idnits 2.17.1 draft-ietf-idr-te-pm-bgp-10.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == The document doesn't use any RFC 2119 keywords, yet seems to have RFC 2119 boilerplate text. -- The document date (March 21, 2018) is 2227 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) ** Obsolete normative reference: RFC 7752 (Obsoleted by RFC 9552) ** Obsolete normative reference: RFC 7810 (Obsoleted by RFC 8570) Summary: 2 errors (**), 0 flaws (~~), 2 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Networking Working Group L. Ginsberg, Ed. 3 Internet-Draft S. Previdi 4 Intended status: Standards Track Cisco Systems, Inc. 5 Expires: September 22, 2018 Q. Wu 6 Huawei 7 J. Tantsura 8 Individual 9 C. Filsfils 10 Cisco Systems, Inc. 11 March 21, 2018 13 BGP-LS Advertisement of IGP Traffic Engineering Performance Metric 14 Extensions 15 draft-ietf-idr-te-pm-bgp-10 17 Abstract 19 This document defines new BGP-LS TLVs in order to carry the IGP 20 Traffic Engineering Extensions defined in IS-IS and OSPF protocols. 22 Requirements Language 24 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 25 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 26 document are to be interpreted as described in RFC 2119 [RFC2119]. 28 In this document, these words will appear with that interpretation 29 only when in ALL CAPS. Lower case uses of these words are not to be 30 interpreted as carrying RFC-2119 significance. 32 Status of This Memo 34 This Internet-Draft is submitted in full conformance with the 35 provisions of BCP 78 and BCP 79. 37 Internet-Drafts are working documents of the Internet Engineering 38 Task Force (IETF). Note that other groups may also distribute 39 working documents as Internet-Drafts. The list of current Internet- 40 Drafts is at https://datatracker.ietf.org/drafts/current/. 42 Internet-Drafts are draft documents valid for a maximum of six months 43 and may be updated, replaced, or obsoleted by other documents at any 44 time. It is inappropriate to use Internet-Drafts as reference 45 material or to cite them other than as "work in progress." 47 This Internet-Draft will expire on September 22, 2018. 49 Copyright Notice 51 Copyright (c) 2018 IETF Trust and the persons identified as the 52 document authors. All rights reserved. 54 This document is subject to BCP 78 and the IETF Trust's Legal 55 Provisions Relating to IETF Documents 56 (https://trustee.ietf.org/license-info) in effect on the date of 57 publication of this document. Please review these documents 58 carefully, as they describe your rights and restrictions with respect 59 to this document. Code Components extracted from this document must 60 include Simplified BSD License text as described in Section 4.e of 61 the Trust Legal Provisions and are provided without warranty as 62 described in the Simplified BSD License. 64 Table of Contents 66 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 67 2. Link Attribute TLVs for TE Metric Extensions . . . . . . . . 2 68 3. TLV Details . . . . . . . . . . . . . . . . . . . . . . . . . 3 69 3.1. Unidirectional Link Delay TLV . . . . . . . . . . . . . . 3 70 3.2. Min/Max Unidirectional Link Delay TLV . . . . . . . . . . 3 71 3.3. Unidirectional Delay Variation TLV . . . . . . . . . . . 4 72 3.4. Unidirectional Link Loss TLV . . . . . . . . . . . . . . 4 73 3.5. Unidirectional Residual Bandwidth TLV . . . . . . . . . . 5 74 3.6. Unidirectional Available Bandwidth TLV . . . . . . . . . 5 75 3.7. Unidirectional Utilized Bandwidth TLV . . . . . . . . . . 6 76 4. Security Considerations . . . . . . . . . . . . . . . . . . . 6 77 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 7 78 6. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 7 79 7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 7 80 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 8 81 8.1. Normative References . . . . . . . . . . . . . . . . . . 8 82 8.2. Informative References . . . . . . . . . . . . . . . . . 8 83 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 8 85 1. Introduction 87 BGP-LS ([RFC7752]) defines NLRI and attributes in order to carry 88 link-state information. New BGP-LS Link-Attribute TLVs are required 89 in order to carry the Traffic Engineering Metric Extensions defined 90 in [RFC7810] and [RFC7471]. 92 2. Link Attribute TLVs for TE Metric Extensions 94 The following new Link Attribute TLVs are defined: 96 TLV Name 97 ------------------------------------------ 98 Unidirectional Link Delay 100 Min/Max Unidirectional Link Delay 102 Unidirectional Delay Variation 104 Unidirectional Packet Loss 106 Unidirectional Residual Bandwidth 108 Unidirectional Available Bandwidth 110 Unidirectional Bandwidth Utilization 112 3. TLV Details 114 3.1. Unidirectional Link Delay TLV 116 This TLV advertises the average link delay between two directly 117 connected IGP link-state neighbors. The semantic of the TLV is 118 described in [RFC7810] and [RFC7471]. 120 0 1 2 3 121 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 122 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 123 | Type | Length | 124 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 125 |A| RESERVED | Delay | 126 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 128 where: 130 Figure 1 132 Type: 1114 134 Length: 4. 136 3.2. Min/Max Unidirectional Link Delay TLV 138 This sub-TLV advertises the minimum and maximum delay values between 139 two directly connected IGP link-state neighbors. The semantic of the 140 TLV is described in [RFC7810] and [RFC7471]. 142 0 1 2 3 143 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 144 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 145 | Type | Length | 146 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 147 |A| RESERVED | Min Delay | 148 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 149 | RESERVED | Max Delay | 150 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 152 where: 154 Figure 2 156 Type: 1115 158 Length: 8. 160 3.3. Unidirectional Delay Variation TLV 162 This sub-TLV advertises the average link delay variation between two 163 directly connected IGP link-state neighbors. The semantic of the TLV 164 is described in [RFC7810] and [RFC7471]. 166 0 1 2 3 167 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 168 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 169 | Type | Length | 170 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 171 | RESERVED | Delay Variation | 172 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 174 where: 176 Figure 3 178 Type: 1116 180 Length: 4. 182 3.4. Unidirectional Link Loss TLV 184 This sub-TLV advertises the loss (as a packet percentage) between two 185 directly connected IGP link-state neighbors. The semantic of the TLV 186 is described in [RFC7810] and [RFC7471]. 188 0 1 2 3 189 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 190 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 191 | Type | Length | 192 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 193 |A| RESERVED | Link Loss | 194 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 196 where: 198 Type:1117 200 Length: 4. 202 3.5. Unidirectional Residual Bandwidth TLV 204 This sub-TLV advertises the residual bandwidth between two directly 205 connected IGP link-state neighbors. The semantic of the TLV is 206 described in [RFC7810] and [RFC7471]. 208 0 1 2 3 209 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 210 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 211 | Type | Length | 212 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 213 | Residual Bandwidth | 214 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 216 where: 218 Type: 1118 220 Length: 4. 222 3.6. Unidirectional Available Bandwidth TLV 224 This sub-TLV advertises the available bandwidth between two directly 225 connected IGP link-state neighbors. The semantic of the TLV is 226 described in [RFC7810] and [RFC7471]. 228 0 1 2 3 229 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 230 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 231 | Type | Length | 232 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 233 | Available Bandwidth | 234 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 236 where: 238 Figure 4 240 Type: 1119 242 Length: 4. 244 3.7. Unidirectional Utilized Bandwidth TLV 246 This sub-TLV advertises the bandwidth utilization between two 247 directly connected IGP link-state neighbors. The semantic of the TLV 248 is described in [RFC7810] and [RFC7471]. 250 0 1 2 3 251 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 252 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 253 | Type | Length | 254 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 255 | Utilized Bandwidth | 256 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 258 where: 260 Figure 5 262 Type: 1120 264 Length: 4. 266 4. Security Considerations 268 Procedures and protocol extensions defined in this document do not 269 affect the BGP security model. See the 'Security Considerations' 270 section of [RFC4271] for a discussion of BGP security. Also refer to 271 [RFC4272] and [RFC6952] for analysis of security issues for BGP. 273 The TLVs introduced in this document are used to propagate IGP 274 defined information ([RFC7810] and [RFC7471].) These TLVs represent 275 the state and resources availability of the IGP link. The IGP 276 instances originating these TLVs are assumed to have all the required 277 security and authentication mechanism (as described in [RFC7810] and 278 [RFC7471]) in order to prevent any security issue when propagating 279 the TLVs into BGP-LS. 281 5. IANA Considerations 283 This document requests assigning code-points from the registry "BGP- 284 LS Node Descriptor, Link Descriptor, Prefix Descriptor, and Attribute 285 TLVs" for the new Link Attribute TLVs defined in the table below: 287 TLV code-point Value 288 -------------------------------------------------------- 289 1114 Unidirectional Link Delay 291 1115 Min/Max Unidirectional Link Delay 293 1116 Unidirectional Delay Variation 295 1117 Unidirectional Packet Loss 297 1118 Unidirectional Residual Bandwidth 299 1119 Unidirectional Available Bandwidth 301 1120 Unidirectional Bandwidth Utilization 303 6. Contributors 305 The following people have substantially contributed to this document 306 and should be considered co-authors: 308 Saikat Ray 309 Individual 310 Email: raysaikat@gmail.com 312 Hannes Gredler 313 RtBrick Inc. 314 Email: hannes@rtbrick.com 316 7. Acknowledgements 318 The authors wish to acknowledge comments from Ketan Talaulikar. 320 8. References 322 8.1. Normative References 324 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 325 Requirement Levels", BCP 14, RFC 2119, 326 DOI 10.17487/RFC2119, March 1997, 327 . 329 [RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A 330 Border Gateway Protocol 4 (BGP-4)", RFC 4271, 331 DOI 10.17487/RFC4271, January 2006, 332 . 334 [RFC7471] Giacalone, S., Ward, D., Drake, J., Atlas, A., and S. 335 Previdi, "OSPF Traffic Engineering (TE) Metric 336 Extensions", RFC 7471, DOI 10.17487/RFC7471, March 2015, 337 . 339 [RFC7752] Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and 340 S. Ray, "North-Bound Distribution of Link-State and 341 Traffic Engineering (TE) Information Using BGP", RFC 7752, 342 DOI 10.17487/RFC7752, March 2016, 343 . 345 [RFC7810] Previdi, S., Ed., Giacalone, S., Ward, D., Drake, J., and 346 Q. Wu, "IS-IS Traffic Engineering (TE) Metric Extensions", 347 RFC 7810, DOI 10.17487/RFC7810, May 2016, 348 . 350 8.2. Informative References 352 [RFC4272] Murphy, S., "BGP Security Vulnerabilities Analysis", 353 RFC 4272, DOI 10.17487/RFC4272, January 2006, 354 . 356 [RFC6952] Jethanandani, M., Patel, K., and L. Zheng, "Analysis of 357 BGP, LDP, PCEP, and MSDP Issues According to the Keying 358 and Authentication for Routing Protocols (KARP) Design 359 Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013, 360 . 362 Authors' Addresses 363 Les Ginsberg (editor) 364 Cisco Systems, Inc. 365 US 367 Email: ginsberg@cisco.com 369 Stefano Previdi 370 Cisco Systems, Inc. 371 IT 373 Email: stefano@previdi.net 375 Qin Wu 376 Huawei 377 101 Software Avenue, Yuhua District 378 Nanjing, Jiangsu 210012 379 China 381 Email: bill.wu@huawei.com 383 Jeff Tantsura 384 Individual 385 US 387 Email: jefftant.ietf@gmail.com 389 Clarence Filsfils 390 Cisco Systems, Inc. 391 Brussels 392 BE 394 Email: cfilsfil@cisco.com