idnits 2.17.1 draft-ietf-idr-ls-trill-00.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** There are 7 instances of too long lines in the document, the longest one being 2 characters in excess of 72. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (September 10, 2015) is 3143 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) -- Looks like a reference, but probably isn't: 'RFC6325' on line 237 -- Looks like a reference, but probably isn't: 'IS-IS' on line 95 -- Looks like a reference, but probably isn't: 'RFC7176' on line 341 -- Looks like a reference, but probably isn't: 'RFC7357' on line 198 -- Looks like a reference, but probably isn't: 'RFC2119' on line 149 -- Looks like a reference, but probably isn't: 'RFC7172' on line 154 -- Looks like a reference, but probably isn't: 'I-D.ietf-idr-ls-distribution' on line 373 -- Looks like a reference, but probably isn't: 'BGP-LS' on line 394 -- Looks like a reference, but probably isn't: 'RFC6952' on line 436 == Unused Reference: '1' is defined on line 459, but no explicit reference was found in the text == Unused Reference: '2' is defined on line 464, but no explicit reference was found in the text == Unused Reference: '3' is defined on line 468, but no explicit reference was found in the text == Unused Reference: '4' is defined on line 471, but no explicit reference was found in the text == Unused Reference: '5' is defined on line 475, but no explicit reference was found in the text == Unused Reference: '6' is defined on line 480, but no explicit reference was found in the text == Unused Reference: '7' is defined on line 484, but no explicit reference was found in the text == Outdated reference: A later version (-13) exists of draft-ietf-idr-ls-distribution-10 Summary: 1 error (**), 0 flaws (~~), 9 warnings (==), 10 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 IDR Working Group W. Hao 2 D. Eastlake 3 Internet Draft Huawei 4 Intended status: Standard Track S. Hares 5 Hickory Hill Consulting 6 S.Gupta 7 IP Infusion 8 M. Durrani 9 Cisco 10 Y. Li 11 Huawei 12 Expires: March 2016 September 10, 2015 14 Distribution of TRILL Link-State using BGP 15 draft-ietf-idr-ls-trill-00.txt 17 Abstract 19 This draft describes a TRILL link state and MAC address reachability 20 information distribution mechanism using a BGP LS extension. 21 External components such as an SDN Controller can use the 22 information for topology visibility, troubleshooting, network 23 automation, etc. 25 Status of this Memo 27 This Internet-Draft is submitted in full conformance with the 28 provisions of BCP 78 and BCP 79. 30 Internet-Drafts are working documents of the Internet Engineering 31 Task Force (IETF), its areas, and its working groups. Note that 32 other groups may also distribute working documents as Internet- 33 Drafts. 35 Internet-Drafts are draft documents valid for a maximum of six 36 months and may be updated, replaced, or obsoleted by other documents 37 at any time. It is inappropriate to use Internet-Drafts as 38 reference material or to cite them other than as "work in progress." 40 The list of current Internet-Drafts can be accessed at 41 http://www.ietf.org/1id-abstracts.html 43 The list of Internet-Draft Shadow Directories can be accessed at 44 http://www.ietf.org/shadow.html. 46 Copyright Notice 48 Copyright (c) 2015 IETF Trust and the persons identified as the 49 document authors. All rights reserved. 51 This document is subject to BCP 78 and the IETF Trust's Legal 52 Provisions Relating to IETF Documents 53 (http://trustee.ietf.org/license-info) in effect on the date of 54 publication of this document. Please review these documents 55 carefully, as they describe your rights and restrictions with 56 respect to this document. Code Components extracted from this 57 document must include Simplified BSD License text as described in 58 Section 4.e of the Trust Legal Provisions and are provided without 59 warranty as described in the Simplified BSD License. 61 Table of Contents 63 1. Introduction ................................................ 2 64 2. Conventions used in this document............................ 4 65 3. Carrying TRILL Link-State Information in BGP................. 4 66 3.1. Node Descriptors........................................ 6 67 3.1.1. IGP Router-ID...................................... 6 68 3.2. MAC Address Descriptors................................. 6 69 3.2.1. MAC-Reachability TLV............................... 7 70 3.3. The BGP-LS Attribute.................................... 8 71 3.3.1. Node Attribute TLVs................................ 8 72 3.3.1.1. Node Flag Bits TLV............................ 8 73 3.3.1.2. Opaque Node Attribute TLV..................... 8 74 3.3.2. Link Attribute TLVs................................ 9 75 4. Operational Considerations................................... 9 76 5. Security Considerations..................................... 10 77 6. IANA Considerations ........................................ 11 78 7. References ................................................. 11 79 7.1. Normative References................................... 11 80 7.2. Informative References................................. 12 81 8. Acknowledgments ............................................ 12 83 1. Introduction 85 BGP has been extended to distribute IGP link-state and traffic 86 engineering information to some external components [I-D.ietf-idr- 87 ls-distribution], such as the PCE and ALTO servers. The information 88 can be used by these external components to compute a MPLS-TE path 89 across IGP areas, visualize and abstract network topology, and the 90 like. 92 TRILL (Transparent Interconnection of Lots of Links) protocol 93 [RFC6325] provides a solution for least cost transparent routing in 94 multi-hop networks with arbitrary topologies and link technologies, 95 using [IS-IS] [RFC7176] link-state routing and a hop count. TRILL 96 switches are sometimes called RBridges (Routing Bridges). 98 The TRILL protocol has been deployed in many data center networks. 99 Data center automation is a vital step to increase the speed and 100 agility of business. An SDN controller as an external component 101 normally can be used to provide centralized control and automation 102 for the data center network. Making a holistic view of whole network 103 topology available to the SDN controller is an important part for 104 data center network automation and troubleshooting. 106 +-------------+ 107 | SDN | 108 --------| Controller |-------- 109 | +-------------+ | 110 | | 111 + + + + 112 + +-----------+ + 113 | | 114 +--------+ |IP Network | +--------+ 115 | | +----+ +----+ | | 116 +---+ +---+ | | | | | | | | +---+ +---+ 117 |ES1|-|RB1|-| Area 1 |-|BRB1| |BRB2|-| Area 2 |-|RB2|-|ES2| 118 +---+ +---+ | | +----+ +----+ | | +---+ +---+ 119 | | | | | | 120 +--------+ +-----------+ +--------+ 122 |<----TRILL ------>||<-----TRILL ----->| 124 Figure 1: TRILL interconnection 126 In Data Center interconnection scenario illustrated in figure 1, a 127 single SDN Controller or network management system (NMS) can be used 128 for end-to-end network management. End-to-end topology visibility on 129 the SDN controller or NMS is very useful for whole network 130 automation and troubleshooting. BGP LS can be used by the external 131 SDN controller to collect multiple TRILL domain's link-state. 133 If ESADI (End Station Address Distribution Information) protocol 134 [RFC7357] is used for control plane MAC learning in each data center, 135 BGP LS also can be used for MAC address reachability information 136 synchronization across multiple TRILL domains. End-to-end unicast 137 forwarding paths can be calculated based on the synchronized 138 information. 140 This document describes the detailed BGP LS extension mechanisms for 141 TRILL link state and MAC address reachability information 142 distribution. 144 2. Conventions used in this document 146 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 147 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 148 document are to be interpreted as described in [RFC2119]. 150 BGP - Border Gateway Protocol 152 BGP-LS - BGP Link-State 154 Data label - VLAN or FGL (Fine Grained Label [RFC7172]) 156 IS - Intermediate System (for this document, all relevant 157 intermediate systems are RBridges) 159 NLRI - Network Layer Reachability Information 161 SDN - Software Defined Networking 163 RBridge - A device implementing the TRILL protocol 165 TRILL - Transparent Interconnection of Lots of Links 167 3. Carrying TRILL Link-State Information in BGP 169 In [I-D.ietf-idr-ls-distribution], four NLRI types are defined as 170 follows: Node NLRI, Link NLRI, IPv4 Topology Prefix NLRI and IPv6 171 Topology Prefix NLRI. For TRILL link-state distribution, the Node 172 NLRI and Link NLRI are extended to carry layer 3 gateway role and 173 link MTU information. TRILL specific attributes are carried using 174 opaque Node Attribute TLVs, such as nickname, distribution tree 175 number and identifiers, interested VLANs/Fine Grained Label, and 176 multicast group address, and etc. 178 To differentiate TRILL protocol from layer 3 IGP protocol, a new 179 TRILL Protocol-ID is defined. 181 +-------------+----------------------------------+ 182 | Protocol-ID | NLRI information source protocol | 183 +-------------+----------------------------------+ 184 | 1 | IS-IS Level 1 | 185 | 2 | IS-IS Level 2 | 186 | 3 | OSPFv2 | 187 | 4 | Direct | 188 | 5 | Static configuration | 189 | 6 | OSPFv3 | 190 | TBD | TRILL | 191 +-------------+----------------------------------+ 192 Table 1: Protocol Identifiers 194 ESADI (End Station Address Distribution Information) protocol 195 [RFC7357] is a per data label control plane MAC learning solution. 196 MAC address reachability information is carried in ESADI packets. 197 Compared with data plane MAC learning solution, ESADI protocol has 198 security and fast update advantage that are pointed out in [RFC7357]. 200 For an RBridge that is announcing participation in ESADI, the 201 RBridge can distribute MAC address reachability information to 202 external components using BGP. A new NLRI type of ''MAC Reachability 203 NLRI'' is requested for the MAC address reachability distribution. 205 +------+---------------------------+ 206 | Type | NLRI Type | 207 +------+---------------------------+ 208 | 1 | Node NLRI | 209 | 2 | Link NLRI | 210 | 3 | IPv4 Topology Prefix NLRI | 211 | 4 | IPv6 Topology Prefix NLRI | 212 | TBD | MAC Reachability NLRI | 213 +------+---------------------------+ 214 Table 2: NLRI Types 216 The MAC Reachability NLRI uses the format as shown in the following 217 figure. 219 0 1 2 3 220 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 221 +-+-+-+-+-+-+-+-+ 222 | Protocol-ID | 223 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 224 | Identifier | 225 | (64 bits) | 226 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 227 // Local Node Descriptor (variable) // 228 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 229 // MAC Address Descriptors (variable) // 230 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 231 Figure 2: The MAC Reachability NLRI format 233 3.1. Node Descriptors 235 The Node Descriptor Sub-TLV types include Autonomous System and BGP- 236 LS Identifier, iS-IS Area-ID and IGP Router-ID. TRILL uses a fixed 237 zero Area Address as specified in [RFC6325], Section 4.2.3. This is 238 encoded in a 4-byte Area Address TLV (TLV #1) as follows: 240 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 241 | 0x01, Area Address Type | (1 byte) 242 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 243 | 0x02, Length of Value | (1 byte) 244 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 245 | 0x01, Length of Address | (1 byte) 246 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 247 | 0x00, zero Area Address | (1 byte) 248 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 249 Figure 3: Area Address TLV 251 3.1.1. IGP Router-ID 253 Similar to layer 3 IS-IS, TRILL protocol uses 7-octet "IS-IS ID" as 254 the identity of an RBridge or a pseudonode, IGP Router ID sub-TLV in 255 Node Descriptor TLVs contains the 7-octet "IS-IS ID". In TRILL 256 network, each RBridge has a unique 48-bit (6-octet) IS-IS System ID. 257 This ID may be derived from any of the RBridge's unique MAC 258 addresses or configured. A pseudonode is assigned a 7-octet ID by 259 the DRB (Designated RBridge) that created it, the DRB is similar to 260 the "Designated Intermediate System" (DIS) corresponding to a LAN. 262 3.2. MAC Address Descriptors 264 The ''MAC Address Descriptor'' field is a set of Type/Length/Value 265 (TLV) triplets. ''MAC Address Descriptor'' TLVs uniquely identify an 266 MAC address reachable by a Node. The following attributes TLVs are 267 defined: 269 +--------------+-----------------------+----------+-----------------+ 270 | TLV Code | Description | Length | Value defined | 271 | Point | | | in: | 272 +--------------+-----------------------+----------+-----------------+ 273 | 1 | MAC-Reachability | variable | section 3.2.1 | 274 +--------------+-----------------------+----------+-----------------+ 275 Table 3: MAC Address Descriptor TLVs 277 3.2.1. MAC-Reachability TLV 279 +-+-+-+-+-+-+-+-+ 280 | Type= MAC-RI | (1 byte) 281 +-+-+-+-+-+-+-+-+ 282 | Length | (1 byte) 283 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...+-+-+-+-+-+-+-+ 284 |V|F| RESV | Data Label | (4 bytes) 285 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 286 | MAC (1) (6 bytes) | 287 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 288 | ................. | 289 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 290 | MAC (N) (6 bytes) | 291 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 292 Figure 4: MAC-Reachability TLV format 294 Length is 4 plus a multiple of 6. 296 The bits of 'V' and 'F' are used to identify Data Label type and are 297 defined as follows: 299 +----------+-------------------------+ 300 | Bit | Description | 301 +----------+-------------------------+ 302 | 'V' | VLAN | 303 | 'F' | Fine Grained Label | 304 +----------+-------------------------+ 305 Table 4: Data Label Type Bits Definitions 307 Notes: If BGP LS is used for NVO3 network MAC address distribution 308 between external SDN Controller and NVE, Data Label can be used to 309 represent 24 bits VN ID. 311 3.3. The BGP-LS Attribute 313 3.3.1. Node Attribute TLVs 315 3.3.1.1. Node Flag Bits TLV 317 A new Node Flag bit is added as follows: 319 0 1 2 3 320 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 321 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 322 | Type | Length | 323 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 324 |O|T|E|B|G| Reserved | 325 +-+-+-+-+-+-+-+-+-+-+-+ 326 Figure 5: Node Flag Bits TLV format 328 The new bit and remaining reserved bits are defined as follows: 330 +----------+----------------------------+-----------+ 331 | Bit | Description | Reference | 332 +----------+----------------------------+-----------+ 333 | 'G' | Layer 3 Gateway Bit | [RFC7176] | 334 | Reserved | Reserved for future use | | 335 +----------+----------------------------+-----------+ 336 Table 5: Node Flag Bits Definitions 338 3.3.1.2. Opaque Node Attribute TLV 340 The Opaque Node Attribute TLV is used as the envelope to 341 transparently carry TRILL specific information. In [RFC7176], there 342 are the following Sub-TLVs in the Router Capability and MT- 343 Capability TLVs and the Group Address (GADDR) TLV that need to be 344 carried. Future possible TRILL TLVs/Sub-TLVs extension also can be 345 carried using the Opaque Node Attribute TLV. 347 Descriptions IS-IS TLV/Sub-TLV 348 ------------------------------------ 349 TRILL-VER 22/13 350 NICKNAME 22/6 351 TREES 22/7 352 TREE-RT-IDs 22/8 353 TREE-USE-IDs 22/9 354 INT-VLAN 22/10 355 VLAN-GROUP 22/14 356 INT-LABEL 22/15 357 RBCHANNELS 22/16 358 AFFINITY 22/17 359 LABEL-GROUP 22/18 360 GMAC-ADDR 142/1 361 GIP-ADDR 142/2 362 GIPV6-ADDR 142/3 363 GLMAC-ADDR 142/4 364 GLIP-ADDR 142/5 365 GLIPV6-ADDR 142/6 367 Table 6: TRILL TLVs/Sub-TLVs 369 3.3.2. Link Attribute TLVs 371 Link attribute TLVs are TLVs that may be encoded in the BGP-LS 372 attribute with a link NLRI. Besides the TLVs that has been defined 373 in [I-D.ietf-idr-ls-distribution] section 3.3.2 table 9, the 374 following 'Link Attribute' TLV is provided for TRILL. 376 +-----------+----------------+--------------+------------------+ 377 | TLV Code | Description | IS-IS TLV | Defined in: | 378 | Point | | /Sub-TLV | | 379 +-----------+----------------+--------------+------------------+ 380 | TBD | Link MTU | 22/28 | [RFC7176]/2.4 | 381 +-----------+----------------+--------------+------------------+ 382 Table 7: Link Attribute TLVs 384 4. Operational Considerations 386 This document does not require any MIB or Yang model to configure 387 operational parameters. 389 An implementation of this specification[idr-ls-trill], MUST do the 390 malformed attribute checks below, and if it detects a malformed 391 attribute, it should use the 'Attribute Discard' action per [I- 392 D.ietf.idr-error-handling] section 2. 394 An implementation MUST perform the following expanded [BGP-LS] 395 syntactic check for determining if the message is malformed: 397 o Does the sum of all TLVs found in the BGP LS attribute 398 correspond to the BGP LS path attribute length ? 400 o Does the sum of all TLVs found in the BGP MP_REACH_NLRI 401 attribute correspond to the BGP MP_REACH_NLRI length ? 403 o Does the sum of all TLVs found in the BGP MP_UNREACH_NLRI 404 attribute correspond to the BGP MP_UNREACH_NLRI length ? 406 o Does the sum of all TLVs found in a Node-, Link, prefix (IPv4 407 or IPv6) NLRI attribute correspond to the Node-, Link- or Prefix 408 Descriptors 'Total NLRI Length' field ? 410 o Does any fixed length TLV correspond to the TLV Length field 411 in this document ? 413 o Does the sum of MAC reachability TLVs equal the length of the 414 field? 416 In addition, the following checks need to be made for the fields 417 specific to the BGP LS for TRILL: 419 PROTOCOL ID is TRILL 421 NLRI types are valid per table 2 423 MAC Reachability NLRI has correct format including: 425 o Identifier (64 bits), 427 o local node descriptor with AREA address TLV has the 428 form found in figure 2, 430 opaque TLV support the range of ISIS-TLV/SUB-TLV shown in 431 table 3, and link TLVs support the range in figure 8. 433 5. Security Considerations 435 Procedures and protocol extensions defined in this document do not 436 affect the BGP security model. See [RFC6952] for details. 438 6. IANA Considerations 440 For all of the following assignments, [this document] is the 441 reference. 443 IANA is requested to assign one Protocol-ID for "TRILL" from the 444 BGP-LS registry of Protocol-IDs. 446 IANA is requested to assign one NLRI Type for "MAC Reachability" 447 from the BGP-LS registry of NLRI Types. 449 IANA is requested to assign one Node Flag bit for "Layer 3 Gateway" 450 from the BGP-LS registry of BGP-LS Attribute TLVs. 452 IANA is requested to assign one new TLV type for "Link MTU" from the 453 BGP-LS registry of BGP-LS Attribute TLVs. 455 7. References 457 7.1. Normative References 459 [1] [I-D.ietf-idr-ls-distribution] Gredler, H., Medved, J., 460 Previdi, S., Farrel, A., and S.Ray, "North-Bound Distribution of 461 Link-State and TE Information using BGP", draft-ietf-idr-ls- 462 distribution-10(work in progress), January 2015. 464 [2] [I-D.ietf.idr-error-handling] Enke, C., John, S., Pradosh, M., 465 Keyur,P., "Revised Error Handling for BGP UPDATE Messages", 466 draft-ietf-idr-error-handling-19(work in progress), April 2015. 468 [3] [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 469 Requirement Levels", BCP 14, RFC 2119, March 1997. 471 [4] [RFC6325] Perlman, R., Eastlake 3rd, D., Dutt, D., Gai, S.,and 472 A. Ghanwani, "Routing Bridges (RBridges): Base Protocol 473 Specification", RFC 6325, July 2011. 475 [5] [RFC7172] Eastlake 3rd, D., Zhang, M., Agarwal, P., Perlman, 476 R., and D. Dutt, "Transparent Interconnection of Lots of Links 477 (TRILL): Fine-Grained Labeling", RFC 7172, DOI 10.17487/RFC7172, 478 May 2014, . 480 [6] [RFC7176] Eastlake, D., Senevirathne, T., Ghanwani, A., Dutt, 481 D., Banerjee, A.," Transparent Interconnection of Lots of Links 482 (TRILL) Use of IS-IS'', May 2014. 484 [7] [RFC7357] - Zhai, H., Hu, F., Perlman, R., Eastlake 3rd, D., 485 and O. Stokes, "Transparent Interconnection of Lots of Links 486 (TRILL): End Station Address Distribution Information (ESADI) 487 Protocol", RFC 7357, September 2014, . 490 7.2. Informative References 492 8. Acknowledgments 494 Authors like to thank Andrew Qu, Jie Dong, Mingui Zhang, Qin Wu, 495 Shunwan Zhuang, Zitao Wang, Lili Wang for their valuable inputs. 497 Authors' Addresses 499 Weiguo Hao 500 Huawei Technologies 501 101 Software Avenue, 502 Nanjing 210012 503 China 505 Phone: +86-25-56623144 506 Email: haoweiguo@huawei.com 508 Donald E. Eastlake 509 Huawei Technologies 510 155 Beaver Street 511 Milford, MA 01757 USA 513 Phone: +1-508-333-2270 514 Email: d3e3e3@gmail.com 516 Susan K. Hares 517 Hickory Hill Consulting 518 7453 Hickory Hill 519 Saline, MI 48176 USA 521 Email: shares@ndzh.com 522 Sujay Gupta 523 IP Infusion 524 Email: sujay.gupta@ipinfusion.com 526 Muhammad Durrani 527 Cisco 528 Phone: +1-408-527-6921 529 Email: mdurrani@cisco.com 531 Yizhou Li 532 Huawei Technologies 533 101 Software Avenue, 534 Nanjing 210012, China 536 Email: liyizhou@huawei.com