idnits 2.17.1 draft-ietf-eman-energy-monitoring-mib-11.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- == The page length should not exceed 58 lines per page, but there was 1 longer page, the longest (page 1) being 59 lines Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Line 266 has weird spacing: '...tiplier eoP...' == Line 293 has weird spacing: '...alIndex eoEne...' == Line 295 has weird spacing: '...nterval eoEn...' == Line 298 has weird spacing: '...nterval eoEn...' == Line 300 has weird spacing: '...ageType eoE...' -- Couldn't find a document date in the document -- date freshness check skipped. Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) -- Possible downref: Non-RFC (?) normative reference: ref. 'EMAN-AWARE-MIB' -- Possible downref: Non-RFC (?) normative reference: ref. 'LLDP-MED-MIB' -- Obsolete informational reference (is this intentional?): RFC 6982 (Obsoleted by RFC 7942) == Outdated reference: A later version (-11) exists of draft-ietf-eman-applicability-statement-05 Summary: 0 errors (**), 0 flaws (~~), 8 warnings (==), 4 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group M. Chandramouli 3 B. Claise 4 Internet-Draft Cisco Systems, Inc. 5 Intended Status: Standards Track B. Schoening 6 Expires: January 4 2015 Independent Consultant 7 J. Quittek 8 T. Dietz 9 NEC Europe Ltd. 10 July 4 2014 12 Power, Energy Monitoring and Control MIB 13 draft-ietf-eman-energy-monitoring-mib-11 15 Status of this Memo 17 This Internet-Draft is submitted to IETF in full conformance 18 with the provisions of BCP 78 and BCP 79. 20 Internet-Drafts are working documents of the Internet 21 Engineering Task Force (IETF), its areas, and its working 22 groups. Note that other groups may also distribute working 23 documents as Internet-Drafts. 25 Internet-Drafts are draft documents valid for a maximum of six 26 months and may be updated, replaced, or obsoleted by other 27 documents at any time. It is inappropriate to use Internet- 28 Drafts as reference material or to cite them other than as 29 "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed 35 at http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on January 2015. 39 Copyright Notice 41 Copyright (c) 2014 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents 46 (http://trustee.ietf.org/license-info) in effect on the date of 47 publication of this document. Please review these documents 48 carefully, as they describe your rights and restrictions with 49 respect to this document. Code Components extracted from this 50 document must include Simplified BSD License text as described 51 in Section 4.e of the Trust Legal Provisions and are provided 52 without warranty as described in the Simplified BSD License. 54 Abstract 56 This document defines a subset of the Management Information 57 Base (MIB) for power and energy monitoring of devices. 59 Conventions used in this document 61 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL 62 NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", 63 "MAY", and "OPTIONAL" in this document are to be interpreted as 64 described in RFC 2119 [RFC2119]. 66 Table of Contents 68 1. Introduction.............................................. 3 69 2. The Internet-Standard Management Framework................ 4 70 3. Use Cases................................................. 4 71 4. Terminology............................................... 4 72 5. Architecture Concepts Applied to the MIB Modules.......... 5 73 5.1. Energy Object Tables.................................... 5 74 5.1.1. ENERGY-OBJECT-MIB..................................... 5 75 5.1.2. POWER-ATTRIBUTES-MIB.................................. 7 76 5.1.3. UML Diagram........................................... 9 77 5.2. Energy Object Identity................................. 12 78 5.3. Power State............................................ 12 79 5.3.1. Power State Set.................................13 80 5.4. Energy Object Usage Information........................ 13 81 5.5. Optional Power Usage Attributes........................ 14 82 5.6. Optional Energy Measurement............................ 14 83 5.7. Fault Management....................................... 18 84 6. Discovery................................................ 18 85 7. Link with the other IETF MIBs............................ 19 86 7.1. Link with the ENTITY-MIB and the ENTITY-SENSOR MIB...19 87 7.2. Link with the ENTITY-STATE MIB.......................20 88 7.3. Link with the POWER-OVER-ETHERNET MIB................21 89 7.4. Link with the UPS MIB................................21 90 7.5. Link with the LLDP and LLDP-MED MIBs.................22 91 8. Structure of the MIB..................................... 23 92 9. MIB Definitions.......................................... 24 93 9.1. The IANAPowerStateSet-MIB MIB Module.................24 94 9.2. The ENERGY-OBJECT-MIB MIB Module.....................27 95 9.3. The POWER-ATTRIBUTES-MIB MIB Module..................48 96 10. Implementation Status................................... 61 97 10.1. SNMP Research......................................... 61 98 10.2. Cisco Systems......................................... 62 99 11. Security Considerations................................. 62 100 12. IANA Considerations..................................... 63 101 12.1. IANAPowerStateSet-MIB module.......................... 64 102 13. Contributors............................................ 64 103 14. Acknowledgment.......................................... 64 104 15. References.............................................. 65 105 15.1. Normative References.................................. 65 106 15.2. Informative References................................ 65 108 1. Introduction 110 This document defines a subset of the Management Information 111 Base (MIB) for use in energy management of devices within or 112 connected to communication networks. The MIB modules in this 113 document are designed to provide a model for energy management, 114 which includes monitoring for Power State and energy consumption 115 of networked elements. This MIB takes into account the Energy 116 Management Framework [EMAN-FMWK], which, in turn, is based on 117 the Requirements for Energy Management [RFC6988]. 119 Energy management can be applied to devices in communication 120 networks. Target devices for this specification include (but are 121 not limited to): routers, switches, Power over Ethernet (PoE) 122 endpoints, protocol gateways for building management systems, 123 intelligent meters, home energy gateways, hosts and servers, 124 sensor proxies, etc. Target devices and the use cases for Energy 125 Management are discussed in Energy Management Applicability 126 Statement [EMAN-AS]. 128 Where applicable, device monitoring extends to the individual 129 components of the device and to any attached dependent devices. 130 For example: A device can contain components that are 131 independent from a power-state point of view, such as line 132 cards, processor cards, hard drives. A device can also have 133 dependent attached devices, such as a switch with PoE endpoints 134 or a power distribution unit with attached endpoints. 136 2. The Internet-Standard Management Framework 138 For a detailed overview of the documents that describe the 139 current Internet-Standard Management Framework, please refer to 140 section 7 of RFC 3410 [RFC3410]. 142 Managed objects are accessed via a virtual information store, 143 termed the Management Information Base or MIB. MIB objects are 144 generally accessed through the Simple Network Management 145 Protocol (SNMP). Objects in the MIB are defined using the 146 mechanisms defined in the Structure of Management Information 147 (SMI). This memo specifies MIB modules that are compliant to 148 SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, 149 RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580]. 151 3. Use Cases 153 Requirements for power and energy monitoring for networking 154 devices are specified in [RFC6988]. The requirements in 155 [RFC6988] cover devices typically found in communications 156 networks, such as switches, routers, and various connected 157 endpoints. For a power monitoring architecture to be useful, it 158 should also apply to facility meters, power distribution units, 159 gateway proxies for commercial building control, home automation 160 devices, and devices that interface with the utility and/or 161 smart grid. Accordingly, the scope of the MIB modules in this 162 document are broader than that specified in [RFC6988]. Several 163 use cases for Energy Management have been identified in the 164 "Energy Management (EMAN) Applicability Statement" [EMAN-AS]. 166 4. Terminology 168 Please refer to [EMAN-FMWK] for the definitions of the 169 following terminology used in this draft. 171 Energy Management 172 Energy Management System (EnMS) 173 Energy Monitoring 174 Energy Control 175 electrical equipment 176 non-electrical equipment (mechanical equipment) 177 device 178 component 179 power inlet 180 power outlet 181 energy 182 power 183 demand 184 provide energy 185 receive energy 186 meter (energy meter) 187 battery 188 Power Interface 189 Nameplate Power 190 Power Attributes 191 Power Quality 192 Power State 193 Power State Set 195 5. Architecture Concepts Applied to the MIB Modules 197 This section describes the concepts specified in the Energy 198 Management Framework [EMAN-FMWK] that pertain to power usage, 199 with specific information related to the MIB module specified in 200 this document. This subsection maps concepts developed in the 201 Energy Management Framework [EMAN-FMWK]. 203 The Energy Monitoring MIB has 2 independent MIB modules, ENERGY- 204 OBJECT-MIB and POWER-ATTRIBUTES-MIB. The first, ENERGY-OBJECT- 205 MIB, is focused on measurement of power and energy. The second, 206 POWER-ATTRIBUTES-MIB, is focused on power quality measurements 207 for Energy Objects. 209 Devices and their sub-components can be modeled using the 210 containment tree of the ENTITY-MIB [RFC6933]. 212 5.1. Energy Object Tables 214 5.1.1. ENERGY-OBJECT-MIB 216 The ENERGY-OBJECT-MIB module consists of five tables. 218 The first table is the eoMeterCapabilitiesTable. It indicates 219 the instrumentation available for each Energy Object. Entries 220 in this table indicate which other tables from the ENERGY- 221 OBJECT-MIB and POWER-ATTRIBUTES-MIB are available for each 222 Energy Object. The eoMeterCapabilitiesTable is indexed by 223 entPhysicalIndex [RFC6933]. 225 The second table is the eoPowerTable. It reports the power 226 consumption of each Energy Object, as well as the units, sign, 227 measurement accuracy, and related objects. The eoPowerTable is 228 indexed by entPhysicalIndex. 230 The third table is the eoPowerStateTable. For each Energy 231 Object, it reports information and statistics about the 232 supported Power States. The eoPowerStateTable is indexed by 233 entPhysicalIndex and eoPowerStateIndex. 235 The fourth table is the eoEnergyParametersTable. The entries in 236 this table configure the parameters of energy and demand 237 measurement collection. This table is indexed by 238 eoEnergyParametersIndex. 240 The fifth table is the eoEnergyTable. The entries in this table 241 provide a log of the energy and demand information. This table 242 is indexed by eoEnergyParametersIndex. 243 A "smidump-style" tree presentation of the MIB modules contained 244 in the draft is presented. The meaning of the three symbols in 245 is a compressed representation of the object's MAX-ACCESS clause 246 which may have the following values: 248 "not-accessible" -> "---" 249 "accessible-for-notify" -> "--n" 250 "read-only" -> "r-n" 251 "read-write" -> "rwn" 253 eoMeterCapabilitiesTable(1) 254 | 255 +---eoMeterCapabilitiesEntry(1)[entPhysicalIndex] 256 | | 257 | +---r-n BITS eoMeterCapability 258 | 260 eoPowerTable(2) 261 | 262 +---eoPowerEntry(1) [entPhysicalIndex] 263 | | 264 | +---r-n Integer32 eoPower(1) 265 | +-- r-n Unsigned32 eoPowerNamePlate(2) 266 | +-- r-n UnitMultiplier eoPowerUnitMultiplier(3) 267 | +-- r-n Integer32 eoPowerAccuracy(4) 268 | +-- r-n INTEGER eoPowerMeasurementCaliber(5) 269 | +-- r-n INTEGER eoPowerCurrentType(6) 270 | +-- r-n TruthValue eoPowerMeasurementLocal(7) 271 | +-- rwn PowerStateSet eoPowerAdminState(8) 272 | +-- r-n PowerStateSet eoPowerOperState(9) 273 | +-- r-n OwnerString eoPowerStateEnterReason(10) 274 | +-- rwn Storagetype eoPowerStorageType(11) 275 | 276 | 277 +---eoPowerStateTable(3) 278 | 279 | +--eoPowerStateEntry(1) 280 | | [entPhysicalIndex, eoPowerStateIndex] 281 | | 282 | +-- --n PowerStateSet eoPowerStateIndex(1) 283 | +-- r-n Integer32 eoPowerStateMaxPower(2) 284 | +-- r-n UnitMultiplier 285 | eoPowerStatePowerUnitMultiplier(3) 286 | +-- r-n TimeTicks eoPowerStateTotalTime(4) 287 | +-- r-n Counter32 eoPowerStateEnterCount(5) 288 | 289 +eoEnergyParametersTable(4) 290 | 291 +---eoEnergyParametersEntry(1) [eoEnergyParametersIndex] 292 | 293 | +-- --n PhysicalIndex eoEnergyObjectIndex(1) 294 | + r-n Integer32 eoEnergyParametersIndex(2) 295 | +-- rwn TimeInterval eoEnergyParametersIntervalLength(3) 296 | +-- rwn Unsigned32 eoEnergyParametersIntervalNumber(4) 297 | +-- rwn INTEGER eoEnergyParametersIntervalMode(5) 298 | +-- rwn TimeInterval eoEnergyParametersIntervalWindow(6) 299 | +-- rwn Unsigned32 eoEnergyParametersSampleRate(7) 300 | +-- rwn StorageType eoEnergyParametersStorageType(8) 301 | +-- rwn RowStatus eoEnergyParametersStatus(9) 302 | 303 +eoEnergyTable(5) 304 | 305 +---eoEnergyEntry(1) 306 | [eoEnergyParametersIndex,eoEnergyCollectionStartTime] 307 | 308 | +-- r-n TimeTicks eoEnergyCollectionStartTime(1) 309 | +-- r-n Unsigned32 eoEnergyConsumed(2) 310 | +-- r-n Unsigned32 eoEnergyProvided(3) 311 | +-- r-n Unsigned32 eoEnergyStored(4) 312 | +-- r-n UnitMultiplier eoEnergyUnitMultiplier(5) 313 | +-- r-n Integer32 eoEnergyAccuracy(6) 314 | +-- r-n Unsigned32 eoEnergyMaxConsumed(7) 315 | +-- r-n Unsigned32 eoEnergyMaxProduced(8) 316 | +-- r-n TimeTicks eoEnergyDiscontinuityTime(9) 318 5.1.2. POWER-ATTRIBUTES-MIB 320 The POWER-ATTRIBUTES-MIB module consists of three tables. 322 The first table is the eoACPwrAttributesTable. It indicates the 323 power quality available for each Energy Object. The 324 eoACPwrAttributesTable is indexed by entPhysicalIndex [RFC6933]. 326 The second table is the eoACPwrAttributesDelPhaseTable. The 327 entries in this table configure the parameters of energy and 328 demand measurement collection. This table is indexed by 329 eoEnergyParametersIndex. 331 The third table is the eoACPwrAttributesWyePhaseTable. For each 332 Energy Object, it reports information and statistics about the 333 supported Power States. The eoPowerStateTable is indexed by 334 entPhysicalIndex and eoPowerStateIndex. 336 eoACPwrAttributesTable(1) 337 | 338 +---eoACPwrAttributesEntry(1) [ entPhysicalIndex] 339 | | 340 | +---r-n INTEGER eoACPwrAttributesConfiguration(1) 341 | +-- r-n Integer32 eoACPwrAttributesAvgVoltage(2) 342 | +-- r-n Unsigned32 eoACPwrAttributesAvgCurrent(3) 343 | +-- r-n Integer32 eoACPwrAttributesFrequency(4) 344 | +-- r-n UnitMultiplier 345 | eoACPwrAttributesPowerUnitMultiplier(5) 346 | +-- r-n Integer32 eoACPwrAttributesPowerAccuracy(6) 347 | +-- r-n Integer32 348 | eoACPwrAttributesTotalActivePower(7) 349 | +-- r-n Integer32 350 | eoACPwrAttributesTotalReactivePower(8) 351 | +-- r-n Integer32 352 | eoACPwrAttributesTotalApparentPower(9) 353 | +-- r-n Integer32 354 | eoACPwrAttributesTotalPowerFactor(10) 355 | +-- r-n Integer32 eoACPwrAttributesThdCurrent(11) 356 | +-- r-n Integer32 eoACPwrAttributesThdVoltage(12) 357 | 358 +eoACPwrAttributesDelPhaseTable(2) 359 | 360 +-- eoACPwrAttributesDelPhaseEntry(1) 361 | | [entPhysicalIndex, eoACPwrAttributesDelPhaseIndex] 362 | | 363 | +-- r-n Integer32 364 | | eoACPwrAttributesDelPhaseIndex(1) 365 | +-- r-n Integer32 366 | | eoACPwrAttributesDelPhaseToNextPhaseVoltage(2) 367 | +-- r-n Integer32 368 | | eoACPwrAttributesDelThdPhaseToNextPhaseVoltage(3) 369 | | 370 +eoACPwrAttributesWyePhaseTable(3) 371 | 372 +-- eoACPwrAttributesWyePhaseEntry(1) 373 | | [entPhysicalIndex, eoACPwrAttributesWyePhaseIndex] 374 | | 375 | +-- r-n Integer32 376 | | eoACPwrAttributesWyePhaseIndex(1) 377 | +-- r-n Integer32 378 | | eoACPwrAttributesWyePhaseToNeutralVoltage(2) 379 | +-- r-n Integer32 380 | | eoACPwrAttributesWyeCurrent(3) 381 | +-- r-n Integer32 382 | | eoACPwrAttributesWyeActivePower(4) 383 | +-- r-n Integer32 384 | | eoACPwrAttributesWyeReactivePower(5) 385 | +-- r-n Integer32 386 | | eoACPwrAttributesWyeApparentPower(6) 387 | +-- r-n Integer32 388 | | eoACPwrAttributesWyePowerFactor(7) 389 | +-- r-n Integer32 390 | | eoACPwrAttributesWyeThdCurrent(9) 391 | +-- r-n Integer32 392 | | eoACPwrAttributesWyeThdPhaseToNeutralVoltage(10) 394 5.1.3. UML Diagram 396 A UML diagram representation of the MIB objects in the two MIB 397 modules ENERGY-OBJECT-MIB and POWER-ATTRIBUTES-MIB is presented. 399 +-----------------------+ 400 | Meter Capabilities | 401 | --------------------- | 402 | eoMeterCapability | 403 +-----------------------+ 405 +-----------------------+ 406 |---> | Energy Object ID (*) | 407 | | --------------------- | 408 | | entPhysicalIndex | 409 | | entPhysicalClass | 410 | | entPhysicalName | 411 | | entPhysicalUUID | 412 | +-----------------------+ 413 | 414 | +---------------------------+ 415 |---- |_ Power Table | 416 | | ------------------------- | 417 | | eoPower | 418 | | eoPowerNamePlate | 419 | | eoPowerUnitMultiplier | 420 | | eoPowerAccuracy | 421 | | eoPowerMeasurementCaliber | 422 | | eoPowerCurrentType | 423 | | eoPowerMeasurementLocal | 424 | | eoPowerAdminState | 425 | | eoPowerOperState | 426 | | eoPowerStateEnterReason | 427 | | eoPowerStorageType | 428 | +---------------------------+ 429 | 430 | +---------------------------------+ 431 |---- |_Energy Object State Statistics | 432 | |-------------------------------- | 433 | | eoPowerStateIndex | 434 | | eoPowerStateMaxPower | 435 | | eoPowerStatePowerUnitMultiplier | 436 | | eoPowerStateTotalTime | 437 | | eoPowerStateEnterCount | 438 | +---------------------------------+ 439 | 440 | +----------------------------------+ 441 |---- | Energy ParametersTable | 442 | | -------------------------------- | 443 | | eoEnergyObjectIndex | 444 | | eoEnergyParametersIndex | 445 | | eoEnergyParametersIntervalLength | 446 | | eoEnergyParametersIntervalNumber | 447 | | eoEnergyParametersIntervalMode | 448 | | eoEnergyParametersIntervalWindow | 449 | | eoEnergyParametersSampleRate | 450 | | eoEnergyParametersStorageType | 451 | | eoEnergyParametersStatus | 452 | +----------------------------------+ 453 | 454 | +----------------------------------+ 455 |---- | Energy Table | 456 | -------------------------------- | 457 | eoEnergyCollectionStartTime | 458 | eoEnergyConsumed | 459 | eoEnergyProvided | 460 | eoEnergyStored | 461 | eoEnergyUnitMultiplier | 462 | eoEnergyAccuracy | 463 | eoEnergyMaxConsumed | 464 | eoEnergyMaxProduced | 465 | eoDiscontinuityTime | 466 +----------------------------------+ 468 Figure 1:UML diagram for energyObjectMib 470 (*) Compliance with the ENERGY-OBJECT-CONTEXT-MIB 472 +-----------------------+ 473 |---> | Energy Object ID (*) | 474 | | --------------------- | 475 | | entPhysicalIndex | 476 | | entPhysicalName | 477 | | entPhysicalUUID | 478 | +-----------------------+ 479 | 480 | +--------------------------------------+ 481 |---- | Power Attributes | 482 | | ------------------------------------ | 483 | | eoACPwrAttributesConfiguration | 484 | | eoACPwrAttributesAvgVoltage | 485 | | eoACPwrAttributesAvgCurrent | 486 | | eoACPwrAttributesFrequency | 487 | | eoACPwrAttributesPowerUnitMultiplier | 488 | | eoACPwrAttributesPowerAccuracy | 489 | | eoACPwrAttributesTotalActivePower | 490 | | eoACPwrAttributesTotalReactivePower | 491 | | eoACPwrAttributesTotalApparentPower | 492 | | eoACPwrAttributesTotalPowerFactor | 493 | | eoACPwrAttributesThdCurrent | 494 | | eoACPwrAttributesThdVoltage | 495 | +--------------------------------------+ 496 | 497 | 498 | +------------------------------------------------+ 499 |---- | AC Input DEL Configuration | 500 | | ---------------------------------------------- | 501 | | eoACPwrAttributesDelPhaseIndex | 502 | | eoACPwrAttributesDelPhaseToNextPhaseVoltage | 503 | | eoACPwrAttributesDelThdPhaseToNextPhaseVoltage | 504 | +------------------------------------------------+ 505 | 506 | 507 | +----------------------------------------------+ 508 |---- | AC Input WYE Configuration | 509 | -------------------------------------------- | 510 | eoACPwrAttributesWyePhaseIndex | 511 | eoACPwrAttributesWyePhaseToNeutralVoltage | 512 | eoACPwrAttributesWyeCurrent | 513 | eoACPwrAttributesWyeActivePower | 514 | eoACPwrAttributesWyeReactivePower | 515 | eoACPwrAttributesWyeApparentPower | 516 | eoACPwrAttributesWyePowerFactor | 517 | eoACPwrAttributesWyeThdCurrent | 518 | eoACPwrAttributesWyeThdPhaseToNeutralVoltage | 519 +----------------------------------------------+ 521 Figure 2: UML diagram for the POWER-ATTRIBUTES-MIB 523 (*) Compliance with the ENERGY-OBJECT-CONTEXT-MIB 525 5.2. Energy Object Identity 527 The Energy Object identity information is specified in the 528 ENERGY-OBJECT-CONTEXT-MIB module [EMAN-AWARE-MIB] primary table, 529 i.e., the eoTable. In this table, Energy Object context such as 530 domain, role description, and importance are specified. In 531 addition, the ENERGY-OBJECT-CONTEXT-MIB module specifies the 532 relationship between Energy Objects. There are several possible 533 relationships between Energy Objects, such as meteredBy, 534 metering, poweredBy, powering, aggregatedBy, and aggregating as 535 defined in the IANA-ENERGY-RELATION-MIB module [EMAN-AWARE-MIB]. 537 5.3. Power State 539 An Energy Object may have energy conservation modes called Power 540 States. Between the ON and OFF states of a device, there can be 541 several intermediate energy saving modes. Those energy saving 542 modes are called Power States. 544 Power States, which represent universal states of power 545 management of an Energy Object, are specified by the 546 eoPowerState MIB object. The actual Power State is specified by 547 the eoPowerOperState MIB object, while the eoPowerAdminState MIB 548 object specifies the Power State requested for the Energy 549 Object. The difference between the values of eoPowerOperState 550 and eoPowerAdminState indicates that the Energy Object is busy 551 transitioning from eoPowerAdminState into the eoPowerOperState, 552 at which point it will update the content of eoPowerOperState. 553 In addition, the possible reason for change in Power State is 554 reported in eoPowerStateEnterReason. Regarding 555 eoPowerStateEnterReason, management stations and Energy Objects 556 should support any format of the owner string dictated by the 557 local policy of the organization. It is suggested that this 558 name contain at least the reason for the transition change, and 559 one or more of the following: IP address, management station 560 name, network manager's name, location, or phone number. 562 The MIB objects eoPowerOperState, eoPowerAdminState , and 563 eoPowerStateEnterReason are contained in the eoPowerTable MIB 564 table. 566 The eoPowerStateTable table enumerates the maximum power usage 567 in watts for every single supported Power State of each Power 568 State Set supported by the Energy Object. In addition, 569 PowerStateTable provides additional statistics such as 570 eoPowerStateEnterCount, i.e., the number of times an entity has 571 visited a particular Power State, and eoPowerStateTotalTime, 572 i.e., the total time spent in a particular Power State of an 573 Energy Object. 575 5.3.1. Power State Set 577 There are several standards and implementations of Power State 578 Sets. An Energy Object can support one or multiple Power State 579 Set implementations concurrently. 581 There are currently three Power State Sets defined: 583 IEEE1621(256) - [IEEE1621] 584 DMTF(512) - [DMTF] 585 EMAN(768) - [EMAN-FMWK] 587 The Power State Sets are listed in [EMAN-FMWK] along with each 588 Power State within the Power Set. The Power State Sets are 589 specified by the PowerStateSet Textual as an IANA-maintained MIB 590 module. The initial version of this MIB module is specified in 591 this document. 593 5.4. Energy Object Usage Information 595 For an Energy Object, power usage is reported using eoPower. 596 The magnitude of measurement is based on the 597 eoPowerUnitMultiplier MIB variable, based on the UnitMultiplier 598 Textual Convention (TC). Power measurement magnitude should 599 conform to the IEC 62053-21 [IEC.62053-21] and IEC 62053-22 600 [IEC.62053-22] definition of unit multiplier for the SI (System 601 International) units of measure. Measured values are 602 represented in SI units obtained by BaseValue * 10 raised to the 603 power of the unit multiplier. 605 For example, if current power usage of an Energy Object is 3, it 606 could be 3 W, 3 mW, 3 KW, or 3 MW, depending on the value of 607 eoPowerUnitMultiplier. Note that other measurements throughout 608 the two MIB modules in this document use the same mechanism, 609 including eoPowerStatePowerUnitMultiplier, 610 eoEnergyUnitMultiplier, and oACPwrAttributesPowerUnitMultiplier. 612 In addition to knowing the usage and magnitude, it is useful to 613 know how an eoPower measurement was obtained. An NMS can use 614 this to account for the accuracy and nature of the reading 615 between different implementations. eoPowerMeasurementLocal 616 describes whether the measurements were made at the device 617 itself or from a remote source. The eoPowerMeasurementCaliber 618 describes the method that was used to measure the power and can 619 distinguish actual or estimated values. There may be devices in 620 the network, which may not be able to measure or report power 621 consumption. For those devices, the object 622 eoPowerMeasurementCaliber shall report that the measurement 623 mechanism is "unavailable" and the eoPower measurement shall be 624 "0". 626 The nameplate power rating of an Energy Object is specified in 627 eoPowerNameplate MIB object. 629 5.5. Optional Power Usage Attributes 631 The optional POWER-ATTRIBUTES-MIB module can be implemented to 632 further describe power usage attributes measurement. The POWER- 633 ATTRIBUTES-MIB module is aligned with IEC 61850 7-2 standard to 634 describe AC measurements. 636 The POWER-ATTRIBUTES-MIB module contains a primary table, 637 eoACPwrAttributesTable, that defines power attributes 638 measurements for supported entPhysicalIndex entities, as a 639 sparse extension of the eoPowerTable (with entPhysicalIndex as 640 primary index). This eoACPwrAttributesTable table contains such 641 information as the configuration (single phase, DEL 3 phases, 642 WYE 3 phases), voltage, frequency, power accuracy, total 643 active/reactive power/apparent power, amperage, and voltage. 645 In case of 3-phase power, an additional table is populated with 646 Power Attributes measurements per phase (hence, double indexed 647 by the entPhysicalIndex and a phase index). This table, 648 describes attributes specific to either WYE or DEL 649 configurations. 651 In a DEL configuration, the eoACPwrAttributesDelPhaseTable 652 describes the phase-to-phase power attributes measurements, 653 i.e., voltage. In a DEL configuration, the current is equal in 654 all three phases. 656 In a WYE configuration, the eoACPwrAttributesWyePhaseTable 657 describes the phase-to-neutral power attributes measurements, 658 i.e., voltage, current, active/reactive/apparent power, and 659 power factor. 661 5.6. Optional Energy Measurement 663 It is only relevant to measure energy and demand when there are 664 actual power measurements obtained from measurement hardware. If 665 the eoPowerMeasurementCaliber MIB object has values of 666 unavailable, unknown, estimated, or presumed, then the energy 667 and demand values are not useful. 669 Two tables are introduced to characterize energy measurement of 670 an Energy Object: eoEnergyTable and eoEnergyParametersTable. 671 Both energy and demand information can be represented via the 672 eoEnergyTable. Demand information can be represented. 674 The eoEnergyParametersTable consists of the parameters defining 675 eoEnergyParametersIndex - an index for the Energy Object, 676 eoEnergyObjectIndex - linked to the entPhysicalIndex of the 677 Energy Object, the duration of measurement intervals in seconds, 678 (eoEnergyParametersIntervalLength), the number of successive 679 intervals to be stored in the eoEnergyTable, 680 (eoEnergyParametersIntervalNumber), the type of measurement 681 technique (eoEnergyParametersIntervalMode), and a sample rate 682 used to calculate the average (eoEnergyParametersSampleRate). 683 Judicious choice of the sampling rate will ensure accurate 684 measurement of energy while not imposing an excessive polling 685 burden. 687 There are three eoEnergyParametersIntervalMode types used for 688 energy measurement collection: period, sliding, and total. The 689 choices of the three different modes of collection are based on 690 IEC standard 61850-7-4. Note that multiple 691 eoEnergyParametersIntervalMode types MAY be configured 692 simultaneously. It is important to note that for a given Energy 693 Object, multiple modes (periodic, total, sliding window) of 694 energy measurement collection can be configured with the use of 695 eoEnergyParametersIndex. However, simultaneous measurement in 696 multiple modes for a given Energy Object depends on the Energy 697 Object capability. 699 These three eoEnergyParametersIntervalMode types are illustrated 700 by the following three figures, for which: 702 - The horizontal axis represents the current time, with the 703 symbol <--- L ---> expressing the 704 eoEnergyParametersIntervalLength, and the 705 eoEnergyCollectionStartTime is represented by S1, S2, S3, S4, 706 ..., Sx where x is the value of 707 eoEnergyParametersIntervalNumber. 709 - The vertical axis represents the time interval of sampling and 710 the value of eoEnergyConsumed can be obtained at the end of the 711 sampling period. The symbol =========== denotes the duration of 712 the sampling period. 714 | | | =========== | 715 |============ | | | 716 | | | | 717 | |============ | | 718 | | | | 719 | <--- L ---> | <--- L ---> | <--- L ---> | 720 | | | | 721 S1 S2 S3 S4 723 Figure 3 : Period eoEnergyParametersIntervalMode 725 A eoEnergyParametersIntervalMode type of 'period' specifies non- 726 overlapping periodic measurements. Therefore, the next 727 eoEnergyCollectionStartTime is equal to the previous 728 eoEnergyCollectionStartTime plus 729 eoEnergyParametersIntervalLength. S2=S1+L; S3=S2+L, ... 731 |============ | 732 | | 733 | <--- L ---> | 734 | | 735 | |============ | 736 | | | 737 | | <--- L ---> | 738 | | | 739 | | |============ | 740 | | | | 741 | | | <--- L ---> | 742 | | | | 743 | | | |============ | 744 | | | | | 745 | | | | <--- L ---> | 746 S1 | | | | 747 | | | | 748 | | | | 749 S2 | | | 750 | | | 751 | | | 752 S3 | | 753 | | 754 | | 755 S4 757 Figure 4 : Sliding eoEnergyParametersIntervalMode 759 A eoEnergyParametersIntervalMode type of 'sliding' specifies 760 overlapping periodic measurements. 762 | | 763 |========================= | 764 | | 765 | | 766 | | 767 | <--- Total length ---> | 768 | | 769 S1 771 Figure 5 : Total eoEnergyParametersIntervalMode 773 A eoEnergyParametersIntervalMode type of 'total' specifies a 774 continuous measurement since the last reset. The value of 775 eoEnergyParametersIntervalNumber should be (1) one and 776 eoEnergyParametersIntervalLength is ignored. 778 The eoEnergyParametersStatus is used to start and stop energy 779 usage logging. The status of this variable is "active" when all 780 the objects in eoEnergyParametersTable are appropriate which in 781 turn indicates if eoEnergyTable entries exist or not. Finally, 782 the eoEnergyParametersStorageType variable indicates the storage 783 type for this row, i.e. whether the persistence is maintained 784 across a device reload. 786 The eoEnergyTable consists of energy measurements in 787 eoEnergyConsumed, eoEnergyProvided and eoEnergyStored, the units 788 of the measured energy eoEnergyUnitMultiplier, and the maximum 789 observed energy within a window eoEnergyMaxConsumed, 790 eoEnergyMaxProduced. 792 Measurements of the total energy consumed by an Energy Object 793 may suffer from interruptions in the continuous measurement of 794 energy consumption. In order to indicate such interruptions, 795 the object eoEnergyDiscontinuityTime is provided for indicating 796 the time of the last interruption of total energy measurement. 797 eoEnergyDiscontinuityTime shall indicate the sysUpTime [RFC3418] 798 when the device was reset. 800 The following example illustrates the eoEnergyTable and 801 eoEnergyParametersTable: 803 First, in order to estimate energy, a time interval to sample 804 energy should be specified, i.e., 805 eoEnergyParametersIntervalLength can be set to "900 seconds" or 806 15 minutes and the number of consecutive intervals over which 807 the maximum energy is calculated 808 (eoEnergyParametersIntervalNumber) as "10". The sampling rate 809 internal to the Energy Object for measurement of power usage 810 (eoEnergyParametersSampleRate) can be "1000 milliseconds", as 811 set by the Energy Object as a reasonable value. Then, the 812 eoEnergyParametersStatus is set to active to indicate that the 813 Energy Object should start monitoring the usage per the 814 eoEnergyTable. 816 The indices for the eoEnergyTable are eoEnergyParametersIndex, 817 which identifies the index for the setting of energy measurement 818 collection Energy Object, and eoEnergyCollectionStartTime, which 819 denotes the start time of the energy measurement interval based 820 on sysUpTime [RFC3418]. The value of eoEnergyComsumed is the 821 measured energy consumption over the time interval specified 822 (eoEnergyParametersIntervalLength) based on the Energy Object 823 internal sampling rate (eoEnergyParametersSampleRate). While 824 choosing the values for the eoEnergyParametersIntervalLength and 825 eoEnergyParametersSampleRate, it is recommended to take into 826 consideration either the network element resources adequate to 827 process and store the sample values, and the mechanism used to 828 calculate the eoEnergyConsumed. The units are derived from 829 eoEnergyUnitMultiplier. For example, eoEnergyConsumed can be 830 "100" with eoEnergyUnitMultiplier equal to 0, the measured 831 energy consumption of the Energy Object is 100 watt-hours. The 832 eoEnergyMaxConsumed is the maximum energy observed and that can 833 be "150 watt-hours". 835 The eoEnergyTable has a buffer to retain a certain number of 836 intervals, as defined by eoEnergyParametersIntervalNumber. 837 If the default value of "10" is kept, then the eoEnergyTable 838 contains 10 energy measurements, including the maximum. 840 Here is a brief explanation of how the maximum energy can be 841 calculated. The first observed energy measurement value is 842 taken to be the initial maximum. With each subsequent 843 measurement, based on numerical comparison, maximum energy may 844 be updated. The maximum value is retained as long as the 845 measurements are taking place. Based on periodic polling of 846 this table, an NMS could compute the maximum over a longer 847 period, e.g., a month, 3 months, or a year. 849 5.7. Fault Management 851 [RFC6988] specifies requirements about Power States such as "the 852 current Power State" , "the time of the last state change", "the 853 total time spent in each state", "the number of transitions to 854 each state" etc. Some of these requirements are fulfilled 855 explicitly by MIB objects such as eoPowerOperState, 856 eoPowerStateTotalTime and eoPowerStateEnterCount. Some of the 857 other requirements are met via the SNMP NOTIFICATION mechanism. 858 eoPowerStateChange SNMP notification which is generated when the 859 value of oPowerStateIndex, eoPowerOperState, or 860 eoPowerAdminState have changed. 862 6. Discovery 864 It is probable that most Energy Objects will require the 865 implementation of the ENERGY-OBJECT-CONTEXT-MIB [EMAN-AWARE-MIB] 866 as a prerequisite for this MIB module. In such a case, 867 eoPowerTable of the EMAN-ENERGY-OBJECT-MIB is cross-referenced 868 with the eoTable of ENERGY-OBJECT-CONTEXT-MIB via 869 entPhysicalIndex. Every Energy Object MUST implement 870 entPhysicalIndex, entPhysicalClass, entPhysicalName and 871 entPhysicalUUID from the ENTITY-MIB [RFC6933]. As the primary 872 index for the Energy Object, entPhysicalIndex is used: It 873 characterizes the Energy Object in the ENERGY-OBJECT-MIB and the 874 POWER-ATTRIBUTES-MIB MIB modules (this document). 876 The NMS must first poll the ENERGY-OBJECT-CONTEXT-MIB MIB module 877 [EMAN-AWARE-MIB], if available, in order to discover all the 878 Energy Objects and the relationships between those Energy 879 Objects. In the ENERGY-OBJECT-CONTEXT-MIB module tables, the 880 Energy Objects are indexed by the entPhysicalIndex. 882 From there, the NMS must poll the eoPowerStateTable (specified 883 in the ENERGY-OBJECT-MIB module in this document), which 884 enumerates, amongst other things, the maximum power usage. As 885 the entries in eoPowerStateTable table are indexed by the 886 Energy Object ( entPhysicalIndex) and by the Power State Set 887 (eoPowerStateIndex), the maximum power usage is discovered per 888 Energy Object, and the power usage per Power State of the Power 889 State Set. In other words, reading the eoPowerStateTable allows 890 the discovery of each Power State within every Power State Set 891 supported by the Energy Object. 893 The MIB module may be populated with the Energy Object 894 relationship information, which have its own Energy Object index 895 value (entPhysicalIndex). However, the Energy Object 896 relationship must be discovered via the ENERGY-OBJECT-CONTEXT- 897 MIB module. 899 Finally, the NMS can monitor the power attributes with the 900 POWER-ATTRIBUTES-MIB MIB module, which reuses the 901 entPhysicalIndex to index the Energy Object. 903 7. Link with the other IETF MIBs 905 7.1. Link with the ENTITY-MIB and the ENTITY-SENSOR MIB 907 RFC 6933 [RFC6933] defines the ENTITY-MIB module that lists the 908 physical entities of a networking device (router, switch, etc.) 909 and those physical entities indexed by entPhysicalIndex. From 910 an energy-management standpoint, the physical entities that 911 consume or produce energy are of interest. 913 RFC 3433 [RFC3433] defines the ENTITY-SENSOR MIB module that 914 provides a standardized way of obtaining information (current 915 value of the sensor, operational status of the sensor, and the 916 data units precision) from sensors embedded in networking 917 devices. Sensors are associated with each index of 918 entPhysicalIndex of the ENTITY-MIB [RFC6933]. While the focus 919 of the Power, Energy Monitoring and Control MIB is on 920 measurement of power usage of networking equipment indexed by 921 the ENTITY-MIB, this MIB supports a customized power scale for 922 power measurement and different Power States of networking 923 equipment, and functionality to configure the Power States. 925 The Energy Objects are modeled by the entPhysicalIndex through 926 the entPhysicalEntity MIB object specified in the eoTable in the 927 ENERGY-OBJECT-CONTEXT-MIB MIB module [EMAN-AWARE-MIB]. 929 The ENTITY-SENSOR MIB [RFC3433] does not have the ANSI C12.x 930 accuracy classes required for electricity (e.g., 1%, 2%, 0.5% 931 accuracy classes). Indeed, entPhySensorPrecision [RFC3433] 932 represents "The number of decimal places of precision in fixed- 933 point sensor values returned by the associated entPhySensorValue 934 object". The ANSI and IEC Standards are used for power 935 measurement and these standards require that we use an accuracy 936 class, not the scientific-number precision model specified in 937 RFC3433. The eoPowerAccuracy MIB object models this accuracy. 938 Note that eoPowerUnitMultipler represents the scale factor per 939 IEC 62053-21 [IEC.62053-21] and IEC 62053-22 [IEC.62053-22], 940 which is a more logical representation for power measurements 941 (compared to entPhySensorScale), with the mantissa and the 942 exponent values X * 10 ^ Y. 944 Power measurements specifying the qualifier 'UNITS' for each 945 measured value in watts are used in the LLDP-EXT-MED-MIB, POE 946 [RFC3621], and UPS [RFC1628] MIBs. The same 'UNITS' qualifier 947 is used for the power measurement values. 949 One cannot assume that the ENTITY-MIB and ENTITY-SENSOR MIB are 950 implemented for all Energy Objects that need to be monitored. A 951 typical example is a converged building gateway, which can 952 monitor other devices in a building and provides a proxy between 953 SNMP and a protocol like BACNET. Another example is the home 954 energy controller. In such cases, the eoPhysicalEntity value 955 contains the zero value, using the PhysicalIndexOrZero textual 956 convention. 958 The eoPower is similar to entPhySensorValue [RFC3433] and the 959 eoPowerUnitMultipler is similar to entPhySensorScale. 961 7.2. Link with the ENTITY-STATE MIB 963 For each entity in the ENTITY-MIB [RFC6933], the ENTITY-STATE 964 MIB [RFC4268] specifies the operational states (entStateOper: 965 unknown, enabled, disabled, testing), the alarm (entStateAlarm: 966 unknown, underRepair, critical, major, minor, warning, 967 indeterminate) and the possible values of standby states 968 (entStateStandby: unknown, hotStandby, coldStandby, 969 providingService). 971 From a power monitoring point of view, in contrast to the entity 972 operational states of entities, Power States are required, as 973 proposed in the Power, Energy Monitoring and Control MIB module. 974 Those Power States can be mapped to the different operational 975 states in the ENTITY-STATE MIB, if a formal mapping is required. 976 For example, the entStateStandby "unknown", "hotStandby", 977 "coldStandby", states could map to the Power State "unknown", 978 "ready", "standby", respectively, while the entStateStandby 979 "providingService" could map to any "low" to "high" Power State. 981 7.3. Link with the POWER-OVER-ETHERNET MIB 983 Power-over-Ethernet MIB [RFC3621] provides an energy monitoring 984 and configuration framework for power over Ethernet devices. 985 RFC 3621 defines a port group entity on a switch for power 986 monitoring and management policy and does not use the 987 entPhysicalIndex index. Indeed, pethMainPseConsumptionPower is 988 indexed by the pethMainPseGroupIndex, which has no mapping with 989 the entPhysicalIndex. 991 If the Power-over-Ethernet MIB [RFC3621] is supported, the 992 Energy Object eoethPortIndex and eoethPortGrpIndex contain the 993 pethPsePortIndex and pethPsePortGroupIndex, respectively. 994 However, one cannot assume that the Power-over-Ethernet MIB is 995 implemented for most or all Energy Objects. In such cases, the 996 eoethPortIndex and eoethPortGrpIndex values contain the zero 997 value, via the new PethPsePortIndexOrZero and textual 998 PethPsePortGroupIndexOrZero conventions. 1000 In either case, the entPhysicalIndex MIB object is used as the 1001 unique Energy Object index. 1003 Note that, even though the Power-over-Ethernet MIB [RFC3621] was 1004 created after the ENTITY-SENSOR MIB [RFC3433], it does not reuse 1005 the precision notion from the ENTITY-SENSOR MIB, i.e., the 1006 entPhySensorPrecision MIB object. 1008 7.4. Link with the UPS MIB 1010 To protect against unexpected power disruption, data centers and 1011 buildings make use of Uninterruptible Power Supplies (UPS). To 1012 protect critical assets, a UPS can be restricted to a particular 1013 subset or domain of the network. UPS usage typically lasts only 1014 for a finite period of time, until normal power supply is 1015 restored. Planning is required to decide on the capacity of the 1016 UPS based on output power and duration of probable power outage. 1017 To properly provision UPS power in a data center or building, it 1018 is important to first understand the total demand required to 1019 support all the entities in the site. This demand can be 1020 assessed and monitored via the Power, Energy Monitoring and 1021 Control MIB. 1023 UPS MIB [RFC1628] provides information on the state of the UPS 1024 network. Implementation of the UPS MIB is useful at the 1025 aggregate level of a data center or a building. The MIB module 1026 contains several groups of variables: 1028 - upsIdent: Identifies the UPS entity (name, model, etc.). 1030 - upsBattery group: Indicates the battery state 1031 (upsbatteryStatus, upsEstimatedMinutesRemaining, etc.) 1033 - upsInput group: Characterizes the input load to the UPS 1034 (number of input lines, voltage, current, etc.). 1036 - upsOutput: Characterizes the output from the UPS (number of 1037 output lines, voltage, current, etc.) 1039 - upsAlarms: Indicates the various alarm events. 1041 The measurement of power in the UPS MIB is in volts, amperes and 1042 watts. The units of power measurement are RMS volts and RMS 1043 Amperes. They are not based on the EntitySensorDataScale and 1044 EntitySensorDataPrecision of ENTITY-SENSOR-MIB. 1046 Both the Power, Energy Monitoring and Control MIB and the UPS 1047 MIB may be implemented on the same UPS SNMP agent, without 1048 conflict. In this case, the UPS device itself is the Energy 1049 Object and any of the UPS meters or submeters are the Energy 1050 Objects with a possible relationship as defined in [EMAN-FMWK]. 1052 7.5. Link with the LLDP and LLDP-MED MIBs 1054 The LLDP Protocol is a Data Link Layer protocol used by network 1055 devices to advertise their identities, capabilities, and 1056 interconnections on a LAN network. 1058 The Media Endpoint Discovery is an enhancement of LLDP, known as 1059 LLDP-MED. The LLDP-MED enhancements specifically address voice 1060 applications. LLDP-MED covers 6 basic areas: capability 1061 discovery, LAN speed and duplex discovery, network policy 1062 discovery, location identification discovery, inventory 1063 discovery, and power discovery. 1065 Of particular interest to the current MIB module is the power 1066 discovery, which allows the endpoint device (such as a PoE 1067 phone) to convey power requirements to the switch. In power 1068 discovery, LLDP-MED has four Type Length Values (TLVs): power 1069 type, power source, power priority and power value. 1070 Respectively, those TLVs provide information related to the type 1071 of power (power sourcing entity versus powered device), how the 1072 device is powered (from the line, from a backup source, from 1073 external power source, etc.), the power priority (how important 1074 is it that this device has power?), and how much power the 1075 device needs. 1077 The power priority specified in the LLDP-MED MIB [LLDP-MED-MIB] 1078 actually comes from the Power-over-Ethernet MIB [RFC3621]. If 1079 the Power-over-Ethernet MIB [RFC3621] is supported, the exact 1080 value from the pethPsePortPowerPriority [RFC3621] is copied over 1081 into the lldpXMedRemXPoEPDPowerPriority [LLDP-MED-MIB]; 1082 otherwise the value in lldpXMedRemXPoEPDPowerPriority is 1083 "unknown". From the Power, Energy Monitoring and Control MIB, it 1084 is possible to identify the pethPsePortPowerPriority [RFC3621], 1085 via the eoethPortIndex and eoethPortGrpIndex. 1087 The lldpXMedLocXPoEPDPowerSource [LLDP-MED-MIB] is similar to 1088 eoPowerMeasurementLocal in indicating if the power for an 1089 attached device is local or from a remote device. If the LLDP- 1090 MED MIB is supported, the following mapping can be applied to 1091 the eoPowerMeasurementLocal: lldpXMedLocXPoEPDPowerSource 1092 fromPSE(2) and local(3) can be mapped to false and true, 1093 respectively. 1095 8. Structure of the MIB 1097 The primary MIB object in the energyObjectMib MIB module is the 1098 energyObjectMibObjects root. The eoPowerTable table of 1099 energyObjectMibObjects describes the power measurement 1100 attributes of an Energy Object entity. The identity of a device 1101 in terms of uniquely identification of the Energy Object and its 1102 relationship to other entities in the network are addressed in 1103 [EMAN-AWARE-MIB]. 1105 Logically, this MIB module is a sparse extension of the 1106 ENERGY-OBJECT-CONTEXT-MIB module [EMAN-AWARE-MIB]. Thus the 1107 following requirements which are applied to [EMAN-AWARE-MIB] are 1108 also applicable. As a requirement for this MIB module, [EMAN- 1109 AWARE-MIB] SHOULD be implemented and as Module Compliance of 1110 ENTITY-MIB V4 [RFC6933] with respect to entity4CRCompliance MUST 1111 be supported which requires 4 MIB objects: entPhysicalIndex, 1112 entPhysicalClass, entPhysicalName and entPhysicalUUID MUST be 1113 implemented. 1115 eoMeterCapabilitiesTable is useful to enable applications to 1116 determine the capabilities supported by the local management 1117 agent. This table indicates the energy monitoring MIB groups 1118 that are supported by the local management system. By reading 1119 the value of this object, it is possible for applications to 1120 know which tables contain the information and are usable without 1121 walking through the table and querying every element which 1122 involves a trial-and-error process. 1124 The power measurement of an Energy Object contains information 1125 describing its power usage (eoPower) and its current Power State 1126 (eoPowerOperState). In addition to power usage, additional 1127 information describing the units of measurement 1128 (eoPowerAccuracy, eoPowerUnitMultiplier), how power usage 1129 measurement was obtained (eoPowerMeasurementCaliber), the 1130 source of power measurement (eoPowerMeasurementLocal) and the 1131 type of power (eoPowerCurrentType) are described. 1133 An Energy Object may contain an optional eoEnergyTable to 1134 describe energy measurement information over time. 1136 An Energy Object may contain an optional eoACPwrAttributesTable 1137 table (specified in the POWER-ATTRIBUTES-MIB module) that 1138 describes the electrical characteristics associated with the 1139 current Power State and usage. 1141 An Energy Object may also contain optional battery information 1142 associated with this entity. 1144 9. MIB Definitions 1146 9.1. The IANAPowerStateSet-MIB MIB Module 1148 -- ************************************************************ 1149 -- 1150 -- 1151 -- This MIB, maintained by IANA, contains a single Textual 1152 -- Convention: PowerStateSet 1153 -- 1154 -- ************************************************************ 1156 IANAPowerStateSet-MIB DEFINITIONS ::= BEGIN 1158 IMPORTS 1159 MODULE-IDENTITY, mib-2 FROM SNMPv2-SMI 1160 TEXTUAL-CONVENTION FROM SNMPv2-TC; 1162 ianaPowerStateSet MODULE-IDENTITY 1163 LAST-UPDATED "201406070000Z" -- 07 June 2014 1164 ORGANIZATION "IANA" 1165 CONTACT-INFO " 1167 Internet Assigned Numbers Authority 1168 Postal: ICANN 1169 12025 Waterfront Drive Suite 300 1170 Los Angeles, CA 90094 1171 Tel: +1-310-301 5800 1172 EMail: iana&iana.org" 1173 DESCRIPTION 1174 "This MIB module defines the PowerStateSet Textual 1175 Convention, which specifies the Power State Sets and 1176 Power State Set Values an Energy Object supports 1178 Copyright (C) The IETF Trust (2014). 1179 The initial version of this MIB module was published in 1180 RFC XXXX; for full legal notices see the RFC itself. 1182 Supplementary information may be available at 1183 http://www.ietf.org/copyrights/ianamib.html" 1185 -- revision history 1187 REVISION "201406070000Z" -- 07 June 2014 1188 DESCRIPTION 1189 "Initial version of this MIB module, as published as RFC 1190 XXXX." 1192 -- RFC Editor, please replace xxx with the IANA allocation 1193 -- for this MIB module and XXXX with the number of the 1194 -- approved RFC 1196 ::= { mib-2 xxx } 1198 PowerStateSet ::= TEXTUAL-CONVENTION 1199 STATUS current 1200 DESCRIPTION 1201 "IANAPowerState is a textual convention that describes 1202 Power State Sets and Power State Set Values an Energy 1203 Object supports. IANA has created a registry of Power 1204 State supported by an Energy Object and IANA shall 1205 administer the list of Power State Sets and Power 1206 States. 1208 The textual convention assumes that Power States in a 1209 power state set are limited to 255 distinct values. For 1210 a Power State Set S, the named number with the value S * 1211 256 is allocated to indicate the Power State set. For a 1212 Power State X in the Power State S, the named number 1213 with the value S * 256 + X + 1 is allocated to represent 1214 the Power State. 1216 Requests for new values should be made to IANA via email 1217 (iana&iana.org)." 1219 REFERENCE 1220 "http://www.iana.org/assignments/power-state-sets" 1222 SYNTAX INTEGER { 1223 other(0), -- indicates other set 1224 unknown(255), -- unknown 1226 ieee1621(256), -- indicates IEEE1621 set 1227 ieee1621Off(257), 1228 ieee1621Sleep(258), 1229 ieee1621On(259), 1231 dmtf(512), -- indicates DMTF set 1232 dmtfOn(513), 1233 dmtfSleepLight(514), 1234 dmtfSleepDeep(515), 1235 dmtfOffHard(516), 1236 dmtfOffSoft(517), 1237 dmtfHibernate(518), 1238 dmtfPowerOffSoft(519), 1239 dmtfPowerOffHard(520), 1240 dmtfMasterBusReset(521), 1241 dmtfDiagnosticInterrapt(522), 1242 dmtfOffSoftGraceful(523), 1243 dmtfOffHardGraceful(524), 1244 dmtfMasterBusResetGraceful(525), 1245 dmtfPowerCycleOffSoftGraceful(526), 1246 dmtfPowerCycleHardGraceful(527), 1248 eman(1024), -- indicates EMAN set 1249 emanmechoff(1025), 1250 emansoftoff(1026), 1251 emanhibernate(1027), 1252 emansleep(1028), 1253 emanstandby(1029), 1254 emanready(1030), 1255 emanlowMinus(1031), 1257 emanlow(1032), 1258 emanmediumMinus(1033), 1259 emanmedium(1034), 1260 emanhighMinus(1035), 1261 emanhigh(1036) 1263 } 1264 END 1266 9.2. The ENERGY-OBJECT-MIB MIB Module 1268 -- ************************************************************ 1269 -- 1270 -- 1271 -- This MIB is used to monitor power usage of network 1272 -- devices 1273 -- 1274 -- ************************************************************* 1276 ENERGY-OBJECT-MIB DEFINITIONS ::= BEGIN 1278 IMPORTS 1279 MODULE-IDENTITY, 1280 OBJECT-TYPE, 1281 NOTIFICATION-TYPE, 1282 mib-2, 1283 Integer32, Counter32, Unsigned32, TimeTicks 1284 FROM SNMPv2-SMI 1285 TEXTUAL-CONVENTION, RowStatus, TimeInterval, 1286 TimeStamp, TruthValue, StorageType 1287 FROM SNMPv2-TC 1288 MODULE-COMPLIANCE, NOTIFICATION-GROUP, OBJECT-GROUP 1289 FROM SNMPv2-CONF 1290 OwnerString 1291 FROM RMON-MIB 1292 entPhysicalIndex 1293 FROM ENTITY-MIB 1294 PowerStateSet 1295 FROM IANAPowerStateSet-MIB; 1297 energyObjectMib MODULE-IDENTITY 1298 LAST-UPDATED "201406070000Z" -- 07 June 2014 1300 ORGANIZATION "IETF EMAN Working Group" 1301 CONTACT-INFO 1302 "WG charter: 1303 http://datatracker.ietf.org/wg/eman/charter/ 1305 Mailing Lists: 1306 General Discussion: eman@ietf.org 1308 To Subscribe: 1309 https://www.ietf.org/mailman/listinfo/eman 1311 Archive: 1312 http://www.ietf.org/mail-archive/web/eman 1314 Editors: 1315 Mouli Chandramouli 1316 Cisco Systems, Inc. 1317 Sarjapur Outer Ring Road 1318 Bangalore 560103 1319 IN 1320 Phone: +91 80 4429 2409 1321 Email: moulchan@cisco.com 1323 Brad Schoening 1324 44 Rivers Edge Drive 1325 Little Silver, NJ 07739 1326 US 1327 Email: brad.schoening@verizon.net 1329 Juergen Quittek 1330 NEC Europe Ltd. 1331 NEC Laboratories Europe 1332 Network Research Division 1333 Kurfuersten-Anlage 36 1334 Heidelberg 69115 1335 DE 1336 Phone: +49 6221 4342-115 1337 Email: quittek@neclab.eu 1339 Thomas Dietz 1340 NEC Europe Ltd. 1341 NEC Laboratories Europe 1342 Network Research Division 1343 Kurfuersten-Anlage 36 1344 69115 Heidelberg 1345 DE 1346 Phone: +49 6221 4342-128 1347 Email: Thomas.Dietz@nw.neclab.eu 1349 Benoit Claise 1350 Cisco Systems, Inc. 1351 De Kleetlaan 6a b1 1352 Degem 1831 1353 Belgium 1354 Phone: +32 2 704 5622 1355 Email: bclaise@cisco.com" 1357 DESCRIPTION 1358 "This MIB is used to monitor power and energy in 1359 devices. 1361 The tables eoMeterCapabilitiesTable and eoPowerTable 1362 are a sparse extension of the eoTable from the 1363 ENERGY-OBJECT-CONTEXT-MIB. As a requirement 1364 [EMAN-AWARE-MIB] SHOULD be implemented. 1366 Module Compliance of ENTITY-MIB v4 with respect to 1367 entity4CRCompliance MUST be supported which requires 1368 implementation of 4 MIB objects: entPhysicalIndex, 1369 entPhysicalClass, entPhysicalName and entPhysicalUUID." 1371 REVISION "201406070000Z" -- 07 June 2014 1372 DESCRIPTION 1373 "Initial version, published as RFC XXXX." 1375 -- RFC Editor, please replace yyy with the IANA allocation 1376 -- for this MIB module and XXXX with the number of the 1377 -- approved RFC 1379 ::= { mib-2 yyy } 1381 energyObjectMibNotifs OBJECT IDENTIFIER 1382 ::= { energyObjectMib 0 } 1384 energyObjectMibObjects OBJECT IDENTIFIER 1385 ::= { energyObjectMib 1 } 1387 energyObjectMibConform OBJECT IDENTIFIER 1388 ::= { energyObjectMib 2 } 1390 -- Textual Conventions 1392 UnitMultiplier ::= TEXTUAL-CONVENTION 1393 STATUS current 1394 DESCRIPTION 1395 "The Unit Multiplier is an integer value that represents 1396 the IEEE 61850 Annex A units multiplier associated with 1397 the integer units used to measure the power or energy. 1399 For example, when used with eoPowerUnitMultiplier, -3 1400 represents 10^-3 or milliwatts." 1401 REFERENCE 1402 "The International System of Units (SI), National 1403 Institute of Standards and Technology, Spec. Publ. 330, 1404 August 1991." 1405 SYNTAX INTEGER { 1406 yocto(-24), -- 10^-24 1407 zepto(-21), -- 10^-21 1408 atto(-18), -- 10^-18 1409 femto(-15), -- 10^-15 1410 pico(-12), -- 10^-12 1411 nano(-9), -- 10^-9 1412 micro(-6), -- 10^-6 1413 milli(-3), -- 10^-3 1414 units(0), -- 10^0 1415 kilo(3), -- 10^3 1416 mega(6), -- 10^6 1417 giga(9), -- 10^9 1418 tera(12), -- 10^12 1419 peta(15), -- 10^15 1420 exa(18), -- 10^18 1421 zetta(21), -- 10^21 1422 yotta(24) -- 10^24 1423 } 1425 -- Objects 1427 eoMeterCapabilitiesTable OBJECT-TYPE 1428 SYNTAX SEQUENCE OF EoMeterCapabilitiesEntry 1429 MAX-ACCESS not-accessible 1430 STATUS current 1431 DESCRIPTION 1432 "This table is useful for helping applications determine 1433 the monitoring capabilities supported by the local 1434 management agents. It is possible for applications to 1435 know which tables are usable without going through a 1436 trial-and-error process." 1437 ::= { energyObjectMibObjects 1 } 1439 eoMeterCapabilitiesEntry OBJECT-TYPE 1440 SYNTAX EoMeterCapabilitiesEntry 1441 MAX-ACCESS not-accessible 1442 STATUS current 1443 DESCRIPTION 1444 "An entry describes the metering capability of an Energy 1445 Object." 1446 INDEX { entPhysicalIndex } 1447 ::= { eoMeterCapabilitiesTable 1 } 1449 EoMeterCapabilitiesEntry ::= SEQUENCE { 1450 eoMeterCapability BITS 1451 } 1453 eoMeterCapability OBJECT-TYPE 1454 SYNTAX BITS { 1455 none(0), 1456 powermetering(1), -- power measurement 1457 energymetering(2), -- energy measurement 1458 powerattributes(3) -- power attributes 1459 } 1460 MAX-ACCESS read-only 1461 STATUS current 1462 DESCRIPTION 1463 "An indication of the energy monitoring capabilities 1464 supported by this agent. This object use a BITS syntax 1465 and indicates the MIB groups supported by the probe. By 1466 reading the value of this object, it is possible to 1467 determine the MIB tables supported. " 1468 ::= { eoMeterCapabilitiesEntry 1 } 1470 eoPowerTable OBJECT-TYPE 1471 SYNTAX SEQUENCE OF EoPowerEntry 1472 MAX-ACCESS not-accessible 1473 STATUS current 1474 DESCRIPTION 1475 "This table lists Energy Objects." 1476 ::= { energyObjectMibObjects 2 } 1478 eoPowerEntry OBJECT-TYPE 1479 SYNTAX EoPowerEntry 1480 MAX-ACCESS not-accessible 1481 STATUS current 1482 DESCRIPTION 1483 "An entry describes the power usage of an Energy Object." 1484 INDEX { entPhysicalIndex } 1485 ::= { eoPowerTable 1 } 1487 EoPowerEntry ::= SEQUENCE { 1488 eoPower Integer32, 1489 eoPowerNameplate Unsigned32, 1490 eoPowerUnitMultiplier UnitMultiplier, 1491 eoPowerAccuracy Integer32, 1492 eoPowerMeasurementCaliber INTEGER, 1493 eoPowerCurrentType INTEGER, 1494 eoPowerMeasurementLocal TruthValue, 1495 eoPowerAdminState PowerStateSet, 1496 eoPowerOperState PowerStateSet, 1497 eoPowerStateEnterReason OwnerString, 1498 eoPowerStorageType StorageType 1499 } 1501 eoPower OBJECT-TYPE 1502 SYNTAX Integer32 1503 UNITS "watts" 1504 MAX-ACCESS read-only 1505 STATUS current 1506 DESCRIPTION 1507 "This object indicates the power measured for the Energy 1508 Object. For alternating current, this value is obtained 1509 as an average over fixed number of AC cycles. This value 1510 is specified in SI units of watts with the magnitude of 1511 watts (milliwatts, kilowatts, etc.) indicated separately 1512 in eoPowerUnitMultiplier. The accuracy of the measurement 1513 is specified in eoPowerAccuracy. The direction of power 1514 flow is indicated by the sign on eoPower. If the Energy 1515 Object is consuming power, the eoPower value will be 1516 positive. If the Energy Object is producing power, the 1517 eoPower value will be negative. 1519 The eoPower MUST be less than or equal to the maximum 1520 power that can be consumed at the power state specified 1521 by eoPowerState. 1523 The eoPowerMeasurementCaliber object specifies how the 1524 usage value reported by eoPower was obtained. The eoPower 1525 value must report 0 if the eoPowerMeasurementCaliber is 1526 'unavailable'. For devices that can not measure or 1527 report power, this option can be used." 1528 ::= { eoPowerEntry 1 } 1530 eoPowerNameplate OBJECT-TYPE 1531 SYNTAX Unsigned32 1532 UNITS "watts" 1533 MAX-ACCESS read-only 1534 STATUS current 1535 DESCRIPTION 1536 "This object indicates the rated maximum consumption for 1537 the fully populated Energy Object. The nameplate power 1538 requirements are the maximum power numbers given in SI 1539 Watts and, in almost all cases, are well above the 1540 expected operational consumption. Nameplate power is 1541 widely used for power provisioning. This value is 1542 specified in either units of watts or voltage and 1543 current. The units are therefore SI watts or equivalent 1544 Volt-Amperes with the magnitude (milliwatts, kilowatts, 1545 etc.) indicated separately in eoPowerUnitMultiplier." 1546 ::= { eoPowerEntry 2 } 1548 eoPowerUnitMultiplier OBJECT-TYPE 1549 SYNTAX UnitMultiplier 1550 MAX-ACCESS read-only 1551 STATUS current 1552 DESCRIPTION 1553 "The magnitude of watts for the usage value in eoPower 1554 and eoPowerNameplate." 1555 ::= { eoPowerEntry 3 } 1557 eoPowerAccuracy OBJECT-TYPE 1558 SYNTAX Integer32 (0..10000) 1559 UNITS "hundredths of percent" 1560 MAX-ACCESS read-only 1561 STATUS current 1562 DESCRIPTION 1563 "This object indicates a percentage value, in 100ths of a 1564 percent, representing the assumed accuracy of the usage 1565 reported by eoPower. For example: The value 1010 means 1566 the reported usage is accurate to +/- 10.1 percent. This 1567 value is zero if the accuracy is unknown or not 1568 applicable based upon the measurement method. 1570 ANSI and IEC define the following accuracy classes for 1571 power measurement: 1572 IEC 62053-22 60044-1 class 0.1, 0.2, 0.5, 1 3. 1573 ANSI C12.20 class 0.2, 0.5" 1574 ::= { eoPowerEntry 4 } 1576 eoPowerMeasurementCaliber OBJECT-TYPE 1577 SYNTAX INTEGER { 1578 unavailable(1) , 1579 unknown(2), 1580 actual(3) , 1581 estimated(4), 1582 static(5) } 1583 MAX-ACCESS read-only 1584 STATUS current 1585 DESCRIPTION 1586 "This object specifies how the usage value reported by 1587 eoPower was obtained: 1589 - unavailable(1): Indicates that the usage is not 1590 available. In such a case, the eoPower value must be 0 1591 for devices that can not measure or report power this 1592 option can be used. 1594 - unknown(2): Indicates that the way the usage was 1595 determined is unknown. In some cases, entities report 1596 aggregate power on behalf of another device. In such 1597 cases it is not known whether the usage reported is 1598 actual, estimated or static. 1600 - actual(3): Indicates that the reported usage was 1601 measured by the entity through some hardware or direct 1602 physical means. The usage data reported is not estimated 1603 or static but is the measured consumption rate. 1605 - estimated(4): Indicates that the usage was not 1606 determined by physical measurement. The value is a 1607 derivation based upon the device type, state, and/or 1608 current utilization using some algorithm or heuristic. It 1609 is presumed that the entity's state and current 1610 configuration were used to compute the value. 1612 - static(5): Indicates that the usage was not determined 1613 by physical measurement, algorithm or derivation. The 1614 usage was reported based upon external tables, 1615 specifications, and/or model information. For example, a 1616 PC Model X draws 200W, while a PC Model Y draws 210W." 1617 ::= { eoPowerEntry 5 } 1619 eoPowerCurrentType OBJECT-TYPE 1620 SYNTAX INTEGER { 1621 ac(1), 1622 dc(2), 1623 unknown(3) 1624 } 1625 MAX-ACCESS read-only 1626 STATUS current 1627 DESCRIPTION 1628 "This object indicates whether the eoPower for the 1629 Energy Object reports alternating current 'ac', direct 1630 current 'dc', or that the current type is unknown." 1631 ::= { eoPowerEntry 6 } 1633 eoPowerMeasurementLocal OBJECT-TYPE 1634 SYNTAX TruthValue 1635 MAX-ACCESS read-only 1636 STATUS current 1637 DESCRIPTION 1638 "This object indicates the source of power measurement 1639 and can be useful when modeling the power usage of 1640 attached devices. The power measurement can be performed 1641 by the entity itself or the power measurement of the 1642 entity can be reported by another trusted entity using a 1643 protocol extension. A value of true indicates the 1644 measurement is performed by the entity, whereas false 1645 indicates that the measurement was performed by another 1646 entity." 1647 ::= { eoPowerEntry 7 } 1649 eoPowerAdminState OBJECT-TYPE 1650 SYNTAX PowerStateSet 1651 MAX-ACCESS read-write 1652 STATUS current 1653 DESCRIPTION 1654 "This object specifies the desired Power State and the 1655 Power State Set for the Energy Object. Note that other(0) 1656 is not a Power State Set and unknown(255) is not a Power 1657 State as such, but simply an indication that the Power 1658 State of the Energy Object is unknown. 1659 Possible values of eoPowerAdminState within the Power 1660 State Set are registered at IANA. 1661 A current list of assignments can be found at 1662 http://www.iana.org/assignments/power-state-sets" 1663 ::= { eoPowerEntry 8 } 1665 eoPowerOperState OBJECT-TYPE 1666 SYNTAX PowerStateSet 1667 MAX-ACCESS read-only 1668 STATUS current 1669 DESCRIPTION 1670 "This object specifies the current operational Power 1671 State and the Power State Set for the Energy Object. 1672 other(0) is not a Power State Set and unknown(255) is not 1673 a Power State as such, but simply an indication that the 1674 Power State of the Energy Object is unknown. 1676 Possible values of eoPowerOperState within the Power 1677 State Set are registered at IANA. A current list of 1678 assignments can be found at < 1679 http://www.iana.org/assignments/power-state-sets>" 1680 ::= { eoPowerEntry 9 } 1682 eoPowerStateEnterReason OBJECT-TYPE 1683 SYNTAX OwnerString 1684 MAX-ACCESS read-write 1685 STATUS current 1686 DESCRIPTION 1687 "This string object describes the reason for the 1688 eoPowerAdminState transition. Alternatively, this string 1689 may contain with the entity that configured this Energy 1690 Object to this Power State." 1691 DEFVAL { "" } 1692 ::= { eoPowerEntry 10 } 1694 eoPowerStorageType OBJECT-TYPE 1695 SYNTAX StorageType 1696 MAX-ACCESS read-write 1697 STATUS current 1698 DESCRIPTION 1699 "This variable indicates the storage type for this row." 1700 DEFVAL { nonVolatile } 1701 ::= { eoPowerEntry 11 } 1703 eoPowerStateTable OBJECT-TYPE 1704 SYNTAX SEQUENCE OF EoPowerStateEntry 1705 MAX-ACCESS not-accessible 1706 STATUS current 1707 DESCRIPTION 1708 "This table enumerates the maximum power usage, in watts, 1709 for every single supported Power State of each Energy 1710 Object. 1712 This table has cross-reference with the eoPowerTable, 1713 containing rows describing each Power State for the 1714 corresponding Energy Object. For every Energy Object in 1715 the eoPowerTable, there is a corresponding entry in this 1716 table." 1717 ::= { energyObjectMibObjects 3 } 1719 eoPowerStateEntry OBJECT-TYPE 1720 SYNTAX EoPowerStateEntry 1721 MAX-ACCESS not-accessible 1722 STATUS current 1723 DESCRIPTION 1724 "A eoPowerStateEntry extends a corresponding 1725 eoPowerEntry. This entry displays max usage values at 1726 every single possible Power State supported by the Energy 1727 Object. 1728 For example, given the values of a Energy Object 1729 corresponding to a maximum usage of 0 W at the 1730 state emanmechoff, 8 W at state 6 (ready), 11 W at state 1731 emanmediumMinus,and 11 W at state emanhigh: 1733 State MaxUsage Units 1734 emanmechoff 0 W 1735 emansoftoff 0 W 1736 emanhibernate 0 W 1737 emansleep 0 W 1738 emanstandby 0 W 1739 emanready 8 W 1740 emanlowMinus 8 W 1741 emanlow 11 W 1742 emanmediumMinus 11 W 1743 emanmedium 11 W 1744 emanhighMinus 11 W 1745 emnanhigh 11 W 1747 Furthermore, this table also includes the total time in 1748 each Power State, along with the number of times a 1749 particular Power State was entered." 1751 INDEX { entPhysicalIndex, eoPowerStateIndex } 1752 ::= { eoPowerStateTable 1 } 1754 EoPowerStateEntry ::= SEQUENCE { 1755 eoPowerStateIndex PowerStateSet, 1756 eoPowerStateMaxPower INTEGER, 1757 eoPowerStatePowerUnitMultiplier UnitMultiplier, 1758 eoPowerStateTotalTime TimeTicks, 1759 eoPowerStateEnterCount Counter32 1760 } 1762 eoPowerStateIndex OBJECT-TYPE 1763 SYNTAX PowerStateSet 1764 MAX-ACCESS not-accessible 1765 STATUS current 1766 DESCRIPTION 1767 "This object specifies the index of the Power State of 1768 the Energy Object within a Power State Set. The semantics 1769 of the specific Power State can be obtained from the 1770 Power State Set definition." 1772 ::= { eoPowerStateEntry 1 } 1774 eoPowerStateMaxPower OBJECT-TYPE 1775 SYNTAX Integer32 1776 UNITS "watts" 1777 MAX-ACCESS read-only 1778 STATUS current 1779 DESCRIPTION 1780 "This object indicates the maximum power for the Energy 1781 Object at the particular Power State. This value is 1782 specified in SI units of watts with the magnitude of the 1783 units (milliwatts, kilowatts, etc.) indicated separately 1784 in eoPowerStatePowerUnitMultiplier. If the maximum power 1785 is not known for a certain Power State, then the value is 1786 encoded as 0xFFFFFFFF. 1788 For Power States not enumerated, the value of 1789 eoPowerStateMaxPower might be interpolated by using the 1790 next highest supported Power State." 1791 ::= { eoPowerStateEntry 2 } 1793 eoPowerStatePowerUnitMultiplier OBJECT-TYPE 1794 SYNTAX UnitMultiplier 1795 MAX-ACCESS read-only 1796 STATUS current 1797 DESCRIPTION 1798 "The magnitude of watts for the usage value in 1799 eoPowerStateMaxPower." 1800 ::= { eoPowerStateEntry 3 } 1802 eoPowerStateTotalTime OBJECT-TYPE 1803 SYNTAX TimeTicks 1804 MAX-ACCESS read-only 1805 STATUS current 1806 DESCRIPTION 1807 "This object indicates the total time in hundredths 1808 of second that the Energy Object has been in this power 1809 state since the last reset, as specified in the 1810 sysUpTime." 1811 ::= { eoPowerStateEntry 4 } 1813 eoPowerStateEnterCount OBJECT-TYPE 1814 SYNTAX Counter32 1815 MAX-ACCESS read-only 1816 STATUS current 1817 DESCRIPTION 1818 "This object indicates how often the Energy Object has 1819 entered this power state, since the last reset of the 1820 device as specified in the sysUpTime." 1821 ::= { eoPowerStateEntry 5 } 1823 eoEnergyParametersTable OBJECT-TYPE 1824 SYNTAX SEQUENCE OF EoEnergyParametersEntry 1825 MAX-ACCESS not-accessible 1826 STATUS current 1827 DESCRIPTION 1828 "This table is used to configure the parameters for 1829 Energy measurement collection in the table eoEnergyTable. 1830 This table allows the configuration of different 1831 measurement settings on the same Energy Object. 1832 Implementation of this table only makes sense for Energy 1833 Objects that an eoPowerMeasurementCaliber of actual." 1834 ::= { energyObjectMibObjects 4 } 1836 eoEnergyParametersEntry OBJECT-TYPE 1837 SYNTAX EoEnergyParametersEntry 1838 MAX-ACCESS not-accessible 1839 STATUS current 1840 DESCRIPTION 1841 "An entry controls an energy measurement in 1842 eoEnergyTable." 1843 INDEX { entPhysicalIndex, eoEnergyParametersIndex } 1844 ::= { eoEnergyParametersTable 1 } 1846 EoEnergyParametersEntry ::= SEQUENCE { 1847 eoEnergyParametersIndex Integer32, 1848 eoEnergyParametersIntervalLength TimeInterval, 1849 eoEnergyParametersIntervalNumber Unsigned32, 1850 eoEnergyParametersIntervalMode INTEGER, 1851 eoEnergyParametersIntervalWindow TimeInterval, 1852 eoEnergyParametersSampleRate Unsigned32, 1853 eoEnergyParametersStorageType StorageType, 1854 eoEnergyParametersStatus RowStatus 1855 } 1857 eoEnergyParametersIndex OBJECT-TYPE 1858 SYNTAX Integer32 (1..2147483647) 1859 MAX-ACCESS not-accessible 1860 STATUS current 1861 DESCRIPTION 1862 "This object specifies the index of the Energy Parameters 1863 setting for collection of energy measurements for an 1864 Energy Object. An Energy Object can have multiple 1865 eoEnergyParametersIndex, depending on the capabilities of 1866 the Energy Object" 1867 ::= { eoEnergyParametersEntry 2 } 1869 eoEnergyParametersIntervalLength OBJECT-TYPE 1870 SYNTAX TimeInterval 1871 MAX-ACCESS read-create 1872 STATUS current 1873 DESCRIPTION 1874 "This object indicates the length of time in hundredths 1875 of seconds over which to compute the average 1876 eoEnergyConsumed measurement in the eoEnergyTable table. 1877 The computation is based on the Energy Object's internal 1878 sampling rate of power consumed or produced by the Energy 1879 Object. The sampling rate is the rate at which the Energy 1880 Object can read the power usage and may differ based on 1881 device capabilities. The average energy consumption is 1882 then computed over the length of the interval. The 1883 default value of 15 minutes is a common interval used in 1884 industry." 1885 DEFVAL { 90000 } 1886 ::= { eoEnergyParametersEntry 3 } 1888 eoEnergyParametersIntervalNumber OBJECT-TYPE 1889 SYNTAX Unsigned32 1890 MAX-ACCESS read-create 1891 STATUS current 1892 DESCRIPTION 1893 "The number of intervals maintained in the eoEnergyTable. 1894 Each interval is characterized by a specific 1895 eoEnergyCollectionStartTime, used as an index to the 1896 table eoEnergyTable. Whenever the maximum number of 1897 entries is reached, the measurement over the new interval 1898 replaces the oldest measurement. There is one exception 1899 to this rule: when the eoEnergyMaxConsumed and/or 1900 eoEnergyMaxProduced are in (one of) the two oldest 1901 measurement(s), they are left untouched and the next 1902 oldest measurement is replaced." 1903 DEFVAL { 10 } 1904 ::= { eoEnergyParametersEntry 4 } 1906 eoEnergyParametersIntervalMode OBJECT-TYPE 1907 SYNTAX INTEGER { 1908 period(1), 1909 sliding(2), 1910 total(3) 1911 } 1912 MAX-ACCESS read-create 1913 STATUS current 1914 DESCRIPTION 1915 "A control object to define the mode of interval 1916 calculation for the computation of the average 1917 eoEnergyConsumed or eoEnergyProvided measurement in the 1918 eoEnergyTable table. 1920 A mode of period(1) specifies non-overlapping periodic 1921 measurements. 1923 A mode of sliding(2) specifies overlapping sliding 1924 windows where the interval between the start of one 1925 interval and the next is defined in 1926 eoEnergyParametersIntervalWindow. 1928 A mode of total(3) specifies non-periodic measurement. 1929 In this mode only one interval is used as this is a 1930 continuous measurement since the last reset. The value of 1931 eoEnergyParametersIntervalNumber should be (1) one and 1932 eoEnergyParametersIntervalLength is ignored." 1933 ::= { eoEnergyParametersEntry 5 } 1935 eoEnergyParametersIntervalWindow OBJECT-TYPE 1936 SYNTAX TimeInterval 1937 MAX-ACCESS read-create 1938 STATUS current 1939 DESCRIPTION 1940 "The length of the duration window between the starting 1941 time of one sliding window and the next starting time in 1942 hundredths of seconds, in order to compute the average of 1943 eoEnergyConsumed, eoEnergyProvided measurements in the 1944 eoEnergyTable table. This is valid only when the 1945 eoEnergyParametersIntervalMode is sliding(2). The 1946 eoEnergyParametersIntervalWindow value should be a 1947 multiple of eoEnergyParametersSampleRate." 1948 ::= { eoEnergyParametersEntry 6 } 1950 eoEnergyParametersSampleRate OBJECT-TYPE 1951 SYNTAX Unsigned32 1952 UNITS "Milliseconds" 1953 MAX-ACCESS read-create 1954 STATUS current 1955 DESCRIPTION 1956 "The sampling rate, in milliseconds, at which the Energy 1957 Object should poll power usage in order to compute the 1958 average eoEnergyConsumed, eoEnergyProvided measurements 1959 in the table eoEnergyTable. The Energy Object should 1960 initially set this sampling rate to a reasonable value, 1961 i.e., a compromise between intervals that will provide 1962 good accuracy by not being too long, but not so short 1963 that they affect the Energy Object performance by 1964 requesting continuous polling. If the sampling rate is 1965 unknown, the value 0 is reported. The sampling rate 1966 should be selected so that 1967 eoEnergyParametersIntervalWindow is a multiple of 1968 eoEnergyParametersSampleRate. The default value is one 1969 second." 1970 DEFVAL { 1000 } 1971 ::= { eoEnergyParametersEntry 7 } 1973 eoEnergyParametersStorageType OBJECT-TYPE 1974 SYNTAX StorageType 1975 MAX-ACCESS read-create 1976 STATUS current 1977 DESCRIPTION 1978 "This variable indicates the storage type for this row." 1979 DEFVAL { nonVolatile } 1980 ::= {eoEnergyParametersEntry 8 } 1982 eoEnergyParametersStatus OBJECT-TYPE 1983 SYNTAX RowStatus 1984 MAX-ACCESS read-create 1985 STATUS current 1986 DESCRIPTION 1987 "The status of this row. The eoEnergyParametersStatus is 1988 used to start or stop energy usage logging. An entry 1989 status may not be active(1) unless all objects in the 1990 entry have an appropriate value. If this object is not 1991 equal to active, all associated usage-data logged into 1992 the eoEnergyTable will be deleted. The data can be 1993 destroyed by setting up the eoEnergyParametersStatus to 1994 destroy." 1995 ::= {eoEnergyParametersEntry 9 } 1997 eoEnergyTable OBJECT-TYPE 1998 SYNTAX SEQUENCE OF EoEnergyEntry 1999 MAX-ACCESS not-accessible 2000 STATUS current 2001 DESCRIPTION 2002 "This table lists Energy Object energy measurements. 2003 Entries in this table are only created if the 2004 corresponding value of object eoPowerMeasurementCaliber 2005 is active(3), i.e., if the power is actually metered." 2006 ::= { energyObjectMibObjects 5 } 2008 eoEnergyEntry OBJECT-TYPE 2009 SYNTAX EoEnergyEntry 2010 MAX-ACCESS not-accessible 2011 STATUS current 2012 DESCRIPTION 2013 "An entry describing energy measurements." 2014 INDEX { eoEnergyParametersIndex, 2015 eoEnergyCollectionStartTime } 2016 ::= { eoEnergyTable 1 } 2018 EoEnergyEntry ::= SEQUENCE { 2019 eoEnergyCollectionStartTime TimeTicks, 2020 eoEnergyConsumed Unsigned32, 2021 eoEnergyProvided Unsigned32, 2022 eoEnergyStored Unsigned32, 2023 eoEnergyUnitMultiplier UnitMultiplier, 2024 eoEnergyAccuracy Integer32, 2025 eoEnergyMaxConsumed Unsigned32, 2026 eoEnergyMaxProduced Unsigned32, 2027 eoEnergyDiscontinuityTime TimeStamp 2028 } 2030 eoEnergyCollectionStartTime OBJECT-TYPE 2031 SYNTAX TimeTicks 2032 UNITS "hundredths of seconds" 2033 MAX-ACCESS not-accessible 2034 STATUS current 2035 DESCRIPTION 2036 "The time (in hundredths of a second) since the 2037 network management portion of the system was last 2038 re-initialized, as specified in the sysUpTime [RFC3418]. 2039 This object specifies the start time of the energy 2040 measurement sample. " 2041 ::= { eoEnergyEntry 1 } 2043 eoEnergyConsumed OBJECT-TYPE 2044 SYNTAX Unsigned32 2045 UNITS "Watt-hours" 2046 MAX-ACCESS read-only 2047 STATUS current 2048 DESCRIPTION 2049 "This object indicates the energy consumed in units of 2050 watt-hours for the Energy Object over the defined 2051 interval. This value is specified in the common billing 2052 units of watt-hours with the magnitude of watt-hours (kW- 2053 Hr, MW-Hr, etc.) indicated separately in 2054 eoEnergyUnitMultiplier." 2055 ::= { eoEnergyEntry 2 } 2057 eoEnergyProvided OBJECT-TYPE 2058 SYNTAX Unsigned32 2059 UNITS "Watt-hours" 2060 MAX-ACCESS read-only 2061 STATUS current 2062 DESCRIPTION 2063 "This object indicates the energy produced in units of 2064 watt-hours for the Energy Object over the defined 2065 interval. 2067 This value is specified in the common billing units of 2068 watt-hours with the magnitude of watt-hours (kW-Hr, MW- 2069 Hr, etc.) indicated separately in 2070 eoEnergyUnitMultiplier." 2071 ::= { eoEnergyEntry 3 } 2073 eoEnergyStored OBJECT-TYPE 2074 SYNTAX Unsigned32 2075 UNITS "Watt-hours" 2076 MAX-ACCESS read-only 2077 STATUS current 2078 DESCRIPTION 2079 "This object indicates the difference of the energy 2080 consumed and energy produced for an Energy Object in 2081 units of watt-hours for the Energy Object over the 2082 defined interval. This value is specified in the common 2083 billing units of watt-hours with the magnitude of watt- 2084 hours (kW-Hr, MW-Hr, etc.) indicated separately in 2085 eoEnergyUnitMultiplier." 2086 ::= { eoEnergyEntry 4 } 2088 eoEnergyUnitMultiplier OBJECT-TYPE 2089 SYNTAX UnitMultiplier 2090 MAX-ACCESS read-only 2091 STATUS current 2092 DESCRIPTION 2093 "This object is the magnitude of watt-hours for the 2094 energy field in eoEnergyConsumed, eoEnergyProvided, 2095 eoEnergyStored, eoEnergyMaxConsumed, and 2096 eoEnergyMaxProduced." 2097 ::= { eoEnergyEntry 5 } 2099 eoEnergyAccuracy OBJECT-TYPE 2100 SYNTAX Integer32 (0..10000) 2101 UNITS "hundredths of percent" 2102 MAX-ACCESS read-only 2103 STATUS current 2104 DESCRIPTION 2105 "This object indicates a percentage accuracy, in 100ths 2106 of a percent, of Energy usage reporting. eoEnergyAccuracy 2107 is applicable to all Energy measurements in the 2108 eoEnergyTable. 2110 For example: 1010 means the reported usage is accurate to 2111 +/- 10.1 percent. 2113 This value is zero if the accuracy is unknown." 2114 ::= { eoEnergyEntry 6 } 2116 eoEnergyMaxConsumed OBJECT-TYPE 2117 SYNTAX Unsigned32 2118 UNITS "Watt-hours" 2119 MAX-ACCESS read-only 2120 STATUS current 2121 DESCRIPTION 2122 "This object is the maximum energy observed in 2123 eoEnergyConsumed since the monitoring started or was 2124 reinitialized. This value is specified in the common 2125 billing units of watt-hours with the magnitude of watt- 2126 hours (kW-Hr, MW-Hr, etc.) indicated separately in 2127 eoEnergyUnitMultiplier." 2128 ::= { eoEnergyEntry 7 } 2130 eoEnergyMaxProduced OBJECT-TYPE 2131 SYNTAX Unsigned32 2132 UNITS "Watt-hours" 2133 MAX-ACCESS read-only 2134 STATUS current 2135 DESCRIPTION 2136 "This object is the maximum energy ever observed in 2137 eoEnergyEnergyProduced since the monitoring started. This 2138 value is specified in the units of watt-hours with the 2139 magnitude of watt-hours (kW-Hr, MW-Hr, etc.) indicated 2140 separately in eoEnergyEnergyUnitMultiplier." 2141 ::= { eoEnergyEntry 8 } 2143 eoEnergyDiscontinuityTime OBJECT-TYPE 2144 SYNTAX TimeStamp 2145 MAX-ACCESS read-only 2146 STATUS current 2147 DESCRIPTION 2148 "The value of sysUpTime [RFC3418] on the most recent 2149 occasion at which any one or more of this entity's energy 2150 counters in this table suffered a discontinuity: 2151 eoEnergyConsumed, eoEnergyProvided or eoEnergyStored. If 2152 no such discontinuities have occurred since the last re- 2153 initialization of the local management subsystem, then 2154 this object contains a zero value." 2155 ::= { eoEnergyEntry 9 } 2157 -- Notifications 2159 eoPowerEnableStatusNotification 2160 OBJECT-TYPE 2161 SYNTAX TruthValue 2162 MAX-ACCESS read-write 2163 STATUS current 2164 DESCRIPTION 2165 "This object controls whether the system produces 2166 notifications for eoPowerStateChange. A false value will 2167 prevent these notifications from being generated." 2168 DEFVAL { false } 2169 ::= { energyObjectMibNotifs 1 } 2171 eoPowerStateChange NOTIFICATION-TYPE 2172 OBJECTS {eoPowerAdminState, eoPowerOperState, 2173 eoPowerStateEnterReason} 2174 STATUS current 2175 DESCRIPTION 2176 "The SNMP entity generates the eoPowerStateChange when 2177 the values of eoPowerAdminState or eoPowerOperState, 2178 in the context of the Power State Set, have changed for 2179 the Energy Object represented by the entPhysicalIndex." 2180 ::= { energyObjectMibNotifs 2 } 2182 -- Conformance 2184 energyObjectMibCompliances OBJECT IDENTIFIER 2185 ::= { energyObjectMibConform 1 } 2187 energyObjectMibGroups OBJECT IDENTIFIER 2188 ::= { energyObjectMibConform 2 } 2190 energyObjectMibFullCompliance MODULE-COMPLIANCE 2191 STATUS current 2192 DESCRIPTION 2193 "When this MIB is implemented with support for 2194 read-create, then such an implementation can 2195 claim full compliance. Such devices can then 2196 be both monitored and configured with this MIB. 2198 Module Compliance of [RFC6933] 2199 with respect to entity4CRCompliance MUST 2200 be supported which requires implementation 2201 of 4 MIB objects: entPhysicalIndex, entPhysicalClass, 2202 entPhysicalName and entPhysicalUUID." 2203 MODULE -- this module 2204 MANDATORY-GROUPS { 2205 energyObjectMibTableGroup, 2206 energyObjectMibStateTableGroup, 2207 eoPowerEnableStatusNotificationGroup, 2208 energyObjectMibNotifGroup 2209 } 2211 GROUP energyObjectMibEnergyTableGroup 2212 DESCRIPTION "A compliant implementation does not 2213 have to implement." 2215 GROUP energyObjectMibEnergyParametersTableGroup 2216 DESCRIPTION "A compliant implementation does not 2217 have to implement." 2219 GROUP energyObjectMibMeterCapabilitiesTableGroup 2220 DESCRIPTION "A compliant implementation does not 2221 have to implement." 2222 ::= { energyObjectMibCompliances 1 } 2224 energyObjectMibReadOnlyCompliance MODULE-COMPLIANCE 2225 STATUS current 2226 DESCRIPTION 2227 "When this MIB is implemented without support for 2228 read-create (i.e., in read-only mode), then such an 2229 implementation can claim read-only compliance. Such a 2230 device can then be monitored but cannot be 2231 configured with this MIB. 2233 Module Compliance of [RFC6933] with respect to 2234 entity4CRCompliance MUST be supported which requires 2235 implementation of 4 MIB objects: entPhysicalIndex, 2236 entPhysicalClass, entPhysicalName and entPhysicalUUID." 2237 MODULE -- this module 2238 MANDATORY-GROUPS { 2239 energyObjectMibTableGroup, 2240 energyObjectMibStateTableGroup, 2241 energyObjectMibNotifGroup 2242 } 2244 OBJECT eoPowerOperState 2245 MIN-ACCESS read-only 2246 DESCRIPTION 2247 "Write access is not required." 2248 ::= { energyObjectMibCompliances 2 } 2250 -- Units of Conformance 2252 energyObjectMibTableGroup OBJECT-GROUP 2253 OBJECTS { 2254 eoPower, 2255 eoPowerNameplate, 2256 eoPowerUnitMultiplier, 2257 eoPowerAccuracy, 2258 eoPowerMeasurementCaliber, 2259 eoPowerCurrentType, 2260 eoPowerMeasurementLocal, 2261 eoPowerAdminState, 2262 eoPowerOperState, 2263 eoPowerStateEnterReason, 2264 eoPowerStorageType 2265 } 2266 STATUS current 2267 DESCRIPTION 2268 "This group contains the collection of all the objects 2269 related to the Energy Object." 2270 ::= { energyObjectMibGroups 1 } 2272 energyObjectMibStateTableGroup OBJECT-GROUP 2273 OBJECTS { 2274 eoPowerStateMaxPower, 2275 eoPowerStatePowerUnitMultiplier, 2276 eoPowerStateTotalTime, 2277 eoPowerStateEnterCount 2278 } 2279 STATUS current 2280 DESCRIPTION 2281 "This group contains the collection of all the objects 2282 related to the Power State." 2283 ::= { energyObjectMibGroups 2 } 2285 energyObjectMibEnergyParametersTableGroup OBJECT-GROUP 2286 OBJECTS { 2287 eoEnergyParametersIntervalLength, 2288 eoEnergyParametersIntervalNumber, 2289 eoEnergyParametersIntervalMode, 2290 eoEnergyParametersIntervalWindow, 2291 eoEnergyParametersSampleRate, 2292 eoEnergyParametersStorageType, 2293 eoEnergyParametersStatus 2294 } 2295 STATUS current 2296 DESCRIPTION 2297 "This group contains the collection of all the objects 2298 related to the configuration of the Energy Table." 2299 ::= { energyObjectMibGroups 3 } 2301 energyObjectMibEnergyTableGroup OBJECT-GROUP 2302 OBJECTS { 2303 -- Note that object 2304 -- eoEnergyCollectionStartTime is not 2305 -- included since it is not-accessible 2307 eoEnergyConsumed, 2308 eoEnergyProvided, 2309 eoEnergyStored, 2310 eoEnergyUnitMultiplier, 2311 eoEnergyAccuracy, 2312 eoEnergyMaxConsumed, 2313 eoEnergyMaxProduced, 2314 eoEnergyDiscontinuityTime 2315 } 2316 STATUS current 2317 DESCRIPTION 2318 "This group contains the collection of all the objects 2319 related to the Energy Table." 2320 ::= { energyObjectMibGroups 4 } 2322 energyObjectMibMeterCapabilitiesTableGroup OBJECT-GROUP 2323 OBJECTS { 2324 eoMeterCapability 2325 } 2326 STATUS current 2327 DESCRIPTION 2328 "This group contains the object indicating the capability 2329 of the Energy Object" 2330 ::= { energyObjectMibGroups 5 } 2332 eoPowerEnableStatusNotificationGroup OBJECT-GROUP 2333 OBJECTS { eoPowerEnableStatusNotification } 2334 STATUS current 2335 DESCRIPTION 2336 "The collection of objects which are used to enable 2337 notification." 2338 ::= { energyObjectMibGroups 6 } 2340 energyObjectMibNotifGroup NOTIFICATION-GROUP 2341 NOTIFICATIONS { 2342 eoPowerStateChange 2343 } 2344 STATUS current 2345 DESCRIPTION 2346 "This group contains the notifications for 2347 the Power, Energy Monitoring and Control MIB Module." 2348 ::= { energyObjectMibGroups 7 } 2350 END 2352 9.3. The POWER-ATTRIBUTES-MIB MIB Module 2354 -- ************************************************************ 2355 -- 2356 -- This MIB module is used to monitor power attributes of 2357 -- networked devices with measurements. 2358 -- 2359 -- This MIB module is an extension of energyObjectMib module. 2360 -- 2361 -- ************************************************************* 2363 POWER-ATTRIBUTES-MIB DEFINITIONS ::= BEGIN 2365 IMPORTS 2366 MODULE-IDENTITY, 2367 OBJECT-TYPE, 2368 mib-2, 2369 Integer32, Unsigned32 2370 FROM SNMPv2-SMI 2371 MODULE-COMPLIANCE, 2372 OBJECT-GROUP 2373 FROM SNMPv2-CONF 2375 UnitMultiplier 2376 FROM ENERGY-OBJECT-MIB 2377 entPhysicalIndex 2378 FROM ENTITY-MIB; 2380 powerAttributesMIB MODULE-IDENTITY 2382 LAST-UPDATED "201406070000Z" -- 07 June 2014 2384 ORGANIZATION "IETF EMAN Working Group" 2385 CONTACT-INFO 2386 "WG charter: 2387 http://datatracker.ietf.org/wg/eman/charter/ 2389 Mailing Lists: 2390 General Discussion: eman@ietf.org 2392 To Subscribe: 2393 https://www.ietf.org/mailman/listinfo/eman 2395 Archive: 2396 http://www.ietf.org/mail-archive/web/eman 2398 Editors: 2400 Mouli Chandramouli 2401 Cisco Systems, Inc. 2402 Sarjapur Outer Ring Road 2403 Bangalore 560103 2404 IN 2405 Phone: +91 80 4429 2409 2406 Email: moulchan@cisco.com 2408 Brad Schoening 2409 44 Rivers Edge Drive 2410 Little Silver, NJ 07739 2411 US 2412 Email: brad.schoening@verizon.net 2414 Juergen Quittek 2415 NEC Europe Ltd. 2416 NEC Laboratories Europe 2417 Network Research Division 2418 Kurfuersten-Anlage 36 2419 Heidelberg 69115 2420 DE 2421 Phone: +49 6221 4342-115 2422 Email: quittek@neclab.eu 2424 Thomas Dietz 2425 NEC Europe Ltd. 2427 NEC Laboratories Europe 2428 Network Research Division 2429 Kurfuersten-Anlage 36 2430 69115 Heidelberg 2431 DE 2432 Phone: +49 6221 4342-128 2433 Email: Thomas.Dietz@nw.neclab.eu 2435 Benoit Claise 2436 Cisco Systems, Inc. 2437 De Kleetlaan 6a b1 2438 Degem 1831 2439 Belgium 2440 Phone: +32 2 704 5622 2441 Email: bclaise@cisco.com" 2443 DESCRIPTION 2444 "This MIB is used to report AC power attributes in 2445 devices. The table is a sparse augmentation of the 2446 eoPowerTable table from the energyObjectMib module. 2447 Both three-phase and single-phase power 2448 configurations are supported. 2450 As a requirement for this MIB module, 2451 [EMAN-AWARE-MIB] SHOULD be implemented. 2453 Module Compliance of ENTITY-MIB v4 with respect to 2454 entity4CRCompliance MUST be supported which requires 2455 implementation of 4 MIB objects: entPhysicalIndex, 2456 entPhysicalClass, entPhysicalName and 2457 entPhysicalUUID." 2459 REVISION "201406070000Z" -- 07 June 2014 2460 DESCRIPTION 2461 "Initial version, published as RFC XXXX" 2463 -- RFC Editor, please replace zzz with the IANA allocation 2464 -- for this MIB module and XXXX with the number of the 2465 -- approved RFC 2467 ::= { mib-2 zzz } 2469 powerAttributesMIBConform OBJECT IDENTIFIER 2470 ::= { powerAttributesMIB 0 } 2472 powerAttributesMIBObjects OBJECT IDENTIFIER 2473 ::= { powerAttributesMIB 1 } 2475 -- Objects 2476 eoACPwrAttributesTable OBJECT-TYPE 2477 SYNTAX SEQUENCE OF EoACPwrAttributesEntry 2478 MAX-ACCESS not-accessible 2479 STATUS current 2480 DESCRIPTION 2481 "This table contains power attributes measurements for 2482 supported entPhysicalIndex entities. It is a sparse 2483 extension of the eoPowerTable." 2484 ::= { powerAttributesMIBObjects 1 } 2486 eoACPwrAttributesEntry OBJECT-TYPE 2487 SYNTAX EoACPwrAttributesEntry 2488 MAX-ACCESS not-accessible 2489 STATUS current 2490 DESCRIPTION 2491 "This is a sparse extension of the eoPowerTable with 2492 entries for power attributes measurements or 2493 configuration. Each measured value corresponds to an 2494 attribute in IEC 61850-7-4 for non-phase measurements 2495 within the object MMUX." 2496 INDEX { entPhysicalIndex } 2497 ::= { eoACPwrAttributesTable 1 } 2499 EoACPwrAttributesEntry ::= SEQUENCE { 2500 eoACPwrAttributesConfiguration INTEGER, 2501 eoACPwrAttributesAvgVoltage Integer32, 2502 eoACPwrAttributesAvgCurrent Unsigned32, 2503 eoACPwrAttributesFrequency Integer32, 2504 eoACPwrAttributesPowerUnitMultiplier UnitMultiplier, 2505 eoACPwrAttributesPowerAccuracy Integer32, 2506 eoACPwrAttributesTotalActivePower Integer32, 2507 eoACPwrAttributesTotalReactivePower Integer32, 2508 eoACPwrAttributesTotalApparentPower Integer32, 2509 eoACPwrAttributesTotalPowerFactor Integer32, 2510 eoACPwrAttributesThdCurrent Integer32, 2511 eoACPwrAttributesThdVoltage Integer32 2512 } 2514 eoACPwrAttributesConfiguration OBJECT-TYPE 2515 SYNTAX INTEGER { 2516 sngl(1), 2517 del(2), 2518 wye(3) 2519 } 2520 MAX-ACCESS read-only 2521 STATUS current 2522 DESCRIPTION 2523 "Configuration describes the physical configurations of 2524 the power supply lines: 2526 * alternating current, single phase (SNGL) 2527 * alternating current, three phase delta (DEL) 2528 * alternating current, three phase Y (WYE) 2530 Three-phase configurations can be either connected in a 2531 triangular delta (DEL) or star Y (WYE) system. WYE 2532 systems have a shared neutral voltage, while DEL systems 2533 do not. Each phase is offset 120 degrees to each other." 2534 ::= { eoACPwrAttributesEntry 1 } 2536 eoACPwrAttributesAvgVoltage OBJECT-TYPE 2537 SYNTAX Integer32 2538 UNITS "0.1 Volt AC" 2539 MAX-ACCESS read-only 2540 STATUS current 2541 DESCRIPTION 2542 "A measured value for average of the voltage measured 2543 over an integral number of AC cycles For a 3-phase 2544 system, this is the average voltage (V1+V2+V3)/3. IEC 2545 61850-7-4 measured value attribute 'Vol'" 2546 ::= { eoACPwrAttributesEntry 2 } 2548 eoACPwrAttributesAvgCurrent OBJECT-TYPE 2549 SYNTAX Unsigned32 2550 UNITS "amperes" 2551 MAX-ACCESS read-only 2552 STATUS current 2553 DESCRIPTION 2554 "A measured value for average of the current measured 2555 over an integral number of AC cycles For a 3-phase 2556 system, this is the average current (I1+I2+I3)/3. IEC 2557 61850-7-4 attribute 'Amp'" 2558 ::= { eoACPwrAttributesEntry 3 } 2560 eoACPwrAttributesFrequency OBJECT-TYPE 2561 SYNTAX Integer32 (4500..6500) 2562 UNITS "0.01 hertz" 2563 MAX-ACCESS read-only 2564 STATUS current 2565 DESCRIPTION 2566 "A measured value for the basic frequency of the AC 2567 circuit. IEC 61850-7-4 attribute 'Hz'." 2568 ::= { eoACPwrAttributesEntry 4 } 2570 eoACPwrAttributesPowerUnitMultiplier OBJECT-TYPE 2571 SYNTAX UnitMultiplier 2572 MAX-ACCESS read-only 2573 STATUS current 2574 DESCRIPTION 2575 "The magnitude of watts for the usage value in 2576 eoACPwrAttributesTotalActivePower, 2577 eoACPwrAttributesTotalReactivePower 2578 and eoACPwrAttributesTotalApparentPower measurements. 2579 For 3-phase power systems, this will also include 2580 eoACPwrAttributesWyeActivePower, 2581 eoACPwrAttributesWyeReactivePower and 2582 eoACPwrAttributesWyeApparentPower" 2583 ::= { eoACPwrAttributesEntry 5 } 2585 eoACPwrAttributesPowerAccuracy OBJECT-TYPE 2586 SYNTAX Integer32 (0..10000) 2587 UNITS "hundredths of percent" 2588 MAX-ACCESS read-only 2589 STATUS current 2590 DESCRIPTION 2591 "This object indicates a percentage value, in 100ths of a 2592 percent, representing the presumed accuracy of active, 2593 reactive, and apparent power usage reporting. For 2594 example: 1010 means the reported usage is accurate to +/- 2595 10.1 percent. This value is zero if the accuracy is 2596 unknown. 2598 ANSI and IEC define the following accuracy classes for 2599 power measurement: IEC 62053-22 & 60044-1 class 0.1, 0.2, 2600 0.5, 1 & 3. 2601 ANSI C12.20 class 0.2 & 0.5" 2602 ::= { eoACPwrAttributesEntry 6 } 2604 eoACPwrAttributesTotalActivePower OBJECT-TYPE 2605 SYNTAX Integer32 2606 UNITS "watts" 2607 MAX-ACCESS read-only 2608 STATUS current 2609 DESCRIPTION 2610 "A measured value of the actual power delivered to or 2611 consumed by the load. IEC 61850-7-4 attribute 'TotW'." 2612 ::= { eoACPwrAttributesEntry 7 } 2614 eoACPwrAttributesTotalReactivePower OBJECT-TYPE 2615 SYNTAX Integer32 2616 UNITS "volt-amperes reactive" 2617 MAX-ACCESS read-only 2618 STATUS current 2619 DESCRIPTION 2620 "A measured value of the reactive portion of the apparent 2621 power. IEC 61850-7-4 attribute 'TotVAr'." 2622 ::= { eoACPwrAttributesEntry 8 } 2624 eoACPwrAttributesTotalApparentPower OBJECT-TYPE 2625 SYNTAX Integer32 2626 UNITS "volt-amperes" 2627 MAX-ACCESS read-only 2628 STATUS current 2629 DESCRIPTION 2630 "A measured value of the voltage and current which 2631 determines the apparent power. The apparent power is the 2632 vector sum of real and reactive power. 2634 Note: watts and volt-amperes are equivalent units and may 2635 be combined. IEC 61850-7-4 attribute 'TotVA'." 2636 ::= { eoACPwrAttributesEntry 9 } 2638 eoACPwrAttributesTotalPowerFactor OBJECT-TYPE 2639 SYNTAX Integer32 (-10000..10000) 2640 UNITS "hundredths" 2641 MAX-ACCESS read-only 2642 STATUS current 2643 DESCRIPTION 2644 "A measured value ratio of the real power flowing to the 2645 load versus the apparent power. It is dimensionless and 2646 expressed here as a percentage value in 100ths. A power 2647 factor of 100% indicates there is no inductance load and 2648 thus no reactive power. Power Factor can be positive or 2649 negative, where the sign should be in lead/lag (IEEE) 2650 form. IEC 61850-7-4 attribute 'TotPF'." 2651 ::= { eoACPwrAttributesEntry 10 } 2653 eoACPwrAttributesThdCurrent OBJECT-TYPE 2654 SYNTAX Integer32 (0..10000) 2655 UNITS "hundredths of percent" 2656 MAX-ACCESS read-only 2657 STATUS current 2658 DESCRIPTION 2659 "A calculated value for the current total harmonic 2660 distortion (THD). Method of calculation is not 2661 specified. IEC 61850-7-4 attribute 'ThdAmp'." 2662 ::= { eoACPwrAttributesEntry 11 } 2664 eoACPwrAttributesThdVoltage OBJECT-TYPE 2665 SYNTAX Integer32 (0..10000) 2666 UNITS "hundredths of percent" 2667 MAX-ACCESS read-only 2668 STATUS current 2669 DESCRIPTION 2670 "A calculated value for the voltage total harmonic 2671 distortion (THD). Method of calculation is not 2672 specified. IEC 61850-7-4 attribute 'ThdVol'." 2673 ::= { eoACPwrAttributesEntry 12 } 2675 eoACPwrAttributesDelPhaseTable OBJECT-TYPE 2676 SYNTAX SEQUENCE OF EoACPwrAttributesDelPhaseEntry 2677 MAX-ACCESS not-accessible 2678 STATUS current 2679 DESCRIPTION 2680 "This optional table describes 3-phase power attributes 2681 measurements in a DEL configuration with phase-to-phase 2682 power attributes measurements. Entities having single 2683 phase power shall not have any entities. This is a 2684 sparse extension of the eoACPwrAttributesTable. 2686 These attributes correspond to IEC 61850-7.4 MMXU phase 2687 related measurements and MHAI phase related measured 2688 harmonic or interharmonics." 2689 ::= { powerAttributesMIBObjects 2 } 2691 eoACPwrAttributesDelPhaseEntry OBJECT-TYPE 2692 SYNTAX EoACPwrAttributesDelPhaseEntry 2693 MAX-ACCESS not-accessible 2694 STATUS current 2695 DESCRIPTION 2696 "An entry describes power measurements of a phase in a 2697 DEL 3-phase power. Three entries are required for each 2698 supported entPhysicalIndex entry. Voltage measurements 2699 are provided relative to each other. 2701 For phase-to-phase measurements, the 2702 eoACPwrAttributesDelPhaseIndex is compared against the 2703 following phase at +120 degrees. Thus, the possible 2704 values are: 2706 eoACPwrAttributesDelPhaseIndex Next Phase Angle 2708 0 120 2710 120 240 2711 240 0 2712 " 2713 INDEX { entPhysicalIndex, eoACPwrAttributesDelPhaseIndex } 2714 ::= { eoACPwrAttributesDelPhaseTable 1} 2716 EoACPwrAttributesDelPhaseEntry ::= SEQUENCE { 2717 eoACPwrAttributesDelPhaseIndex Integer32, 2718 eoACPwrAttributesDelPhaseToNextPhaseVoltage Integer32, 2719 eoACPwrAttributesDelThdPhaseToNextPhaseVoltage Integer32 2720 } 2722 eoACPwrAttributesDelPhaseIndex OBJECT-TYPE 2723 SYNTAX Integer32 (0..359) 2724 MAX-ACCESS not-accessible 2725 STATUS current 2726 DESCRIPTION 2727 "A phase angle typically corresponding to 0, 120, 240." 2728 ::= { eoACPwrAttributesDelPhaseEntry 1 } 2730 eoACPwrAttributesDelPhaseToNextPhaseVoltage OBJECT-TYPE 2731 SYNTAX Integer32 2732 UNITS "0.1 Volt AC" 2733 MAX-ACCESS read-only 2734 STATUS current 2735 DESCRIPTION 2736 "A measured value of phase to next phase voltages, where 2737 the next phase is IEC 61850-7-4 attribute 'PPV'." 2738 ::= { eoACPwrAttributesDelPhaseEntry 2 } 2740 eoACPwrAttributesDelThdPhaseToNextPhaseVoltage OBJECT-TYPE 2741 SYNTAX Integer32 (0..10000) 2742 UNITS "hundredths of percent" 2743 MAX-ACCESS read-only 2744 STATUS current 2745 DESCRIPTION 2746 "A calculated value for the voltage total harmonic 2747 disortion for phase to next phase. Method of calculation 2748 is not specified. IEC 61850-7-4 attribute 'ThdPPV'." 2749 ::= { eoACPwrAttributesDelPhaseEntry 3 } 2751 eoACPwrAttributesWyePhaseTable OBJECT-TYPE 2752 SYNTAX SEQUENCE OF EoACPwrAttributesWyePhaseEntry 2753 MAX-ACCESS not-accessible 2754 STATUS current 2755 DESCRIPTION 2756 "This optional table describes 3-phase power attributes 2757 measurements in a WYE configuration with phase-to-neutral 2758 power attributes measurements. Entities having single 2759 phase power shall not have any entities. This is a sparse 2760 extension of the eoACPwrAttributesTable. 2762 These attributes correspond to IEC 61850-7.4 MMXU phase 2763 related measurements and MHAI phase related measured 2764 harmonic or interharmonics." 2765 ::= { powerAttributesMIBObjects 3 } 2767 eoACPwrAttributesWyePhaseEntry OBJECT-TYPE 2768 SYNTAX EoACPwrAttributesWyePhaseEntry 2769 MAX-ACCESS not-accessible 2770 STATUS current 2771 DESCRIPTION 2772 "This table describes measurements of a phase in a WYE 3- 2773 phase power system. Three entries are required for each 2774 supported entPhysicalIndex entry. Voltage measurements 2775 are relative to neutral. 2777 Each entry describes power attributes of one phase of a 2778 WYE 3-phase power system." 2779 INDEX { entPhysicalIndex, eoACPwrAttributesWyePhaseIndex } 2780 ::= { eoACPwrAttributesWyePhaseTable 1} 2782 EoACPwrAttributesWyePhaseEntry ::= SEQUENCE { 2783 eoACPwrAttributesWyePhaseIndex Integer32, 2784 eoACPwrAttributesWyePhaseToNeutralVoltage Integer32, 2785 eoACPwrAttributesWyeCurrent Integer32, 2786 eoACPwrAttributesWyeActivePower Integer32, 2787 eoACPwrAttributesWyeReactivePower Integer32, 2788 eoACPwrAttributesWyeApparentPower Integer32, 2789 eoACPwrAttributesWyePowerFactor Integer32, 2790 eoACPwrAttributesWyeThdCurrent Integer32, 2791 eoACPwrAttributesWyeThdPhaseToNeutralVoltage Integer32 2792 } 2794 eoACPwrAttributesWyePhaseIndex OBJECT-TYPE 2795 SYNTAX Integer32 (0..359) 2796 MAX-ACCESS not-accessible 2797 STATUS current 2798 DESCRIPTION 2799 "A phase angle typically corresponding to 0, 120, 240." 2800 ::= { eoACPwrAttributesWyePhaseEntry 1 } 2802 eoACPwrAttributesWyePhaseToNeutralVoltage OBJECT-TYPE 2803 SYNTAX Integer32 2804 UNITS "0.1 Volt AC" 2805 MAX-ACCESS read-only 2806 STATUS current 2807 DESCRIPTION 2808 "A measured value of phase to neutral voltage. IEC 2809 61850-7-4 attribute 'PNV'." 2810 ::= { eoACPwrAttributesWyePhaseEntry 2 } 2812 eoACPwrAttributesWyeCurrent OBJECT-TYPE 2813 SYNTAX Integer32 2814 UNITS "0.1 amperes AC" 2815 MAX-ACCESS read-only 2816 STATUS current 2817 DESCRIPTION 2818 "A measured value of phase currents. IEC 61850-7-4 2819 attribute 'A'." 2820 ::= { eoACPwrAttributesWyePhaseEntry 3 } 2822 eoACPwrAttributesWyeActivePower OBJECT-TYPE 2823 SYNTAX Integer32 2824 UNITS "watts" 2825 MAX-ACCESS read-only 2826 STATUS current 2827 DESCRIPTION 2828 "A measured value of the actual power delivered to or 2829 consumed by the load with the magnitude indicated 2830 separately in eoPowerUnitMultiplier. IEC 61850-7-4 2831 attribute 'W'" 2832 ::= { eoACPwrAttributesWyePhaseEntry 4 } 2834 eoACPwrAttributesWyeReactivePower OBJECT-TYPE 2835 SYNTAX Integer32 2836 UNITS "volt-amperes reactive" 2837 MAX-ACCESS read-only 2838 STATUS current 2839 DESCRIPTION 2840 "A measured value of the reactive portion of the apparent 2841 power with the magnitude of indicated separately in 2842 eoPowerUnitMultiplier. IEC 61850-7-4 attribute 'VAr'" 2843 ::= { eoACPwrAttributesWyePhaseEntry 5 } 2845 eoACPwrAttributesWyeApparentPower OBJECT-TYPE 2846 SYNTAX Integer32 2847 UNITS "volt-amperes" 2848 MAX-ACCESS read-only 2849 STATUS current 2850 DESCRIPTION 2851 "A measured value of the voltage and current determines 2852 the apparent power with the indicated separately in 2853 eoPowerUnitMultiplier. Active plus reactive power equals 2854 the total apparent power. 2856 Note: Watts and volt-amperes are equivalent units and may 2857 be combined. IEC 61850-7-4 attribute 'VA'." 2858 ::= { eoACPwrAttributesWyePhaseEntry 6 } 2860 eoACPwrAttributesWyePowerFactor OBJECT-TYPE 2861 SYNTAX Integer32 (-10000..10000) 2862 UNITS "hundredths" 2863 MAX-ACCESS read-only 2864 STATUS current 2865 DESCRIPTION 2866 "A measured value ratio of the real power flowing to the 2867 load versus the apparent power for this phase. IEC 2868 61850-7-4 attribute 'PF'. Power Factor can be positive or 2869 negative where the sign should be in lead/lag (IEEE) 2870 form." 2871 ::= { eoACPwrAttributesWyePhaseEntry 7 } 2873 eoACPwrAttributesWyeThdCurrent OBJECT-TYPE 2874 SYNTAX Integer32 (0..10000) 2875 UNITS "hundredths of percent" 2876 MAX-ACCESS read-only 2877 STATUS current 2878 DESCRIPTION 2879 "A calculated value for the voltage total harmonic 2880 disortion (THD) for phase to phase. Method of 2881 calculation is not specified. 2882 IEC 61850-7-4 attribute 'ThdA'." 2883 ::= { eoACPwrAttributesWyePhaseEntry 8 } 2885 eoACPwrAttributesWyeThdPhaseToNeutralVoltage OBJECT-TYPE 2886 SYNTAX Integer32 (0..10000) 2887 UNITS "hundredths of percent" 2888 MAX-ACCESS read-only 2889 STATUS current 2890 DESCRIPTION 2891 "A calculated value of the voltage total harmonic 2892 distortion (THD) for phase to neutral. IEC 61850-7-4 2893 attribute 'ThdPhV'." 2894 ::= { eoACPwrAttributesWyePhaseEntry 9 } 2896 -- Conformance 2898 powerAttributesMIBCompliances OBJECT IDENTIFIER 2899 ::= { powerAttributesMIB 2 } 2901 powerAttributesMIBGroups OBJECT IDENTIFIER 2902 ::= { powerAttributesMIB 3 } 2904 powerAttributesMIBFullCompliance MODULE-COMPLIANCE 2905 STATUS current 2906 DESCRIPTION 2907 "When this MIB is implemented with support for read- 2908 create, then such an implementation can claim full 2909 compliance. Such devices can then be both monitored and 2910 configured with this MIB. 2912 Module Compliance of [RFC6933] with respect to 2913 entity4CRCompliance MUST be supported which requires 2914 implementation of 4 MIB objects: entPhysicalIndex, 2915 entPhysicalClass, entPhysicalName and entPhysicalUUID." 2917 MODULE -- this module 2918 MANDATORY-GROUPS { 2919 powerACPwrAttributesMIBTableGroup 2920 } 2922 GROUP powerACPwrAttributesOptionalMIBTableGroup 2923 DESCRIPTION 2924 "A compliant implementation does not have 2925 to implement." 2927 GROUP powerACPwrAttributesDelPhaseMIBTableGroup 2928 DESCRIPTION 2929 "A compliant implementation does not have to implement." 2931 GROUP powerACPwrAttributesWyePhaseMIBTableGroup 2932 DESCRIPTION 2933 "A compliant implementation does not have to implement." 2934 ::= { powerAttributesMIBCompliances 1 } 2936 -- Units of Conformance 2938 powerACPwrAttributesMIBTableGroup OBJECT-GROUP 2939 OBJECTS { 2940 -- Note that object entPhysicalIndex is NOT 2941 -- included since it is not-accessible 2942 eoACPwrAttributesAvgVoltage, 2943 eoACPwrAttributesAvgCurrent, 2944 eoACPwrAttributesFrequency, 2945 eoACPwrAttributesPowerUnitMultiplier, 2946 eoACPwrAttributesPowerAccuracy, 2947 eoACPwrAttributesTotalActivePower, 2948 eoACPwrAttributesTotalReactivePower, 2949 eoACPwrAttributesTotalApparentPower, 2950 eoACPwrAttributesTotalPowerFactor 2951 } 2952 STATUS current 2953 DESCRIPTION 2954 "This group contains the collection of all the power 2955 attributes objects related to the Energy Object." 2956 ::= { powerAttributesMIBGroups 1 } 2958 powerACPwrAttributesOptionalMIBTableGroup OBJECT-GROUP 2959 OBJECTS { 2960 eoACPwrAttributesConfiguration, 2961 eoACPwrAttributesThdCurrent, 2962 eoACPwrAttributesThdVoltage 2963 } 2964 STATUS current 2965 DESCRIPTION 2966 "This group contains the collection of all the power 2967 attributes objects related to the Energy Object." 2968 ::= { powerAttributesMIBGroups 2 } 2970 powerACPwrAttributesDelPhaseMIBTableGroup OBJECT-GROUP 2971 OBJECTS { 2972 -- Note that object entPhysicalIndex and 2973 -- eoACPwrAttributesDelPhaseIndex are NOT 2974 -- included since they are not-accessible 2975 eoACPwrAttributesDelPhaseToNextPhaseVoltage, 2976 eoACPwrAttributesDelThdPhaseToNextPhaseVoltage 2977 } 2978 STATUS current 2979 DESCRIPTION 2980 "This group contains the collection of all power 2981 attributes of a phase in a DEL 3-phase power system." 2982 ::= { powerAttributesMIBGroups 3 } 2984 powerACPwrAttributesWyePhaseMIBTableGroup OBJECT-GROUP 2985 OBJECTS { 2986 -- Note that object entPhysicalIndex and 2987 -- eoACPwrAttributesWyePhaseIndex are NOT 2988 -- included since they are not-accessible 2989 eoACPwrAttributesWyePhaseToNeutralVoltage, 2990 eoACPwrAttributesWyeCurrent, 2991 eoACPwrAttributesWyeActivePower, 2992 eoACPwrAttributesWyeReactivePower, 2993 eoACPwrAttributesWyeApparentPower, 2994 eoACPwrAttributesWyePowerFactor, 2995 eoACPwrAttributesWyeThdPhaseToNeutralVoltage, 2996 eoACPwrAttributesWyeThdCurrent 2997 } 2998 STATUS current 2999 DESCRIPTION 3000 "This group contains the collection of all power 3001 attributes of a phase in a WYE 3-phase power system." 3002 ::= { powerAttributesMIBGroups 4 } 3004 END 3006 10. Implementation Status 3008 [Note to RFC Editor: Please remove this section and the 3009 reference to [RFC6982] before publication.] 3011 This section records the status of known implementations of the 3012 EMAN-Monitoring MIB at the time of posting of this Internet- 3013 Draft, and is based on a proposal described in [RFC6982]. 3015 The description of implementations in this section is intended 3016 to assist the IETF in its decision processes in progressing 3017 drafts to RFCs. 3019 10.1. SNMP Research 3021 Organization: SNMP Research, Inc. 3023 Maturity: Prototype based upon early drafts of the MIBs. 3024 We anticipate updating it to more recent 3025 documents as development schedules allow. 3027 Coverage: Code was generated to implement all MIB objects 3028 in ENTITY-MIB (Version 4), 3029 ENERGY-OBJECT-CONTEXT-MIB, 3030 ENERGY-OBJECT-MIB, 3031 POWER-ATTRIBUTES-MIB, 3032 and BATTERY-MIB. 3034 Implementation experience: The documents are implementable. 3036 Comments: Technical comments about the 3037 ENERGY-OBJECT-CONTEXT-MIB, 3038 ENERGY-OBJECT-MIB, and 3039 BATTERY-MIB 3040 were submitted to the EMAN Working Group 3041 E-mail list. 3043 Licensing: Proprietary, royalty licensing 3045 Contact: Alan Luchuk, luchuk at snmp.com 3047 URL: http://www.snmp.com/ 3049 10.2. Cisco Systems 3051 Organization: Cisco Systems, Inc. 3053 Maturity: Prototype based upon early version drafts of 3054 the MIBs. We anticipate updating the MIB 3055 modules as when the drafts are updated. 3057 Coverage: Code was generated to implement all MIB objects 3058 in the ENTITY-MIB (Version 4), and 3059 ENERGY-OBJECT-MIB. 3061 Implementation experience: The MIB modules are implemented 3062 on Cisco router platforms to measure and report 3063 router energy measurements. The documents are 3064 implementable. 3066 Licensing: Proprietary 3068 URL: http://www.cisco.com 3070 11. Security Considerations 3072 There are a number of management objects defined in this MIB 3073 module with a MAX-ACCESS clause of read-write and/or read- 3074 create. Such objects may be considered sensitive or vulnerable 3075 in some network environments. The support for SET operations in 3076 a non-secure environment without proper protection can have a 3077 negative effect on network operations. These are the tables and 3078 objects and their sensitivity/vulnerability: 3080 - Unauthorized changes to the eoPowerOperState (via the 3081 eoPowerAdminState ) MAY disrupt the power settings of the 3082 differentEnergy Objects, and therefore the state of 3083 functionality of the respective Energy Objects. 3084 - Unauthorized changes to the eoEnergyParametersTable MAY 3085 disrupt energy measurement in the eoEnergyTable table. 3087 SNMP versions prior to SNMPv3 did not include adequate security. 3088 Even if the network itself is secure (for example by using 3089 IPsec), there is no control as to who on the secure network is 3090 allowed to access and GET/SET (read/change/create/delete) the 3091 objects in this MIB module. 3093 Implementations SHOULD provide the security features described 3094 by the SNMPv3 framework (see [RFC3410]), and implementations 3095 claiming compliance to the SNMPv3 standard MUST include full 3096 support for authentication and privacy via the User-based 3097 Security Model (USM) [RFC3414] with the AES cipher algorithm 3098 [RFC3826]. Implementations MAY also provide support for the 3099 Transport Security Model (TSM) [RFC5591] in combination with a 3100 secure transport such as SSH [RFC5592] or TLS/DTLS [RFC6353]. 3102 Further, deployment of SNMP versions prior to SNMPv3 is NOT 3103 RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to 3104 enable cryptographic security. It is then a customer/operator 3105 responsibility to ensure that the SNMP entity giving access to 3106 an instance of this MIB module is properly configured to give 3107 access to the objects only to those principals (users) that have 3108 legitimate rights to indeed GET or SET (change/create/delete) 3109 them. 3111 12. IANA Considerations 3113 The MIB modules in this document use the following IANA-assigned 3114 OBJECT IDENTIFIER values recorded in the SMI Numbers registry: 3116 Descriptor OBJECT IDENTIFIER value 3118 ---------- ----------------------- 3120 IANAPowerStateSet-MIB { mib-2 xxx } 3122 energyObjectMIB { mib-2 yyy } 3124 powerAttributesMIB { mib-2 zzz } 3126 EDITOR'S NOTE (to be removed prior to publication): IANA is 3127 requested to assign a value for "xxx", "yyy" and "zzz" under the 3128 'mib-2' subtree and to record the assignment in the SMI Numbers 3129 registry. When the assignment has been made, the RFC Editor is 3130 asked to replace "xxx", "yyy" and "zzz" (here and in the MIB 3131 module) with the assigned value and to remove this note. 3133 12.1. IANAPowerStateSet-MIB module 3135 This document defines the initial version of the IANA-maintained 3136 The initial set of Power State Sets are specified in [EMAN- 3137 FMWK]. IANA maintains a Textual Convention PowerStateSet in the 3138 IANAPowerStateSet-MIB module, with the initial set of Power 3139 State Sets and the Power States within those Power State Sets as 3140 proposed in the [EMAN-FMWK]. The current version of 3141 PowerStateSet Textual convention can be accessed 3142 http://www.iana.org/assignments/power-state-sets. 3144 New Assignments (and potential deprecation) to Power State Sets 3145 shall be administered by IANA and the guidelines and procedures 3146 are specified in [EMAN-FMWK], and will, as a consequence, the 3147 IANAPowerStateSet Textual Convention should be updated. 3149 13. Contributors 3151 This document results from the merger of two initial proposals. 3152 The following persons made significant contributions either in 3153 one of the initial proposals or in this document: 3155 John Parello 3157 Rolf Winter 3159 Dominique Dudkowski 3161 14. Acknowledgment 3163 The authors would like to thank Shamita Pisal for her prototype 3164 of this MIB module, and her valuable feedback. The authors 3165 would like to Michael Brown for improving the text dramatically. 3167 The authors would like to thank Juergen Schoenwalder for 3168 proposing the design of the Textual Convention for PowerStateSet 3169 and Ira McDonald for his feedback. Special appreciation to 3170 Laurent Guise for his review and input on power quality 3171 measurements. Thanks for the many comments on the design of the 3172 EnergyTable from Minoru Teraoka and Hiroto Ogaki. 3174 Many thanks to Alan Luchuk for the detailed review of the MIB 3175 and his comments. 3177 And finally, thanks to the EMAN chairs: Nevil Brownlee and Tom 3178 Nadeau. 3180 15. References 3182 15.1. Normative References 3184 [RFC2119] S. Bradner, Key words for use in RFCs to Indicate 3185 Requirement Levels, BCP 14, RFC 2119, March 1997. 3187 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J. 3188 Schoenwaelder, Ed., "Structure of Management 3189 Information Version 2 (SMIv2)", STD 58, RFC 2578, April 3190 1999. 3192 [RFC2579] McCloghrie, K., Ed., Perkins, D., Ed., and J. 3193 Schoenwaelder, Ed., "Textual Conventions for SMIv2", 3194 STD 58, RFC 2579, April 1999. 3196 [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder, 3197 "Conformance Statements for SMIv2", STD 58, RFC 2580, 3198 April 1999. 3200 [RFC3621] Berger, A., and D. Romascanu, "Power Ethernet MIB", 3201 RFC3621, December 2003. 3203 [RFC6933] A. Bierman, D. Romascanu, J. Quittek and M. 3204 Chandramouli " Entity MIB (Version 4)", RFC 6933, May 3205 2013. 3207 [EMAN-AWARE-MIB] J. Parello, B. Claise and M. Chandramoili, 3208 "draft-ietf-eman-energy-aware-mib-14", work in 3209 progress, February 10 2013. 3211 [LLDP-MED-MIB] ANSI/TIA-1057, "The LLDP Management Information 3212 Base extension module for TIA-TR41.4 media endpoint 3213 discovery information", July 2005. 3215 15.2. Informative References 3217 [RFC1628] S. Bradner, "UPS Management Information Base", RFC 3218 1628, May 1994 3220 [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart, 3221 "Introduction and Applicability Statements for Internet 3222 Standard Management Framework ", RFC 3410, December 3223 2002. 3225 [RFC3418] Presun, R., Case, J., McCloghrie, K., Rose, M, and S. 3226 Waldbusser, "Management Information Base (MIB) for the 3227 Simple Network Management Protocol (SNMP)", RFC3418, 3228 December 2002. 3230 [RFC3433] Bierman, A., Romascanu, D., and K. Norseth, "Entity 3231 Sensor Management Information Base", RFC 3433, December 3232 2002. 3234 [RFC4268] Chisholm, S. and D. Perkins, "Entity State MIB", RFC 3235 4268, November 2005. 3237 [RFC6982] Sheffer, Y. and A. Farrel, "Improving Awareness of 3238 Running Code: The Implementation Status Section", RFC 3239 6982, July 2013. 3241 [RFC6988] Quittek, J., Winter, R., Dietz, T., Claise, B., and M. 3242 Chandramouli, " Requirements for Energy Management", 3243 RFC 6988, September 2013. 3245 [EMAN-FMWK] Parello, J. Claise, B., Schoening, B. and Quittek, 3246 J., "Energy Management Framework", draft-ietf-eman- 3247 framework-19, April 2014. 3249 [EMAN-AS] Schoening, B., Chandramouli, M. and Nordman, B. 3250 "Energy Management (EMAN) Applicability Statement", 3251 draft-ietf-eman-applicability-statement-05, April 2014. 3253 [DMTF] "Power State Management Profile DMTF DSP1027 Version 3254 2.0" December 2009 3255 http://www.dmtf.org/sites/default/files/standards/docum 3256 ents/DSP1027_2.0.0.pdf 3258 [IEEE1621] "Standard for User Interface Elements in Power 3259 Control of Electronic Devices Employed in 3260 Office/Consumer Environments", IEEE 1621, December 3261 2004. 3263 [IEC.61850-7-4] International Electrotechnical Commission, 3264 "Communication networks and systems for power utility 3265 automation Part 7-4: Basic communication structure 3266 Compatible logical node classes and data object 3267 classes", 2010. 3269 [IEC.62053-21] International Electrotechnical Commission, 3270 "Electricity metering equipment (a.c.) Particular 3271 requirements Part 22: Static meters for active energy 3272 (classes 1 and 2)", 2003. 3274 [IEC.62053-22]International Electrotechnical Commission, 3275 "Electricity metering equipment (a.c.) Particular 3276 requirements Part 22: Static meters for active energy 3277 (classes 0,2 S and 0,5 S)", 2003. 3279 [RFC3414] Blumenthal, U. and B. Wijnen, "User-based Security 3280 Model (USM) for version 3 of the Simple Network 3281 ManagementProtocol (SNMPv3)", STD 62, RFC 3414, 3282 December 2002. 3284 [RFC3826] Blumenthal, U., Maino, F., and K. McCloghrie, "The 3285 Advanced Encryption Standard (AES) Cipher Algorithm in 3286 the SNMP User-based Security Model", RFC 3826, June 3287 2004. 3289 [RFC5591] Harrington, D. and W. Hardaker, "Transport Security 3290 Model for the Simple Network Management Protocol 3291 (SNMP)", RFC 5591, June 2009. 3293 [RFC5592] Harrington, D., Salowey, J., and W. Hardaker, "Secure 3294 Shell Transport Model for the Simple Network Management 3295 Protocol (SNMP)", RFC 5592, June 2009. 3297 [RFC6353] Hardaker, W., "Transport Layer Security (TLS) 3298 Transport Model for the Simple Network Management 3299 Protocol (SNMP)", RFC 6353, July 2011. 3301 Authors' Addresses 3303 Mouli Chandramouli 3304 Cisco Systems, Inc. 3305 Sarjapur Outer Ring Road 3306 Bangalore 560103 3307 IN 3309 Phone: +91 80 4429 2409 3310 Email: moulchan@cisco.com 3312 Benoit Claise 3313 Cisco Systems, Inc. 3314 De Kleetlaan 6a b1 3315 Diegem 1813 3316 BE 3318 Phone: +32 2 704 5622 3319 Email: bclaise@cisco.com 3320 Brad Schoening 3321 44 Rivers Edge Drive 3322 Little Silver, NJ 07739 3323 US 3324 Email: brad.schoening@verizon.net 3326 Juergen Quittek 3327 NEC Europe Ltd. 3328 NEC Laboratories Europe 3329 Network Research Division 3330 Kurfuersten-Anlage 36 3331 Heidelberg 69115 3332 DE 3334 Phone: +49 6221 4342-115 3335 Email: quittek@neclab.eu 3337 Thomas Dietz 3338 NEC Europe Ltd. 3339 NEC Laboratories Europe 3340 Network Research Division 3341 Kurfuersten-Anlage 36 3342 Heidelberg 69115 3343 DE 3345 Phone: +49 6221 4342-128 3346 Email: Thomas.Dietz@neclab.eu