idnits 2.17.1 draft-ietf-idr-te-pm-bgp-08.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == The document doesn't use any RFC 2119 keywords, yet seems to have RFC 2119 boilerplate text. -- The document date (August 18, 2017) is 2441 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) ** Obsolete normative reference: RFC 7752 (Obsoleted by RFC 9552) ** Obsolete normative reference: RFC 7810 (Obsoleted by RFC 8570) Summary: 2 errors (**), 0 flaws (~~), 2 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Networking Working Group L. Ginsberg, Ed. 3 Internet-Draft S. Previdi 4 Intended status: Standards Track Cisco Systems, Inc. 5 Expires: February 19, 2018 Q. Wu 6 Huawei 7 H. Gredler 8 S. Ray 9 J. Tantsura 10 Individual 11 C. Filsfils 12 Cisco Systems, Inc. 13 August 18, 2017 15 BGP-LS Advertisement of IGP Traffic Engineering Performance Metric 16 Extensions 17 draft-ietf-idr-te-pm-bgp-08 19 Abstract 21 This document defines new BGP-LS TLVs in order to carry the IGP 22 Traffic Engineering Extensions defined in IS-IS and OSPF protocols. 24 Requirements Language 26 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 27 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 28 document are to be interpreted as described in RFC 2119 [RFC2119]. 30 In this document, these words will appear with that interpretation 31 only when in ALL CAPS. Lower case uses of these words are not to be 32 interpreted as carrying RFC-2119 significance. 34 Status of This Memo 36 This Internet-Draft is submitted in full conformance with the 37 provisions of BCP 78 and BCP 79. 39 Internet-Drafts are working documents of the Internet Engineering 40 Task Force (IETF). Note that other groups may also distribute 41 working documents as Internet-Drafts. The list of current Internet- 42 Drafts is at http://datatracker.ietf.org/drafts/current/. 44 Internet-Drafts are draft documents valid for a maximum of six months 45 and may be updated, replaced, or obsoleted by other documents at any 46 time. It is inappropriate to use Internet-Drafts as reference 47 material or to cite them other than as "work in progress." 48 This Internet-Draft will expire on February 19, 2018. 50 Copyright Notice 52 Copyright (c) 2017 IETF Trust and the persons identified as the 53 document authors. All rights reserved. 55 This document is subject to BCP 78 and the IETF Trust's Legal 56 Provisions Relating to IETF Documents 57 (http://trustee.ietf.org/license-info) in effect on the date of 58 publication of this document. Please review these documents 59 carefully, as they describe your rights and restrictions with respect 60 to this document. Code Components extracted from this document must 61 include Simplified BSD License text as described in Section 4.e of 62 the Trust Legal Provisions and are provided without warranty as 63 described in the Simplified BSD License. 65 Table of Contents 67 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 68 2. Link Attribute TLVs for TE Metric Extensions . . . . . . . . 3 69 3. TLV Details . . . . . . . . . . . . . . . . . . . . . . . . . 3 70 3.1. Unidirectional Link Delay TLV . . . . . . . . . . . . . . 3 71 3.2. Min/Max Unidirectional Link Delay TLV . . . . . . . . . . 4 72 3.3. Unidirectional Delay Variation TLV . . . . . . . . . . . 4 73 3.4. Unidirectional Link Loss TLV . . . . . . . . . . . . . . 5 74 3.5. Unidirectional Residual Bandwidth TLV . . . . . . . . . . 5 75 3.6. Unidirectional Available Bandwidth TLV . . . . . . . . . 5 76 3.7. Unidirectional Utilized Bandwidth TLV . . . . . . . . . . 6 77 4. Security Considerations . . . . . . . . . . . . . . . . . . . 6 78 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 7 79 6. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 7 80 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 7 81 7.1. Normative References . . . . . . . . . . . . . . . . . . 7 82 7.2. Informative References . . . . . . . . . . . . . . . . . 8 83 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 8 85 1. Introduction 87 BGP-LS ([RFC7752]) defines NLRI and attributes in order to carry 88 link-state information. New BGP-LS Link-Attribute TLVs are required 89 in order to carry the Traffic Engineering Metric Extensions defined 90 in [RFC7810] and [RFC7471]. 92 2. Link Attribute TLVs for TE Metric Extensions 94 The following new Link Attribute TLVs are defined: 96 TLV Name 97 ------------------------------------------ 98 Unidirectional Link Delay 100 Min/Max Unidirectional Link Delay 102 Unidirectional Delay Variation 104 Unidirectional Packet Loss 106 Unidirectional Residual Bandwidth 108 Unidirectional Available Bandwidth 110 Unidirectional Bandwidth Utilization 112 3. TLV Details 114 3.1. Unidirectional Link Delay TLV 116 This TLV advertises the average link delay between two directly 117 connected IGP link-state neighbors. The semantic of the TLV is 118 described in [RFC7810] and [RFC7471]. 120 0 1 2 3 121 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 122 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 123 | Type | Length | 124 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 125 |A| RESERVED | Delay | 126 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 128 where: 130 Figure 1 132 Type: TBA 134 Length: 4. 136 3.2. Min/Max Unidirectional Link Delay TLV 138 This sub-TLV advertises the minimum and maximum delay values between 139 two directly connected IGP link-state neighbors. The semantic of the 140 TLV is described in [RFC7810] and [RFC7471]. 142 0 1 2 3 143 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 144 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 145 | Type | Length | 146 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 147 |A| RESERVED | Min Delay | 148 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 149 | RESERVED | Max Delay | 150 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 152 where: 154 Figure 2 156 Type: TBA 158 Length: 8. 160 3.3. Unidirectional Delay Variation TLV 162 This sub-TLV advertises the average link delay variation between two 163 directly connected IGP link-state neighbors. The semantic of the TLV 164 is described in [RFC7810] and [RFC7471]. 166 0 1 2 3 167 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 168 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 169 | Type | Length | 170 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 171 | RESERVED | Delay Variation | 172 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 174 where: 176 Figure 3 178 Type: TBA 180 Length: 4. 182 3.4. Unidirectional Link Loss TLV 184 This sub-TLV advertises the loss (as a packet percentage) between two 185 directly connected IGP link-state neighbors. The semantic of the TLV 186 is described in [RFC7810] and [RFC7471]. 188 0 1 2 3 189 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 190 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 191 | Type | Length | 192 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 193 |A| RESERVED | Link Loss | 194 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 196 where: 198 Type: TBA 200 Length: 4. 202 3.5. Unidirectional Residual Bandwidth TLV 204 This sub-TLV advertises the residual bandwidth between two directly 205 connected IGP link-state neighbors. The semantic of the TLV is 206 described in [RFC7810] and [RFC7471]. 208 0 1 2 3 209 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 210 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 211 | Type | Length | 212 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 213 | Residual Bandwidth | 214 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 216 where: 218 Type: TBA 220 Length: 4. 222 3.6. Unidirectional Available Bandwidth TLV 224 This sub-TLV advertises the available bandwidth between two directly 225 connected IGP link-state neighbors. The semantic of the TLV is 226 described in [RFC7810] and [RFC7471]. 228 0 1 2 3 229 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 230 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 231 | Type | Length | 232 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 233 | Available Bandwidth | 234 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 236 where: 238 Figure 4 240 Type: TBA 242 Length: 4. 244 3.7. Unidirectional Utilized Bandwidth TLV 246 This sub-TLV advertises the bandwidth utilization between two 247 directly connected IGP link-state neighbors. The semantic of the TLV 248 is described in [RFC7810] and [RFC7471]. 250 0 1 2 3 251 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 252 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 253 | Type | Length | 254 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 255 | Utilized Bandwidth | 256 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 258 where: 260 Figure 5 262 Type: TBA 264 Length: 4. 266 4. Security Considerations 268 Procedures and protocol extensions defined in this document do not 269 affect the BGP security model. See the 'Security Considerations' 270 section of [RFC4271] for a discussion of BGP security. Also refer to 271 [RFC4272] and [RFC6952] for analysis of security issues for BGP. 273 The TLVs introduced in this document are used to propagate IGP 274 defined information ([RFC7810] and [RFC7471].) These TLVs represent 275 the state and resources availability of the IGP link. The IGP 276 instances originating these TLVs are assumed to have all the required 277 security and authentication mechanism (as described in [RFC7810] and 278 [RFC7471]) in order to prevent any security issue when propagating 279 the TLVs into BGP-LS. 281 5. IANA Considerations 283 This document requests assigning code-points from the registry "BGP- 284 LS Node Descriptor, Link Descriptor, Prefix Descriptor, and Attribute 285 TLVs" for the new Link Attribute TLVs defined in the table below: 287 TLV code-point Value 288 -------------------------------------------------------- 289 1114 Unidirectional Link Delay 291 1115 Min/Max Unidirectional Link Delay 293 1116 Unidirectional Delay Variation 295 1117 Unidirectional Packet Loss 297 1118 Unidirectional Residual Bandwidth 299 1119 Unidirectional Available Bandwidth 301 1120 Unidirectional Bandwidth Utilization 303 6. Acknowledgements 305 TBD 307 7. References 309 7.1. Normative References 311 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 312 Requirement Levels", BCP 14, RFC 2119, 313 DOI 10.17487/RFC2119, March 1997, . 316 [RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A 317 Border Gateway Protocol 4 (BGP-4)", RFC 4271, 318 DOI 10.17487/RFC4271, January 2006, . 321 [RFC7471] Giacalone, S., Ward, D., Drake, J., Atlas, A., and S. 322 Previdi, "OSPF Traffic Engineering (TE) Metric 323 Extensions", RFC 7471, DOI 10.17487/RFC7471, March 2015, 324 . 326 [RFC7752] Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and 327 S. Ray, "North-Bound Distribution of Link-State and 328 Traffic Engineering (TE) Information Using BGP", RFC 7752, 329 DOI 10.17487/RFC7752, March 2016, . 332 [RFC7810] Previdi, S., Ed., Giacalone, S., Ward, D., Drake, J., and 333 Q. Wu, "IS-IS Traffic Engineering (TE) Metric Extensions", 334 RFC 7810, DOI 10.17487/RFC7810, May 2016, 335 . 337 7.2. Informative References 339 [RFC4272] Murphy, S., "BGP Security Vulnerabilities Analysis", 340 RFC 4272, DOI 10.17487/RFC4272, January 2006, 341 . 343 [RFC6952] Jethanandani, M., Patel, K., and L. Zheng, "Analysis of 344 BGP, LDP, PCEP, and MSDP Issues According to the Keying 345 and Authentication for Routing Protocols (KARP) Design 346 Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013, 347 . 349 Authors' Addresses 351 Les Ginsberg (editor) 352 Cisco Systems, Inc. 353 US 355 Email: ginsberg@cisco.com 357 Stefano Previdi 358 Cisco Systems, Inc. 359 IT 361 Email: stefano@previdi.net 362 Qin Wu 363 Huawei 364 101 Software Avenue, Yuhua District 365 Nanjing, Jiangsu 210012 366 China 368 Email: bill.wu@huawei.com 370 Hannes Gredler 371 Individual 372 AT 374 Email: hannes@gredler.at 376 Saikat Ray 377 Individual 378 US 380 Email: raysaikat@gmail.com 382 Jeff Tantsura 383 Individual 384 US 386 Email: jefftant.ietf@gmail.com 388 Clarence Filsfils 389 Cisco Systems, Inc. 390 Brussels 391 BE 393 Email: cfilsfil@cisco.com