idnits 2.17.1 draft-ietf-eman-energy-monitoring-mib-13.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Line 265 has weird spacing: '...tiplier eoP...' == Line 292 has weird spacing: '...alIndex eoEne...' == Line 294 has weird spacing: '...nterval eoEn...' == Line 297 has weird spacing: '...nterval eoEn...' == Line 299 has weird spacing: '...ageType eoE...' -- Couldn't find a document date in the document -- date freshness check skipped. Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) -- Possible downref: Non-RFC (?) normative reference: ref. 'EMAN-AWARE-MIB' -- Possible downref: Non-RFC (?) normative reference: ref. 'LLDP-MED-MIB' -- Obsolete informational reference (is this intentional?): RFC 6982 (Obsoleted by RFC 7942) == Outdated reference: A later version (-11) exists of draft-ietf-eman-applicability-statement-08 Summary: 0 errors (**), 0 flaws (~~), 7 warnings (==), 4 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group M. Chandramouli 3 B. Claise 4 Internet-Draft Cisco Systems, Inc. 5 Intended Status: Standards Track B. Schoening 6 Expires: May 27 2015 Independent Consultant 7 J. Quittek 8 T. Dietz 9 NEC Europe Ltd. 10 Nov 27 2014 12 Power, Energy Monitoring and Control MIB 13 draft-ietf-eman-energy-monitoring-mib-13 15 Status of this Memo 17 This Internet-Draft is submitted to IETF in full conformance 18 with the provisions of BCP 78 and BCP 79. 20 Internet-Drafts are working documents of the Internet 21 Engineering Task Force (IETF), its areas, and its working 22 groups. Note that other groups may also distribute working 23 documents as Internet-Drafts. 25 Internet-Drafts are draft documents valid for a maximum of six 26 months and may be updated, replaced, or obsoleted by other 27 documents at any time. It is inappropriate to use Internet- 28 Drafts as reference material or to cite them other than as 29 "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed 35 at http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on January 2015. 39 Copyright Notice 41 Copyright (c) 2014 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents 46 (http://trustee.ietf.org/license-info) in effect on the date of 47 publication of this document. Please review these documents 48 carefully, as they describe your rights and restrictions with 49 respect to this document. Code Components extracted from this 50 document must include Simplified BSD License text as described 51 in Section 4.e of the Trust Legal Provisions and are provided 52 without warranty as described in the Simplified BSD License. 54 Abstract 56 This document defines a subset of the Management Information 57 Base (MIB) for power and energy monitoring of devices. 59 Conventions used in this document 61 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL 62 NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", 63 "MAY", and "OPTIONAL" in this document are to be interpreted as 64 described in RFC 2119 [RFC2119]. 66 Table of Contents 68 1. Introduction ............................................... 3 69 2. The Internet-Standard Management Framework ................. 4 70 3. Use Cases .................................................. 4 71 4. Terminology ................................................ 4 72 5. Architecture Concepts Applied to the MIB Modules ........... 5 73 5.1. Energy Object Tables ..................................... 5 74 5.1.1. ENERGY-OBJECT-MIB ...................................... 5 75 5.1.2. POWER-ATTRIBUTES-MIB ................................... 7 76 5.1.3. UML Diagram ............................................ 9 77 5.2. Energy Object Identity .................................. 11 78 5.3.1. Power State Set ................................. 13 79 5.4. Energy Object Usage Information ......................... 13 80 5.5. Optional Power Usage Attributes ......................... 14 81 5.6. Optional Energy Measurement ............................. 14 82 5.7. Fault Management ........................................ 18 83 6. Discovery ................................................. 18 84 7. Link with the other IETF MIBs ............................. 19 85 7.1. Link with the ENTITY-MIB and the ENTITY-SENSOR MIB ... 19 86 7.2. Link with the ENTITY-STATE MIB ....................... 20 87 7.3. Link with the POWER-OVER-ETHERNET MIB ................ 21 88 7.4. Link with the UPS MIB ................................ 21 89 7.5. Link with the LLDP and LLDP-MED MIBs ................. 22 90 8. Structure of the MIB....................................... 23 91 9. MIB Definitions ........................................... 24 92 9.1. The IANAPowerStateSet-MIB MIB Module ................. 24 93 9.2. The ENERGY-OBJECT-MIB MIB Module ..................... 26 94 9.3. The POWER-ATTRIBUTES-MIB MIB Module .................. 48 95 10. Implementation Status .................................... 61 96 10.1. SNMP Research .......................................... 61 97 10.2. Cisco Systems .......................................... 62 98 11. Security Considerations .................................. 62 99 12. IANA Considerations....................................... 63 100 12.1. IANAPowerStateSet-MIB module ........................... 64 101 13. Contributors ............................................. 64 102 14. Acknowledgment ........................................... 64 103 15. References ............................................... 65 104 15.1. Normative References ................................... 65 105 15.2. Informative References ................................. 65 107 1. Introduction 109 This document defines a subset of the Management Information 110 Base (MIB) for use in energy management of devices within or 111 connected to communication networks. The MIB modules in this 112 document are designed to provide a model for energy management, 113 which includes monitoring for Power State and energy consumption 114 of networked elements. This MIB takes into account the Energy 115 Management Framework [RFC7326], which, in turn, is based on the 116 Requirements for Energy Management [RFC6988]. 118 Energy management can be applied to devices in communication 119 networks. Target devices for this specification include (but are 120 not limited to): routers, switches, Power over Ethernet (PoE) 121 endpoints, protocol gateways for building management systems, 122 intelligent meters, home energy gateways, hosts and servers, 123 sensor proxies, etc. Target devices and the use cases for Energy 124 Management are discussed in Energy Management Applicability 125 Statement [EMAN-AS]. 127 Where applicable, device monitoring extends to the individual 128 components of the device and to any attached dependent devices. 129 For example: A device can contain components that are 130 independent from a power-state point of view, such as line 131 cards, processor cards, hard drives. A device can also have 132 dependent attached devices, such as a switch with PoE endpoints 133 or a power distribution unit with attached endpoints. 135 2. The Internet-Standard Management Framework 137 For a detailed overview of the documents that describe the 138 current Internet-Standard Management Framework, please refer to 139 section 7 of RFC 3410 [RFC3410]. 141 Managed objects are accessed via a virtual information store, 142 termed the Management Information Base or MIB. MIB objects are 143 generally accessed through the Simple Network Management 144 Protocol (SNMP). Objects in the MIB are defined using the 145 mechanisms defined in the Structure of Management Information 146 (SMI). This memo specifies MIB modules that are compliant to 147 SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, 148 RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580]. 150 3. Use Cases 152 Requirements for power and energy monitoring for networking 153 devices are specified in [RFC6988]. The requirements in 154 [RFC6988] cover devices typically found in communications 155 networks, such as switches, routers, and various connected 156 endpoints. For a power monitoring architecture to be useful, it 157 should also apply to facility meters, power distribution units, 158 gateway proxies for commercial building control, home automation 159 devices, and devices that interface with the utility and/or 160 smart grid. Accordingly, the scope of the MIB modules in this 161 document are broader than that specified in [RFC6988]. Several 162 use cases for Energy Management have been identified in the 163 "Energy Management (EMAN) Applicability Statement" [EMAN-AS]. 165 4. Terminology 167 Please refer to [RFC7326] for the definitions of the 168 following terminology used in this draft. 170 Energy Management 171 Energy Management System (EnMS) 172 Energy Monitoring 173 Energy Control 174 electrical equipment 175 non-electrical equipment (mechanical equipment) 176 device 177 component 178 power inlet 179 power outlet 180 energy 181 power 182 demand 183 provide energy 184 receive energy 185 meter (energy meter) 186 battery 187 Power Interface 188 Nameplate Power 189 Power Attributes 190 Power Quality 191 Power State 192 Power State Set 194 5. Architecture Concepts Applied to the MIB Modules 196 This section describes the concepts specified in the Energy 197 Management Framework [RFC7326] that pertain to power usage, with 198 specific information related to the MIB module specified in this 199 document. This subsection maps concepts developed in the Energy 200 Management Framework [RFC7326]. 202 The Energy Monitoring MIB has 2 independent MIB modules, ENERGY- 203 OBJECT-MIB and POWER-ATTRIBUTES-MIB. The first, ENERGY-OBJECT- 204 MIB, is focused on measurement of power and energy. The second, 205 POWER-ATTRIBUTES-MIB, is focused on power quality measurements 206 for Energy Objects. 208 Devices and their sub-components can be modeled using the 209 containment tree of the ENTITY-MIB [RFC6933]. 211 5.1. Energy Object Tables 213 5.1.1. ENERGY-OBJECT-MIB 215 The ENERGY-OBJECT-MIB module consists of five tables. 217 The first table is the eoMeterCapabilitiesTable. It indicates 218 the instrumentation available for each Energy Object. Entries 219 in this table indicate which other tables from the ENERGY- 220 OBJECT-MIB and POWER-ATTRIBUTES-MIB are available for each 221 Energy Object. The eoMeterCapabilitiesTable is indexed by 222 entPhysicalIndex [RFC6933]. 224 The second table is the eoPowerTable. It reports the power 225 consumption of each Energy Object, as well as the units, sign, 226 measurement accuracy, and related objects. The eoPowerTable is 227 indexed by entPhysicalIndex. 229 The third table is the eoPowerStateTable. For each Energy 230 Object, it reports information and statistics about the 231 supported Power States. The eoPowerStateTable is indexed by 232 entPhysicalIndex and eoPowerStateIndex. 234 The fourth table is the eoEnergyParametersTable. The entries in 235 this table configure the parameters of energy and demand 236 measurement collection. This table is indexed by 237 eoEnergyParametersIndex. 239 The fifth table is the eoEnergyTable. The entries in this table 240 provide a log of the energy and demand information. This table 241 is indexed by eoEnergyParametersIndex. 242 A "smidump-style" tree presentation of the MIB modules contained 243 in the draft is presented. The meaning of the three symbols is a 244 compressed representation of the object's MAX-ACCESS clause 245 which may have the following values: 247 "not-accessible" -> "---" 248 "accessible-for-notify" -> "--n" 249 "read-only" -> "r-n" 250 "read-write" -> "rwn" 252 eoMeterCapabilitiesTable(1) 253 | 254 +---eoMeterCapabilitiesEntry(1)[entPhysicalIndex] 255 | | 256 | +---r-n BITS eoMeterCapability 257 | 259 eoPowerTable(2) 260 | 261 +---eoPowerEntry(1) [entPhysicalIndex] 262 | | 263 | +---r-n Integer32 eoPower(1) 264 | +-- r-n Unsigned32 eoPowerNamePlate(2) 265 | +-- r-n UnitMultiplier eoPowerUnitMultiplier(3) 266 | +-- r-n Integer32 eoPowerAccuracy(4) 267 | +-- r-n INTEGER eoPowerMeasurementCaliber(5) 268 | +-- r-n INTEGER eoPowerCurrentType(6) 269 | +-- r-n TruthValue eoPowerMeasurementLocal(7) 270 | +-- rwn PowerStateSet eoPowerAdminState(8) 271 | +-- r-n PowerStateSet eoPowerOperState(9) 272 | +-- r-n OwnerString eoPowerStateEnterReason(10) 273 | 274 | 275 | 276 +---eoPowerStateTable(3) 277 | 278 | +--eoPowerStateEntry(1) 279 | | [entPhysicalIndex, eoPowerStateIndex] 280 | | 281 | +-- --n PowerStateSet eoPowerStateIndex(1) 282 | +-- r-n Integer32 eoPowerStateMaxPower(2) 283 | +-- r-n UnitMultiplier 284 | eoPowerStatePowerUnitMultiplier(3) 285 | +-- r-n TimeTicks eoPowerStateTotalTime(4) 286 | +-- r-n Counter32 eoPowerStateEnterCount(5) 287 | 288 +eoEnergyParametersTable(4) 289 | 290 +---eoEnergyParametersEntry(1) [eoEnergyParametersIndex] 291 | 292 | +-- --n PhysicalIndex eoEnergyObjectIndex(1) 293 | + r-n Integer32 eoEnergyParametersIndex(2) 294 | +-- rwn TimeInterval eoEnergyParametersIntervalLength(3) 295 | +-- rwn Unsigned32 eoEnergyParametersIntervalNumber(4) 296 | +-- rwn INTEGER eoEnergyParametersIntervalMode(5) 297 | +-- rwn TimeInterval eoEnergyParametersIntervalWindow(6) 298 | +-- rwn Unsigned32 eoEnergyParametersSampleRate(7) 299 | +-- rwn StorageType eoEnergyParametersStorageType(8) 300 | +-- rwn RowStatus eoEnergyParametersStatus(9) 301 | 302 +eoEnergyTable(5) 303 | 304 +---eoEnergyEntry(1) 305 | [eoEnergyParametersIndex,eoEnergyCollectionStartTime] 306 | 307 | +-- r-n TimeTicks eoEnergyCollectionStartTime(1) 308 | +-- r-n Unsigned32 eoEnergyConsumed(2) 309 | +-- r-n Unsigned32 eoEnergyProvided(3) 310 | +-- r-n Unsigned32 eoEnergyStored(4) 311 | +-- r-n UnitMultiplier eoEnergyUnitMultiplier(5) 312 | +-- r-n Integer32 eoEnergyAccuracy(6) 313 | +-- r-n Unsigned32 eoEnergyMaxConsumed(7) 314 | +-- r-n Unsigned32 eoEnergyMaxProduced(8) 315 | +-- r-n TimeTicks eoEnergyDiscontinuityTime(9) 317 5.1.2. POWER-ATTRIBUTES-MIB 319 The POWER-ATTRIBUTES-MIB module consists of three tables. 321 The first table is the eoACPwrAttributesTable. It indicates the 322 power quality available for each Energy Object. The 323 eoACPwrAttributesTable is indexed by entPhysicalIndex [RFC6933]. 325 The second table is the eoACPwrAttributesDelPhaseTable. The 326 entries in this table configure the parameters of energy and 327 demand measurement collection. This table is indexed by 328 eoEnergyParametersIndex. 330 The third table is the eoACPwrAttributesWyePhaseTable. For each 331 Energy Object, it reports information and statistics about the 332 supported Power States. The eoPowerStateTable is indexed by 333 entPhysicalIndex and eoPowerStateIndex. 335 eoACPwrAttributesTable(1) 336 | 337 +---eoACPwrAttributesEntry(1) [ entPhysicalIndex] 338 | | 339 | +---r-n INTEGER eoACPwrAttributesConfiguration(1) 340 | +-- r-n Integer32 eoACPwrAttributesAvgVoltage(2) 341 | +-- r-n Unsigned32 eoACPwrAttributesAvgCurrent(3) 342 | +-- r-n Integer32 eoACPwrAttributesFrequency(4) 343 | +-- r-n UnitMultiplier 344 | eoACPwrAttributesPowerUnitMultiplier(5) 345 | +-- r-n Integer32 eoACPwrAttributesPowerAccuracy(6) 346 | +-- r-n Integer32 347 | eoACPwrAttributesTotalActivePower(7) 348 | +-- r-n Integer32 349 | eoACPwrAttributesTotalReactivePower(8) 350 | +-- r-n Integer32 351 | eoACPwrAttributesTotalApparentPower(9) 352 | +-- r-n Integer32 353 | eoACPwrAttributesTotalPowerFactor(10) 354 | +-- r-n Integer32 eoACPwrAttributesThdCurrent(11) 355 | +-- r-n Integer32 eoACPwrAttributesThdVoltage(12) 356 | 357 +eoACPwrAttributesDelPhaseTable(2) 358 | 359 +-- eoACPwrAttributesDelPhaseEntry(1) 360 | | [entPhysicalIndex, eoACPwrAttributesDelPhaseIndex] 361 | | 362 | +-- r-n Integer32 363 | | eoACPwrAttributesDelPhaseIndex(1) 364 | +-- r-n Integer32 365 | | eoACPwrAttributesDelPhaseToNextPhaseVoltage(2) 366 | +-- r-n Integer32 367 | | eoACPwrAttributesDelThdPhaseToNextPhaseVoltage(3) 368 | | 369 +eoACPwrAttributesWyePhaseTable(3) 370 | 371 +-- eoACPwrAttributesWyePhaseEntry(1) 372 | | [entPhysicalIndex, eoACPwrAttributesWyePhaseIndex] 373 | | 374 | +-- r-n Integer32 375 | | eoACPwrAttributesWyePhaseIndex(1) 376 | +-- r-n Integer32 377 | | eoACPwrAttributesWyePhaseToNeutralVoltage(2) 378 | +-- r-n Integer32 379 | | eoACPwrAttributesWyeCurrent(3) 380 | +-- r-n Integer32 381 | | eoACPwrAttributesWyeActivePower(4) 382 | +-- r-n Integer32 383 | | eoACPwrAttributesWyeReactivePower(5) 384 | +-- r-n Integer32 385 | | eoACPwrAttributesWyeApparentPower(6) 386 | +-- r-n Integer32 387 | | eoACPwrAttributesWyePowerFactor(7) 388 | +-- r-n Integer32 389 | | eoACPwrAttributesWyeThdCurrent(9) 390 | +-- r-n Integer32 391 | | eoACPwrAttributesWyeThdPhaseToNeutralVoltage(10) 393 5.1.3. UML Diagram 395 A UML diagram representation of the MIB objects in the two MIB 396 modules ENERGY-OBJECT-MIB and POWER-ATTRIBUTES-MIB is presented. 398 +-----------------------+ 399 | Meter Capabilities | 400 | --------------------- | 401 | eoMeterCapability | 402 +-----------------------+ 404 +-----------------------+ 405 |---> | Energy Object ID (*) | 406 | | --------------------- | 407 | | entPhysicalIndex | 408 | | entPhysicalClass | 409 | | entPhysicalName | 410 | | entPhysicalUUID | 411 | +-----------------------+ 412 | 413 | +---------------------------+ 414 |---- |_ Power Table | 415 | | ------------------------- | 416 | | eoPower | 417 | | eoPowerNamePlate | 418 | | eoPowerUnitMultiplier | 419 | | eoPowerAccuracy | 420 | | eoPowerMeasurementCaliber | 421 | | eoPowerCurrentType | 422 | | eoPowerMeasurementLocal | 423 | | eoPowerAdminState | 424 | | eoPowerOperState | 425 | | eoPowerStateEnterReason | 426 | +---------------------------+ 427 | 428 | +---------------------------------+ 429 |---- |_Energy Object State Statistics | 430 | |-------------------------------- | 431 | | eoPowerStateIndex | 432 | | eoPowerStateMaxPower | 433 | | eoPowerStatePowerUnitMultiplier | 434 | | eoPowerStateTotalTime | 435 | | eoPowerStateEnterCount | 436 | +---------------------------------+ 437 | 438 | +----------------------------------+ 439 |---- | Energy ParametersTable | 440 | | -------------------------------- | 441 | | eoEnergyObjectIndex | 442 | | eoEnergyParametersIndex | 443 | | eoEnergyParametersIntervalLength | 444 | | eoEnergyParametersIntervalNumber | 445 | | eoEnergyParametersIntervalMode | 446 | | eoEnergyParametersIntervalWindow | 447 | | eoEnergyParametersSampleRate | 448 | | eoEnergyParametersStorageType | 449 | | eoEnergyParametersStatus | 450 | +----------------------------------+ 451 | 452 | +----------------------------------+ 453 |---- | Energy Table | 454 | -------------------------------- | 455 | eoEnergyCollectionStartTime | 456 | eoEnergyConsumed | 457 | eoEnergyProvided | 458 | eoEnergyStored | 459 | eoEnergyUnitMultiplier | 460 | eoEnergyAccuracy | 461 | eoEnergyMaxConsumed | 462 | eoEnergyMaxProduced | 463 | eoDiscontinuityTime | 464 +----------------------------------+ 466 Figure 1:UML diagram for energyObjectMib 468 (*) Compliance with the ENERGY-OBJECT-CONTEXT-MIB 470 +-----------------------+ 471 |---> | Energy Object ID (*) | 472 | | --------------------- | 473 | | entPhysicalIndex | 474 | | entPhysicalName | 475 | | entPhysicalUUID | 476 | +-----------------------+ 477 | 478 | +--------------------------------------+ 479 |---- | Power Attributes | 480 | | ------------------------------------ | 481 | | eoACPwrAttributesConfiguration | 482 | | eoACPwrAttributesAvgVoltage | 483 | | eoACPwrAttributesAvgCurrent | 484 | | eoACPwrAttributesFrequency | 485 | | eoACPwrAttributesPowerUnitMultiplier | 486 | | eoACPwrAttributesPowerAccuracy | 487 | | eoACPwrAttributesTotalActivePower | 488 | | eoACPwrAttributesTotalReactivePower | 489 | | eoACPwrAttributesTotalApparentPower | 490 | | eoACPwrAttributesTotalPowerFactor | 491 | | eoACPwrAttributesThdCurrent | 492 | | eoACPwrAttributesThdVoltage | 493 | +--------------------------------------+ 494 | 495 | 496 | +------------------------------------------------+ 497 |---- | AC Input DEL Configuration | 498 | | ---------------------------------------------- | 499 | | eoACPwrAttributesDelPhaseIndex | 500 | | eoACPwrAttributesDelPhaseToNextPhaseVoltage | 501 | | eoACPwrAttributesDelThdPhaseToNextPhaseVoltage | 502 | +------------------------------------------------+ 503 | 504 | 505 | +----------------------------------------------+ 506 |---- | AC Input WYE Configuration | 507 | -------------------------------------------- | 508 | eoACPwrAttributesWyePhaseIndex | 509 | eoACPwrAttributesWyePhaseToNeutralVoltage | 510 | eoACPwrAttributesWyeCurrent | 511 | eoACPwrAttributesWyeActivePower | 512 | eoACPwrAttributesWyeReactivePower | 513 | eoACPwrAttributesWyeApparentPower | 514 | eoACPwrAttributesWyePowerFactor | 515 | eoACPwrAttributesWyeThdCurrent | 516 | eoACPwrAttributesWyeThdPhaseToNeutralVoltage | 517 +----------------------------------------------+ 519 Figure 2: UML diagram for the POWER-ATTRIBUTES-MIB 521 (*) Compliance with the ENERGY-OBJECT-CONTEXT-MIB 523 5.2. Energy Object Identity 525 The Energy Object identity information is specified in the 526 ENERGY-OBJECT-CONTEXT-MIB module [EMAN-AWARE-MIB] primary table, 527 i.e., the eoTable. In this table, Energy Object context such as 528 domain, role description, and importance are specified. In 529 addition, the ENERGY-OBJECT-CONTEXT-MIB module specifies the 530 relationship between Energy Objects. There are several possible 531 relationships between Energy Objects, such as meteredBy, 532 metering, poweredBy, powering, aggregatedBy, and aggregating as 533 defined in the IANA-ENERGY-RELATION-MIB module [EMAN-AWARE-MIB]. 535 5.3. Power State 537 An Energy Object may have energy conservation modes called Power 538 States. Between the ON and OFF states of a device, there can be 539 several intermediate energy saving modes. Those energy saving 540 modes are called Power States. 542 Power States, which represent universal states of power 543 management of an Energy Object, are specified by the 544 eoPowerState MIB object. The actual Power State is specified by 545 the eoPowerOperState MIB object, while the eoPowerAdminState MIB 546 object specifies the Power State requested for the Energy 547 Object. The difference between the values of eoPowerOperState 548 and eoPowerAdminState indicates that the Energy Object is busy 549 transitioning from eoPowerAdminState into the eoPowerOperState, 550 at which point it will update the content of eoPowerOperState. 551 In addition, the possible reason for change in Power State is 552 reported in eoPowerStateEnterReason. Regarding 553 eoPowerStateEnterReason, management stations and Energy Objects 554 should support any format of the owner string dictated by the 555 local policy of the organization. It is suggested that this 556 name contain at least the reason for the transition change, and 557 one or more of the following: IP address, management station 558 name, network manager's name, location, or phone number. 560 The MIB objects eoPowerOperState, eoPowerAdminState , and 561 eoPowerStateEnterReason are contained in the eoPowerTable MIB 562 table. 564 The eoPowerStateTable table enumerates the maximum power usage 565 in watts for every single supported Power State of each Power 566 State Set supported by the Energy Object. In addition, 567 PowerStateTable provides additional statistics such as 568 eoPowerStateEnterCount, i.e., the number of times an entity has 569 visited a particular Power State, and eoPowerStateTotalTime, 570 i.e., the total time spent in a particular Power State of an 571 Energy Object. 573 5.3.1. Power State Set 575 There are several standards and implementations of Power State 576 Sets. An Energy Object can support one or multiple Power State 577 Set implementations concurrently. 579 There are currently three Power State Sets defined: 581 IEEE1621(256) - [IEEE1621] 582 DMTF(512) - [DMTF] 583 EMAN(768) - [RFC7326] 585 The Power State Sets are listed in [RFC7326] along with each 586 Power State within the Power Set. The Power State Sets are 587 specified by the PowerStateSet Textual as an IANA-maintained MIB 588 module. The initial version of this MIB module is specified in 589 this document. 591 5.4. Energy Object Usage Information 593 For an Energy Object, power usage is reported using eoPower. 594 The magnitude of measurement is based on the 595 eoPowerUnitMultiplier MIB variable, based on the UnitMultiplier 596 Textual Convention (TC). Power measurement magnitude should 597 conform to the IEC 62053-21 [IEC.62053-21] and IEC 62053-22 598 [IEC.62053-22] definition of unit multiplier for the SI (System 599 International) units of measure. Measured values are 600 represented in SI units obtained by BaseValue * 10 raised to the 601 power of the unit multiplier. 603 For example, if current power usage of an Energy Object is 3, it 604 could be 3 W, 3 mW, 3 KW, or 3 MW, depending on the value of 605 eoPowerUnitMultiplier. Note that other measurements throughout 606 the two MIB modules in this document use the same mechanism, 607 including eoPowerStatePowerUnitMultiplier, 608 eoEnergyUnitMultiplier, and oACPwrAttributesPowerUnitMultiplier. 610 In addition to knowing the usage and magnitude, it is useful to 611 know how an eoPower measurement was obtained. An NMS can use 612 this to account for the accuracy and nature of the reading 613 between different implementations. eoPowerMeasurementLocal 614 describes whether the measurements were made at the device 615 itself or from a remote source. The eoPowerMeasurementCaliber 616 describes the method that was used to measure the power and can 617 distinguish actual or estimated values. There may be devices in 618 the network, which may not be able to measure or report power 619 consumption. For those devices, the object 620 eoPowerMeasurementCaliber shall report that the measurement 621 mechanism is "unavailable" and the eoPower measurement shall be 622 "0". 624 The nameplate power rating of an Energy Object is specified in 625 eoPowerNameplate MIB object. 627 5.5. Optional Power Usage Attributes 629 The optional POWER-ATTRIBUTES-MIB module can be implemented to 630 further describe power usage attributes measurement. The POWER- 631 ATTRIBUTES-MIB module is aligned with IEC 61850 7-2 standard to 632 describe AC measurements. 634 The POWER-ATTRIBUTES-MIB module contains a primary table, 635 eoACPwrAttributesTable, that defines power attributes 636 measurements for supported entPhysicalIndex entities, as a 637 sparse extension of the eoPowerTable (with entPhysicalIndex as 638 primary index). This eoACPwrAttributesTable table contains such 639 information as the configuration (single phase, DEL 3 phases, 640 WYE 3 phases), voltage, frequency, power accuracy, total 641 active/reactive power/apparent power, amperage, and voltage. 643 In case of 3-phase power, an additional table is populated with 644 Power Attributes measurements per phase (hence, double indexed 645 by the entPhysicalIndex and a phase index). This table, 646 describes attributes specific to either WYE or DEL 647 configurations. 649 In a DEL configuration, the eoACPwrAttributesDelPhaseTable 650 describes the phase-to-phase power attributes measurements, 651 i.e., voltage. In a DEL configuration, the current is equal in 652 all three phases. 654 In a WYE configuration, the eoACPwrAttributesWyePhaseTable 655 describes the phase-to-neutral power attributes measurements, 656 i.e., voltage, current, active/reactive/apparent power, and 657 power factor. 659 5.6. Optional Energy Measurement 661 It is only relevant to measure energy and demand when there are 662 actual power measurements obtained from measurement hardware. If 663 the eoPowerMeasurementCaliber MIB object has values of 664 unavailable, unknown, estimated, or presumed, then the energy 665 and demand values are not useful. 667 Two tables are introduced to characterize energy measurement of 668 an Energy Object: eoEnergyTable and eoEnergyParametersTable. 669 Both energy and demand information can be represented via the 670 eoEnergyTable. Demand information can be represented. 671 The eoEnergyParametersTable consists of the parameters defining 672 eoEnergyParametersIndex - an index for the Energy Object, 673 eoEnergyObjectIndex - linked to the entPhysicalIndex of the 674 Energy Object, the duration of measurement intervals in seconds, 675 (eoEnergyParametersIntervalLength), the number of successive 676 intervals to be stored in the eoEnergyTable, 677 (eoEnergyParametersIntervalNumber), the type of measurement 678 technique (eoEnergyParametersIntervalMode), and a sample rate 679 used to calculate the average (eoEnergyParametersSampleRate). 680 Judicious choice of the sampling rate will ensure accurate 681 measurement of energy while not imposing an excessive polling 682 burden. 684 There are three eoEnergyParametersIntervalMode types used for 685 energy measurement collection: period, sliding, and total. The 686 choices of the three different modes of collection are based on 687 IEC standard 61850-7-4. Note that multiple 688 eoEnergyParametersIntervalMode types MAY be configured 689 simultaneously. It is important to note that for a given Energy 690 Object, multiple modes (periodic, total, sliding window) of 691 energy measurement collection can be configured with the use of 692 eoEnergyParametersIndex. However, simultaneous measurement in 693 multiple modes for a given Energy Object depends on the Energy 694 Object capability. 696 These three eoEnergyParametersIntervalMode types are illustrated 697 by the following three figures, for which: 699 - The horizontal axis represents the current time, with the 700 symbol <--- L ---> expressing the 701 eoEnergyParametersIntervalLength, and the 702 eoEnergyCollectionStartTime is represented by S1, S2, S3, S4, 703 ..., Sx where x is the value of 704 eoEnergyParametersIntervalNumber. 706 - The vertical axis represents the time interval of sampling and 707 the value of eoEnergyConsumed can be obtained at the end of the 708 sampling period. The symbol =========== denotes the duration of 709 the sampling period. 711 | | | =========== | 712 |============ | | | 713 | | | | 714 | |============ | | 715 | | | | 716 | <--- L ---> | <--- L ---> | <--- L ---> | 717 | | | | 718 S1 S2 S3 S4 720 Figure 3 : Period eoEnergyParametersIntervalMode 722 A eoEnergyParametersIntervalMode type of 'period' specifies non- 723 overlapping periodic measurements. Therefore, the next 724 eoEnergyCollectionStartTime is equal to the previous 725 eoEnergyCollectionStartTime plus 726 eoEnergyParametersIntervalLength. S2=S1+L; S3=S2+L, ... 728 |============ | 729 | | 730 | <--- L ---> | 731 | | 732 | |============ | 733 | | | 734 | | <--- L ---> | 735 | | | 736 | | |============ | 737 | | | | 738 | | | <--- L ---> | 739 | | | | 740 | | | |============ | 741 | | | | | 742 | | | | <--- L ---> | 743 S1 | | | | 744 | | | | 745 | | | | 746 S2 | | | 747 | | | 748 | | | 749 S3 | | 750 | | 751 | | 752 S4 754 Figure 4 : Sliding eoEnergyParametersIntervalMode 756 A eoEnergyParametersIntervalMode type of 'sliding' specifies 757 overlapping periodic measurements. 759 | | 760 |========================= | 761 | | 762 | | 763 | | 764 | <--- Total length ---> | 765 | | 766 S1 768 Figure 5 : Total eoEnergyParametersIntervalMode 770 A eoEnergyParametersIntervalMode type of 'total' specifies a 771 continuous measurement since the last reset. The value of 772 eoEnergyParametersIntervalNumber should be (1) one and 773 eoEnergyParametersIntervalLength is ignored. 775 The eoEnergyParametersStatus is used to start and stop energy 776 usage logging. The status of this variable is "active" when all 777 the objects in eoEnergyParametersTable are appropriate which in 778 turn indicates if eoEnergyTable entries exist or not. Finally, 779 the eoEnergyParametersStorageType variable indicates the storage 780 type for this row, i.e. whether the persistence is maintained 781 across a device reload. 783 The eoEnergyTable consists of energy measurements in 784 eoEnergyConsumed, eoEnergyProvided and eoEnergyStored, the units 785 of the measured energy eoEnergyUnitMultiplier, and the maximum 786 observed energy within a window eoEnergyMaxConsumed, 787 eoEnergyMaxProduced. 789 Measurements of the total energy consumed by an Energy Object 790 may suffer from interruptions in the continuous measurement of 791 energy consumption. In order to indicate such interruptions, 792 the object eoEnergyDiscontinuityTime is provided for indicating 793 the time of the last interruption of total energy measurement. 794 eoEnergyDiscontinuityTime shall indicate the sysUpTime [RFC3418] 795 when the device was reset. 797 The following example illustrates the eoEnergyTable and 798 eoEnergyParametersTable: 800 First, in order to estimate energy, a time interval to sample 801 energy should be specified, i.e., 802 eoEnergyParametersIntervalLength can be set to "900 seconds" or 803 15 minutes and the number of consecutive intervals over which 804 the maximum energy is calculated 805 (eoEnergyParametersIntervalNumber) as "10". The sampling rate 806 internal to the Energy Object for measurement of power usage 807 (eoEnergyParametersSampleRate) can be "1000 milliseconds", as 808 set by the Energy Object as a reasonable value. Then, the 809 eoEnergyParametersStatus is set to active to indicate that the 810 Energy Object should start monitoring the usage per the 811 eoEnergyTable. 813 The indices for the eoEnergyTable are eoEnergyParametersIndex, 814 which identifies the index for the setting of energy measurement 815 collection Energy Object, and eoEnergyCollectionStartTime, which 816 denotes the start time of the energy measurement interval based 817 on sysUpTime [RFC3418]. The value of eoEnergyComsumed is the 818 measured energy consumption over the time interval specified 819 (eoEnergyParametersIntervalLength) based on the Energy Object 820 internal sampling rate (eoEnergyParametersSampleRate). While 821 choosing the values for the eoEnergyParametersIntervalLength and 822 eoEnergyParametersSampleRate, it is recommended to take into 823 consideration either the network element resources adequate to 824 process and store the sample values, and the mechanism used to 825 calculate the eoEnergyConsumed. The units are derived from 826 eoEnergyUnitMultiplier. For example, eoEnergyConsumed can be 827 "100" with eoEnergyUnitMultiplier equal to 0, the measured 828 energy consumption of the Energy Object is 100 watt-hours. The 829 eoEnergyMaxConsumed is the maximum energy observed and that can 830 be "150 watt-hours". 832 The eoEnergyTable has a buffer to retain a certain number of 833 intervals, as defined by eoEnergyParametersIntervalNumber. 834 If the default value of "10" is kept, then the eoEnergyTable 835 contains 10 energy measurements, including the maximum. 837 Here is a brief explanation of how the maximum energy can be 838 calculated. The first observed energy measurement value is 839 taken to be the initial maximum. With each subsequent 840 measurement, based on numerical comparison, maximum energy may 841 be updated. The maximum value is retained as long as the 842 measurements are taking place. Based on periodic polling of 843 this table, an NMS could compute the maximum over a longer 844 period, e.g., a month, 3 months, or a year. 846 5.7. Fault Management 848 [RFC6988] specifies requirements about Power States such as "the 849 current Power State" , "the time of the last state change", "the 850 total time spent in each state", "the number of transitions to 851 each state" etc. Some of these requirements are fulfilled 852 explicitly by MIB objects such as eoPowerOperState, 853 eoPowerStateTotalTime and eoPowerStateEnterCount. Some of the 854 other requirements are met via the SNMP NOTIFICATION mechanism. 855 eoPowerStateChange SNMP notification which is generated when the 856 value of oPowerStateIndex, eoPowerOperState, or 857 eoPowerAdminState have changed. 859 6. Discovery 861 It is probable that most Energy Objects will require the 862 implementation of the ENERGY-OBJECT-CONTEXT-MIB [EMAN-AWARE-MIB] 863 as a prerequisite for this MIB module. In such a case, 864 eoPowerTable of the EMAN-ENERGY-OBJECT-MIB is cross-referenced 865 with the eoTable of ENERGY-OBJECT-CONTEXT-MIB via 866 entPhysicalIndex. Every Energy Object MUST implement 867 entPhysicalIndex, entPhysicalClass, entPhysicalName and 868 entPhysicalUUID from the ENTITY-MIB [RFC6933]. As the primary 869 index for the Energy Object, entPhysicalIndex is used: It 870 characterizes the Energy Object in the ENERGY-OBJECT-MIB and the 871 POWER-ATTRIBUTES-MIB MIB modules (this document). 873 The NMS must first poll the ENERGY-OBJECT-CONTEXT-MIB MIB module 874 [EMAN-AWARE-MIB], if available, in order to discover all the 875 Energy Objects and the relationships between those Energy 876 Objects. In the ENERGY-OBJECT-CONTEXT-MIB module tables, the 877 Energy Objects are indexed by the entPhysicalIndex. 879 From there, the NMS must poll the eoPowerStateTable (specified 880 in the ENERGY-OBJECT-MIB module in this document), which 881 enumerates, amongst other things, the maximum power usage. As 882 the entries in eoPowerStateTable table are indexed by the 883 Energy Object ( entPhysicalIndex) and by the Power State Set 884 (eoPowerStateIndex), the maximum power usage is discovered per 885 Energy Object, and the power usage per Power State of the Power 886 State Set. In other words, reading the eoPowerStateTable allows 887 the discovery of each Power State within every Power State Set 888 supported by the Energy Object. 890 The MIB module may be populated with the Energy Object 891 relationship information, which have its own Energy Object index 892 value (entPhysicalIndex). However, the Energy Object 893 relationship must be discovered via the ENERGY-OBJECT-CONTEXT- 894 MIB module. 896 Finally, the NMS can monitor the power attributes with the 897 POWER-ATTRIBUTES-MIB MIB module, which reuses the 898 entPhysicalIndex to index the Energy Object. 900 7. Link with the other IETF MIBs 902 7.1. Link with the ENTITY-MIB and the ENTITY-SENSOR MIB 904 RFC 6933 [RFC6933] defines the ENTITY-MIB module that lists the 905 physical entities of a networking device (router, switch, etc.) 906 and those physical entities indexed by entPhysicalIndex. From 907 an energy-management standpoint, the physical entities that 908 consume or produce energy are of interest. 910 RFC 3433 [RFC3433] defines the ENTITY-SENSOR MIB module that 911 provides a standardized way of obtaining information (current 912 value of the sensor, operational status of the sensor, and the 913 data units precision) from sensors embedded in networking 914 devices. Sensors are associated with each index of 915 entPhysicalIndex of the ENTITY-MIB [RFC6933]. While the focus 916 of the Power, Energy Monitoring and Control MIB is on 917 measurement of power usage of networking equipment indexed by 918 the ENTITY-MIB, this MIB supports a customized power scale for 919 power measurement and different Power States of networking 920 equipment, and functionality to configure the Power States. 922 The Energy Objects are modeled by the entPhysicalIndex through 923 the entPhysicalEntity MIB object specified in the eoTable in the 924 ENERGY-OBJECT-CONTEXT-MIB MIB module [EMAN-AWARE-MIB]. 926 The ENTITY-SENSOR MIB [RFC3433] does not have the ANSI C12.x 927 accuracy classes required for electricity (e.g., 1%, 2%, 0.5% 928 accuracy classes). Indeed, entPhySensorPrecision [RFC3433] 929 represents "The number of decimal places of precision in fixed- 930 point sensor values returned by the associated entPhySensorValue 931 object". The ANSI and IEC Standards are used for power 932 measurement and these standards require that we use an accuracy 933 class, not the scientific-number precision model specified in 934 RFC3433. The eoPowerAccuracy MIB object models this accuracy. 935 Note that eoPowerUnitMultipler represents the scale factor per 936 IEC 62053-21 [IEC.62053-21] and IEC 62053-22 [IEC.62053-22], 937 which is a more logical representation for power measurements 938 (compared to entPhySensorScale), with the mantissa and the 939 exponent values X * 10 ^ Y. 941 Power measurements specifying the qualifier 'UNITS' for each 942 measured value in watts are used in the LLDP-EXT-MED-MIB, POE 943 [RFC3621], and UPS [RFC1628] MIBs. The same 'UNITS' qualifier 944 is used for the power measurement values. 946 One cannot assume that the ENTITY-MIB and ENTITY-SENSOR MIB are 947 implemented for all Energy Objects that need to be monitored. A 948 typical example is a converged building gateway, which can 949 monitor other devices in a building and provides a proxy between 950 SNMP and a protocol like BACNET. Another example is the home 951 energy controller. In such cases, the eoPhysicalEntity value 952 contains the zero value, using the PhysicalIndexOrZero textual 953 convention. 955 The eoPower is similar to entPhySensorValue [RFC3433] and the 956 eoPowerUnitMultipler is similar to entPhySensorScale. 958 7.2. Link with the ENTITY-STATE MIB 960 For each entity in the ENTITY-MIB [RFC6933], the ENTITY-STATE 961 MIB [RFC4268] specifies the operational states (entStateOper: 962 unknown, enabled, disabled, testing), the alarm (entStateAlarm: 963 unknown, underRepair, critical, major, minor, warning, 964 indeterminate) and the possible values of standby states 965 (entStateStandby: unknown, hotStandby, coldStandby, 966 providingService). 968 From a power monitoring point of view, in contrast to the entity 969 operational states of entities, Power States are required, as 970 proposed in the Power, Energy Monitoring and Control MIB module. 971 Those Power States can be mapped to the different operational 972 states in the ENTITY-STATE MIB, if a formal mapping is required. 973 For example, the entStateStandby "unknown", "hotStandby", 974 "coldStandby", states could map to the Power State "unknown", 975 "ready", "standby", respectively, while the entStateStandby 976 "providingService" could map to any "low" to "high" Power State. 978 7.3. Link with the POWER-OVER-ETHERNET MIB 980 Power-over-Ethernet MIB [RFC3621] provides an energy monitoring 981 and configuration framework for power over Ethernet devices. 982 RFC 3621 defines a port group entity on a switch for power 983 monitoring and management policy and does not use the 984 entPhysicalIndex index. Indeed, pethMainPseConsumptionPower is 985 indexed by the pethMainPseGroupIndex, which has no mapping with 986 the entPhysicalIndex. 988 If the Power-over-Ethernet MIB [RFC3621] is supported, the 989 Energy Object eoethPortIndex and eoethPortGrpIndex contain the 990 pethPsePortIndex and pethPsePortGroupIndex, respectively. 991 However, one cannot assume that the Power-over-Ethernet MIB is 992 implemented for most or all Energy Objects. In such cases, the 993 eoethPortIndex and eoethPortGrpIndex values contain the zero 994 value, via the new PethPsePortIndexOrZero and textual 995 PethPsePortGroupIndexOrZero conventions. 997 In either case, the entPhysicalIndex MIB object is used as the 998 unique Energy Object index. 1000 Note that, even though the Power-over-Ethernet MIB [RFC3621] was 1001 created after the ENTITY-SENSOR MIB [RFC3433], it does not reuse 1002 the precision notion from the ENTITY-SENSOR MIB, i.e., the 1003 entPhySensorPrecision MIB object. 1005 7.4. Link with the UPS MIB 1007 To protect against unexpected power disruption, data centers and 1008 buildings make use of Uninterruptible Power Supplies (UPS). To 1009 protect critical assets, a UPS can be restricted to a particular 1010 subset or domain of the network. UPS usage typically lasts only 1011 for a finite period of time, until normal power supply is 1012 restored. Planning is required to decide on the capacity of the 1013 UPS based on output power and duration of probable power outage. 1014 To properly provision UPS power in a data center or building, it 1015 is important to first understand the total demand required to 1016 support all the entities in the site. This demand can be 1017 assessed and monitored via the Power, Energy Monitoring and 1018 Control MIB. 1020 UPS MIB [RFC1628] provides information on the state of the UPS 1021 network. Implementation of the UPS MIB is useful at the 1022 aggregate level of a data center or a building. The MIB module 1023 contains several groups of variables: 1025 - upsIdent: Identifies the UPS entity (name, model, etc.). 1027 - upsBattery group: Indicates the battery state 1028 (upsbatteryStatus, upsEstimatedMinutesRemaining, etc.) 1030 - upsInput group: Characterizes the input load to the UPS 1031 (number of input lines, voltage, current, etc.). 1033 - upsOutput: Characterizes the output from the UPS (number of 1034 output lines, voltage, current, etc.) 1036 - upsAlarms: Indicates the various alarm events. 1038 The measurement of power in the UPS MIB is in volts, amperes and 1039 watts. The units of power measurement are RMS volts and RMS 1040 Amperes. They are not based on the EntitySensorDataScale and 1041 EntitySensorDataPrecision of ENTITY-SENSOR-MIB. 1043 Both the Power, Energy Monitoring and Control MIB and the UPS 1044 MIB may be implemented on the same UPS SNMP agent, without 1045 conflict. In this case, the UPS device itself is the Energy 1046 Object and any of the UPS meters or submeters are the Energy 1047 Objects with a possible relationship as defined in [RFC7326]. 1049 7.5. Link with the LLDP and LLDP-MED MIBs 1051 The LLDP Protocol is a Data Link Layer protocol used by network 1052 devices to advertise their identities, capabilities, and 1053 interconnections on a LAN network. 1055 The Media Endpoint Discovery is an enhancement of LLDP, known as 1056 LLDP-MED. The LLDP-MED enhancements specifically address voice 1057 applications. LLDP-MED covers 6 basic areas: capability 1058 discovery, LAN speed and duplex discovery, network policy 1059 discovery, location identification discovery, inventory 1060 discovery, and power discovery. 1062 Of particular interest to the current MIB module is the power 1063 discovery, which allows the endpoint device (such as a PoE 1064 phone) to convey power requirements to the switch. In power 1065 discovery, LLDP-MED has four Type Length Values (TLVs): power 1066 type, power source, power priority and power value. 1067 Respectively, those TLVs provide information related to the type 1068 of power (power sourcing entity versus powered device), how the 1069 device is powered (from the line, from a backup source, from 1070 external power source, etc.), the power priority (how important 1071 is it that this device has power?), and how much power the 1072 device needs. 1074 The power priority specified in the LLDP-MED MIB [LLDP-MED-MIB] 1075 actually comes from the Power-over-Ethernet MIB [RFC3621]. If 1076 the Power-over-Ethernet MIB [RFC3621] is supported, the exact 1077 value from the pethPsePortPowerPriority [RFC3621] is copied over 1078 into the lldpXMedRemXPoEPDPowerPriority [LLDP-MED-MIB]; 1079 otherwise the value in lldpXMedRemXPoEPDPowerPriority is 1080 "unknown". From the Power, Energy Monitoring and Control MIB, it 1081 is possible to identify the pethPsePortPowerPriority [RFC3621], 1082 via the eoethPortIndex and eoethPortGrpIndex. 1084 The lldpXMedLocXPoEPDPowerSource [LLDP-MED-MIB] is similar to 1085 eoPowerMeasurementLocal in indicating if the power for an 1086 attached device is local or from a remote device. If the LLDP- 1087 MED MIB is supported, the following mapping can be applied to 1088 the eoPowerMeasurementLocal: lldpXMedLocXPoEPDPowerSource 1089 fromPSE(2) and local(3) can be mapped to false and true, 1090 respectively. 1092 8. Structure of the MIB 1094 The primary MIB object in the energyObjectMib MIB module is the 1095 energyObjectMibObjects root. The eoPowerTable table of 1096 energyObjectMibObjects describes the power measurement 1097 attributes of an Energy Object entity. The identity of a device 1098 in terms of uniquely identification of the Energy Object and its 1099 relationship to other entities in the network are addressed in 1100 [EMAN-AWARE-MIB]. 1102 Logically, this MIB module is a sparse extension of the 1103 ENERGY-OBJECT-CONTEXT-MIB module [EMAN-AWARE-MIB]. Thus the 1104 following requirements which are applied to [EMAN-AWARE-MIB] are 1105 also applicable. As a requirement for this MIB module, [EMAN- 1106 AWARE-MIB] SHOULD be implemented and as Module Compliance of 1107 ENTITY-MIB V4 [RFC6933] with respect to entity4CRCompliance MUST 1108 be supported which requires 4 MIB objects: entPhysicalIndex, 1109 entPhysicalClass, entPhysicalName and entPhysicalUUID MUST be 1110 implemented. 1112 eoMeterCapabilitiesTable is useful to enable applications to 1113 determine the capabilities supported by the local management 1114 agent. This table indicates the energy monitoring MIB groups 1115 that are supported by the local management system. By reading 1116 the value of this object, it is possible for applications to 1117 know which tables contain the information and are usable without 1118 walking through the table and querying every element which 1119 involves a trial-and-error process. 1121 The power measurement of an Energy Object contains information 1122 describing its power usage (eoPower) and its current Power State 1123 (eoPowerOperState). In addition to power usage, additional 1124 information describing the units of measurement 1125 (eoPowerAccuracy, eoPowerUnitMultiplier), how power usage 1126 measurement was obtained (eoPowerMeasurementCaliber), the 1127 source of power measurement (eoPowerMeasurementLocal) and the 1128 type of power (eoPowerCurrentType) are described. 1130 An Energy Object may contain an optional eoEnergyTable to 1131 describe energy measurement information over time. 1133 An Energy Object may contain an optional eoACPwrAttributesTable 1134 table (specified in the POWER-ATTRIBUTES-MIB module) that 1135 describes the electrical characteristics associated with the 1136 current Power State and usage. 1138 An Energy Object may also contain optional battery information 1139 associated with this entity. 1141 9. MIB Definitions 1143 9.1. The IANAPowerStateSet-MIB MIB Module 1145 -- ************************************************************ 1146 -- 1147 -- 1148 -- This MIB, maintained by IANA, contains a single Textual 1149 -- Convention: PowerStateSet 1150 -- 1151 -- ************************************************************ 1153 IANAPowerStateSet-MIB DEFINITIONS ::= BEGIN 1155 IMPORTS 1156 MODULE-IDENTITY, mib-2 FROM SNMPv2-SMI 1157 TEXTUAL-CONVENTION FROM SNMPv2-TC; 1159 ianaPowerStateSet MODULE-IDENTITY 1160 LAST-UPDATED "201406070000Z" -- 07 June 2014 1161 ORGANIZATION "IANA" 1162 CONTACT-INFO " 1163 Internet Assigned Numbers Authority 1164 Postal: ICANN 1165 12025 Waterfront Drive Suite 300 1166 Los Angeles, CA 90094 1167 Tel: +1-310-301 5800 1168 EMail: iana&iana.org" 1170 DESCRIPTION 1171 "This MIB module defines the PowerStateSet Textual 1172 Convention, which specifies the Power State Sets and 1173 Power State Set Values an Energy Object supports 1175 Copyright (C) The IETF Trust (2014). 1176 The initial version of this MIB module was published in 1177 RFC XXXX; for full legal notices see the RFC itself. 1179 Supplementary information may be available at 1180 http://www.ietf.org/copyrights/ianamib.html" 1182 -- revision history 1184 REVISION "201406070000Z" -- 07 June 2014 1185 DESCRIPTION 1186 "Initial version of this MIB module, as published as RFC 1187 XXXX." 1189 -- RFC Editor, please replace xxx with the IANA allocation 1190 -- for this MIB module and XXXX with the number of the 1191 -- approved RFC 1193 ::= { mib-2 xxx } 1195 PowerStateSet ::= TEXTUAL-CONVENTION 1196 STATUS current 1197 DESCRIPTION 1198 "IANAPowerState is a textual convention that describes 1199 Power State Sets and Power State Set Values an Energy 1200 Object supports. IANA has created a registry of Power 1201 State supported by an Energy Object and IANA shall 1202 administer the list of Power State Sets and Power 1203 States. 1205 The textual convention assumes that Power States in a 1206 power state set are limited to 255 distinct values. For 1207 a Power State Set S, the named number with the value S * 1208 256 is allocated to indicate the Power State set. For a 1209 Power State X in the Power State S, the named number 1210 with the value S * 256 + X + 1 is allocated to represent 1211 the Power State. 1213 Requests for new values should be made to IANA via email 1214 (iana&iana.org)." 1216 REFERENCE 1217 "http://www.iana.org/assignments/power-state-sets" 1219 SYNTAX INTEGER { 1220 other(0), -- indicates other set 1221 unknown(255), -- unknown 1223 ieee1621(256), -- indicates IEEE1621 set 1224 ieee1621Off(257), 1225 ieee1621Sleep(258), 1226 ieee1621On(259), 1228 dmtf(512), -- indicates DMTF set 1229 dmtfOn(513), 1230 dmtfSleepLight(514), 1231 dmtfSleepDeep(515), 1232 dmtfOffHard(516), 1233 dmtfOffSoft(517), 1234 dmtfHibernate(518), 1235 dmtfPowerOffSoft(519), 1236 dmtfPowerOffHard(520), 1237 dmtfMasterBusReset(521), 1238 dmtfDiagnosticInterrapt(522), 1239 dmtfOffSoftGraceful(523), 1240 dmtfOffHardGraceful(524), 1241 dmtfMasterBusResetGraceful(525), 1242 dmtfPowerCycleOffSoftGraceful(526), 1243 dmtfPowerCycleHardGraceful(527), 1245 eman(1024), -- indicates EMAN set 1246 emanmechoff(1025), 1247 emansoftoff(1026), 1248 emanhibernate(1027), 1249 emansleep(1028), 1250 emanstandby(1029), 1251 emanready(1030), 1252 emanlowMinus(1031), 1254 emanlow(1032), 1255 emanmediumMinus(1033), 1256 emanmedium(1034), 1257 emanhighMinus(1035), 1258 emanhigh(1036) 1260 } 1261 END 1263 9.2. The ENERGY-OBJECT-MIB MIB Module 1265 -- ************************************************************ 1266 -- 1267 -- 1268 -- This MIB is used to monitor power usage of network 1269 -- devices 1270 -- 1271 -- ************************************************************* 1273 ENERGY-OBJECT-MIB DEFINITIONS ::= BEGIN 1275 IMPORTS 1276 MODULE-IDENTITY, 1277 OBJECT-TYPE, 1278 NOTIFICATION-TYPE, 1279 mib-2, 1280 Integer32, Counter32, Unsigned32, TimeTicks 1281 FROM SNMPv2-SMI 1282 TEXTUAL-CONVENTION, RowStatus, TimeInterval, 1283 TimeStamp, TruthValue, StorageType 1284 FROM SNMPv2-TC 1285 MODULE-COMPLIANCE, NOTIFICATION-GROUP, OBJECT-GROUP 1286 FROM SNMPv2-CONF 1287 OwnerString 1288 FROM RMON-MIB 1289 entPhysicalIndex 1290 FROM ENTITY-MIB 1291 PowerStateSet 1292 FROM IANAPowerStateSet-MIB; 1294 energyObjectMib MODULE-IDENTITY 1295 LAST-UPDATED "201406070000Z" -- 07 June 2014 1297 ORGANIZATION "IETF EMAN Working Group" 1298 CONTACT-INFO 1299 "WG charter: 1300 http://datatracker.ietf.org/wg/eman/charter/ 1302 Mailing Lists: 1303 General Discussion: eman@ietf.org 1305 To Subscribe: 1306 https://www.ietf.org/mailman/listinfo/eman 1308 Archive: 1309 http://www.ietf.org/mail-archive/web/eman 1311 Editors: 1312 Mouli Chandramouli 1313 Cisco Systems, Inc. 1314 Sarjapur Outer Ring Road 1315 Bangalore 560103 1316 IN 1317 Phone: +91 80 4429 2409 1318 Email: moulchan@cisco.com 1320 Brad Schoening 1321 44 Rivers Edge Drive 1322 Little Silver, NJ 07739 1323 US 1324 Email: brad.schoening@verizon.net 1326 Juergen Quittek 1327 NEC Europe Ltd. 1328 NEC Laboratories Europe 1329 Network Research Division 1330 Kurfuersten-Anlage 36 1331 Heidelberg 69115 1332 DE 1333 Phone: +49 6221 4342-115 1334 Email: quittek@neclab.eu 1336 Thomas Dietz 1337 NEC Europe Ltd. 1338 NEC Laboratories Europe 1339 Network Research Division 1340 Kurfuersten-Anlage 36 1341 69115 Heidelberg 1342 DE 1343 Phone: +49 6221 4342-128 1344 Email: Thomas.Dietz@nw.neclab.eu 1346 Benoit Claise 1347 Cisco Systems, Inc. 1348 De Kleetlaan 6a b1 1349 Degem 1831 1350 Belgium 1351 Phone: +32 2 704 5622 1352 Email: bclaise@cisco.com" 1354 DESCRIPTION 1355 "This MIB is used to monitor power and energy in 1356 devices. 1358 The tables eoMeterCapabilitiesTable and eoPowerTable 1359 are a sparse extension of the eoTable from the 1360 ENERGY-OBJECT-CONTEXT-MIB. As a requirement 1361 [EMAN-AWARE-MIB] SHOULD be implemented. 1363 Module Compliance of ENTITY-MIB v4 with respect to 1364 entity4CRCompliance MUST be supported which requires 1365 implementation of 4 MIB objects: entPhysicalIndex, 1366 entPhysicalClass, entPhysicalName and entPhysicalUUID." 1368 REVISION "201406070000Z" -- 07 June 2014 1369 DESCRIPTION 1370 "Initial version, published as RFC XXXX." 1372 -- RFC Editor, please replace yyy with the IANA allocation 1373 -- for this MIB module and XXXX with the number of the 1374 -- approved RFC 1376 ::= { mib-2 yyy } 1378 energyObjectMibNotifs OBJECT IDENTIFIER 1379 ::= { energyObjectMib 0 } 1381 energyObjectMibObjects OBJECT IDENTIFIER 1382 ::= { energyObjectMib 1 } 1384 energyObjectMibConform OBJECT IDENTIFIER 1385 ::= { energyObjectMib 2 } 1387 -- Textual Conventions 1389 UnitMultiplier ::= TEXTUAL-CONVENTION 1390 STATUS current 1391 DESCRIPTION 1392 "The Unit Multiplier is an integer value that represents 1393 the IEEE 61850 Annex A units multiplier associated with 1394 the integer units used to measure the power or energy. 1396 For example, when used with eoPowerUnitMultiplier, -3 1397 represents 10^-3 or milliwatts." 1398 REFERENCE 1399 "The International System of Units (SI), National 1400 Institute of Standards and Technology, Spec. Publ. 330, 1401 August 1991." 1402 SYNTAX INTEGER { 1403 yocto(-24), -- 10^-24 1404 zepto(-21), -- 10^-21 1405 atto(-18), -- 10^-18 1406 femto(-15), -- 10^-15 1407 pico(-12), -- 10^-12 1408 nano(-9), -- 10^-9 1409 micro(-6), -- 10^-6 1410 milli(-3), -- 10^-3 1411 units(0), -- 10^0 1412 kilo(3), -- 10^3 1413 mega(6), -- 10^6 1414 giga(9), -- 10^9 1415 tera(12), -- 10^12 1416 peta(15), -- 10^15 1417 exa(18), -- 10^18 1418 zetta(21), -- 10^21 1419 yotta(24) -- 10^24 1420 } 1422 -- Objects 1424 eoMeterCapabilitiesTable OBJECT-TYPE 1425 SYNTAX SEQUENCE OF EoMeterCapabilitiesEntry 1426 MAX-ACCESS not-accessible 1427 STATUS current 1428 DESCRIPTION 1429 "This table is useful for helping applications determine 1430 the monitoring capabilities supported by the local 1431 management agents. It is possible for applications to 1432 know which tables are usable without going through a 1433 trial-and-error process." 1434 ::= { energyObjectMibObjects 1 } 1436 eoMeterCapabilitiesEntry OBJECT-TYPE 1437 SYNTAX EoMeterCapabilitiesEntry 1438 MAX-ACCESS not-accessible 1439 STATUS current 1440 DESCRIPTION 1441 "An entry describes the metering capability of an Energy 1442 Object." 1443 INDEX { entPhysicalIndex } 1444 ::= { eoMeterCapabilitiesTable 1 } 1446 EoMeterCapabilitiesEntry ::= SEQUENCE { 1447 eoMeterCapability BITS 1448 } 1450 eoMeterCapability OBJECT-TYPE 1451 SYNTAX BITS { 1452 none(0), 1453 powermetering(1), -- power measurement 1454 energymetering(2), -- energy measurement 1455 powerattributes(3) -- power attributes 1456 } 1457 MAX-ACCESS read-only 1458 STATUS current 1459 DESCRIPTION 1460 "An indication of the energy monitoring capabilities 1461 supported by this agent. This object use a BITS syntax 1462 and indicates the MIB groups supported by the probe. By 1463 reading the value of this object, it is possible to 1464 determine the MIB tables supported. " 1465 ::= { eoMeterCapabilitiesEntry 1 } 1467 eoPowerTable OBJECT-TYPE 1468 SYNTAX SEQUENCE OF EoPowerEntry 1469 MAX-ACCESS not-accessible 1470 STATUS current 1471 DESCRIPTION 1472 "This table lists Energy Objects." 1473 ::= { energyObjectMibObjects 2 } 1475 eoPowerEntry OBJECT-TYPE 1476 SYNTAX EoPowerEntry 1477 MAX-ACCESS not-accessible 1478 STATUS current 1479 DESCRIPTION 1480 "An entry describes the power usage of an Energy Object." 1481 INDEX { entPhysicalIndex } 1482 ::= { eoPowerTable 1 } 1484 EoPowerEntry ::= SEQUENCE { 1485 eoPower Integer32, 1486 eoPowerNameplate Unsigned32, 1487 eoPowerUnitMultiplier UnitMultiplier, 1488 eoPowerAccuracy Integer32, 1489 eoPowerMeasurementCaliber INTEGER, 1490 eoPowerCurrentType INTEGER, 1491 eoPowerMeasurementLocal TruthValue, 1492 eoPowerAdminState PowerStateSet, 1493 eoPowerOperState PowerStateSet, 1494 eoPowerStateEnterReason OwnerString 1495 } 1497 eoPower OBJECT-TYPE 1498 SYNTAX Integer32 1499 UNITS "watts" 1500 MAX-ACCESS read-only 1501 STATUS current 1502 DESCRIPTION 1503 "This object indicates the power measured for the Energy 1504 Object. For alternating current, this value is obtained 1505 as an average over fixed number of AC cycles. This value 1506 is specified in SI units of watts with the magnitude of 1507 watts (milliwatts, kilowatts, etc.) indicated separately 1508 in eoPowerUnitMultiplier. The accuracy of the measurement 1509 is specified in eoPowerAccuracy. The direction of power 1510 flow is indicated by the sign on eoPower. If the Energy 1511 Object is consuming power, the eoPower value will be 1512 positive. If the Energy Object is producing power, the 1513 eoPower value will be negative. 1515 The eoPower MUST be less than or equal to the maximum 1516 power that can be consumed at the power state specified 1517 by eoPowerState. 1519 The eoPowerMeasurementCaliber object specifies how the 1520 usage value reported by eoPower was obtained. The eoPower 1521 value must report 0 if the eoPowerMeasurementCaliber is 1522 'unavailable'. For devices that can not measure or 1523 report power, this option can be used." 1524 ::= { eoPowerEntry 1 } 1526 eoPowerNameplate OBJECT-TYPE 1527 SYNTAX Unsigned32 1528 UNITS "watts" 1529 MAX-ACCESS read-only 1530 STATUS current 1531 DESCRIPTION 1532 "This object indicates the rated maximum consumption for 1533 the fully populated Energy Object. The nameplate power 1534 requirements are the maximum power numbers given in SI 1535 Watts and, in almost all cases, are well above the 1536 expected operational consumption. Nameplate power is 1537 widely used for power provisioning. This value is 1538 specified in either units of watts or voltage and 1539 current. The units are therefore SI watts or equivalent 1540 Volt-Amperes with the magnitude (milliwatts, kilowatts, 1541 etc.) indicated separately in eoPowerUnitMultiplier." 1542 ::= { eoPowerEntry 2 } 1544 eoPowerUnitMultiplier OBJECT-TYPE 1545 SYNTAX UnitMultiplier 1546 MAX-ACCESS read-only 1547 STATUS current 1548 DESCRIPTION 1549 "The magnitude of watts for the usage value in eoPower 1550 and eoPowerNameplate." 1551 ::= { eoPowerEntry 3 } 1553 eoPowerAccuracy OBJECT-TYPE 1554 SYNTAX Integer32 (0..10000) 1555 UNITS "hundredths of percent" 1556 MAX-ACCESS read-only 1557 STATUS current 1558 DESCRIPTION 1559 "This object indicates a percentage value, in 100ths of a 1560 percent, representing the assumed accuracy of the usage 1561 reported by eoPower. For example: The value 1010 means 1562 the reported usage is accurate to +/- 10.1 percent. This 1563 value is zero if the accuracy is unknown or not 1564 applicable based upon the measurement method. 1566 ANSI and IEC define the following accuracy classes for 1567 power measurement: 1568 IEC 62053-22 60044-1 class 0.1, 0.2, 0.5, 1 3. 1569 ANSI C12.20 class 0.2, 0.5" 1571 ::= { eoPowerEntry 4 } 1573 eoPowerMeasurementCaliber OBJECT-TYPE 1574 SYNTAX INTEGER { 1575 unavailable(1) , 1576 unknown(2), 1577 actual(3) , 1578 estimated(4), 1579 static(5) } 1580 MAX-ACCESS read-only 1581 STATUS current 1582 DESCRIPTION 1583 "This object specifies how the usage value reported by 1584 eoPower was obtained: 1586 - unavailable(1): Indicates that the usage is not 1587 available. In such a case, the eoPower value must be 0 1588 for devices that can not measure or report power this 1589 option can be used. 1591 - unknown(2): Indicates that the way the usage was 1592 determined is unknown. In some cases, entities report 1593 aggregate power on behalf of another device. In such 1594 cases it is not known whether the usage reported is 1595 actual, estimated or static. 1597 - actual(3): Indicates that the reported usage was 1598 measured by the entity through some hardware or direct 1599 physical means. The usage data reported is not estimated 1600 or static but is the measured consumption rate. 1602 - estimated(4): Indicates that the usage was not 1603 determined by physical measurement. The value is a 1604 derivation based upon the device type, state, and/or 1605 current utilization using some algorithm or heuristic. It 1606 is presumed that the entity's state and current 1607 configuration were used to compute the value. 1609 - static(5): Indicates that the usage was not determined 1610 by physical measurement, algorithm or derivation. The 1611 usage was reported based upon external tables, 1612 specifications, and/or model information. For example, a 1613 PC Model X draws 200W, while a PC Model Y draws 210W." 1614 ::= { eoPowerEntry 5 } 1616 eoPowerCurrentType OBJECT-TYPE 1617 SYNTAX INTEGER { 1618 ac(1), 1619 dc(2), 1620 unknown(3) 1621 } 1623 MAX-ACCESS read-only 1624 STATUS current 1625 DESCRIPTION 1626 "This object indicates whether the eoPower for the 1627 Energy Object reports alternating current 'ac', direct 1628 current 'dc', or that the current type is unknown." 1629 ::= { eoPowerEntry 6 } 1631 eoPowerMeasurementLocal OBJECT-TYPE 1632 SYNTAX TruthValue 1633 MAX-ACCESS read-only 1634 STATUS current 1635 DESCRIPTION 1636 "This object indicates the source of power measurement 1637 and can be useful when modeling the power usage of 1638 attached devices. The power measurement can be performed 1639 by the entity itself or the power measurement of the 1640 entity can be reported by another trusted entity using a 1641 protocol extension. A value of true indicates the 1642 measurement is performed by the entity, whereas false 1643 indicates that the measurement was performed by another 1644 entity." 1645 ::= { eoPowerEntry 7 } 1647 eoPowerAdminState OBJECT-TYPE 1648 SYNTAX PowerStateSet 1649 MAX-ACCESS read-write 1650 STATUS current 1651 DESCRIPTION 1652 "This object specifies the desired Power State and the 1653 Power State Set for the Energy Object. Note that other(0) 1654 is not a Power State Set and unknown(255) is not a Power 1655 State as such, but simply an indication that the Power 1656 State of the Energy Object is unknown. 1657 Possible values of eoPowerAdminState within the Power 1658 State Set are registered at IANA. 1659 A current list of assignments can be found at 1660 http://www.iana.org/assignments/power-state-sets" 1661 ::= { eoPowerEntry 8 } 1663 eoPowerOperState OBJECT-TYPE 1664 SYNTAX PowerStateSet 1665 MAX-ACCESS read-only 1666 STATUS current 1667 DESCRIPTION 1668 "This object specifies the current operational Power 1669 State and the Power State Set for the Energy Object. 1670 other(0) is not a Power State Set and unknown(255) is not 1671 a Power State as such, but simply an indication that the 1672 Power State of the Energy Object is unknown. 1674 Possible values of eoPowerOperState within the Power 1675 State Set are registered at IANA. A current list of 1676 assignments can be found at < 1677 http://www.iana.org/assignments/power-state-sets>" 1678 ::= { eoPowerEntry 9 } 1680 eoPowerStateEnterReason OBJECT-TYPE 1681 SYNTAX OwnerString 1682 MAX-ACCESS read-write 1683 STATUS current 1684 DESCRIPTION 1685 "This string object describes the reason for the 1686 eoPowerAdminState transition. Alternatively, this string 1687 may contain with the entity that configured this Energy 1688 Object to this Power State." 1689 DEFVAL { "" } 1690 ::= { eoPowerEntry 10 } 1692 eoPowerStateTable OBJECT-TYPE 1693 SYNTAX SEQUENCE OF EoPowerStateEntry 1694 MAX-ACCESS not-accessible 1695 STATUS current 1696 DESCRIPTION 1697 "This table enumerates the maximum power usage, in watts, 1698 for every single supported Power State of each Energy 1699 Object. 1701 This table has cross-reference with the eoPowerTable, 1702 containing rows describing each Power State for the 1703 corresponding Energy Object. For every Energy Object in 1704 the eoPowerTable, there is a corresponding entry in this 1705 table." 1706 ::= { energyObjectMibObjects 3 } 1708 eoPowerStateEntry OBJECT-TYPE 1709 SYNTAX EoPowerStateEntry 1710 MAX-ACCESS not-accessible 1711 STATUS current 1712 DESCRIPTION 1713 "A eoPowerStateEntry extends a corresponding 1714 eoPowerEntry. This entry displays max usage values at 1715 every single possible Power State supported by the Energy 1716 Object. 1717 For example, given the values of a Energy Object 1718 corresponding to a maximum usage of 0 W at the 1719 state emanmechoff, 8 W at state 6 (ready), 11 W at state 1720 emanmediumMinus,and 11 W at state emanhigh: 1722 State MaxUsage Units 1723 emanmechoff 0 W 1724 emansoftoff 0 W 1725 emanhibernate 0 W 1726 emansleep 0 W 1727 emanstandby 0 W 1728 emanready 8 W 1729 emanlowMinus 8 W 1730 emanlow 11 W 1731 emanmediumMinus 11 W 1732 emanmedium 11 W 1733 emanhighMinus 11 W 1734 emnanhigh 11 W 1736 Furthermore, this table also includes the total time in 1737 each Power State, along with the number of times a 1738 particular Power State was entered." 1740 INDEX { entPhysicalIndex, eoPowerStateIndex } 1741 ::= { eoPowerStateTable 1 } 1743 EoPowerStateEntry ::= SEQUENCE { 1744 eoPowerStateIndex PowerStateSet, 1745 eoPowerStateMaxPower INTEGER, 1746 eoPowerStatePowerUnitMultiplier UnitMultiplier, 1747 eoPowerStateTotalTime TimeTicks, 1748 eoPowerStateEnterCount Counter32 1749 } 1751 eoPowerStateIndex OBJECT-TYPE 1752 SYNTAX PowerStateSet 1753 MAX-ACCESS not-accessible 1754 STATUS current 1755 DESCRIPTION 1756 "This object specifies the index of the Power State of 1757 the Energy Object within a Power State Set. The semantics 1758 of the specific Power State can be obtained from the 1759 Power State Set definition." 1760 ::= { eoPowerStateEntry 1 } 1762 eoPowerStateMaxPower OBJECT-TYPE 1763 SYNTAX Integer32 1764 UNITS "watts" 1765 MAX-ACCESS read-only 1766 STATUS current 1767 DESCRIPTION 1768 "This object indicates the maximum power for the Energy 1769 Object at the particular Power State. This value is 1770 specified in SI units of watts with the magnitude of the 1771 units (milliwatts, kilowatts, etc.) indicated separately 1772 in eoPowerStatePowerUnitMultiplier. If the maximum power 1773 is not known for a certain Power State, then the value is 1774 encoded as 0xFFFFFFFF. 1776 For Power States not enumerated, the value of 1777 eoPowerStateMaxPower might be interpolated by using the 1778 next highest supported Power State." 1779 ::= { eoPowerStateEntry 2 } 1781 eoPowerStatePowerUnitMultiplier OBJECT-TYPE 1782 SYNTAX UnitMultiplier 1783 MAX-ACCESS read-only 1784 STATUS current 1785 DESCRIPTION 1786 "The magnitude of watts for the usage value in 1787 eoPowerStateMaxPower." 1788 ::= { eoPowerStateEntry 3 } 1790 eoPowerStateTotalTime OBJECT-TYPE 1791 SYNTAX TimeTicks 1792 MAX-ACCESS read-only 1793 STATUS current 1794 DESCRIPTION 1795 "This object indicates the total time in hundredths 1796 of second that the Energy Object has been in this power 1797 state since the last reset, as specified in the 1798 sysUpTime." 1799 ::= { eoPowerStateEntry 4 } 1801 eoPowerStateEnterCount OBJECT-TYPE 1802 SYNTAX Counter32 1803 MAX-ACCESS read-only 1804 STATUS current 1805 DESCRIPTION 1806 "This object indicates how often the Energy Object has 1807 entered this power state, since the last reset of the 1808 device as specified in the sysUpTime." 1809 ::= { eoPowerStateEntry 5 } 1811 eoEnergyParametersTable OBJECT-TYPE 1812 SYNTAX SEQUENCE OF EoEnergyParametersEntry 1813 MAX-ACCESS not-accessible 1814 STATUS current 1815 DESCRIPTION 1816 "This table is used to configure the parameters for 1817 Energy measurement collection in the table eoEnergyTable. 1818 This table allows the configuration of different 1819 measurement settings on the same Energy Object. 1820 Implementation of this table only makes sense for Energy 1821 Objects that an eoPowerMeasurementCaliber of actual." 1822 ::= { energyObjectMibObjects 4 } 1824 eoEnergyParametersEntry OBJECT-TYPE 1825 SYNTAX EoEnergyParametersEntry 1826 MAX-ACCESS not-accessible 1827 STATUS current 1828 DESCRIPTION 1829 "An entry controls an energy measurement in 1830 eoEnergyTable." 1831 INDEX { entPhysicalIndex, eoEnergyParametersIndex } 1832 ::= { eoEnergyParametersTable 1 } 1834 EoEnergyParametersEntry ::= SEQUENCE { 1835 eoEnergyParametersIndex Integer32, 1836 eoEnergyParametersIntervalLength TimeInterval, 1837 eoEnergyParametersIntervalNumber Unsigned32, 1838 eoEnergyParametersIntervalMode INTEGER, 1839 eoEnergyParametersIntervalWindow TimeInterval, 1840 eoEnergyParametersSampleRate Unsigned32, 1841 eoEnergyParametersStorageType StorageType, 1842 eoEnergyParametersStatus RowStatus 1843 } 1845 eoEnergyParametersIndex OBJECT-TYPE 1846 SYNTAX Integer32 (1..2147483647) 1847 MAX-ACCESS not-accessible 1848 STATUS current 1849 DESCRIPTION 1850 "This object specifies the index of the Energy Parameters 1851 setting for collection of energy measurements for an 1852 Energy Object. An Energy Object can have multiple 1853 eoEnergyParametersIndex, depending on the capabilities of 1854 the Energy Object" 1855 ::= { eoEnergyParametersEntry 2 } 1857 eoEnergyParametersIntervalLength OBJECT-TYPE 1858 SYNTAX TimeInterval 1859 MAX-ACCESS read-create 1860 STATUS current 1861 DESCRIPTION 1862 "This object indicates the length of time in hundredths 1863 of seconds over which to compute the average 1864 eoEnergyConsumed measurement in the eoEnergyTable table. 1865 The computation is based on the Energy Object's internal 1866 sampling rate of power consumed or produced by the Energy 1867 Object. The sampling rate is the rate at which the Energy 1868 Object can read the power usage and may differ based on 1869 device capabilities. The average energy consumption is 1870 then computed over the length of the interval. The 1871 default value of 15 minutes is a common interval used in 1872 industry." 1873 DEFVAL { 90000 } 1874 ::= { eoEnergyParametersEntry 3 } 1876 eoEnergyParametersIntervalNumber OBJECT-TYPE 1877 SYNTAX Unsigned32 1878 MAX-ACCESS read-create 1879 STATUS current 1880 DESCRIPTION 1881 "The number of intervals maintained in the eoEnergyTable. 1882 Each interval is characterized by a specific 1883 eoEnergyCollectionStartTime, used as an index to the 1884 table eoEnergyTable. Whenever the maximum number of 1885 entries is reached, the measurement over the new interval 1886 replaces the oldest measurement. There is one exception 1887 to this rule: when the eoEnergyMaxConsumed and/or 1888 eoEnergyMaxProduced are in (one of) the two oldest 1889 measurement(s), they are left untouched and the next 1890 oldest measurement is replaced." 1891 DEFVAL { 10 } 1892 ::= { eoEnergyParametersEntry 4 } 1894 eoEnergyParametersIntervalMode OBJECT-TYPE 1895 SYNTAX INTEGER { 1896 period(1), 1897 sliding(2), 1898 total(3) 1899 } 1900 MAX-ACCESS read-create 1901 STATUS current 1902 DESCRIPTION 1903 "A control object to define the mode of interval 1904 calculation for the computation of the average 1905 eoEnergyConsumed or eoEnergyProvided measurement in the 1906 eoEnergyTable table. 1908 A mode of period(1) specifies non-overlapping periodic 1909 measurements. 1911 A mode of sliding(2) specifies overlapping sliding 1912 windows where the interval between the start of one 1913 interval and the next is defined in 1914 eoEnergyParametersIntervalWindow. 1916 A mode of total(3) specifies non-periodic measurement. 1917 In this mode only one interval is used as this is a 1918 continuous measurement since the last reset. The value of 1919 eoEnergyParametersIntervalNumber should be (1) one and 1920 eoEnergyParametersIntervalLength is ignored." 1921 ::= { eoEnergyParametersEntry 5 } 1923 eoEnergyParametersIntervalWindow OBJECT-TYPE 1924 SYNTAX TimeInterval 1925 MAX-ACCESS read-create 1926 STATUS current 1927 DESCRIPTION 1928 "The length of the duration window between the starting 1929 time of one sliding window and the next starting time in 1930 hundredths of seconds, in order to compute the average of 1931 eoEnergyConsumed, eoEnergyProvided measurements in the 1932 eoEnergyTable table. This is valid only when the 1933 eoEnergyParametersIntervalMode is sliding(2). The 1934 eoEnergyParametersIntervalWindow value should be a 1935 multiple of eoEnergyParametersSampleRate." 1936 ::= { eoEnergyParametersEntry 6 } 1938 eoEnergyParametersSampleRate OBJECT-TYPE 1939 SYNTAX Unsigned32 1940 UNITS "Milliseconds" 1941 MAX-ACCESS read-create 1942 STATUS current 1943 DESCRIPTION 1944 "The sampling rate, in milliseconds, at which the Energy 1945 Object should poll power usage in order to compute the 1946 average eoEnergyConsumed, eoEnergyProvided measurements 1947 in the table eoEnergyTable. The Energy Object should 1948 initially set this sampling rate to a reasonable value, 1949 i.e., a compromise between intervals that will provide 1950 good accuracy by not being too long, but not so short 1951 that they affect the Energy Object performance by 1952 requesting continuous polling. If the sampling rate is 1953 unknown, the value 0 is reported. The sampling rate 1954 should be selected so that 1955 eoEnergyParametersIntervalWindow is a multiple of 1956 eoEnergyParametersSampleRate. The default value is one 1957 second." 1958 DEFVAL { 1000 } 1959 ::= { eoEnergyParametersEntry 7 } 1961 eoEnergyParametersStorageType OBJECT-TYPE 1962 SYNTAX StorageType 1963 MAX-ACCESS read-create 1964 STATUS current 1965 DESCRIPTION 1966 "This variable indicates the storage type for this row." 1967 DEFVAL { nonVolatile } 1968 ::= {eoEnergyParametersEntry 8 } 1970 eoEnergyParametersStatus OBJECT-TYPE 1971 SYNTAX RowStatus 1972 MAX-ACCESS read-create 1973 STATUS current 1974 DESCRIPTION 1975 "The status of this row. The eoEnergyParametersStatus is 1976 used to start or stop energy usage logging. An entry 1977 status may not be active(1) unless all objects in the 1978 entry have an appropriate value. If this object is not 1979 equal to active, all associated usage-data logged into 1980 the eoEnergyTable will be deleted. The data can be 1981 destroyed by setting up the eoEnergyParametersStatus to 1982 destroy." 1983 ::= {eoEnergyParametersEntry 9 } 1985 eoEnergyTable OBJECT-TYPE 1986 SYNTAX SEQUENCE OF EoEnergyEntry 1987 MAX-ACCESS not-accessible 1988 STATUS current 1989 DESCRIPTION 1990 "This table lists Energy Object energy measurements. 1991 Entries in this table are only created if the 1992 corresponding value of object eoPowerMeasurementCaliber 1993 is active(3), i.e., if the power is actually metered." 1994 ::= { energyObjectMibObjects 5 } 1996 eoEnergyEntry OBJECT-TYPE 1997 SYNTAX EoEnergyEntry 1998 MAX-ACCESS not-accessible 1999 STATUS current 2000 DESCRIPTION 2001 "An entry describing energy measurements." 2002 INDEX { eoEnergyParametersIndex, 2003 eoEnergyCollectionStartTime } 2004 ::= { eoEnergyTable 1 } 2006 EoEnergyEntry ::= SEQUENCE { 2007 eoEnergyCollectionStartTime TimeTicks, 2008 eoEnergyConsumed Unsigned32, 2009 eoEnergyProvided Unsigned32, 2010 eoEnergyStored Unsigned32, 2011 eoEnergyUnitMultiplier UnitMultiplier, 2012 eoEnergyAccuracy Integer32, 2013 eoEnergyMaxConsumed Unsigned32, 2014 eoEnergyMaxProduced Unsigned32, 2015 eoEnergyDiscontinuityTime TimeStamp 2016 } 2018 eoEnergyCollectionStartTime OBJECT-TYPE 2019 SYNTAX TimeTicks 2020 UNITS "hundredths of seconds" 2021 MAX-ACCESS not-accessible 2022 STATUS current 2023 DESCRIPTION 2024 "The time (in hundredths of a second) since the 2025 network management portion of the system was last 2026 re-initialized, as specified in the sysUpTime [RFC3418]. 2027 This object specifies the start time of the energy 2028 measurement sample. " 2029 ::= { eoEnergyEntry 1 } 2031 eoEnergyConsumed OBJECT-TYPE 2032 SYNTAX Unsigned32 2033 UNITS "Watt-hours" 2034 MAX-ACCESS read-only 2035 STATUS current 2036 DESCRIPTION 2037 "This object indicates the energy consumed in units of 2038 watt-hours for the Energy Object over the defined 2039 interval. This value is specified in the common billing 2040 units of watt-hours with the magnitude of watt-hours (kW- 2041 Hr, MW-Hr, etc.) indicated separately in 2042 eoEnergyUnitMultiplier." 2043 ::= { eoEnergyEntry 2 } 2045 eoEnergyProvided OBJECT-TYPE 2046 SYNTAX Unsigned32 2047 UNITS "Watt-hours" 2048 MAX-ACCESS read-only 2049 STATUS current 2050 DESCRIPTION 2051 "This object indicates the energy produced in units of 2052 watt-hours for the Energy Object over the defined 2053 interval. 2055 This value is specified in the common billing units of 2056 watt-hours with the magnitude of watt-hours (kW-Hr, MW- 2057 Hr, etc.) indicated separately in 2058 eoEnergyUnitMultiplier." 2059 ::= { eoEnergyEntry 3 } 2061 eoEnergyStored OBJECT-TYPE 2062 SYNTAX Unsigned32 2063 UNITS "Watt-hours" 2064 MAX-ACCESS read-only 2065 STATUS current 2066 DESCRIPTION 2067 "This object indicates the difference of the energy 2068 consumed and energy produced for an Energy Object in 2069 units of watt-hours for the Energy Object over the 2070 defined interval. This value is specified in the common 2071 billing units of watt-hours with the magnitude of watt- 2072 hours (kW-Hr, MW-Hr, etc.) indicated separately in 2073 eoEnergyUnitMultiplier." 2074 ::= { eoEnergyEntry 4 } 2076 eoEnergyUnitMultiplier OBJECT-TYPE 2077 SYNTAX UnitMultiplier 2078 MAX-ACCESS read-only 2079 STATUS current 2080 DESCRIPTION 2081 "This object is the magnitude of watt-hours for the 2082 energy field in eoEnergyConsumed, eoEnergyProvided, 2083 eoEnergyStored, eoEnergyMaxConsumed, and 2084 eoEnergyMaxProduced." 2085 ::= { eoEnergyEntry 5 } 2087 eoEnergyAccuracy OBJECT-TYPE 2088 SYNTAX Integer32 (0..10000) 2089 UNITS "hundredths of percent" 2090 MAX-ACCESS read-only 2091 STATUS current 2092 DESCRIPTION 2093 "This object indicates a percentage accuracy, in 100ths 2094 of a percent, of Energy usage reporting. eoEnergyAccuracy 2095 is applicable to all Energy measurements in the 2096 eoEnergyTable. 2098 For example: 1010 means the reported usage is accurate to 2099 +/- 10.1 percent. 2101 This value is zero if the accuracy is unknown." 2102 ::= { eoEnergyEntry 6 } 2104 eoEnergyMaxConsumed OBJECT-TYPE 2105 SYNTAX Unsigned32 2106 UNITS "Watt-hours" 2107 MAX-ACCESS read-only 2108 STATUS current 2109 DESCRIPTION 2110 "This object is the maximum energy observed in 2111 eoEnergyConsumed since the monitoring started or was 2112 reinitialized. This value is specified in the common 2113 billing units of watt-hours with the magnitude of watt- 2114 hours (kW-Hr, MW-Hr, etc.) indicated separately in 2115 eoEnergyUnitMultiplier." 2116 ::= { eoEnergyEntry 7 } 2118 eoEnergyMaxProduced OBJECT-TYPE 2119 SYNTAX Unsigned32 2120 UNITS "Watt-hours" 2121 MAX-ACCESS read-only 2122 STATUS current 2123 DESCRIPTION 2124 "This object is the maximum energy ever observed in 2125 eoEnergyEnergyProduced since the monitoring started. This 2126 value is specified in the units of watt-hours with the 2127 magnitude of watt-hours (kW-Hr, MW-Hr, etc.) indicated 2128 separately in eoEnergyEnergyUnitMultiplier." 2129 ::= { eoEnergyEntry 8 } 2131 eoEnergyDiscontinuityTime OBJECT-TYPE 2132 SYNTAX TimeStamp 2133 MAX-ACCESS read-only 2134 STATUS current 2135 DESCRIPTION 2136 "The value of sysUpTime [RFC3418] on the most recent 2137 occasion at which any one or more of this entity's energy 2138 counters in this table suffered a discontinuity: 2139 eoEnergyConsumed, eoEnergyProvided or eoEnergyStored. If 2140 no such discontinuities have occurred since the last re- 2141 initialization of the local management subsystem, then 2142 this object contains a zero value." 2143 ::= { eoEnergyEntry 9 } 2145 -- Notifications 2147 eoPowerEnableStatusNotification 2148 OBJECT-TYPE 2149 SYNTAX TruthValue 2150 MAX-ACCESS read-write 2151 STATUS current 2152 DESCRIPTION 2153 "This object controls whether the system produces 2154 notifications for eoPowerStateChange. A false value will 2155 prevent these notifications from being generated." 2156 DEFVAL { false } 2157 ::= { energyObjectMibNotifs 1 } 2159 eoPowerStateChange NOTIFICATION-TYPE 2160 OBJECTS {eoPowerAdminState, eoPowerOperState, 2161 eoPowerStateEnterReason} 2162 STATUS current 2163 DESCRIPTION 2164 "The SNMP entity generates the eoPowerStateChange when 2165 the values of eoPowerAdminState or eoPowerOperState, 2166 in the context of the Power State Set, have changed for 2167 the Energy Object represented by the entPhysicalIndex." 2168 ::= { energyObjectMibNotifs 2 } 2170 -- Conformance 2172 energyObjectMibCompliances OBJECT IDENTIFIER 2173 ::= { energyObjectMibConform 1 } 2175 energyObjectMibGroups OBJECT IDENTIFIER 2176 ::= { energyObjectMibConform 2 } 2178 energyObjectMibFullCompliance MODULE-COMPLIANCE 2179 STATUS current 2180 DESCRIPTION 2181 "When this MIB is implemented with support for 2182 read-create, then such an implementation can 2183 claim full compliance. Such devices can then 2184 be both monitored and configured with this MIB. 2186 Module Compliance of [RFC6933] 2187 with respect to entity4CRCompliance MUST 2188 be supported which requires implementation 2189 of 4 MIB objects: entPhysicalIndex, entPhysicalClass, 2190 entPhysicalName and entPhysicalUUID." 2191 MODULE -- this module 2192 MANDATORY-GROUPS { 2193 energyObjectMibTableGroup, 2194 energyObjectMibStateTableGroup, 2195 eoPowerEnableStatusNotificationGroup, 2196 energyObjectMibNotifGroup 2197 } 2199 GROUP energyObjectMibEnergyTableGroup 2200 DESCRIPTION "A compliant implementation does not 2201 have to implement." 2203 GROUP energyObjectMibEnergyParametersTableGroup 2204 DESCRIPTION "A compliant implementation does not 2205 have to implement." 2207 GROUP energyObjectMibMeterCapabilitiesTableGroup 2208 DESCRIPTION "A compliant implementation does not 2209 have to implement." 2210 ::= { energyObjectMibCompliances 1 } 2212 energyObjectMibReadOnlyCompliance MODULE-COMPLIANCE 2213 STATUS current 2214 DESCRIPTION 2215 "When this MIB is implemented without support for 2216 read-create (i.e., in read-only mode), then such an 2217 implementation can claim read-only compliance. Such a 2218 device can then be monitored but cannot be 2219 configured with this MIB. 2221 Module Compliance of [RFC6933] with respect to 2222 entity4CRCompliance MUST be supported which requires 2223 implementation of 4 MIB objects: entPhysicalIndex, 2224 entPhysicalClass, entPhysicalName and entPhysicalUUID." 2225 MODULE -- this module 2226 MANDATORY-GROUPS { 2227 energyObjectMibTableGroup, 2228 energyObjectMibStateTableGroup, 2229 energyObjectMibNotifGroup 2230 } 2232 OBJECT eoPowerOperState 2233 MIN-ACCESS read-only 2234 DESCRIPTION 2235 "Write access is not required." 2236 ::= { energyObjectMibCompliances 2 } 2238 -- Units of Conformance 2240 energyObjectMibTableGroup OBJECT-GROUP 2241 OBJECTS { 2242 eoPower, 2243 eoPowerNameplate, 2244 eoPowerUnitMultiplier, 2245 eoPowerAccuracy, 2246 eoPowerMeasurementCaliber, 2247 eoPowerCurrentType, 2248 eoPowerMeasurementLocal, 2249 eoPowerAdminState, 2250 eoPowerOperState, 2251 eoPowerStateEnterReason 2252 } 2253 STATUS current 2254 DESCRIPTION 2255 "This group contains the collection of all the objects 2256 related to the Energy Object." 2257 ::= { energyObjectMibGroups 1 } 2259 energyObjectMibStateTableGroup OBJECT-GROUP 2260 OBJECTS { 2261 eoPowerStateMaxPower, 2262 eoPowerStatePowerUnitMultiplier, 2263 eoPowerStateTotalTime, 2264 eoPowerStateEnterCount 2265 } 2266 STATUS current 2267 DESCRIPTION 2268 "This group contains the collection of all the objects 2269 related to the Power State." 2270 ::= { energyObjectMibGroups 2 } 2272 energyObjectMibEnergyParametersTableGroup OBJECT-GROUP 2273 OBJECTS { 2274 eoEnergyParametersIntervalLength, 2275 eoEnergyParametersIntervalNumber, 2276 eoEnergyParametersIntervalMode, 2277 eoEnergyParametersIntervalWindow, 2278 eoEnergyParametersSampleRate, 2279 eoEnergyParametersStorageType, 2280 eoEnergyParametersStatus 2281 } 2282 STATUS current 2283 DESCRIPTION 2284 "This group contains the collection of all the objects 2285 related to the configuration of the Energy Table." 2286 ::= { energyObjectMibGroups 3 } 2288 energyObjectMibEnergyTableGroup OBJECT-GROUP 2289 OBJECTS { 2290 -- Note that object 2291 -- eoEnergyCollectionStartTime is not 2292 -- included since it is not-accessible 2294 eoEnergyConsumed, 2295 eoEnergyProvided, 2296 eoEnergyStored, 2297 eoEnergyUnitMultiplier, 2298 eoEnergyAccuracy, 2299 eoEnergyMaxConsumed, 2300 eoEnergyMaxProduced, 2301 eoEnergyDiscontinuityTime 2302 } 2303 STATUS current 2304 DESCRIPTION 2305 "This group contains the collection of all the objects 2306 related to the Energy Table." 2307 ::= { energyObjectMibGroups 4 } 2309 energyObjectMibMeterCapabilitiesTableGroup OBJECT-GROUP 2310 OBJECTS { 2311 eoMeterCapability 2312 } 2313 STATUS current 2314 DESCRIPTION 2315 "This group contains the object indicating the capability 2316 of the Energy Object" 2317 ::= { energyObjectMibGroups 5 } 2319 eoPowerEnableStatusNotificationGroup OBJECT-GROUP 2320 OBJECTS { eoPowerEnableStatusNotification } 2321 STATUS current 2322 DESCRIPTION 2323 "The collection of objects which are used to enable 2324 notification." 2325 ::= { energyObjectMibGroups 6 } 2327 energyObjectMibNotifGroup NOTIFICATION-GROUP 2328 NOTIFICATIONS { 2329 eoPowerStateChange 2330 } 2331 STATUS current 2332 DESCRIPTION 2333 "This group contains the notifications for 2334 the Power, Energy Monitoring and Control MIB Module." 2335 ::= { energyObjectMibGroups 7 } 2337 END 2339 9.3. The POWER-ATTRIBUTES-MIB MIB Module 2341 -- ************************************************************ 2342 -- 2343 -- This MIB module is used to monitor power attributes of 2344 -- networked devices with measurements. 2345 -- 2346 -- This MIB module is an extension of energyObjectMib module. 2347 -- 2348 -- ************************************************************* 2350 POWER-ATTRIBUTES-MIB DEFINITIONS ::= BEGIN 2352 IMPORTS 2353 MODULE-IDENTITY, 2354 OBJECT-TYPE, 2355 mib-2, 2356 Integer32, Unsigned32 2357 FROM SNMPv2-SMI 2358 MODULE-COMPLIANCE, 2359 OBJECT-GROUP 2360 FROM SNMPv2-CONF 2361 UnitMultiplier 2362 FROM ENERGY-OBJECT-MIB 2363 entPhysicalIndex 2364 FROM ENTITY-MIB; 2366 powerAttributesMIB MODULE-IDENTITY 2368 LAST-UPDATED "201406070000Z" -- 07 June 2014 2370 ORGANIZATION "IETF EMAN Working Group" 2371 CONTACT-INFO 2372 "WG charter: 2373 http://datatracker.ietf.org/wg/eman/charter/ 2375 Mailing Lists: 2376 General Discussion: eman@ietf.org 2378 To Subscribe: 2379 https://www.ietf.org/mailman/listinfo/eman 2381 Archive: 2382 http://www.ietf.org/mail-archive/web/eman 2384 Editors: 2386 Mouli Chandramouli 2387 Cisco Systems, Inc. 2388 Sarjapur Outer Ring Road 2389 Bangalore 560103 2390 IN 2391 Phone: +91 80 4429 2409 2392 Email: moulchan@cisco.com 2394 Brad Schoening 2395 44 Rivers Edge Drive 2396 Little Silver, NJ 07739 2397 US 2398 Email: brad.schoening@verizon.net 2400 Juergen Quittek 2401 NEC Europe Ltd. 2402 NEC Laboratories Europe 2403 Network Research Division 2404 Kurfuersten-Anlage 36 2405 Heidelberg 69115 2406 DE 2407 Phone: +49 6221 4342-115 2408 Email: quittek@neclab.eu 2410 Thomas Dietz 2411 NEC Europe Ltd. 2412 NEC Laboratories Europe 2413 Network Research Division 2414 Kurfuersten-Anlage 36 2415 69115 Heidelberg 2416 DE 2417 Phone: +49 6221 4342-128 2418 Email: Thomas.Dietz@nw.neclab.eu 2420 Benoit Claise 2421 Cisco Systems, Inc. 2422 De Kleetlaan 6a b1 2423 Degem 1831 2424 Belgium 2425 Phone: +32 2 704 5622 2426 Email: bclaise@cisco.com" 2428 DESCRIPTION 2429 "This MIB is used to report AC power attributes in 2430 devices. The table is a sparse augmentation of the 2431 eoPowerTable table from the energyObjectMib module. 2432 Both three-phase and single-phase power 2433 configurations are supported. 2435 As a requirement for this MIB module, 2436 [EMAN-AWARE-MIB] SHOULD be implemented. 2438 Module Compliance of ENTITY-MIB v4 with respect to 2439 entity4CRCompliance MUST be supported which requires 2440 implementation of 4 MIB objects: entPhysicalIndex, 2441 entPhysicalClass, entPhysicalName and 2442 entPhysicalUUID." 2444 REVISION "201406070000Z" -- 07 June 2014 2445 DESCRIPTION 2446 "Initial version, published as RFC XXXX" 2448 -- RFC Editor, please replace zzz with the IANA allocation 2449 -- for this MIB module and XXXX with the number of the 2450 -- approved RFC 2452 ::= { mib-2 zzz } 2454 powerAttributesMIBConform OBJECT IDENTIFIER 2455 ::= { powerAttributesMIB 0 } 2457 powerAttributesMIBObjects OBJECT IDENTIFIER 2458 ::= { powerAttributesMIB 1 } 2460 -- Objects 2462 eoACPwrAttributesTable OBJECT-TYPE 2463 SYNTAX SEQUENCE OF EoACPwrAttributesEntry 2464 MAX-ACCESS not-accessible 2465 STATUS current 2466 DESCRIPTION 2467 "This table contains power attributes measurements for 2468 supported entPhysicalIndex entities. It is a sparse 2469 extension of the eoPowerTable." 2470 ::= { powerAttributesMIBObjects 1 } 2472 eoACPwrAttributesEntry OBJECT-TYPE 2473 SYNTAX EoACPwrAttributesEntry 2474 MAX-ACCESS not-accessible 2475 STATUS current 2476 DESCRIPTION 2477 "This is a sparse extension of the eoPowerTable with 2478 entries for power attributes measurements or 2479 configuration. Each measured value corresponds to an 2480 attribute in IEC 61850-7-4 for non-phase measurements 2481 within the object MMUX." 2482 INDEX { entPhysicalIndex } 2483 ::= { eoACPwrAttributesTable 1 } 2485 EoACPwrAttributesEntry ::= SEQUENCE { 2486 eoACPwrAttributesConfiguration INTEGER, 2487 eoACPwrAttributesAvgVoltage Integer32, 2488 eoACPwrAttributesAvgCurrent Unsigned32, 2489 eoACPwrAttributesFrequency Integer32, 2490 eoACPwrAttributesPowerUnitMultiplier UnitMultiplier, 2491 eoACPwrAttributesPowerAccuracy Integer32, 2492 eoACPwrAttributesTotalActivePower Integer32, 2493 eoACPwrAttributesTotalReactivePower Integer32, 2494 eoACPwrAttributesTotalApparentPower Integer32, 2495 eoACPwrAttributesTotalPowerFactor Integer32, 2496 eoACPwrAttributesThdCurrent Integer32, 2497 eoACPwrAttributesThdVoltage Integer32 2498 } 2500 eoACPwrAttributesConfiguration OBJECT-TYPE 2501 SYNTAX INTEGER { 2502 sngl(1), 2503 del(2), 2504 wye(3) 2505 } 2506 MAX-ACCESS read-only 2507 STATUS current 2508 DESCRIPTION 2509 "Configuration describes the physical configurations of 2510 the power supply lines: 2512 * alternating current, single phase (SNGL) 2513 * alternating current, three phase delta (DEL) 2514 * alternating current, three phase Y (WYE) 2516 Three-phase configurations can be either connected in a 2517 triangular delta (DEL) or star Y (WYE) system. WYE 2518 systems have a shared neutral voltage, while DEL systems 2519 do not. Each phase is offset 120 degrees to each other." 2520 ::= { eoACPwrAttributesEntry 1 } 2522 eoACPwrAttributesAvgVoltage OBJECT-TYPE 2523 SYNTAX Integer32 2524 UNITS "0.1 Volt AC" 2525 MAX-ACCESS read-only 2526 STATUS current 2527 DESCRIPTION 2528 "A measured value for average of the voltage measured 2529 over an integral number of AC cycles For a 3-phase 2530 system, this is the average voltage (V1+V2+V3)/3. IEC 2531 61850-7-4 measured value attribute 'Vol'" 2532 ::= { eoACPwrAttributesEntry 2 } 2534 eoACPwrAttributesAvgCurrent OBJECT-TYPE 2535 SYNTAX Unsigned32 2536 UNITS "amperes" 2537 MAX-ACCESS read-only 2538 STATUS current 2539 DESCRIPTION 2540 "A measured value for average of the current measured 2541 over an integral number of AC cycles For a 3-phase 2542 system, this is the average current (I1+I2+I3)/3. IEC 2543 61850-7-4 attribute 'Amp'" 2544 ::= { eoACPwrAttributesEntry 3 } 2546 eoACPwrAttributesFrequency OBJECT-TYPE 2547 SYNTAX Integer32 (4500..6500) 2548 UNITS "0.01 hertz" 2549 MAX-ACCESS read-only 2550 STATUS current 2551 DESCRIPTION 2552 "A measured value for the basic frequency of the AC 2553 circuit. IEC 61850-7-4 attribute 'Hz'." 2554 ::= { eoACPwrAttributesEntry 4 } 2556 eoACPwrAttributesPowerUnitMultiplier OBJECT-TYPE 2557 SYNTAX UnitMultiplier 2558 MAX-ACCESS read-only 2559 STATUS current 2560 DESCRIPTION 2561 "The magnitude of watts for the usage value in 2562 eoACPwrAttributesTotalActivePower, 2563 eoACPwrAttributesTotalReactivePower 2564 and eoACPwrAttributesTotalApparentPower measurements. 2565 For 3-phase power systems, this will also include 2566 eoACPwrAttributesWyeActivePower, 2567 eoACPwrAttributesWyeReactivePower and 2568 eoACPwrAttributesWyeApparentPower" 2569 ::= { eoACPwrAttributesEntry 5 } 2571 eoACPwrAttributesPowerAccuracy OBJECT-TYPE 2572 SYNTAX Integer32 (0..10000) 2573 UNITS "hundredths of percent" 2574 MAX-ACCESS read-only 2575 STATUS current 2576 DESCRIPTION 2577 "This object indicates a percentage value, in 100ths of a 2578 percent, representing the presumed accuracy of active, 2579 reactive, and apparent power usage reporting. For 2580 example: 1010 means the reported usage is accurate to +/- 2581 10.1 percent. This value is zero if the accuracy is 2582 unknown. 2584 ANSI and IEC define the following accuracy classes for 2585 power measurement: IEC 62053-22 & 60044-1 class 0.1, 0.2, 2586 0.5, 1 & 3. 2587 ANSI C12.20 class 0.2 & 0.5" 2588 ::= { eoACPwrAttributesEntry 6 } 2590 eoACPwrAttributesTotalActivePower OBJECT-TYPE 2591 SYNTAX Integer32 2592 UNITS "watts" 2593 MAX-ACCESS read-only 2594 STATUS current 2595 DESCRIPTION 2596 "A measured value of the actual power delivered to or 2597 consumed by the load. IEC 61850-7-4 attribute 'TotW'." 2598 ::= { eoACPwrAttributesEntry 7 } 2600 eoACPwrAttributesTotalReactivePower OBJECT-TYPE 2601 SYNTAX Integer32 2602 UNITS "volt-amperes reactive" 2603 MAX-ACCESS read-only 2604 STATUS current 2605 DESCRIPTION 2606 "A measured value of the reactive portion of the apparent 2607 power. IEC 61850-7-4 attribute 'TotVAr'." 2608 ::= { eoACPwrAttributesEntry 8 } 2610 eoACPwrAttributesTotalApparentPower OBJECT-TYPE 2611 SYNTAX Integer32 2612 UNITS "volt-amperes" 2613 MAX-ACCESS read-only 2614 STATUS current 2615 DESCRIPTION 2616 "A measured value of the voltage and current which 2617 determines the apparent power. The apparent power is the 2618 vector sum of real and reactive power. 2620 Note: watts and volt-amperes are equivalent units and may 2621 be combined. IEC 61850-7-4 attribute 'TotVA'." 2622 ::= { eoACPwrAttributesEntry 9 } 2624 eoACPwrAttributesTotalPowerFactor OBJECT-TYPE 2625 SYNTAX Integer32 (-10000..10000) 2626 UNITS "hundredths" 2627 MAX-ACCESS read-only 2628 STATUS current 2629 DESCRIPTION 2630 "A measured value ratio of the real power flowing to the 2631 load versus the apparent power. It is dimensionless and 2632 expressed here as a percentage value in 100ths. A power 2633 factor of 100% indicates there is no inductance load and 2634 thus no reactive power. Power Factor can be positive or 2635 negative, where the sign should be in lead/lag (IEEE) 2636 form. IEC 61850-7-4 attribute 'TotPF'." 2637 ::= { eoACPwrAttributesEntry 10 } 2639 eoACPwrAttributesThdCurrent OBJECT-TYPE 2640 SYNTAX Integer32 (0..10000) 2641 UNITS "hundredths of percent" 2642 MAX-ACCESS read-only 2643 STATUS current 2644 DESCRIPTION 2645 "A calculated value for the current total harmonic 2646 distortion (THD). Method of calculation is not 2647 specified. IEC 61850-7-4 attribute 'ThdAmp'." 2648 ::= { eoACPwrAttributesEntry 11 } 2650 eoACPwrAttributesThdVoltage OBJECT-TYPE 2651 SYNTAX Integer32 (0..10000) 2652 UNITS "hundredths of percent" 2653 MAX-ACCESS read-only 2654 STATUS current 2655 DESCRIPTION 2656 "A calculated value for the voltage total harmonic 2657 distortion (THD). Method of calculation is not 2658 specified. IEC 61850-7-4 attribute 'ThdVol'." 2659 ::= { eoACPwrAttributesEntry 12 } 2661 eoACPwrAttributesDelPhaseTable OBJECT-TYPE 2662 SYNTAX SEQUENCE OF EoACPwrAttributesDelPhaseEntry 2663 MAX-ACCESS not-accessible 2664 STATUS current 2665 DESCRIPTION 2666 "This optional table describes 3-phase power attributes 2667 measurements in a DEL configuration with phase-to-phase 2668 power attributes measurements. Entities having single 2669 phase power shall not have any entities. This is a 2670 sparse extension of the eoACPwrAttributesTable. 2672 These attributes correspond to IEC 61850-7.4 MMXU phase 2673 related measurements and MHAI phase related measured 2674 harmonic or interharmonics." 2675 ::= { powerAttributesMIBObjects 2 } 2677 eoACPwrAttributesDelPhaseEntry OBJECT-TYPE 2678 SYNTAX EoACPwrAttributesDelPhaseEntry 2679 MAX-ACCESS not-accessible 2680 STATUS current 2681 DESCRIPTION 2682 "An entry describes power measurements of a phase in a 2683 DEL 3-phase power. Three entries are required for each 2684 supported entPhysicalIndex entry. Voltage measurements 2685 are provided relative to each other. 2687 For phase-to-phase measurements, the 2688 eoACPwrAttributesDelPhaseIndex is compared against the 2689 following phase at +120 degrees. Thus, the possible 2690 values are: 2692 eoACPwrAttributesDelPhaseIndex Next Phase Angle 2694 0 120 2696 120 240 2697 240 0 2698 " 2699 INDEX { entPhysicalIndex, eoACPwrAttributesDelPhaseIndex } 2700 ::= { eoACPwrAttributesDelPhaseTable 1} 2702 EoACPwrAttributesDelPhaseEntry ::= SEQUENCE { 2703 eoACPwrAttributesDelPhaseIndex Integer32, 2704 eoACPwrAttributesDelPhaseToNextPhaseVoltage Integer32, 2705 eoACPwrAttributesDelThdPhaseToNextPhaseVoltage Integer32 2706 } 2708 eoACPwrAttributesDelPhaseIndex OBJECT-TYPE 2709 SYNTAX Integer32 (0..359) 2710 MAX-ACCESS not-accessible 2711 STATUS current 2712 DESCRIPTION 2713 "A phase angle typically corresponding to 0, 120, 240." 2714 ::= { eoACPwrAttributesDelPhaseEntry 1 } 2716 eoACPwrAttributesDelPhaseToNextPhaseVoltage OBJECT-TYPE 2717 SYNTAX Integer32 2718 UNITS "0.1 Volt AC" 2719 MAX-ACCESS read-only 2720 STATUS current 2721 DESCRIPTION 2722 "A measured value of phase to next phase voltages, where 2723 the next phase is IEC 61850-7-4 attribute 'PPV'." 2724 ::= { eoACPwrAttributesDelPhaseEntry 2 } 2726 eoACPwrAttributesDelThdPhaseToNextPhaseVoltage OBJECT-TYPE 2727 SYNTAX Integer32 (0..10000) 2728 UNITS "hundredths of percent" 2729 MAX-ACCESS read-only 2730 STATUS current 2731 DESCRIPTION 2732 "A calculated value for the voltage total harmonic 2733 disortion for phase to next phase. Method of calculation 2734 is not specified. IEC 61850-7-4 attribute 'ThdPPV'." 2735 ::= { eoACPwrAttributesDelPhaseEntry 3 } 2737 eoACPwrAttributesWyePhaseTable OBJECT-TYPE 2738 SYNTAX SEQUENCE OF EoACPwrAttributesWyePhaseEntry 2739 MAX-ACCESS not-accessible 2740 STATUS current 2741 DESCRIPTION 2742 "This optional table describes 3-phase power attributes 2743 measurements in a WYE configuration with phase-to-neutral 2744 power attributes measurements. Entities having single 2745 phase power shall not have any entities. This is a sparse 2746 extension of the eoACPwrAttributesTable. 2748 These attributes correspond to IEC 61850-7.4 MMXU phase 2749 related measurements and MHAI phase related measured 2750 harmonic or interharmonics." 2751 ::= { powerAttributesMIBObjects 3 } 2753 eoACPwrAttributesWyePhaseEntry OBJECT-TYPE 2754 SYNTAX EoACPwrAttributesWyePhaseEntry 2755 MAX-ACCESS not-accessible 2756 STATUS current 2757 DESCRIPTION 2758 "This table describes measurements of a phase in a WYE 3- 2759 phase power system. Three entries are required for each 2760 supported entPhysicalIndex entry. Voltage measurements 2761 are relative to neutral. 2763 Each entry describes power attributes of one phase of a 2764 WYE 3-phase power system." 2765 INDEX { entPhysicalIndex, eoACPwrAttributesWyePhaseIndex } 2766 ::= { eoACPwrAttributesWyePhaseTable 1} 2768 EoACPwrAttributesWyePhaseEntry ::= SEQUENCE { 2769 eoACPwrAttributesWyePhaseIndex Integer32, 2770 eoACPwrAttributesWyePhaseToNeutralVoltage Integer32, 2771 eoACPwrAttributesWyeCurrent Integer32, 2772 eoACPwrAttributesWyeActivePower Integer32, 2773 eoACPwrAttributesWyeReactivePower Integer32, 2774 eoACPwrAttributesWyeApparentPower Integer32, 2775 eoACPwrAttributesWyePowerFactor Integer32, 2776 eoACPwrAttributesWyeThdCurrent Integer32, 2777 eoACPwrAttributesWyeThdPhaseToNeutralVoltage Integer32 2778 } 2780 eoACPwrAttributesWyePhaseIndex OBJECT-TYPE 2781 SYNTAX Integer32 (0..359) 2782 MAX-ACCESS not-accessible 2783 STATUS current 2784 DESCRIPTION 2785 "A phase angle typically corresponding to 0, 120, 240." 2786 ::= { eoACPwrAttributesWyePhaseEntry 1 } 2788 eoACPwrAttributesWyePhaseToNeutralVoltage OBJECT-TYPE 2789 SYNTAX Integer32 2790 UNITS "0.1 Volt AC" 2791 MAX-ACCESS read-only 2792 STATUS current 2793 DESCRIPTION 2794 "A measured value of phase to neutral voltage. IEC 2795 61850-7-4 attribute 'PNV'." 2796 ::= { eoACPwrAttributesWyePhaseEntry 2 } 2798 eoACPwrAttributesWyeCurrent OBJECT-TYPE 2799 SYNTAX Integer32 2800 UNITS "0.1 amperes AC" 2801 MAX-ACCESS read-only 2802 STATUS current 2803 DESCRIPTION 2804 "A measured value of phase currents. IEC 61850-7-4 2805 attribute 'A'." 2806 ::= { eoACPwrAttributesWyePhaseEntry 3 } 2808 eoACPwrAttributesWyeActivePower OBJECT-TYPE 2809 SYNTAX Integer32 2810 UNITS "watts" 2811 MAX-ACCESS read-only 2812 STATUS current 2813 DESCRIPTION 2814 "A measured value of the actual power delivered to or 2815 consumed by the load with the magnitude indicated 2816 separately in eoPowerUnitMultiplier. IEC 61850-7-4 2817 attribute 'W'" 2818 ::= { eoACPwrAttributesWyePhaseEntry 4 } 2820 eoACPwrAttributesWyeReactivePower OBJECT-TYPE 2821 SYNTAX Integer32 2822 UNITS "volt-amperes reactive" 2823 MAX-ACCESS read-only 2824 STATUS current 2825 DESCRIPTION 2826 "A measured value of the reactive portion of the apparent 2827 power with the magnitude of indicated separately in 2828 eoPowerUnitMultiplier. IEC 61850-7-4 attribute 'VAr'" 2829 ::= { eoACPwrAttributesWyePhaseEntry 5 } 2831 eoACPwrAttributesWyeApparentPower OBJECT-TYPE 2832 SYNTAX Integer32 2833 UNITS "volt-amperes" 2834 MAX-ACCESS read-only 2835 STATUS current 2836 DESCRIPTION 2837 "A measured value of the voltage and current determines 2838 the apparent power with the indicated separately in 2839 eoPowerUnitMultiplier. Active plus reactive power equals 2840 the total apparent power. 2842 Note: Watts and volt-amperes are equivalent units and may 2843 be combined. IEC 61850-7-4 attribute 'VA'." 2844 ::= { eoACPwrAttributesWyePhaseEntry 6 } 2846 eoACPwrAttributesWyePowerFactor OBJECT-TYPE 2847 SYNTAX Integer32 (-10000..10000) 2848 UNITS "hundredths" 2849 MAX-ACCESS read-only 2850 STATUS current 2851 DESCRIPTION 2852 "A measured value ratio of the real power flowing to the 2853 load versus the apparent power for this phase. IEC 2854 61850-7-4 attribute 'PF'. Power Factor can be positive or 2855 negative where the sign should be in lead/lag (IEEE) 2856 form." 2857 ::= { eoACPwrAttributesWyePhaseEntry 7 } 2859 eoACPwrAttributesWyeThdCurrent OBJECT-TYPE 2860 SYNTAX Integer32 (0..10000) 2861 UNITS "hundredths of percent" 2862 MAX-ACCESS read-only 2863 STATUS current 2864 DESCRIPTION 2865 "A calculated value for the voltage total harmonic 2866 disortion (THD) for phase to phase. Method of 2867 calculation is not specified. 2868 IEC 61850-7-4 attribute 'ThdA'." 2869 ::= { eoACPwrAttributesWyePhaseEntry 8 } 2871 eoACPwrAttributesWyeThdPhaseToNeutralVoltage OBJECT-TYPE 2872 SYNTAX Integer32 (0..10000) 2873 UNITS "hundredths of percent" 2874 MAX-ACCESS read-only 2875 STATUS current 2876 DESCRIPTION 2877 "A calculated value of the voltage total harmonic 2878 distortion (THD) for phase to neutral. IEC 61850-7-4 2879 attribute 'ThdPhV'." 2880 ::= { eoACPwrAttributesWyePhaseEntry 9 } 2882 -- Conformance 2883 powerAttributesMIBCompliances OBJECT IDENTIFIER 2884 ::= { powerAttributesMIB 2 } 2886 powerAttributesMIBGroups OBJECT IDENTIFIER 2887 ::= { powerAttributesMIB 3 } 2889 powerAttributesMIBFullCompliance MODULE-COMPLIANCE 2890 STATUS current 2891 DESCRIPTION 2892 "When this MIB is implemented with support for read- 2893 create, then such an implementation can claim full 2894 compliance. Such devices can then be both monitored and 2895 configured with this MIB. 2897 Module Compliance of [RFC6933] with respect to 2898 entity4CRCompliance MUST be supported which requires 2899 implementation of 4 MIB objects: entPhysicalIndex, 2900 entPhysicalClass, entPhysicalName and entPhysicalUUID." 2902 MODULE -- this module 2903 MANDATORY-GROUPS { 2904 powerACPwrAttributesMIBTableGroup 2905 } 2907 GROUP powerACPwrAttributesOptionalMIBTableGroup 2908 DESCRIPTION 2909 "A compliant implementation does not have 2910 to implement." 2912 GROUP powerACPwrAttributesDelPhaseMIBTableGroup 2913 DESCRIPTION 2914 "A compliant implementation does not have to implement." 2916 GROUP powerACPwrAttributesWyePhaseMIBTableGroup 2917 DESCRIPTION 2918 "A compliant implementation does not have to implement." 2919 ::= { powerAttributesMIBCompliances 1 } 2921 -- Units of Conformance 2923 powerACPwrAttributesMIBTableGroup OBJECT-GROUP 2924 OBJECTS { 2925 -- Note that object entPhysicalIndex is NOT 2926 -- included since it is not-accessible 2927 eoACPwrAttributesAvgVoltage, 2928 eoACPwrAttributesAvgCurrent, 2929 eoACPwrAttributesFrequency, 2930 eoACPwrAttributesPowerUnitMultiplier, 2931 eoACPwrAttributesPowerAccuracy, 2932 eoACPwrAttributesTotalActivePower, 2933 eoACPwrAttributesTotalReactivePower, 2934 eoACPwrAttributesTotalApparentPower, 2935 eoACPwrAttributesTotalPowerFactor 2936 } 2937 STATUS current 2938 DESCRIPTION 2939 "This group contains the collection of all the power 2940 attributes objects related to the Energy Object." 2941 ::= { powerAttributesMIBGroups 1 } 2943 powerACPwrAttributesOptionalMIBTableGroup OBJECT-GROUP 2944 OBJECTS { 2945 eoACPwrAttributesConfiguration, 2946 eoACPwrAttributesThdCurrent, 2947 eoACPwrAttributesThdVoltage 2948 } 2949 STATUS current 2950 DESCRIPTION 2951 "This group contains the collection of all the power 2952 attributes objects related to the Energy Object." 2953 ::= { powerAttributesMIBGroups 2 } 2955 powerACPwrAttributesDelPhaseMIBTableGroup OBJECT-GROUP 2956 OBJECTS { 2957 -- Note that object entPhysicalIndex and 2958 -- eoACPwrAttributesDelPhaseIndex are NOT 2959 -- included since they are not-accessible 2960 eoACPwrAttributesDelPhaseToNextPhaseVoltage, 2961 eoACPwrAttributesDelThdPhaseToNextPhaseVoltage 2962 } 2963 STATUS current 2964 DESCRIPTION 2965 "This group contains the collection of all power 2966 attributes of a phase in a DEL 3-phase power system." 2967 ::= { powerAttributesMIBGroups 3 } 2969 powerACPwrAttributesWyePhaseMIBTableGroup OBJECT-GROUP 2970 OBJECTS { 2971 -- Note that object entPhysicalIndex and 2972 -- eoACPwrAttributesWyePhaseIndex are NOT 2973 -- included since they are not-accessible 2974 eoACPwrAttributesWyePhaseToNeutralVoltage, 2975 eoACPwrAttributesWyeCurrent, 2976 eoACPwrAttributesWyeActivePower, 2977 eoACPwrAttributesWyeReactivePower, 2978 eoACPwrAttributesWyeApparentPower, 2979 eoACPwrAttributesWyePowerFactor, 2980 eoACPwrAttributesWyeThdPhaseToNeutralVoltage, 2981 eoACPwrAttributesWyeThdCurrent 2982 } 2984 STATUS current 2985 DESCRIPTION 2986 "This group contains the collection of all power 2987 attributes of a phase in a WYE 3-phase power system." 2988 ::= { powerAttributesMIBGroups 4 } 2990 END 2992 10. Implementation Status 2994 [Note to RFC Editor: Please remove this section and the 2995 reference to [RFC6982] before publication.] 2997 This section records the status of known implementations of the 2998 EMAN-Monitoring MIB at the time of posting of this Internet- 2999 Draft, and is based on a proposal described in [RFC6982]. 3001 The description of implementations in this section is intended 3002 to assist the IETF in its decision processes in progressing 3003 drafts to RFCs. 3005 10.1. SNMP Research 3007 Organization: SNMP Research, Inc. 3009 Maturity: Prototype based upon early drafts of the MIBs. 3010 We anticipate updating it to more recent 3011 documents as development schedules allow. 3013 Coverage: Code was generated to implement all MIB objects 3014 in ENTITY-MIB (Version 4), 3015 ENERGY-OBJECT-CONTEXT-MIB, 3016 ENERGY-OBJECT-MIB, 3017 POWER-ATTRIBUTES-MIB, 3018 and BATTERY-MIB. 3020 Implementation experience: The documents are implementable. 3022 Comments: Technical comments about the 3023 ENERGY-OBJECT-CONTEXT-MIB, 3024 ENERGY-OBJECT-MIB, and 3025 BATTERY-MIB 3026 were submitted to the EMAN Working Group 3027 E-mail list. 3029 Licensing: Proprietary, royalty licensing 3030 Contact: Alan Luchuk, luchuk at snmp.com 3032 URL: http://www.snmp.com/ 3034 10.2. Cisco Systems 3036 Organization: Cisco Systems, Inc. 3038 Maturity: Prototype based upon early version drafts of 3039 the MIBs. We anticipate updating the MIB 3040 modules as when the drafts are updated. 3042 Coverage: Code was generated to implement all MIB objects 3043 in the ENTITY-MIB (Version 4), and 3044 ENERGY-OBJECT-MIB. 3046 Implementation experience: The MIB modules are implemented 3047 on Cisco router platforms to measure and report 3048 router energy measurements. The documents are 3049 implementable. 3051 Licensing: Proprietary 3053 URL: http://www.cisco.com 3055 11. Security Considerations 3057 There are a number of management objects defined in this MIB 3058 module with a MAX-ACCESS clause of read-write and/or read- 3059 create. Such objects may be considered sensitive or vulnerable 3060 in some network environments. The support for SET operations in 3061 a non-secure environment without proper protection opens devices 3062 to attack. These are the tables and objects and their 3063 sensitivity/vulnerability: 3065 - Unauthorized changes to the eoPowerOperState (via the 3066 eoPowerAdminState ) MAY disrupt the power settings of the 3067 differentEnergy Objects, and therefore the state of 3068 functionality of the respective Energy Objects. 3069 - Unauthorized changes to the eoEnergyParametersTable MAY 3070 disrupt energy measurement in the eoEnergyTable table. 3072 SNMP versions prior to SNMPv3 did not include adequate security. 3073 Even if the network itself is secure (for example by using 3074 IPsec), there is no control as to who on the secure network is 3075 allowed to access and GET/SET (read/change/create/delete) the 3076 objects in this MIB module. 3078 Implementations SHOULD provide the security features described 3079 by the SNMPv3 framework (see [RFC3410]), and implementations 3080 claiming compliance to the SNMPv3 standard MUST include full 3081 support for authentication and privacy via the User-based 3082 Security Model (USM) [RFC3414] with the AES cipher algorithm 3083 [RFC3826]. Implementations MAY also provide support for the 3084 Transport Security Model (TSM) [RFC5591] in combination with a 3085 secure transport such as SSH [RFC5592] or TLS/DTLS [RFC6353]. 3087 Further, deployment of SNMP versions prior to SNMPv3 is NOT 3088 RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to 3089 enable cryptographic security. It is then a customer/operator 3090 responsibility to ensure that the SNMP entity giving access to 3091 an instance of this MIB module is properly configured to give 3092 access to the objects only to those principals (users) that have 3093 legitimate rights to indeed GET or SET (change/create/delete) 3094 them. 3096 In certain situations, energy and power monitoring can reveal 3097 sensitive information about individuals' activities and habits. 3098 Implementors of this specification should use appropriate 3099 privacy protections as discussed in Section 9 of RFC 6988 and 3100 monitoring of individuals and homes should only occur with 3101 proper authorization. 3103 12. IANA Considerations 3105 The MIB modules in this document use the following IANA-assigned 3106 OBJECT IDENTIFIER values recorded in the SMI Numbers registry: 3108 Descriptor OBJECT IDENTIFIER value 3110 ---------- ----------------------- 3112 IANAPowerStateSet-MIB { mib-2 xxx } 3114 energyObjectMIB { mib-2 yyy } 3116 powerAttributesMIB { mib-2 zzz } 3118 EDITOR'S NOTE (to be removed prior to publication): IANA is 3119 requested to assign a value for "xxx", "yyy" and "zzz" under the 3120 'mib-2' subtree and to record the assignment in the SMI Numbers 3121 registry. When the assignment has been made, the RFC Editor is 3122 asked to replace "xxx", "yyy" and "zzz" (here and in the MIB 3123 module) with the assigned value and to remove this note. 3125 12.1. IANAPowerStateSet-MIB module 3127 This document defines the initial version of the IANA-maintained 3128 The initial set of Power State Sets are specified in [RFC7326]. 3129 IANA maintains a Textual Convention PowerStateSet in the 3130 IANAPowerStateSet-MIB module, with the initial set of Power 3131 State Sets and the Power States within those Power State Sets as 3132 proposed in the [RFC7326]. The current version of PowerStateSet 3133 Textual convention can be accessed 3134 http://www.iana.org/assignments/power-state-sets. 3136 New Assignments (and potential deprecation) to Power State Sets 3137 shall be administered by IANA and the guidelines and procedures 3138 are specified in [RFC7326], and will, as a consequence, update 3139 the IANAPowerStateSet Textual Convention. 3141 13. Contributors 3143 This document results from the merger of two initial proposals. 3144 The following persons made significant contributions either in 3145 one of the initial proposals or in this document: 3147 John Parello 3149 Rolf Winter 3151 Dominique Dudkowski 3153 14. Acknowledgment 3155 The authors would like to thank Shamita Pisal for her prototype 3156 of this MIB module, and her valuable feedback. The authors 3157 would like to Michael Brown for improving the text dramatically. 3159 The authors would like to thank Juergen Schoenwalder for 3160 proposing the design of the Textual Convention for PowerStateSet 3161 and Ira McDonald for his feedback. Special appreciation to 3162 Laurent Guise for his review and input on power quality 3163 measurements. Thanks for the many comments on the design of the 3164 EnergyTable from Minoru Teraoka and Hiroto Ogaki. 3166 Many thanks to Alan Luchuk for the detailed review of the MIB 3167 and his comments. 3169 And finally, thanks to the EMAN chairs: Nevil Brownlee and Tom 3170 Nadeau. 3172 15. References 3174 15.1. Normative References 3176 [RFC2119] S. Bradner, Key words for use in RFCs to Indicate 3177 Requirement Levels, BCP 14, RFC 2119, March 1997. 3179 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J. 3180 Schoenwaelder, Ed., "Structure of Management 3181 Information Version 2 (SMIv2)", STD 58, RFC 2578, April 3182 1999. 3184 [RFC2579] McCloghrie, K., Ed., Perkins, D., Ed., and J. 3185 Schoenwaelder, Ed., "Textual Conventions for SMIv2", 3186 STD 58, RFC 2579, April 1999. 3188 [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder, 3189 "Conformance Statements for SMIv2", STD 58, RFC 2580, 3190 April 1999. 3192 [RFC3621] Berger, A., and D. Romascanu, "Power Ethernet MIB", 3193 RFC3621, December 2003. 3195 [RFC6933] A. Bierman, D. Romascanu, J. Quittek and M. 3196 Chandramouli " Entity MIB (Version 4)", RFC 6933, May 3197 2013. 3199 [EMAN-AWARE-MIB] J. Parello, B. Claise and M. Chandramoili, 3200 "draft-ietf-eman-energy-aware-mib-14", work in 3201 progress, February 10 2013. 3203 [LLDP-MED-MIB] ANSI/TIA-1057, "The LLDP Management Information 3204 Base extension module for TIA-TR41.4 media endpoint 3205 discovery information", July 2005. 3207 15.2. Informative References 3209 [RFC1628] S. Bradner, "UPS Management Information Base", RFC 3210 1628, May 1994 3212 [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart, 3213 "Introduction and Applicability Statements for Internet 3214 Standard Management Framework ", RFC 3410, December 3215 2002. 3217 [RFC3418] Presun, R., Case, J., McCloghrie, K., Rose, M, and S. 3218 Waldbusser, "Management Information Base (MIB) for the 3219 Simple Network Management Protocol (SNMP)", RFC3418, 3220 December 2002. 3222 [RFC3433] Bierman, A., Romascanu, D., and K. Norseth, "Entity 3223 Sensor Management Information Base", RFC 3433, December 3224 2002. 3226 [RFC4268] Chisholm, S. and D. Perkins, "Entity State MIB", RFC 3227 4268, November 2005. 3229 [RFC6982] Sheffer, Y. and A. Farrel, "Improving Awareness of 3230 Running Code: The Implementation Status Section", RFC 3231 6982, July 2013. 3233 [RFC6988] Quittek, J., Winter, R., Dietz, T., Claise, B., and M. 3234 Chandramouli, " Requirements for Energy Management", 3235 RFC 6988, September 2013. 3237 [RFC7326] Parello, J., Claise, B., Schoening, B. and Quittek, 3238 J., "Energy Management Framework", RFC 7326, September 3239 2014. 3241 [EMAN-AS] Schoening, B., Chandramouli, M. and Nordman, B. 3242 "Energy Management (EMAN) Applicability Statement", 3243 draft-ietf-eman-applicability-statement-08, Nov 2014. 3245 [DMTF] "Power State Management Profile DMTF DSP1027 Version 3246 2.0" December 2009 3247 http://www.dmtf.org/sites/default/files/standards/docum 3248 ents/DSP1027_2.0.0.pdf 3250 [IEEE1621] "Standard for User Interface Elements in Power 3251 Control of Electronic Devices Employed in 3252 Office/Consumer Environments", IEEE 1621, December 3253 2004. 3255 [IEC.61850-7-4] International Electrotechnical Commission, 3256 "Communication networks and systems for power utility 3257 automation Part 7-4: Basic communication structure 3258 Compatible logical node classes and data object 3259 classes", 2010. 3261 [IEC.62053-21] International Electrotechnical Commission, 3262 "Electricity metering equipment (a.c.) Particular 3263 requirements Part 22: Static meters for active energy 3264 (classes 1 and 2)", 2003. 3266 [IEC.62053-22]International Electrotechnical Commission, 3267 "Electricity metering equipment (a.c.) Particular 3268 requirements Part 22: Static meters for active energy 3269 (classes 0,2 S and 0,5 S)", 2003. 3271 [RFC3414] Blumenthal, U. and B. Wijnen, "User-based Security 3272 Model (USM) for version 3 of the Simple Network 3273 ManagementProtocol (SNMPv3)", STD 62, RFC 3414, 3274 December 2002. 3276 [RFC3826] Blumenthal, U., Maino, F., and K. McCloghrie, "The 3277 Advanced Encryption Standard (AES) Cipher Algorithm in 3278 the SNMP User-based Security Model", RFC 3826, June 3279 2004. 3281 [RFC5591] Harrington, D. and W. Hardaker, "Transport Security 3282 Model for the Simple Network Management Protocol 3283 (SNMP)", RFC 5591, June 2009. 3285 [RFC5592] Harrington, D., Salowey, J., and W. Hardaker, "Secure 3286 Shell Transport Model for the Simple Network Management 3287 Protocol (SNMP)", RFC 5592, June 2009. 3289 [RFC6353] Hardaker, W., "Transport Layer Security (TLS) 3290 Transport Model for the Simple Network Management 3291 Protocol (SNMP)", RFC 6353, July 2011. 3293 Authors' Addresses 3295 Mouli Chandramouli 3296 Cisco Systems, Inc. 3297 Sarjapur Outer Ring Road 3298 Bangalore 560103 3299 IN 3301 Phone: +91 80 4429 2409 3302 Email: moulchan@cisco.com 3304 Benoit Claise 3305 Cisco Systems, Inc. 3306 De Kleetlaan 6a b1 3307 Diegem 1813 3308 BE 3310 Phone: +32 2 704 5622 3311 Email: bclaise@cisco.com 3313 Brad Schoening 3314 44 Rivers Edge Drive 3315 Little Silver, NJ 07739 3316 US 3317 Email: brad.schoening@verizon.net 3318 Juergen Quittek 3319 NEC Europe Ltd. 3320 NEC Laboratories Europe 3321 Network Research Division 3322 Kurfuersten-Anlage 36 3323 Heidelberg 69115 3324 DE 3326 Phone: +49 6221 4342-115 3327 Email: quittek@neclab.eu 3329 Thomas Dietz 3330 NEC Europe Ltd. 3331 NEC Laboratories Europe 3332 Network Research Division 3333 Kurfuersten-Anlage 36 3334 Heidelberg 69115 3335 DE 3337 Phone: +49 6221 4342-128 3338 Email: Thomas.Dietz@neclab.eu