1008 contains several groups of variables: 1010 - upsIdent: Identifies the UPS entity (name, model, etc.). 1012 - upsBattery group: Indicates the battery state 1013 (upsbatteryStatus, upsEstimatedMinutesRemaining, etc.) 1015 - upsInput group: Characterizes the input load to the UPS 1016 (number of input lines, voltage, current, etc.). 1018 - upsOutput: Characterizes the output from the UPS (number of 1019 output lines, voltage, current, etc.) 1021 - upsAlarms: Indicates the various alarm events. 1023 The measurement of power in the UPS MIB is in volts, amperes and 1024 watts. The units of power measurement are RMS volts and RMS 1025 Amperes. They are not based on the EntitySensorDataScale and 1026 EntitySensorDataPrecision of ENTITY-SENSOR-MIB. 1028 Both the Power and Energy Monitoring MIB and the UPS MIB may be 1029 implemented on the same UPS SNMP agent, without conflict. In 1030 this case, the UPS device itself is the Energy Object and any 1031 of the UPS meters or submeters are the Energy Objects with a 1032 possible relationship as defined in [EMAN-FMWK]. 1034 7.5. Link with the LLDP and LLDP-MED MIBs 1036 The LLDP Protocol is a Data Link Layer protocol used by network 1037 devices to advertise their identities, capabilities, and 1038 interconnections on a LAN network. 1040 The Media Endpoint Discovery is an enhancement of LLDP, known as 1041 LLDP-MED. The LLDP-MED enhancements specifically address voice 1042 applications. LLDP-MED covers 6 basic areas: capability 1043 discovery, LAN speed and duplex discovery, network policy 1044 discovery, location identification discovery, inventory 1045 discovery, and power discovery. 1047 Of particular interest to the current MIB module is the power 1048 discovery, which allows the endpoint device (such as a PoE 1049 phone) to convey power requirements to the switch. In power 1050 discovery, LLDP-MED has four Type Length Values (TLVs): power 1051 type, power source, power priority and power value. 1052 Respectively, those TLVs provide information related to the type 1053 of power (power sourcing entity versus powered device), how the 1054 device is powered (from the line, from a backup source, from 1055 external power source, etc.), the power priority (how important 1056 is it that this device has power?), and how much power the 1057 device needs. 1059 The power priority specified in the LLDP-MED MIB [LLDP-MED-MIB] 1060 actually comes from the Power-over-Ethernet MIB [RFC3621]. If 1061 the Power-over-Ethernet MIB [RFC3621] is supported, the exact 1062 value from the pethPsePortPowerPriority [RFC3621] is copied over 1063 into the lldpXMedRemXPoEPDPowerPriority [LLDP-MED-MIB]; 1064 otherwise the value in lldpXMedRemXPoEPDPowerPriority is 1065 "unknown". From the Power and Energy Monitoring MIB, it is 1066 possible to identify the pethPsePortPowerPriority [RFC3621], via 1067 the eoethPortIndex and eoethPortGrpIndex. 1069 The lldpXMedLocXPoEPDPowerSource [LLDP-MED-MIB] is similar to 1070 eoPowerMeasurementLocal in indicating if the power for an 1071 attached device is local or from a remote device. If the LLDP- 1072 MED MIB is supported, the following mapping can be applied to 1073 the eoPowerMeasurementLocal: lldpXMedLocXPoEPDPowerSource 1074 fromPSE(2) and local(3) can be mapped to false and true, 1075 respectively. 1077 8. Structure of the MIB 1079 The primary MIB object in this MIB module is the 1080 energyObjectMibObjects root. The eoPowerTable table of 1081 energyObjectMibObjects describes the power measurement 1082 attributes of an Energy Object entity. The identity of a device 1083 in terms of uniquely identification of the Energy Object and its 1084 relationship to other entities in the network are addressed in 1085 [EMAN-AWARE-MIB]. 1087 Logically, this MIB module is a sparse extension of the 1088 ENERGY-OBJECT-CONTEXT-MIB module [EMAN-AWARE-MIB]. Thus the 1089 following requirements which are applied to [EMAN-AWARE-MIB] are 1090 also applicable. As a requirement for this MIB module, [EMAN- 1091 AWARE-MIB] SHOULD be implemented and as Module Compliance of 1092 ENTITY-MIB V4 [RFC6933] with respect to entity4CRCompliance MUST 1093 be supported which requires 4 MIB objects: entPhysicalIndex, 1094 entPhysicalClass, entPhysicalName and entPhysicalUUID MUST be 1095 implemented. 1097 eoMeterCapabilitiesTable is useful to enable applications to 1098 determine the capabilities supported by the local management 1099 agent. This table indicates the energy monitoring MIB groups 1100 that are supported by the local management system. By reading 1101 the value of this object, it is possible for applications to 1102 know which tables contain the information and are usable without 1103 walking through the table and querying every element which 1104 involves a trial-and-error process. 1106 The power measurement of an Energy Object contains information 1107 describing its power usage (eoPower) and its current Power State 1108 (eoPowerOperState). In addition to power usage, additional 1109 information describing the units of measurement 1110 (eoPowerAccuracy, eoPowerUnitMultiplier), how power usage 1111 measurement was obtained (eoPowerMeasurementCaliber), the 1112 source of power measurement (eoPowerMeasurementLocal) and the 1113 type of power (eoPowerCurrentType) are described. 1115 An Energy Object may contain an optional eoPowerAttributes table 1116 that describes the electrical characteristics associated with 1117 the current Power State and usage. 1119 An Energy Object may contain an optional eoEnergyTable to 1120 describe energy measurement information over time. 1122 An Energy Object may also contain optional battery information 1123 associated with this entity. 1125 9. MIB Definitions 1127 -- ************************************************************ 1128 -- 1129 -- 1130 -- This MIB is used to monitor power usage of network 1131 -- devices 1132 -- 1133 -- ************************************************************* 1135 ENERGY-OBJECT-MIB DEFINITIONS ::= BEGIN 1137 IMPORTS 1138 MODULE-IDENTITY, 1139 OBJECT-TYPE, 1140 NOTIFICATION-TYPE, 1141 mib-2, 1142 Integer32, Counter32, TimeTicks 1143 FROM SNMPv2-SMI 1145 TEXTUAL-CONVENTION, RowStatus, TimeInterval, 1146 TimeStamp, TruthValue 1147 FROM SNMPv2-TC 1148 MODULE-COMPLIANCE, NOTIFICATION-GROUP, OBJECT-GROUP 1149 FROM SNMPv2-CONF 1150 OwnerString 1151 FROM RMON-MIB 1152 entPhysicalIndex 1153 FROM ENTITY-MIB 1154 IANAPowerStateSet 1155 FROM IANA-POWERSTATE-SET-MIB; 1157 energyObjectMib MODULE-IDENTITY 1158 LAST-UPDATED "201402140000Z" -- 14 Feb 2014 1160 ORGANIZATION "IETF EMAN Working Group" 1161 CONTACT-INFO 1162 "WG charter: 1163 http://datatracker.ietf.org/wg/eman/charter/ 1165 Mailing Lists: 1166 General Discussion: eman@ietf.org 1168 To Subscribe: 1169 https://www.ietf.org/mailman/listinfo/eman 1171 Archive: 1172 http://www.ietf.org/mail-archive/web/eman 1174 Editors: 1175 Mouli Chandramouli 1176 Cisco Systems, Inc. 1177 Sarjapur Outer Ring Road 1178 Bangalore 560103 1179 IN 1180 Phone: +91 80 4429 2409 1181 Email: moulchan@cisco.com 1183 Brad Schoening 1184 44 Rivers Edge Drive 1185 Little Silver, NJ 07739 1186 US 1187 Email: brad.schoening@verizon.net 1189 Juergen Quittek 1190 NEC Europe Ltd. 1191 NEC Laboratories Europe 1192 Network Research Division 1193 Kurfuersten-Anlage 36 1194 Heidelberg 69115 1195 DE 1196 Phone: +49 6221 4342-115 1197 Email: quittek@neclab.eu 1199 Thomas Dietz 1200 NEC Europe Ltd. 1201 NEC Laboratories Europe 1202 Network Research Division 1203 Kurfuersten-Anlage 36 1204 69115 Heidelberg 1205 DE 1206 Phone: +49 6221 4342-128 1207 Email: Thomas.Dietz@nw.neclab.eu 1209 Benoit Claise 1210 Cisco Systems, Inc. 1211 De Kleetlaan 6a b1 1212 Degem 1831 1213 Belgium 1214 Phone: +32 2 704 5622 1215 Email: bclaise@cisco.com" 1217 DESCRIPTION 1218 "This MIB is used to monitor power and energy in 1219 devices. 1221 The tables eoMeterCapabilitiesTable and eoPowerTable 1222 are a sparse extension of the eoTable from the 1223 ENERGY-OBJECT-CONTEXT-MIB. As a requirement 1224 [EMAN-AWARE-MIB] SHOULD be implemented. 1226 Module Compliance of ENTITY-MIB v4 with respect to 1227 entity4CRCompliance MUST be supported which requires 1228 implementation of 4 MIB objects: entPhysicalIndex, 1229 entPhysicalClass, entPhysicalName and entPhysicalUUID." 1231 REVISION 1232 "201402140000Z" -- 14 Feb 2014 1234 DESCRIPTION 1235 "Initial version, published as RFC XXXX." 1237 ::= { mib-2 xxx } 1239 energyObjectMibNotifs OBJECT IDENTIFIER 1240 ::= { energyObjectMib 0 } 1242 energyObjectMibObjects OBJECT IDENTIFIER 1243 ::= { energyObjectMib 1 } 1245 energyObjectMibConform OBJECT IDENTIFIER 1246 ::= { energyObjectMib 2 } 1248 -- Textual Conventions 1250 IANAPowerStateSet ::= TEXTUAL-CONVENTION 1251 STATUS current 1252 DESCRIPTION 1254 "IANAPowerState is a textual convention that describes 1255 Power State Sets and Power State Set Values an Energy Object 1256 supports. IANA has created a registry of Power State supported 1257 by an Energy Object and IANA shall administer the list of Power 1258 State Sets and Power States. 1260 The textual convention assumes that Power States in a power 1261 state set are limited to 255 distinct values. For a Power 1262 State Set S, the named number with the value S * 256 is 1263 allocated to indicate the Power State set. For a Power State X 1264 in the Power State S, the named number with the value S * 256 1265 + X + 1 is allocated to represent the Power State." 1267 REFERENCE 1268 "http://www.iana.org/assignments/eman 1269 RFC EDITOR NOTE: please change the previous URL if this is 1270 not the correct one after IANA assigned it." 1272 SYNTAX INTEGER { 1273 other(0), -- indicates other set 1274 unknown(255), -- unknown 1276 ieee1621(256), -- indicates IEEE1621 set 1277 ieee1621On(257), 1278 ieee1621Off(258), 1279 ieee1621Sleep(259), 1281 dmtf(512), -- indicates DMTF set 1282 dmtfOn(513), 1283 dmtfSleepLight(514), 1284 dmtfSleepDeep(515), 1285 dmtfOffHard(516), 1286 dmtfOffSoft(517), 1287 dmtfHibernate(518), 1288 dmtfPowerOffSoft(519), 1289 dmtfPowerOffHard(520), 1290 dmtfMasterBusReset(521), 1291 dmtfDiagnosticInterrapt(522), 1292 dmtfOffSoftGraceful(523), 1293 dmtfOffHardGraceful(524), 1294 dmtfMasterBusResetGraceful(525), 1295 dmtfPowerCycleOffSoftGraceful(526), 1296 dmtfPowerCycleHardGraceful(527), 1298 eman(1024), -- indicates EMAN set 1299 emanmechoff(1025), 1300 emansoftoff(1026), 1301 emanhibernate(1027), 1302 emansleep(1028), 1303 emanstandby(1029), 1304 emanready(1030), 1305 emanlowMinus(1031), 1306 emanlow(1032), 1307 emanmediumMinus(1033), 1308 emanmedium(1034), 1309 emanhighMinus(1035), 1310 emanhigh(1036) 1311 } 1313 UnitMultiplier ::= TEXTUAL-CONVENTION 1314 STATUS current 1315 DESCRIPTION 1316 "The Unit Multiplier is an integer value that represents 1317 the IEEE 61850 Annex A units multiplier associated with 1318 the integer units used to measure the power or energy. 1320 For example, when used with eoPowerUnitMultiplier, -3 1321 represents 10^-3 or milliwatts." 1322 REFERENCE 1323 "The International System of Units (SI), National 1324 Institute of Standards and Technology, Spec. Publ. 330, 1325 August 1991." 1326 SYNTAX INTEGER { 1327 yocto(-24), -- 10^-24 1328 zepto(-21), -- 10^-21 1329 atto(-18), -- 10^-18 1330 femto(-15), -- 10^-15 1331 pico(-12), -- 10^-12 1332 nano(-9), -- 10^-9 1333 micro(-6), -- 10^-6 1334 milli(-3), -- 10^-3 1335 units(0), -- 10^0 1336 kilo(3), -- 10^3 1337 mega(6), -- 10^6 1338 giga(9), -- 10^9 1339 tera(12), -- 10^12 1340 peta(15), -- 10^15 1341 exa(18), -- 10^18 1342 zetta(21), -- 10^21 1343 yotta(24) -- 10^24 1344 } 1346 -- Objects 1348 eoMeterCapabilitiesTable OBJECT-TYPE 1349 SYNTAX SEQUENCE OF EoMeterCapabilitiesEntry 1350 MAX-ACCESS not-accessible 1351 STATUS current 1352 DESCRIPTION 1353 "This table is useful for helping applications determine the 1354 monitoring capabilities supported by the local management 1355 agents. It is possible for applications to know which tables 1356 are usable without going through a trial-and-error process." 1357 ::= { energyObjectMibObjects 1 } 1359 eoMeterCapabilitiesEntry OBJECT-TYPE 1360 SYNTAX EoMeterCapabilitiesEntry 1361 MAX-ACCESS not-accessible 1362 STATUS current 1363 DESCRIPTION 1364 "An entry describes the metering capability of an Energy 1365 Object." 1366 INDEX { entPhysicalIndex } 1367 ::= { eoMeterCapabilitiesTable 1 } 1369 EoMeterCapabilitiesEntry ::= SEQUENCE { 1370 eoMeterCapability BITS 1371 } 1373 eoMeterCapability OBJECT-TYPE 1374 SYNTAX BITS { 1375 none(0), 1376 powermetering(1), -- power measurement 1377 energymetering(2), -- energy measurement 1378 powerattributes(3) -- power attributes 1379 } 1380 MAX-ACCESS read-only 1381 STATUS current 1382 DESCRIPTION 1383 "An indication of the energy monitoring capabilities supported 1384 by this agent. This object use a BITS syntax and indicates the 1385 MIB groups supported by the probe. By reading the value of this 1386 object, it is possible to determine the MIB tables supported. " 1387 ::= { eoMeterCapabilitiesEntry 1 } 1389 eoPowerTable OBJECT-TYPE 1390 SYNTAX SEQUENCE OF EoPowerEntry 1391 MAX-ACCESS not-accessible 1392 STATUS current 1393 DESCRIPTION 1394 "This table lists Energy Objects." 1395 ::= { energyObjectMibObjects 2 } 1397 eoPowerEntry OBJECT-TYPE 1398 SYNTAX EoPowerEntry 1399 MAX-ACCESS not-accessible 1400 STATUS current 1401 DESCRIPTION 1402 "An entry describes the power usage of an Energy Object." 1404 INDEX { entPhysicalIndex } 1405 ::= { eoPowerTable 1 } 1407 EoPowerEntry ::= SEQUENCE { 1409 eoPower Integer32, 1410 eoPowerNameplate Integer32, 1411 eoPowerUnitMultiplier UnitMultiplier, 1412 eoPowerAccuracy Integer32, 1413 eoPowerMeasurementCaliber INTEGER, 1414 eoPowerCurrentType INTEGER, 1415 eoPowerMeasurementLocal TruthValue, 1416 eoPowerAdminState IANAPowerStateSet, 1417 eoPowerOperState IANAPowerStateSet, 1418 eoPowerStateEnterReason OwnerString 1419 } 1421 eoPower OBJECT-TYPE 1422 SYNTAX Integer32 1423 UNITS "watts" 1424 MAX-ACCESS read-only 1425 STATUS current 1426 DESCRIPTION 1427 "This object indicates the power measured for the Energy 1428 Object. For alternating current, this value is obtained 1429 as an average over fixed number of AC cycles. This value 1430 is specified in SI units of watts with the magnitude of 1431 watts (milliwatts, kilowatts, etc.) indicated separately 1432 in eoPowerUnitMultiplier. The accuracy of the measurement 1433 is specfied in eoPowerAccuracy. The direction of power 1434 flow is indicated by the sign on eoPower. If the Energy 1435 Object is consuming power, the eoPower value will be 1436 positive. If the Energy Object is producing power, the 1437 eoPower value will be negative. 1439 The eoPower MUST be less than or equal to the maximum 1440 power that can be consumed at the power state specified 1441 by eoPowerState. 1443 The eoPowerMeasurementCaliber object specifies how the 1444 usage value reported by eoPower was obtained. The eoPower 1445 value must report 0 if the eoPowerMeasurementCaliber is 1446 'unavailable'. For devices that can not measure or 1447 report power, this option can be used." 1448 ::= { eoPowerEntry 1 } 1450 eoPowerNameplate OBJECT-TYPE 1451 SYNTAX Integer32 1452 UNITS "watts" 1453 MAX-ACCESS read-only 1454 STATUS current 1455 DESCRIPTION 1456 "This object indicates the rated maximum consumption for 1457 the fully populated Energy Object. The nameplate power 1458 requirements are the maximum power numbers and, in almost 1459 all cases, are well above the expected operational 1460 consumption. Nameplate power is widely used for power 1461 provisioning. This value is specified in either units of 1462 watts or voltage and current. The units are therefore SI 1463 watts or equivalent Volt-Amperes with the magnitude 1464 (milliwatts, kilowatts, etc.) indicated separately in 1465 eoPowerUnitMultiplier." 1466 ::= { eoPowerEntry 2 } 1468 eoPowerUnitMultiplier OBJECT-TYPE 1469 SYNTAX UnitMultiplier 1470 MAX-ACCESS read-only 1471 STATUS current 1472 DESCRIPTION 1473 "The magnitude of watts for the usage value in eoPower 1474 and eoPowerNameplate." 1475 ::= { eoPowerEntry 3 } 1477 eoPowerAccuracy OBJECT-TYPE 1478 SYNTAX Integer32 (0..10000) 1479 UNITS "hundredths of percent" 1480 MAX-ACCESS read-only 1481 STATUS current 1482 DESCRIPTION 1483 "This object indicates a percentage value, in 100ths of a 1484 percent, representing the assumed accuracy of the usage 1485 reported by eoPower. For example: The value 1010 means 1486 the reported usage is accurate to +/- 10.1 percent. This 1487 value is zero if the accuracy is unknown or not 1488 applicable based upon the measurement method. 1490 ANSI and IEC define the following accuracy classes for 1491 power measurement: 1492 IEC 62053-22 60044-1 class 0.1, 0.2, 0.5, 1 3. 1493 ANSI C12.20 class 0.2, 0.5" 1494 ::= { eoPowerEntry 4 } 1496 eoPowerMeasurementCaliber OBJECT-TYPE 1497 SYNTAX INTEGER { 1498 unavailable(1) , 1499 unknown(2), 1500 actual(3) , 1501 estimated(4), 1502 static(5) } 1503 MAX-ACCESS read-only 1504 STATUS current 1505 DESCRIPTION 1506 "This object specifies how the usage value reported by 1507 eoPower was obtained: 1509 - unavailable(1): Indicates that the usage is not 1510 available. In such a case, the eoPower value must be 0 1511 for devices that can not measure or report power this 1512 option can be used. 1514 - unknown(2): Indicates that the way the usage was 1515 determined is unknown. In some cases, entities report 1516 aggregate power on behalf of another device. In such 1517 cases it is not known whether the usage reported is 1518 actual, estimated or static. 1520 - actual(3): Indicates that the reported usage was 1521 measured by the entity through some hardware or direct 1522 physical means. The usage data reported is not estimated 1523 or static but is the measured consumption rate. 1525 - estimated(4): Indicates that the usage was not 1526 determined by physical measurement. The value is a 1527 derivation based upon the device type, state, and/or 1528 current utilization using some algorithm or heuristic. It 1529 is presumed that the entity's state and current 1530 configuration were used to compute the value. 1532 - static(5): Indicates that the usage was not determined 1533 by physical measurement, algorithm or derivation. The 1534 usage was reported based upon external tables, 1535 specifications, and/or model information. For example, a 1536 PC Model X draws 200W, while a PC Model Y draws 210W." 1538 ::= { eoPowerEntry 5 } 1540 eoPowerCurrentType OBJECT-TYPE 1541 SYNTAX INTEGER { 1542 ac(1), 1543 dc(2), 1544 unknown(3) 1545 } 1546 MAX-ACCESS read-only 1547 STATUS current 1548 DESCRIPTION 1549 "This object indicates whether the eoPower for the 1550 Energy Object reports alternating current 'ac', direct 1551 current 'dc', or that the current type is unknown." 1552 ::= { eoPowerEntry 6 } 1554 eoPowerMeasurementLocal OBJECT-TYPE 1555 SYNTAX TruthValue 1556 MAX-ACCESS read-only 1557 STATUS current 1558 DESCRIPTION 1559 "This object indicates the source of power measurement 1560 and can be useful when modeling the power usage of 1561 attached devices. The power measurement can be performed 1562 by the entity itself or the power measurement of the 1563 entity can be reported by another trusted entity using a 1564 protocol extension. A value of true indicates the 1565 measurement is performed by the entity, whereas false 1566 indicates that the measurement was performed by another 1567 entity." 1568 ::= { eoPowerEntry 7 } 1570 eoPowerAdminState OBJECT-TYPE 1571 SYNTAX IANAPowerStateSet 1572 MAX-ACCESS read-write 1573 STATUS current 1574 DESCRIPTION 1575 "This object specifies the desired Power State and the 1576 Power State Set for the Energy Object. Note that 1577 other(0) is not a Power State Set and unknown(255) is 1578 not a Power State as such, but simply an indication that 1579 the Power State of the Energy Object is unknown. 1580 Possible values of eoPowerAdminState within the Power 1581 State Set are registered at IANA. 1582 A current list of assignments can be found at 1583 1584 RFC-EDITOR: please check the location after IANA" 1585 ::= { eoPowerEntry 8 } 1587 eoPowerOperState OBJECT-TYPE 1588 SYNTAX IANAPowerStateSet 1589 MAX-ACCESS read-only 1590 STATUS current 1591 DESCRIPTION 1592 "This object specifies the current operational Power 1593 State and the Power State Set for the Energy Object. 1594 other(0) is not a Power State Set and unknown(255) is 1595 not a Power State as such, but simply an indication that 1596 the Power State of the Energy Object is unknown. 1598 Possible values of eoPowerOperState within the Power 1599 State Set are registered at IANA. A current list of 1600 assignments can be found at 1601 1602 RFC-EDITOR: please check the location after IANA" 1604 ::= { eoPowerEntry 9 } 1606 eoPowerStateEnterReason OBJECT-TYPE 1607 SYNTAX OwnerString 1608 MAX-ACCESS read-write 1609 STATUS current 1610 DESCRIPTION 1611 "This string object describes the reason for the 1612 eoPowerAdminState transition. Alternatively, this 1613 string may contain with the entity that configured this 1614 Energy Object to this Power State." 1615 DEFVAL { "" } 1616 ::= { eoPowerEntry 10 } 1618 eoPowerStateTable OBJECT-TYPE 1619 SYNTAX SEQUENCE OF EoPowerStateEntry 1620 MAX-ACCESS not-accessible 1621 STATUS current 1622 DESCRIPTION 1623 "This table enumerates the maximum power usage, in watts, 1624 for every single supported Power State of each Energy 1625 Object. 1627 This table has cross-reference with the eoPowerTable, 1628 containing rows describing each Power State for the 1629 corresponding Energy Object. For every Energy Object in 1630 the eoPowerTable, there is a corresponding entry in this 1631 table." 1632 ::= { energyObjectMibObjects 3 } 1634 eoPowerStateEntry OBJECT-TYPE 1635 SYNTAX EoPowerStateEntry 1636 MAX-ACCESS not-accessible 1637 STATUS current 1638 DESCRIPTION 1639 "A eoPowerStateEntry extends a corresponding 1640 eoPowerEntry. This entry displays max usage values at 1641 every single possible Power State supported by the Energy 1642 Object. 1643 For example, given the values of a Energy Object 1644 corresponding to a maximum usage of 0 W at the 1645 state emanmechoff, 8 W at state 6 (ready), 11 W at state 1646 emanmediumMinus,and 11 W at state emanhigh: 1648 State MaxUsage Units 1649 emanmechoff 0 W 1650 emansoftoff 0 W 1651 emanhibernate 0 W 1652 emansleep 0 W 1653 emanstandby 0 W 1654 emanready 8 W 1655 emanlowMinus 8 W 1656 emanlow 11 W 1657 emanmediumMinus 11 W 1658 emanmedium 11 W 1659 emanhighMinus 11 W 1660 emnanhigh 11 W 1662 Furthermore, this table also includes the total time in 1663 each Power State, along with the number of times a 1664 particular Power State was entered." 1666 INDEX { entPhysicalIndex, 1667 eoPowerStateIndex 1668 } 1669 ::= { eoPowerStateTable 1 } 1671 EoPowerStateEntry ::= SEQUENCE { 1672 eoPowerStateIndex IANAPowerStateSet, 1673 eoPowerStateMaxPower INTEGER, 1674 eoPowerStatePowerUnitMultiplier UnitMultiplier, 1675 eoPowerStateTotalTime TimeTicks, 1676 eoPowerStateEnterCount Counter32 1678 } 1680 eoPowerStateIndex OBJECT-TYPE 1681 SYNTAX IANAPowerStateSet 1682 MAX-ACCESS not-accessible 1683 STATUS current 1684 DESCRIPTION 1685 " 1686 This object specifies the index of the Power State of 1687 the Energy Object within a Power State Set. The 1688 semantics of the specific Power State can be obtained 1689 from the Power State Set definition." 1690 ::= { eoPowerStateEntry 1 } 1692 eoPowerStateMaxPower OBJECT-TYPE 1693 SYNTAX Integer32 1694 UNITS "watts" 1695 MAX-ACCESS read-only 1696 STATUS current 1697 DESCRIPTION 1698 "This object indicates the maximum power for the Energy 1699 Object at the particular Power State. This value is 1700 specified in SI units of watts with the magnitude of the 1701 units (milliwatts, kilowatts, etc.) indicated separately 1702 in eoPowerStatePowerUnitMultiplier. If the maximum power 1703 is not known for a certain Power State, then the value is 1704 encoded as 0xFFFFFFFF. 1706 For Power States not enumerated, the value of 1707 eoPowerStateMaxPower might be interpolated by using the 1708 next highest supported Power State." 1709 ::= { eoPowerStateEntry 2 } 1711 eoPowerStatePowerUnitMultiplier OBJECT-TYPE 1712 SYNTAX UnitMultiplier 1713 MAX-ACCESS read-only 1714 STATUS current 1715 DESCRIPTION 1716 "The magnitude of watts for the usage value in 1717 eoPowerStateMaxPower." 1718 ::= { eoPowerStateEntry 3 } 1720 eoPowerStateTotalTime OBJECT-TYPE 1721 SYNTAX TimeTicks 1722 MAX-ACCESS read-only 1723 STATUS current 1724 DESCRIPTION 1725 "This object indicates the total time in hundredths 1726 of second that the Energy Object has been in this power 1727 state since the last reset, as specified in the 1728 sysUpTime." 1729 ::= { eoPowerStateEntry 4 } 1731 eoPowerStateEnterCount OBJECT-TYPE 1732 SYNTAX Counter32 1733 MAX-ACCESS read-only 1734 STATUS current 1735 DESCRIPTION 1736 "This object indicates how often the Energy 1737 Object has 1738 entered this power state, since the last reset of the 1739 device as specified in the sysUpTime." 1740 ::= { eoPowerStateEntry 5 } 1742 eoEnergyParametersTable OBJECT-TYPE 1743 SYNTAX SEQUENCE OF EoEnergyParametersEntry 1744 MAX-ACCESS not-accessible 1745 STATUS current 1746 DESCRIPTION 1747 "This table is used to configure the parameters for 1748 Energy measurement collection in the table 1749 eoEnergyTable. This table allows the configuration of 1750 different measurement settings on the same Energy Object. 1751 Implementation of this table only makes sense for Energy 1752 Objects that an eoPowerMeasurementCaliber of actual." 1753 ::= { energyObjectMibObjects 4 } 1755 eoEnergyParametersEntry OBJECT-TYPE 1756 SYNTAX EoEnergyParametersEntry 1757 MAX-ACCESS not-accessible 1758 STATUS current 1759 DESCRIPTION 1760 "An entry controls an energy measurement in 1761 eoEnergyTable." 1762 INDEX { entPhysicalIndex, eoEnergyParametersIndex } 1763 ::= { eoEnergyParametersTable 1 } 1765 EoEnergyParametersEntry ::= SEQUENCE { 1766 eoEnergyParametersIndex Integer32, 1767 eoEnergyParametersIntervalLength TimeInterval, 1768 eoEnergyParametersIntervalNumber Integer32, 1769 eoEnergyParametersIntervalMode INTEGER, 1770 eoEnergyParametersIntervalWindow TimeInterval, 1771 eoEnergyParametersSampleRate Integer32, 1772 eoEnergyParametersStatus RowStatus 1773 } 1774 eoEnergyParametersIndex OBJECT-TYPE 1775 SYNTAX Integer32 (0..2147483647) 1776 MAX-ACCESS not-accessible 1777 STATUS current 1778 DESCRIPTION 1779 "This object specifies the index of the Energy 1780 Parameters setting for collection of energy measurements 1781 for an Energy Object. An Energy Object can have multiple 1782 eoEnergyParametersIndex, depending on the capabilities 1783 of the Energy Object" 1784 ::= { eoEnergyParametersEntry 2 } 1786 eoEnergyParametersIntervalLength OBJECT-TYPE 1787 SYNTAX TimeInterval 1788 MAX-ACCESS read-create 1789 STATUS current 1790 DESCRIPTION 1791 "This object indicates the length of time in hundredths 1792 of seconds over which to compute the average 1793 eoEnergyConsumed measurement in the eoEnergyTable table. 1794 The computation is based on the Energy Object's internal 1795 sampling rate of power consumed or produced by the Energy 1796 Object. The sampling rate is the rate at which the Energy 1797 Object can read the power usage and may differ based on 1798 device capabilities. The average energy consumption is 1799 then computed over the length of the interval. The 1800 default value of 15 minutes is a common interval used in 1801 industry." 1802 DEFVAL { 90000 } 1803 ::= { eoEnergyParametersEntry 3 } 1805 eoEnergyParametersIntervalNumber OBJECT-TYPE 1806 SYNTAX Integer32 1807 MAX-ACCESS read-create 1808 STATUS current 1809 DESCRIPTION 1811 "The number of intervals maintained in the eoEnergyTable. 1812 Each interval is characterized by a specific 1813 eoEnergyCollectionStartTime, used as an index to the 1814 table eoEnergyTable. Whenever the maximum number of 1815 entries is reached, the measurement over the new interval 1816 replaces the oldest measurement. There is one exception 1817 to this rule: when the eoEnergyMaxConsumed and/or 1818 eoEnergyMaxProduced are in (one of) the two oldest 1819 measurement(s), they are left untouched and the next 1820 oldest measurement is replaced." 1821 DEFVAL { 10 } 1822 ::= { eoEnergyParametersEntry 4 } 1824 eoEnergyParametersIntervalMode OBJECT-TYPE 1825 SYNTAX INTEGER { 1826 period(1), 1827 sliding(2), 1828 total(3) 1829 } 1830 MAX-ACCESS read-create 1831 STATUS current 1832 DESCRIPTION 1833 "A control object to define the mode of interval calculation 1834 for the computation of the average eoEnergyConsumed or 1835 eoEnergyProvided measurement in the eoEnergyTable table. 1837 A mode of period(1) specifies non-overlapping periodic 1838 measurements. 1840 A mode of sliding(2) specifies overlapping sliding windows 1841 where the interval between the start of one interval and 1842 the next is defined in eoEnergyParametersIntervalWindow. 1844 A mode of total(3) specifies non-periodic measurement. In 1845 this mode only one interval is used as this is a 1846 continuous measurement since the last reset. The value of 1847 eoEnergyParametersIntervalNumber should be (1) one and 1848 eoEnergyParametersIntervalLength is ignored. " 1849 ::= { eoEnergyParametersEntry 5 } 1851 eoEnergyParametersIntervalWindow OBJECT-TYPE 1852 SYNTAX TimeInterval 1853 MAX-ACCESS read-create 1854 STATUS current 1855 DESCRIPTION 1856 "The length of the duration window between the starting 1857 time of one sliding window and the next starting time in 1858 hundredths of seconds, in order to compute the average of 1859 eoEnergyConsumed, eoEnergyProvided measurements in the 1860 eoEnergyTable table. This is valid only when the 1861 eoEnergyParametersIntervalMode is sliding(2). The 1862 eoEnergyParametersIntervalWindow value should be a multiple 1863 of eoEnergyParametersSampleRate." 1864 ::= { eoEnergyParametersEntry 6 } 1866 eoEnergyParametersSampleRate OBJECT-TYPE 1867 SYNTAX Integer32 1868 UNITS "Milliseconds" 1869 MAX-ACCESS read-create 1870 STATUS current 1871 DESCRIPTION 1872 "The sampling rate, in milliseconds, at which the Energy 1873 Object should poll power usage in order to compute the 1874 average eoEnergyConsumed, eoEnergyProvided measurements 1875 in the table eoEnergyTable. The Energy Object should 1876 initially set this sampling rate to a reasonable value, 1877 i.e., a compromise between intervals that will provide 1878 good accuracy by not being too long, but not so short 1879 that they affect the Energy Object performance by 1880 requesting continuous polling. If the sampling rate is 1881 unknown, the value 0 is reported. The sampling rate 1882 should be selected so that 1883 eoEnergyParametersIntervalWindow is a multiple of 1884 eoEnergyParametersSampleRate. The default value is one 1885 second." 1886 DEFVAL { 1000 } 1887 ::= { eoEnergyParametersEntry 7 } 1889 eoEnergyParametersStatus OBJECT-TYPE 1890 SYNTAX RowStatus 1891 MAX-ACCESS read-create 1892 STATUS current 1893 DESCRIPTION 1894 "The status of this row. The eoEnergyParametersStatus is 1895 used to start or stop energy usage logging. An entry 1896 status may not be active(1) unless all objects in the 1897 entry have an appropriate value. If this object is not 1898 equal to active, all associated usage-data logged into 1899 the eoEnergyTable will be deleted. The data can be 1900 destroyed by setting up the eoEnergyParametersStatus to 1901 destroy." 1902 ::= {eoEnergyParametersEntry 8 } 1904 eoEnergyTable OBJECT-TYPE 1905 SYNTAX SEQUENCE OF EoEnergyEntry 1906 MAX-ACCESS not-accessible 1907 STATUS current 1908 DESCRIPTION 1909 "This table lists Energy Object energy measurements. 1910 Entries in this table are only created if the 1911 corresponding value of object eoPowerMeasurementCaliber 1912 is active(3), i.e., if the power is actually metered." 1913 ::= { energyObjectMibObjects 5 } 1915 eoEnergyEntry OBJECT-TYPE 1916 SYNTAX EoEnergyEntry 1917 MAX-ACCESS not-accessible 1918 STATUS current 1919 DESCRIPTION 1920 "An entry describing energy measurements." 1921 INDEX { eoEnergyParametersIndex, 1922 eoEnergyCollectionStartTime } 1923 ::= { eoEnergyTable 1 } 1925 EoEnergyEntry ::= SEQUENCE { 1926 eoEnergyCollectionStartTime TimeTicks, 1927 eoEnergyConsumed Integer32, 1928 eoEnergyProvided Integer32, 1929 eoEnergyStored Integer32, 1930 eoEnergyUnitMultiplier UnitMultiplier, 1931 eoEnergyAccuracy Integer32, 1932 eoEnergyMaxConsumed Integer32, 1933 eoEnergyMaxProduced Integer32, 1934 eoEnergyDiscontinuityTime TimeStamp 1935 } 1937 eoEnergyCollectionStartTime OBJECT-TYPE 1938 SYNTAX TimeTicks 1939 UNITS "hundredths of seconds" 1940 MAX-ACCESS not-accessible 1941 STATUS current 1942 DESCRIPTION 1943 "The time (in hundredths of a second) since the 1944 network management portion of the system was last 1945 re-initialized, as specified in the sysUpTime [RFC3418]. 1946 This object specifies the start time of the energy 1947 measurement sample. " 1948 ::= { eoEnergyEntry 1 } 1950 eoEnergyConsumed OBJECT-TYPE 1951 SYNTAX Integer32 1952 UNITS "Watt-hours" 1953 MAX-ACCESS read-only 1954 STATUS current 1955 DESCRIPTION 1956 "This object indicates the energy consumed in units of watt- 1957 hours for the Energy Object over the defined interval. 1958 This value is specified in the common billing units of watt- 1959 hours with the magnitude of watt-hours (kW-Hr, MW-Hr, etc.) 1960 indicated separately in eoEnergyUnitMultiplier." 1961 ::= { eoEnergyEntry 2 } 1963 eoEnergyProvided OBJECT-TYPE 1964 SYNTAX Integer32 1965 UNITS "Watt-hours" 1966 MAX-ACCESS read-only 1967 STATUS current 1968 DESCRIPTION 1970 "This object indicates the energy produced in units of watt- 1971 hours for the Energy Object over the defined interval. 1972 This value is specified in the common billing units of watt- 1973 hours with the magnitude of watt-hours (kW-Hr, MW-Hr, etc.) 1974 indicated separately in eoEnergyUnitMultiplier." 1975 ::= { eoEnergyEntry 3 } 1977 eoEnergyStored OBJECT-TYPE 1978 SYNTAX Integer32 1979 UNITS "Watt-hours" 1980 MAX-ACCESS read-only 1981 STATUS current 1982 DESCRIPTION 1983 "This object indicates the difference of the energy consumed and 1984 energy produced for an Energy Object in units of watt-hours for 1985 the Energy Object over the defined interval. This value is 1986 specified in the common billing units of watt-hours 1987 with the magnitude of watt-hours (kW-Hr, MW-Hr, etc.) 1988 indicated separately in eoEnergyUnitMultiplier." 1989 ::= { eoEnergyEntry 4 } 1991 eoEnergyUnitMultiplier OBJECT-TYPE 1992 SYNTAX UnitMultiplier 1993 MAX-ACCESS read-only 1994 STATUS current 1995 DESCRIPTION 1996 "This object is the magnitude of watt-hours for the 1997 energy field in eoEnergyConsumed, eoEnergyProvided, 1998 eoEnergyStored, eoEnergyMaxConsumed, and 1999 eoEnergyMaxProduced." 2000 ::= { eoEnergyEntry 5 } 2002 eoEnergyAccuracy OBJECT-TYPE 2003 SYNTAX Integer32 (0..10000) 2004 UNITS "hundredths of percent" 2005 MAX-ACCESS read-only 2006 STATUS current 2007 DESCRIPTION 2008 "This object indicates a percentage accuracy, in 100ths 2009 of a percent, of Energy usage reporting. eoEnergyAccuracy 2010 is applicable to all Energy measurements in the 2011 eoEnergyTable. 2013 For example: 1010 means the reported usage is accurate to +/- 2014 10.1 percent. 2015 This value is zero if the accuracy is unknown." 2017 ::= { eoEnergyEntry 6 } 2019 eoEnergyMaxConsumed OBJECT-TYPE 2020 SYNTAX Integer32 2021 UNITS "Watt-hours" 2022 MAX-ACCESS read-only 2023 STATUS current 2024 DESCRIPTION 2025 "This object is the maximum energy observed in 2026 eoEnergyConsumed since the monitoring started or was 2027 reinitialized. This value is specified in the common 2028 billing units of watt-hours with the magnitude of watt- 2029 hours (kW-Hr, MW-Hr, etc.) indicated separately in 2030 eoEnergyUnitMultiplier." 2031 ::= { eoEnergyEntry 7 } 2033 eoEnergyMaxProduced OBJECT-TYPE 2034 SYNTAX Integer32 2035 UNITS "Watt-hours" 2036 MAX-ACCESS read-only 2037 STATUS current 2038 DESCRIPTION 2039 "This object is the maximum energy ever observed in 2040 eoEnergyEnergyProduced since the monitoring started. This 2041 value is specified in the units of watt-hours with the 2042 magnitude of watt-hours (kW-Hr, MW-Hr, etc.) indicated 2043 separately in eoEnergyEnergyUnitMultiplier." 2044 ::= { eoEnergyEntry 8 } 2046 eoEnergyDiscontinuityTime OBJECT-TYPE 2047 SYNTAX TimeStamp 2048 MAX-ACCESS read-only 2049 STATUS current 2050 DESCRIPTION 2052 "The value of sysUpTime [RFC3418] on the most recent 2053 occasion at which any one or more of this entity's energy 2054 counters in this table suffered a discontinuity: 2055 eoEnergyConsumed, eoEnergyProvided or eoEnergyStored. If 2056 no such discontinuities have occurred since the last re- 2057 initialization of the local management subsystem, then 2058 this object contains a zero value." 2059 ::= { eoEnergyEntry 9 } 2061 -- Notifications 2063 eoPowerEnableStatusNotification OBJECT-TYPE 2064 SYNTAX TruthValue 2065 MAX-ACCESS read-write 2066 STATUS current 2067 DESCRIPTION 2068 "This object controls whether the system produces 2069 notifications for eoPowerStateChange. A false value will 2070 prevent these notifications from being generated." 2071 DEFVAL { false } 2072 ::= { energyObjectMibNotifs 1 } 2074 eoPowerStateChange NOTIFICATION-TYPE 2075 OBJECTS {eoPowerAdminState, eoPowerOperState, 2076 eoPowerStateEnterReason} 2077 STATUS current 2078 DESCRIPTION 2079 "The SNMP entity generates the eoPowerStateChange when 2080 the values of eoPowerAdminState or eoPowerOperState, 2081 in the context of the Power State Set, have changed for 2082 the Energy Object represented by the entPhysicalIndex." 2083 ::= { energyObjectMibNotifs 2 } 2085 -- Conformance 2087 energyObjectMibCompliances OBJECT IDENTIFIER 2088 ::= { energyObjectMibConform 1 } 2090 energyObjectMibGroups OBJECT IDENTIFIER 2091 ::= { energyObjectMibConform 2 } 2093 energyObjectMibFullCompliance MODULE-COMPLIANCE 2094 STATUS current 2095 DESCRIPTION 2096 "When this MIB is implemented with support for 2097 read-create, then such an implementation can 2098 claim full compliance. Such devices can then 2099 be both monitored and configured with this MIB. 2101 Module Compliance of [RFC6933] 2102 with respect to entity4CRCompliance MUST 2103 be supported which requires implementation 2104 of 4 MIB objects: entPhysicalIndex, entPhysicalClass, 2105 entPhysicalName and entPhysicalUUID." 2107 MODULE -- this module 2108 MANDATORY-GROUPS { 2109 energyObjectMibTableGroup, 2110 energyObjectMibStateTableGroup, 2111 eoPowerEnableStatusNotificationGroup, 2112 energyObjectMibNotifGroup 2113 } 2115 GROUP energyObjectMibEnergyTableGroup 2117 DESCRIPTION "A compliant implementation does not 2118 have to implement. 2120 Module Compliance of [RFC6933] 2121 with respect to entity4CRCompliance MUST 2122 be supported which requires implementation 2123 of 4 MIB objects: entPhysicalIndex, entPhysicalClass, 2124 entPhysicalName and entPhysicalUUID." 2126 GROUP energyObjectMibEnergyParametersTableGroup 2128 DESCRIPTION "A compliant implementation does not 2129 have to implement. 2131 Module Compliance of {RFC6933] 2132 with respect to entity4CRCompliance MUST 2133 be supported which requires implementation 2134 of 4 MIB objects: entPhysicalIndex, entPhysicalClass, 2135 entPhysicalName and entPhysicalUUID." 2137 GROUP energyObjectMibMeterCapabilitiesTableGroup 2139 DESCRIPTION "A compliant implementation does not 2140 have to implement. 2142 Module Compliance of [RFC6933] 2143 with respect to entity4CRCompliance MUST 2144 be supported which requires implementation 2145 of 4 MIB objects: entPhysicalIndex, entPhysicalClass, 2146 entPhysicalName and entPhysicalUUID." 2148 ::= { energyObjectMibCompliances 1 } 2150 energyObjectMibReadOnlyCompliance MODULE-COMPLIANCE 2151 STATUS current 2152 DESCRIPTION 2153 "When this MIB is implemented without support for 2154 read-create (i.e., in read-only mode), then such an 2155 implementation can claim read-only compliance. Such a 2156 device can then be monitored but cannot be 2157 configured with this MIB. 2159 Module Compliance of [RFC6933] 2160 with respect to entity4CRCompliance MUST 2161 be supported which requires implementation 2162 of 4 MIB objects: entPhysicalIndex, entPhysicalClass, 2163 entPhysicalName and entPhysicalUUID." 2165 MODULE -- this module 2166 MANDATORY-GROUPS { 2167 energyObjectMibTableGroup, 2168 energyObjectMibStateTableGroup, 2169 energyObjectMibNotifGroup 2170 } 2172 OBJECT eoPowerOperState 2173 MIN-ACCESS read-only 2174 DESCRIPTION 2175 "Write access is not required." 2176 ::= { energyObjectMibCompliances 2 } 2178 -- Units of Conformance 2180 energyObjectMibTableGroup OBJECT-GROUP 2181 OBJECTS { 2182 eoPower, 2183 eoPowerNameplate, 2184 eoPowerUnitMultiplier, 2185 eoPowerAccuracy, 2186 eoPowerMeasurementCaliber, 2187 eoPowerCurrentType, 2188 eoPowerMeasurementLocal, 2189 eoPowerAdminState, 2190 eoPowerOperState, 2191 eoPowerStateEnterReason 2192 } 2193 STATUS current 2194 DESCRIPTION 2195 "This group contains the collection of all the objects 2196 related to the Energy Object." 2197 ::= { energyObjectMibGroups 1 } 2199 energyObjectMibStateTableGroup OBJECT-GROUP 2200 OBJECTS { 2201 eoPowerStateMaxPower, 2202 eoPowerStatePowerUnitMultiplier, 2203 eoPowerStateTotalTime, 2204 eoPowerStateEnterCount 2205 } 2206 STATUS current 2207 DESCRIPTION 2208 "This group contains the collection of all the 2209 objects related to the Power State." 2211 ::= { energyObjectMibGroups 2 } 2213 energyObjectMibEnergyParametersTableGroup OBJECT-GROUP 2214 OBJECTS { 2216 eoEnergyParametersIntervalLength, 2217 eoEnergyParametersIntervalNumber, 2218 eoEnergyParametersIntervalMode, 2219 eoEnergyParametersIntervalWindow, 2220 eoEnergyParametersSampleRate, 2221 eoEnergyParametersStatus 2222 } 2223 STATUS current 2224 DESCRIPTION 2225 "This group contains the collection of all the objects 2226 related to the configuration of the Energy Table." 2227 ::= { energyObjectMibGroups 3 } 2229 energyObjectMibEnergyTableGroup OBJECT-GROUP 2230 OBJECTS { 2231 -- Note that object 2232 -- eoEnergyCollectionStartTime is not 2233 -- included since it is not-accessible 2235 eoEnergyConsumed, 2236 eoEnergyProvided, 2237 eoEnergyStored, 2238 eoEnergyUnitMultiplier, 2239 eoEnergyAccuracy, 2240 eoEnergyMaxConsumed, 2241 eoEnergyMaxProduced, 2242 eoEnergyDiscontinuityTime 2243 } 2244 STATUS current 2245 DESCRIPTION 2246 "This group contains the collection of all the objects 2247 related to the Energy Table." 2248 ::= { energyObjectMibGroups 4 } 2250 energyObjectMibMeterCapabilitiesTableGroup OBJECT-GROUP 2251 OBJECTS { 2252 eoMeterCapability 2253 } 2254 STATUS current 2255 DESCRIPTION 2256 "This group contains the object indicating the 2257 capability of the Energy Object" 2258 ::= { energyObjectMibGroups 5 } 2260 eoPowerEnableStatusNotificationGroup OBJECT-GROUP 2261 OBJECTS { eoPowerEnableStatusNotification } 2262 STATUS current 2263 DESCRIPTION "The collection of objects which are used 2264 to enable notification." 2265 ::= { energyObjectMibGroups 6 } 2267 energyObjectMibNotifGroup NOTIFICATION-GROUP 2268 NOTIFICATIONS { 2269 eoPowerStateChange 2270 } 2271 STATUS current 2272 DESCRIPTION "This group contains the notifications for 2273 the power and energy monitoring MIB Module." 2274 ::= { energyObjectMibGroups 7 } 2276 END 2278 -- ************************************************************ 2279 -- 2280 -- This MIB module is used to monitor power attributes of 2281 -- networked devices with measurements. 2282 -- 2283 -- This MIB module is an extension of energyObjectMib module. 2284 -- 2285 -- ************************************************************* 2287 POWER-ATTRIBUTES-MIB DEFINITIONS ::= BEGIN 2289 IMPORTS 2290 MODULE-IDENTITY, 2291 OBJECT-TYPE, 2292 mib-2, 2293 Integer32 2294 FROM SNMPv2-SMI 2295 MODULE-COMPLIANCE, 2296 OBJECT-GROUP 2297 FROM SNMPv2-CONF 2298 UnitMultiplier 2299 FROM ENERGY-OBJECT-MIB 2300 entPhysicalIndex 2301 FROM ENTITY-MIB; 2303 powerAttributesMIB MODULE-IDENTITY 2305 LAST-UPDATED "201402140000Z" -- 14 Feb 2014 2307 ORGANIZATION "IETF EMAN Working Group" 2308 CONTACT-INFO 2309 "WG charter: 2310 http://datatracker.ietf.org/wg/eman/charter/ 2312 Mailing Lists: 2313 General Discussion: eman@ietf.org 2315 To Subscribe: 2316 https://www.ietf.org/mailman/listinfo/eman 2318 Archive: 2319 http://www.ietf.org/mail-archive/web/eman 2321 Editors: 2323 Mouli Chandramouli 2324 Cisco Systems, Inc. 2325 Sarjapur Outer Ring Road 2326 Bangalore 560103 2327 IN 2328 Phone: +91 80 4429 2409 2329 Email: moulchan@cisco.com 2331 Brad Schoening 2332 44 Rivers Edge Drive 2333 Little Silver, NJ 07739 2334 US 2335 Email: brad.schoening@verizon.net 2337 Juergen Quittek 2338 NEC Europe Ltd. 2339 NEC Laboratories Europe 2340 Network Research Division 2341 Kurfuersten-Anlage 36 2342 Heidelberg 69115 2343 DE 2344 Phone: +49 6221 4342-115 2345 Email: quittek@neclab.eu 2347 Thomas Dietz 2348 NEC Europe Ltd. 2349 NEC Laboratories Europe 2350 Network Research Division 2351 Kurfuersten-Anlage 36 2352 69115 Heidelberg 2353 DE 2354 Phone: +49 6221 4342-128 2355 Email: Thomas.Dietz@nw.neclab.eu 2357 Benoit Claise 2358 Cisco Systems, Inc. 2359 De Kleetlaan 6a b1 2360 Degem 1831 2361 Belgium 2362 Phone: +32 2 704 5622 2363 Email: bclaise@cisco.com" 2365 DESCRIPTION 2366 "This MIB is used to report AC power attributes in 2367 devices. The table is a sparse augmentation of the 2368 eoPowerTable table from the energyObjectMib module. 2369 Both three-phase and single-phase power 2370 configurations are supported. 2372 As a requirement for this MIB module, 2373 [EMAN-AWARE-MIB] SHOULD be implemented. 2375 Module Compliance of ENTITY-MIB v4 2376 with respect to entity4CRCompliance MUST 2377 be supported which requires implementation 2378 of 4 MIB objects: entPhysicalIndex, entPhysicalClass, 2379 entPhysicalName and entPhysicalUUID." 2381 REVISION 2383 "201402140000Z" -- 14 Feb 2014 2385 DESCRIPTION 2386 "Initial version, published as RFC YYY." 2388 ::= { mib-2 yyy } 2390 powerAttributesMIBConform OBJECT IDENTIFIER 2391 ::= { powerAttributesMIB 0 } 2393 powerAttributesMIBObjects OBJECT IDENTIFIER 2394 ::= { powerAttributesMIB 1 } 2396 -- Objects 2398 eoACPwrAttributesTable OBJECT-TYPE 2399 SYNTAX SEQUENCE OF EoACPwrAttributesEntry 2400 MAX-ACCESS not-accessible 2401 STATUS current 2402 DESCRIPTION 2403 "This table contains power attributes measurements for 2404 supported entPhysicalIndex entities. It is a sparse 2405 extension of the eoPowerTable." 2406 ::= { powerAttributesMIBObjects 1 } 2408 eoACPwrAttributesEntry OBJECT-TYPE 2409 SYNTAX EoACPwrAttributesEntry 2410 MAX-ACCESS not-accessible 2411 STATUS current 2412 DESCRIPTION 2413 "This is a sparse extension of the eoPowerTable with 2414 entries for power attributes measurements or 2415 configuration. Each measured value corresponds to an 2416 attribute in IEC 61850-7-4 for non-phase measurements 2417 within the object MMUX." 2419 INDEX {entPhysicalIndex } 2420 ::= { eoACPwrAttributesTable 1 } 2422 EoACPwrAttributesEntry ::= SEQUENCE { 2423 eoACPwrAttributesConfiguration INTEGER, 2424 eoACPwrAttributesAvgVoltage Integer32, 2425 eoACPwrAttributesAvgCurrent Integer32, 2426 eoACPwrAttributesFrequency Integer32, 2427 eoACPwrAttributesPowerUnitMultiplier UnitMultiplier, 2428 eoACPwrAttributesPowerAccuracy Integer32, 2429 eoACPwrAttributesTotalActivePower Integer32, 2430 eoACPwrAttributesTotalReactivePower Integer32, 2431 eoACPwrAttributesTotalApparentPower Integer32, 2432 eoACPwrAttributesTotalPowerFactor Integer32, 2433 eoACPwrAttributesThdCurrent Integer32, 2434 eoACPwrAttributesThdVoltage Integer32 2435 } 2437 eoACPwrAttributesConfiguration OBJECT-TYPE 2438 SYNTAX INTEGER { 2439 sngl(1), 2440 del(2), 2441 wye(3) 2442 } 2443 MAX-ACCESS read-only 2444 STATUS current 2445 DESCRIPTION 2446 "Configuration describes the physical configurations 2447 of the power supply lines: 2449 * alternating current, single phase (SNGL) 2450 * alternating current, three phase delta (DEL) 2451 * alternating current, three phase Y (WYE) 2453 Three-phase configurations can be either connected in 2454 a triangular delta (DEL) or star Y (WYE) system. WYE 2455 systems have a shared neutral voltage, while DEL 2456 systems do not. Each phase is offset 120 degrees to 2457 each other." 2458 ::= { eoACPwrAttributesEntry 1 } 2460 eoACPwrAttributesAvgVoltage OBJECT-TYPE 2461 SYNTAX Integer32 2462 UNITS "0.1 Volt AC" 2463 MAX-ACCESS read-only 2464 STATUS current 2465 DESCRIPTION 2466 "A measured value for average of the voltage measured 2467 over an integral number of AC cycles For a 3-phase 2468 system, this is the average voltage (V1+V2+V3)/3. IEC 2469 61850-7-4 measured value attribute 'Vol'" 2470 ::= { eoACPwrAttributesEntry 2 } 2472 eoACPwrAttributesAvgCurrent OBJECT-TYPE 2473 SYNTAX Integer32 2474 UNITS "amperes" 2475 MAX-ACCESS read-only 2476 STATUS current 2477 DESCRIPTION 2478 " A measured value for average of the current measured 2479 over an integral number of AC cycles For a 3-phase 2480 system, this is the average current (I1+I2+I3)/3. IEC 2481 61850-7-4 attribute 'Amp'" 2482 ::= { eoACPwrAttributesEntry 3 } 2484 eoACPwrAttributesFrequency OBJECT-TYPE 2485 SYNTAX Integer32 (4500..6500) 2486 UNITS "0.01 hertz" 2487 MAX-ACCESS read-only 2488 STATUS current 2489 DESCRIPTION 2490 "A measured value for the basic frequency of the AC 2491 circuit. IEC 61850-7-4 attribute 'Hz'." 2492 ::= { eoACPwrAttributesEntry 4 } 2494 eoACPwrAttributesPowerUnitMultiplier OBJECT-TYPE 2495 SYNTAX UnitMultiplier 2496 MAX-ACCESS read-only 2497 STATUS current 2498 DESCRIPTION 2499 "The magnitude of watts for the usage value in 2500 eoACPwrAttributesTotalActivePower, 2501 eoACPwrAttributesTotalReactivePower 2502 and eoACPwrAttributesTotalApparentPower measurements. 2503 For 3-phase power systems, this will also include 2504 eoACPwrAttributesWyeActivePower, 2505 eoACPwrAttributesWyeReactivePower and 2506 eoACPwrAttributesWyeApparentPower" 2507 ::= { eoACPwrAttributesEntry 5 } 2509 eoACPwrAttributesPowerAccuracy OBJECT-TYPE 2510 SYNTAX Integer32 (0..10000) 2511 UNITS "hundredths of percent" 2512 MAX-ACCESS read-only 2513 STATUS current 2514 DESCRIPTION 2515 "This object indicates a percentage value, in 100ths of 2516 a percent, representing the presumed accuracy of 2517 active, reactive, and apparent power usage reporting. 2518 For example: 1010 means the reported usage is accurate 2519 to +/- 10.1 percent. This value is zero if the 2520 accuracy is unknown. 2522 ANSI and IEC define the following accuracy classes for 2523 power measurement: IEC 62053-22 & 60044-1 class 0.1, 2524 0.2, 0.5, 1 & 3. 2525 ANSI C12.20 class 0.2 & 0.5" 2526 ::= { eoACPwrAttributesEntry 6 } 2528 eoACPwrAttributesTotalActivePower OBJECT-TYPE 2529 SYNTAX Integer32 2530 UNITS "watts" 2531 MAX-ACCESS read-only 2532 STATUS current 2533 DESCRIPTION 2534 "A measured value of the actual power delivered to or 2535 consumed by the load. IEC 61850-7-4 attribute 'TotW'." 2536 ::= { eoACPwrAttributesEntry 7 } 2538 eoACPwrAttributesTotalReactivePower OBJECT-TYPE 2539 SYNTAX Integer32 2540 UNITS "volt-amperes reactive" 2541 MAX-ACCESS read-only 2542 STATUS current 2543 DESCRIPTION 2544 "A measured value of the reactive portion of the 2545 apparent power. IEC 61850-7-4 attribute 'TotVAr'." 2546 ::= { eoACPwrAttributesEntry 8 } 2548 eoACPwrAttributesTotalApparentPower OBJECT-TYPE 2549 SYNTAX Integer32 2550 UNITS "volt-amperes" 2551 MAX-ACCESS read-only 2552 STATUS current 2553 DESCRIPTION 2554 "A measured value of the voltage and current which 2555 determines the apparent power. The apparent power is 2556 the vector sum of real and reactive power. 2558 Note: watts and volt-amperes are equivalent units and 2559 may be combined. IEC 61850-7-4 attribute 'TotVA'." 2560 ::= { eoACPwrAttributesEntry 9 } 2562 eoACPwrAttributesTotalPowerFactor OBJECT-TYPE 2563 SYNTAX Integer32 (-10000..10000) 2564 UNITS "hundredths of percent" 2565 MAX-ACCESS read-only 2566 STATUS current 2567 DESCRIPTION 2568 "A measured value ratio of the real power flowing to 2569 the load versus the apparent power. It is dimensionless 2570 and expressed here as a percentage value in 100ths of a 2571 percent. A power factor of 100% indicates there is no 2572 inductance load and thus no reactive power. Power 2573 Factor can be positive or negative, where the sign 2574 should be in lead/lag (IEEE) form. IEC 61850-7-4 2575 attribute 'TotPF'." 2576 ::= { eoACPwrAttributesEntry 10 } 2578 eoACPwrAttributesThdCurrent OBJECT-TYPE 2579 SYNTAX Integer32 (0..10000) 2580 UNITS "hundredths of percent" 2581 MAX-ACCESS read-only 2582 STATUS current 2583 DESCRIPTION 2584 "A calculated value for the current total harmonic 2585 distortion (THD). Method of calculation is not 2586 specified. IEC 61850-7-4 attribute 'ThdAmp'." 2587 ::= { eoACPwrAttributesEntry 11 } 2589 eoACPwrAttributesThdVoltage OBJECT-TYPE 2590 SYNTAX Integer32 (0..10000) 2591 UNITS "hundredths of percent" 2592 MAX-ACCESS read-only 2593 STATUS current 2594 DESCRIPTION 2595 "A calculated value for the voltage total harmonic 2596 distortion (THD). Method of calculation is not 2597 specified. IEC 61850-7-4 attribute 'ThdVol'." 2598 ::= { eoACPwrAttributesEntry 12 } 2600 eoACPwrAttributesDelPhaseTable OBJECT-TYPE 2601 SYNTAX SEQUENCE OF EoACPwrAttributesDelPhaseEntry 2602 MAX-ACCESS not-accessible 2603 STATUS current 2604 DESCRIPTION 2605 "This optional table describes 3-phase power attributes 2606 measurements in a DEL configuration with phase-to-phase 2607 power attributes measurements. Entities having single 2608 phase power shall not have any entities. This is a 2609 sparse extension of the eoACPwrAttributesTable. 2611 These attributes correspond to IEC 61850-7.4 MMXU phase 2612 related measurements and MHAI phase related measured 2613 harmonic or interharmonics." 2614 ::= { powerAttributesMIBObjects 2 } 2616 eoACPwrAttributesDelPhaseEntry OBJECT-TYPE 2617 SYNTAX EoACPwrAttributesDelPhaseEntry 2618 MAX-ACCESS not-accessible 2619 STATUS current 2620 DESCRIPTION 2621 "An entry describes power measurements of a phase in a 2622 DEL 3-phase power. Three entries are required for each 2623 supported entPhysicalIndex entry. Voltage measurements 2624 are provided relative to each other. 2626 For phase-to-phase measurements, the 2627 eoACPwrAttributesDelPhaseIndex is compared against the 2628 following phase at +120 degrees. Thus, the possible 2629 values are: 2631 eoACPwrAttributesDelPhaseIndex Next Phase Angle 2632 0 120 2633 120 240 2634 240 0 2635 " 2636 INDEX { entPhysicalIndex, eoACPwrAttributesDelPhaseIndex} 2637 ::= { eoACPwrAttributesDelPhaseTable 1} 2639 EoACPwrAttributesDelPhaseEntry ::= SEQUENCE { 2640 eoACPwrAttributesDelPhaseIndex Integer32, 2641 eoACPwrAttributesDelPhaseToNextPhaseVoltage Integer32, 2642 eoACPwrAttributesDelThdPhaseToNextPhaseVoltage Integer32 2643 } 2645 eoACPwrAttributesDelPhaseIndex OBJECT-TYPE 2646 SYNTAX Integer32 (0..359) 2647 MAX-ACCESS not-accessible 2648 STATUS current 2649 DESCRIPTION 2650 "A phase angle typically corresponding to 0, 120, 240." 2651 ::= { eoACPwrAttributesDelPhaseEntry 1 } 2653 eoACPwrAttributesDelPhaseToNextPhaseVoltage OBJECT-TYPE 2654 SYNTAX Integer32 2655 UNITS "0.1 Volt AC" 2656 MAX-ACCESS read-only 2657 STATUS current 2658 DESCRIPTION 2659 "A measured value of phase to next phase voltages, where 2660 the next phase is IEC 61850-7-4 attribute 'PPV'." 2661 ::= { eoACPwrAttributesDelPhaseEntry 2 } 2663 eoACPwrAttributesDelThdPhaseToNextPhaseVoltage OBJECT-TYPE 2664 SYNTAX Integer32 (0..10000) 2665 UNITS "hundredths of percent" 2666 MAX-ACCESS read-only 2667 STATUS current 2668 DESCRIPTION 2669 "A calculated value for the voltage total harmonic 2670 disortion for phase to next phase. Method of calculation 2671 is not specified. IEC 61850-7-4 attribute 'ThdPPV'." 2672 ::= { eoACPwrAttributesDelPhaseEntry 3 } 2674 eoACPwrAttributesWyePhaseTable OBJECT-TYPE 2675 SYNTAX SEQUENCE OF EoACPwrAttributesWyePhaseEntry 2676 MAX-ACCESS not-accessible 2677 STATUS current 2678 DESCRIPTION 2679 "This optional table describes 3-phase power attributes 2680 measurements in a WYE configuration with phase-to- 2681 neutral power attributes measurements. Entities having 2682 single phase power shall not have any entities. This is 2683 a sparse extension of the eoACPwrAttributesTable. 2685 These attributes correspond to IEC 61850-7.4 MMXU phase 2686 related measurements and MHAI phase related measured 2687 harmonic or interharmonics." 2688 ::= { powerAttributesMIBObjects 3 } 2690 eoACPwrAttributesWyePhaseEntry OBJECT-TYPE 2691 SYNTAX EoACPwrAttributesWyePhaseEntry 2692 MAX-ACCESS not-accessible 2693 STATUS current 2694 DESCRIPTION 2695 "This table describes measurements of a phase in a WYE 2696 3-phase power system. Three entries are required for 2697 each supported entPhysicalIndex entry. Voltage 2698 measurements are relative to neutral. 2700 Each entry describes power attributes of one phase of a 2701 WYE 3-phase power system." 2702 INDEX { entPhysicalIndex, eoACPwrAttributesWyePhaseIndex } 2703 ::= { eoACPwrAttributesWyePhaseTable 1} 2705 EoACPwrAttributesWyePhaseEntry ::= SEQUENCE { 2706 eoACPwrAttributesWyePhaseIndex Integer32, 2707 eoACPwrAttributesWyePhaseToNeutralVoltage Integer32, 2708 eoACPwrAttributesWyeCurrent Integer32, 2709 eoACPwrAttributesWyeActivePower Integer32, 2710 eoACPwrAttributesWyeReactivePower Integer32, 2711 eoACPwrAttributesWyeApparentPower Integer32, 2712 eoACPwrAttributesWyePowerFactor Integer32, 2713 eoACPwrAttributesWyeThdCurrent Integer32, 2714 eoACPwrAttributesWyeThdPhaseToNeutralVoltage Integer32 2715 } 2717 eoACPwrAttributesWyePhaseIndex OBJECT-TYPE 2718 SYNTAX Integer32 (0..359) 2719 MAX-ACCESS not-accessible 2720 STATUS current 2721 DESCRIPTION 2722 "A phase angle typically corresponding to 0, 120, 240." 2723 ::= { eoACPwrAttributesWyePhaseEntry 1 } 2725 eoACPwrAttributesWyePhaseToNeutralVoltage OBJECT-TYPE 2726 SYNTAX Integer32 2727 UNITS "0.1 Volt AC" 2728 MAX-ACCESS read-only 2729 STATUS current 2730 DESCRIPTION 2731 "A measured value of phase to neutral voltage. IEC 2732 61850-7-4 attribute 'PNV'." 2733 ::= { eoACPwrAttributesWyePhaseEntry 2 } 2735 eoACPwrAttributesWyeCurrent OBJECT-TYPE 2736 SYNTAX Integer32 2737 UNITS "0.1 amperes AC" 2738 MAX-ACCESS read-only 2739 STATUS current 2740 DESCRIPTION 2741 "A measured value of phase currents. IEC 61850-7-4 2742 attribute 'A'." 2743 ::= { eoACPwrAttributesWyePhaseEntry 3 } 2745 eoACPwrAttributesWyeActivePower OBJECT-TYPE 2746 SYNTAX Integer32 2747 UNITS "watts" 2748 MAX-ACCESS read-only 2749 STATUS current 2750 DESCRIPTION 2751 "A measured value of the actual power delivered to or 2752 consumed by the load with the magnitude indicated 2753 separately in eoPowerUnitMultiplier. IEC 61850-7-4 2754 attribute 'W'" 2755 ::= { eoACPwrAttributesWyePhaseEntry 4 } 2757 eoACPwrAttributesWyeReactivePower OBJECT-TYPE 2758 SYNTAX Integer32 2759 UNITS "volt-amperes reactive" 2760 MAX-ACCESS read-only 2761 STATUS current 2762 DESCRIPTION 2763 "A measured value of the reactive portion of the 2764 apparent power with the magnitude of indicated 2765 separately in eoPowerUnitMultiplier. IEC 61850-7-4 2766 attribute 'VAr'" 2767 ::= { eoACPwrAttributesWyePhaseEntry 5 } 2769 eoACPwrAttributesWyeApparentPower OBJECT-TYPE 2770 SYNTAX Integer32 2771 UNITS "volt-amperes" 2772 MAX-ACCESS read-only 2773 STATUS current 2774 DESCRIPTION 2775 "A measured value of the voltage and current determines 2776 the apparent power with the indicated separately in 2777 eoPowerUnitMultiplier. Active plus reactive power 2778 equals the total apparent power. 2780 Note: Watts and volt-amperes are equivalent units and 2781 may be combined. IEC 61850-7-4 attribute 'VA'." 2782 ::= { eoACPwrAttributesWyePhaseEntry 6 } 2784 eoACPwrAttributesWyePowerFactor OBJECT-TYPE 2785 SYNTAX Integer32 (-10000..10000) 2786 UNITS "hundredths of percent" 2787 MAX-ACCESS read-only 2788 STATUS current 2789 DESCRIPTION 2790 "A measured value ratio of the real power flowing to 2791 the load versus the apparent power for this phase. IEC 2792 61850-7-4 attribute 'PF'. Power Factor can be positive 2793 or negative where the sign should be in lead/lag (IEEE) 2794 form." 2795 ::= { eoACPwrAttributesWyePhaseEntry 7 } 2797 eoACPwrAttributesWyeThdCurrent OBJECT-TYPE 2798 SYNTAX Integer32 (0..10000) 2799 UNITS "hundredths of percent" 2800 MAX-ACCESS read-only 2801 STATUS current 2802 DESCRIPTION 2803 "A calculated value for the voltage total harmonic 2804 disortion (THD) for phase to phase. Method of 2805 calculation is not specified. 2806 IEC 61850-7-4 attribute 'ThdA'." 2807 ::= { eoACPwrAttributesWyePhaseEntry 8 } 2809 eoACPwrAttributesWyeThdPhaseToNeutralVoltage OBJECT-TYPE 2810 SYNTAX Integer32 (0..10000) 2811 UNITS "hundredths of percent" 2812 MAX-ACCESS read-only 2813 STATUS current 2814 DESCRIPTION 2815 "A calculated value of the voltage total harmonic 2816 distortion (THD) for phase to neutral. IEC 61850-7-4 2817 attribute 'ThdPhV'." 2818 ::= { eoACPwrAttributesWyePhaseEntry 9 } 2820 -- Conformance 2822 powerAttributesMIBCompliances OBJECT IDENTIFIER 2823 ::= { powerAttributesMIB 2 } 2825 powerAttributesMIBGroups OBJECT IDENTIFIER 2826 ::= { powerAttributesMIB 3 } 2828 powerAttributesMIBFullCompliance MODULE-COMPLIANCE 2829 STATUS current 2830 DESCRIPTION 2831 "When this MIB is implemented with support for read-create, 2832 then such an implementation can claim full compliance. 2833 Such devices can then be both monitored and configured with 2834 this MIB. 2836 Module Compliance of [RFC6933] with respect to 2837 entity4CRCompliance MUST be supported which requires 2838 implementation of 4 MIB objects: entPhysicalIndex, 2839 entPhysicalClass, entPhysicalName and entPhysicalUUID." 2841 MODULE -- this module 2842 MANDATORY-GROUPS { 2843 powerACPwrAttributesMIBTableGroup 2844 } 2846 GROUP powerACPwrAttributesOptionalMIBTableGroup 2847 DESCRIPTION 2848 "A compliant implementation does not have 2849 to implement." 2851 GROUP powerACPwrAttributesDelPhaseMIBTableGroup 2852 DESCRIPTION 2853 "A compliant implementation does not have to 2854 implement." 2856 GROUP powerACPwrAttributesWyePhaseMIBTableGroup 2857 DESCRIPTION 2858 "A compliant implementation does not have to 2859 implement." 2861 ::= { powerAttributesMIBCompliances 1 } 2863 -- Units of Conformance 2865 powerACPwrAttributesMIBTableGroup OBJECT-GROUP 2866 OBJECTS { 2867 -- Note that object entPhysicalIndex is NOT 2868 -- included since it is not-accessible 2870 eoACPwrAttributesAvgVoltage, 2871 eoACPwrAttributesAvgCurrent, 2872 eoACPwrAttributesFrequency, 2873 eoACPwrAttributesPowerUnitMultiplier, 2874 eoACPwrAttributesPowerAccuracy, 2875 eoACPwrAttributesTotalActivePower, 2876 eoACPwrAttributesTotalReactivePower, 2877 eoACPwrAttributesTotalApparentPower, 2878 eoACPwrAttributesTotalPowerFactor 2879 } 2880 STATUS current 2881 DESCRIPTION 2882 "This group contains the collection of all the power 2883 attributes objects related to the Energy Object." 2884 ::= { powerAttributesMIBGroups 1 } 2886 powerACPwrAttributesOptionalMIBTableGroup OBJECT-GROUP 2887 OBJECTS { 2888 eoACPwrAttributesConfiguration, 2889 eoACPwrAttributesThdCurrent, 2890 eoACPwrAttributesThdVoltage 2891 } 2892 STATUS current 2893 DESCRIPTION 2894 "This group contains the collection of all the power 2895 attributes objects related to the Energy Object." 2896 ::= { powerAttributesMIBGroups 2 } 2898 powerACPwrAttributesDelPhaseMIBTableGroup OBJECT-GROUP 2899 OBJECTS { 2900 -- Note that object entPhysicalIndex and 2901 -- eoACPwrAttributesDelPhaseIndex are NOT 2902 -- included since they are not-accessible 2903 eoACPwrAttributesDelPhaseToNextPhaseVoltage, 2904 eoACPwrAttributesDelThdPhaseToNextPhaseVoltage 2905 } 2906 STATUS current 2907 DESCRIPTION 2908 "This group contains the collection of all power 2909 attributes of a phase in a DEL 3-phase power system." 2910 ::= { powerAttributesMIBGroups 3 } 2912 powerACPwrAttributesWyePhaseMIBTableGroup OBJECT-GROUP 2913 OBJECTS { 2914 -- Note that object entPhysicalIndex and 2915 -- eoACPwrAttributesWyePhaseIndex are NOT 2916 -- included since they are not-accessible 2917 eoACPwrAttributesWyePhaseToNeutralVoltage, 2918 eoACPwrAttributesWyeCurrent, 2919 eoACPwrAttributesWyeActivePower, 2920 eoACPwrAttributesWyeReactivePower, 2921 eoACPwrAttributesWyeApparentPower, 2922 eoACPwrAttributesWyePowerFactor, 2923 eoACPwrAttributesWyeThdPhaseToNeutralVoltage, 2924 eoACPwrAttributesWyeThdCurrent 2925 } 2926 STATUS current 2927 DESCRIPTION 2928 "This group contains the collection of all power 2929 attributes of a phase in a WYE 3-phase power system." 2930 ::= { powerAttributesMIBGroups 4 } 2932 END 2934 10. Implementation Status 2936 [Note to RFC Editor: Please remove this section and the 2937 reference to [RFC6982] before publication.] 2939 This section records the status of known implementations of the 2940 EMAN-Monitoring MIB at the time of posting of this Internet- 2941 Draft, and is based on a proposal described in [RFC6982]. 2943 The description of implementations in this section is intended 2944 to assist the IETF in its decision processes in progressing 2945 drafts to RFCs. 2947 10.1. SNMP Research 2949 Organization: SNMP Research, Inc. 2951 Maturity: Prototype based upon early drafts of the MIBs. 2952 We anticipate updating it to more recent 2953 documents as development schedules allow. 2955 Coverage: Code was generated to implement all MIB objects 2956 in ENTITY-MIB (Version 4), 2957 ENERGY-OBJECT-CONTEXT-MIB, 2958 ENERGY-OBJECT-MIB, 2959 POWER-ATTRIBUTES-MIB, 2960 and BATTERY-MIB. 2962 Implementation experience: The documents are implementable. 2964 Comments: Technical comments about the 2965 ENERGY-OBJECT-CONTEXT-MIB, 2966 ENERGY-OBJECT-MIB, and 2967 BATTERY-MIB 2968 were submitted to the EMAN Working Group 2969 E-mail list. 2971 Licensing: Proprietary, royalty licensing 2973 Contact: Alan Luchuk, luchuk at snmp.com 2975 URL: http://www.snmp.com/ 2977 10.2. Cisco Systems 2979 Organization: Cisco Systems, Inc. 2981 Maturity: Prototype based upon early version drafts of 2982 the MIBs. We anticipate updating the MIB 2983 modules as when the drafts are updated. 2985 Coverage: Code was generated to implement all MIB objects 2986 in the ENTITY-MIB (Version 4), and 2987 ENERGY-OBJECT-MIB. 2989 Implementation experience: The MIB modules are implemented 2990 on Cisco router platforms to measure and report 2991 router energy measurements. The documents are 2992 implementable. 2994 Licensing: Proprietary 2996 URL: http://www.cisco.com 2998 11. Security Considerations 3000 Some of the readable objects in these MIB modules (i.e., objects 3001 with a MAX-ACCESS other than not-accessible) may be considered 3002 sensitive or vulnerable in some network environments. It is 3003 thus important to control even GET and/or NOTIFY access to these 3004 objects and possibly to even encrypt the values of these objects 3005 when sending them over the network via SNMP. 3007 There are a number of management objects defined in these MIB 3008 modules with a MAX-ACCESS clause of read-write and/or read- 3009 create. Such objects MAY be considered sensitive or vulnerable 3010 in some network environments. The support for SET operations in 3011 a non-secure environment without proper protection can have a 3012 negative effect on network operations. The following are the 3013 tables and objects and their sensitivity/vulnerability: 3015 - Unauthorized changes to the eoPowerOperState (via 3016 theeoPowerAdminState ) MAY disrupt the power settings of the 3017 differentEnergy Objects, and therefore the state of 3018 functionality of the respective Energy Objects. 3019 - Unauthorized changes to the eoEnergyParametersTable MAY 3020 disrupt energy measurement in the eoEnergyTable table. 3022 SNMP versions prior to SNMPv3 did not include adequate security. 3023 Even if the network itself is secure (for example, by using 3024 IPsec), there is still no secure control over who on the secure 3025 network is allowed to access and GET/SET 3026 (read/change/create/delete) the objects in these MIB modules. 3028 It is RECOMMENDED that implementers consider the security 3029 features as provided by the SNMPv3 framework (see [RFC3410], 3030 section 8), including full support for the SNMPv3 cryptographic 3031 mechanisms (for authentication and privacy). 3033 Further, deployment of SNMP versions prior to SNMPv3 is NOT 3034 RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to 3035 enable cryptographic security. It is then a customer/operator 3036 responsibility to ensure that the SNMP entity giving access to 3037 an instance of these MIB modules is properly configured to give 3038 access to the objects only to those principals (users) that have 3039 legitimate rights to GET or SET (change/create/delete) them. 3041 12. IANA Considerations 3043 The MIB modules in this document use the following IANA-assigned 3044 OBJECT IDENTIFIER values recorded in the SMI Numbers registry: 3046 Descriptor OBJECT IDENTIFIER value 3048 ---------- ----------------------- 3050 energyObjectMIB { mib-2 xxx } 3052 powerAttributesMIB { mib-2 yyy } 3054 Editor's Note (to be removed prior to publication): IANA is 3055 requested to assign a value for "XXX" and "YYY" under the 'mib- 3056 2' subtree and to record the assignment in the SMI Numbers 3057 registry. When the assignment has been made, the RFC Editor is 3058 asked to replace "XXX" and "YYY"(here and in the MIB module) 3059 with the assigned value and to remove this note. 3061 13. Contributors 3063 This document results from the merger of two initial proposals. 3064 The following persons made significant contributions either in 3065 one of the initial proposals or in this document. 3067 John Parello 3069 Rolf Winter 3071 Dominique Dudkowski 3073 14. Acknowledgment 3075 The authors would like to thank Shamita Pisal for her prototype 3076 of this MIB module, and her valuable feedback. The authors 3077 would like to Michael Brown for improving the text dramatically. 3079 The authors would like to thank Juergen Schoenwalder for 3080 proposing the design of the Textual Convention for 3081 IANAPowerStateSet and Ira McDonald for his feedback. Special 3082 appreciation to Laurent Guise for his review and input on power 3083 quality measurements. Thanks for the many comments on the design 3084 of the EnergyTable from Minoru Teraoka and Hiroto Ogaki. 3086 Many thanks to Alan Luchuk for the detailed review of the MIB 3087 and his comments. 3089 And finally, thanks to the EMAN chairs: Nevil Brownlee and Tom 3090 Nadeau. 3092 15. References 3094 15.1. Normative References 3096 [RFC2119] S. Bradner, Key words for use in RFCs to Indicate 3097 Requirement Levels, BCP 14, RFC 2119, March 1997. 3099 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J. 3100 Schoenwaelder, Ed., "Structure of Management 3101 Information Version 2 (SMIv2)", STD 58, RFC 2578, April 3102 1999. 3104 [RFC2579] McCloghrie, K., Ed., Perkins, D., Ed., and J. 3105 Schoenwaelder, Ed., "Textual Conventions for SMIv2", 3106 STD 58, RFC 2579, April 1999. 3108 [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder, 3109 "Conformance Statements for SMIv2", STD 58, RFC 2580, 3110 April 1999. 3112 [RFC3621] Berger, A., and D. Romascanu, "Power Ethernet MIB", 3113 RFC3621, December 2003. 3115 [RFC6933] A. Bierman, D. Romascanu, J. Quittek and M. 3116 Chandramouli " Entity MIB (Version 4)", RFC 6933, May 3117 2013. 3119 [EMAN-AWARE-MIB] J. Parello, B. Claise and M. Chandramoili, 3120 "draft-ietf-eman-energy-aware-mib-14", work in 3121 progress, February 10 2013. 3123 [LLDP-MED-MIB] ANSI/TIA-1057, "The LLDP Management Information 3124 Base extension module for TIA-TR41.4 media endpoint 3125 discovery information", July 2005. 3127 15.2. Informative References 3129 [RFC1628] S. Bradner, "UPS Management Information Base", RFC 3130 1628, May 1994 3132 [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart, 3133 "Introduction and Applicability Statements for Internet 3134 Standard Management Framework ", RFC 3410, December 3135 2002. 3137 [RFC3418] Presun, R., Case, J., McCloghrie, K., Rose, M, and S. 3138 Waldbusser, "Management Information Base (MIB) for the 3139 Simple Network Management Protocol (SNMP)", RFC3418, 3140 December 2002. 3142 [RFC3433] Bierman, A., Romascanu, D., and K. Norseth, "Entity 3143 Sensor Management Information Base", RFC 3433, December 3144 2002. 3146 [RFC4268] Chisholm, S. and D. Perkins, "Entity State MIB", RFC 3147 4268, November 2005. 3149 [RFC5226] Narten, T. Alverstrand, H., A. and K. McCloghrie, 3150 "Guidelines for Writing an IANA Considerations Section 3151 in RFCs ", BCP 26, RFC 5226, May 2008. 3152 [RFC6982] Sheffer, Y. and A. Farrel, "Improving Awareness of 3153 Running Code: The Implementation Status Section", RFC 3154 6982, July 2013. 3156 [RFC6988] Quittek, J., Winter, R., Dietz, T., Claise, B., and M. 3157 Chandramouli, " Requirements for Energy Management", 3158 RFC 6988, September 2013. 3160 [EMAN-FMWK] Parello, J. Claise, B., Schoening, B. and Quittek, 3161 J., "Energy Management Framework", draft-ietf-eman- 3162 framework-11, October 2013. 3164 [EMAN-AS] Schoening, B., Chandramouli, M. and Nordman, B. 3165 "Energy Management (EMAN) Applicability Statement", 3166 draft-ietf-eman-applicability-statement-04, October 3167 2013. 3169 [ACPI] "Advanced Configuration and Power Interface 3170 Specification",http://www.acpi.info/DOWNLOADS/ACPIspec3 3171 0b.pdf 3173 [DMTF] "Power State Management Profile DMTF DSP1027 Version 3174 2.0" December 2009 3175 http://www.dmtf.org/sites/default/files/standards/docum 3176 ents/DSP1027_2.0.0.pdf 3178 [IEEE1621] "Standard for User Interface Elements in Power 3179 Control of Electronic Devices Employed in 3180 Office/Consumer Environments", IEEE 1621, December 3181 2004. 3183 [IEC.61850-7-4] International Electrotechnical Commission, 3184 "Communication networks and systems for power utility 3185 automation Part 7-4: Basic communication structure 3186 Compatible logical node classes and data object 3187 classes", 2010. 3189 [IEC.62053-21] International Electrotechnical Commission, 3190 "Electricity metering equipment (a.c.) Particular 3191 requirements Part 22: Static meters for active energy 3192 (classes 1 and 2)", 2003. 3194 [IEC.62053-22]International Electrotechnical Commission, 3195 "Electricity metering equipment (a.c.) Particular 3196 requirements Part 22: Static meters for active energy 3197 (classes 0,2 S and 0,5 S)", 2003. 3199 Authors' Addresses 3201 Mouli Chandramouli 3202 Cisco Systems, Inc. 3203 Sarjapur Outer Ring Road 3204 Bangalore 560103 3205 IN 3207 Phone: +91 80 4429 2409 3208 Email: moulchan@cisco.com 3210 Benoit Claise 3211 Cisco Systems, Inc. 3212 De Kleetlaan 6a b1 3213 Diegem 1813 3214 BE 3216 Phone: +32 2 704 5622 3217 Email: bclaise@cisco.com 3218 Brad Schoening 3219 44 Rivers Edge Drive 3220 Little Silver, NJ 07739 3221 US 3222 Email: brad.schoening@verizon.net 3224 Juergen Quittek 3225 NEC Europe Ltd. 3226 NEC Laboratories Europe 3227 Network Research Division 3228 Kurfuersten-Anlage 36 3229 Heidelberg 69115 3230 DE 3232 Phone: +49 6221 4342-115 3233 Email: quittek@neclab.eu 3235 Thomas Dietz 3236 NEC Europe Ltd. 3237 NEC Laboratories Europe 3238 Network Research Division 3239 Kurfuersten-Anlage 36 3240 Heidelberg 69115 3241 DE 3243 Phone: +49 6221 4342-128 3244 Email: Thomas.Dietz@neclab.eu