idnits 2.17.1 draft-ietf-idr-te-pm-bgp-16.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (December 13, 2018) is 1954 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Outdated reference: A later version (-05) exists of draft-ietf-lsr-isis-rfc7810bis-03 ** Obsolete normative reference: RFC 7752 (Obsoleted by RFC 9552) Summary: 1 error (**), 0 flaws (~~), 2 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Networking Working Group L. Ginsberg, Ed. 3 Internet-Draft Cisco Systems, Inc. 4 Intended status: Standards Track S. Previdi 5 Expires: June 16, 2019 Q. Wu 6 Huawei 7 J. Tantsura 8 Apstra, Inc. 9 C. Filsfils 10 Cisco Systems, Inc. 11 December 13, 2018 13 BGP-LS Advertisement of IGP Traffic Engineering Performance Metric 14 Extensions 15 draft-ietf-idr-te-pm-bgp-16 17 Abstract 19 This document defines new BGP-LS TLVs in order to carry the IGP 20 Traffic Engineering Extensions defined in the IS-IS and OSPF 21 protocols. 23 Status of This Memo 25 This Internet-Draft is submitted in full conformance with the 26 provisions of BCP 78 and BCP 79. 28 Internet-Drafts are working documents of the Internet Engineering 29 Task Force (IETF). Note that other groups may also distribute 30 working documents as Internet-Drafts. The list of current Internet- 31 Drafts is at https://datatracker.ietf.org/drafts/current/. 33 Internet-Drafts are draft documents valid for a maximum of six months 34 and may be updated, replaced, or obsoleted by other documents at any 35 time. It is inappropriate to use Internet-Drafts as reference 36 material or to cite them other than as "work in progress." 38 This Internet-Draft will expire on June 16, 2019. 40 Copyright Notice 42 Copyright (c) 2018 IETF Trust and the persons identified as the 43 document authors. All rights reserved. 45 This document is subject to BCP 78 and the IETF Trust's Legal 46 Provisions Relating to IETF Documents 47 (https://trustee.ietf.org/license-info) in effect on the date of 48 publication of this document. Please review these documents 49 carefully, as they describe your rights and restrictions with respect 50 to this document. Code Components extracted from this document must 51 include Simplified BSD License text as described in Section 4.e of 52 the Trust Legal Provisions and are provided without warranty as 53 described in the Simplified BSD License. 55 Table of Contents 57 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 58 2. Link Attribute TLVs for TE Metric Extensions . . . . . . . . 2 59 2.1. Unidirectional Link Delay TLV . . . . . . . . . . . . . . 3 60 2.2. Min/Max Unidirectional Link Delay TLV . . . . . . . . . . 3 61 2.3. Unidirectional Delay Variation TLV . . . . . . . . . . . 4 62 2.4. Unidirectional Link Loss TLV . . . . . . . . . . . . . . 5 63 2.5. Unidirectional Residual Bandwidth TLV . . . . . . . . . . 5 64 2.6. Unidirectional Available Bandwidth TLV . . . . . . . . . 5 65 2.7. Unidirectional Utilized Bandwidth TLV . . . . . . . . . . 6 66 3. Security Considerations . . . . . . . . . . . . . . . . . . . 6 67 4. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 7 68 5. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 7 69 6. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 8 70 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 8 71 7.1. Normative References . . . . . . . . . . . . . . . . . . 8 72 7.2. Informative References . . . . . . . . . . . . . . . . . 8 73 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 8 75 1. Introduction 77 BGP-LS ([RFC7752]) defines NLRI and attributes in order to carry 78 link-state information. New BGP-LS Link-Attribute TLVs are required 79 in order to carry the Traffic Engineering Metric Extensions defined 80 in [I-D.ietf-lsr-isis-rfc7810bis] and [RFC7471]. 82 2. Link Attribute TLVs for TE Metric Extensions 84 The following new Link Attribute TLVs are defined: 86 TLV code-point Value 87 -------------------------------------------------------- 88 1114 Unidirectional Link Delay 90 1115 Min/Max Unidirectional Link Delay 92 1116 Unidirectional Delay Variation 94 1117 Unidirectional Link Loss 96 1118 Unidirectional Residual Bandwidth 98 1119 Unidirectional Available Bandwidth 100 1120 Unidirectional Bandwidth Utilization 102 TLV formats are described in detail in the following sub-sections. 103 TLV formats follow the rules defined in [RFC7752]. 105 2.1. Unidirectional Link Delay TLV 107 This TLV advertises the average link delay between two directly 108 connected IGP link-state neighbors. The semantics of the value field 109 in the TLV are described in [I-D.ietf-lsr-isis-rfc7810bis] and 110 [RFC7471]. 112 0 1 2 3 113 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 114 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 115 | Type | Length | 116 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 117 |A| RESERVED | Delay | 118 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 120 where: 122 Figure 1 124 Type: 1114 126 Length: 4. 128 2.2. Min/Max Unidirectional Link Delay TLV 130 This sub-TLV advertises the minimum and maximum delay values between 131 two directly connected IGP link-state neighbors. The semantics of 132 the value field in the TLV are described in 133 [I-D.ietf-lsr-isis-rfc7810bis] and [RFC7471]. 135 0 1 2 3 136 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 137 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 138 | Type | Length | 139 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 140 |A| RESERVED | Min Delay | 141 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 142 | RESERVED | Max Delay | 143 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 145 where: 147 Figure 2 149 Type: 1115 151 Length: 8. 153 2.3. Unidirectional Delay Variation TLV 155 This sub-TLV advertises the average link delay variation between two 156 directly connected IGP link-state neighbors. The semantics of the 157 value field in the TLV are described in 158 [I-D.ietf-lsr-isis-rfc7810bis] and [RFC7471]. 160 0 1 2 3 161 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 162 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 163 | Type | Length | 164 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 165 | RESERVED | Delay Variation | 166 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 168 where: 170 Figure 3 172 Type: 1116 174 Length: 4. 176 2.4. Unidirectional Link Loss TLV 178 This sub-TLV advertises the loss (as a packet percentage) between two 179 directly connected IGP link-state neighbors. The semantics of the 180 value field in the TLV are described in 181 [I-D.ietf-lsr-isis-rfc7810bis] and [RFC7471]. 183 0 1 2 3 184 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 185 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 186 | Type | Length | 187 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 188 |A| RESERVED | Link Loss | 189 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 191 where: 193 Type:1117 195 Length: 4. 197 2.5. Unidirectional Residual Bandwidth TLV 199 This sub-TLV advertises the residual bandwidth between two directly 200 connected IGP link-state neighbors. The semantics of the value field 201 in the TLV are described in [I-D.ietf-lsr-isis-rfc7810bis] and 202 [RFC7471]. 204 0 1 2 3 205 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 206 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 207 | Type | Length | 208 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 209 | Residual Bandwidth | 210 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 212 where: 214 Type: 1118 216 Length: 4. 218 2.6. Unidirectional Available Bandwidth TLV 220 This sub-TLV advertises the available bandwidth between two directly 221 connected IGP link-state neighbors. The semantics of the value field 222 in the TLV are described in [I-D.ietf-lsr-isis-rfc7810bis] and 223 [RFC7471]. 225 0 1 2 3 226 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 227 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 228 | Type | Length | 229 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 230 | Available Bandwidth | 231 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 233 where: 235 Figure 4 237 Type: 1119 239 Length: 4. 241 2.7. Unidirectional Utilized Bandwidth TLV 243 This sub-TLV advertises the bandwidth utilization between two 244 directly connected IGP link-state neighbors. The semantics of the 245 value field in the TLV are described in 246 [I-D.ietf-lsr-isis-rfc7810bis] and [RFC7471]. 248 0 1 2 3 249 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 250 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 251 | Type | Length | 252 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 253 | Utilized Bandwidth | 254 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 256 where: 258 Figure 5 260 Type: 1120 262 Length: 4. 264 3. Security Considerations 266 Procedures and protocol extensions defined in this document do not 267 affect the BGP security model. See the 'Security Considerations' 268 section of [RFC4271] for a discussion of BGP security. Also refer to 269 [RFC4272] and [RFC6952] for analysis of security issues for BGP. 270 Security considerations for acquiring and distributing BGP-LS 271 information are discussed in [RFC7752]. 273 The TLVs introduced in this document are used to propagate IGP 274 defined information ([I-D.ietf-lsr-isis-rfc7810bis] and [RFC7471].) 275 These TLVs represent the state and resource availability of the IGP 276 link. The IGP instances originating these TLVs are assumed to 277 support all the required security and authentication mechanisms (as 278 described in [I-D.ietf-lsr-isis-rfc7810bis] and [RFC7471]) in order 279 to prevent any security issue when propagating the TLVs into BGP-LS. 280 The advertisement of the link attribute information defined in this 281 document presents no additional risk beyond that associated with the 282 existing set of link attribute information already supported in 283 [RFC7752]. 285 4. IANA Considerations 287 IANA has made temporary assignments in the registry "BGP-LS Node 288 Descriptor, Link Descriptor, Prefix Descriptor, and Attribute TLVs" 289 for the new Link Attribute TLVs defined in the table below: 291 TLV code-point Value 292 -------------------------------------------------------- 293 1114 Unidirectional Link Delay 295 1115 Min/Max Unidirectional Link Delay 297 1116 Unidirectional Delay Variation 299 1117 Unidirectional Link Loss 301 1118 Unidirectional Residual Bandwidth 303 1119 Unidirectional Available Bandwidth 305 1120 Unidirectional Bandwidth Utilization 307 5. Contributors 309 The following people have substantially contributed to this document 310 and should be considered co-authors: 312 Saikat Ray 313 Individual 314 Email: raysaikat@gmail.com 316 Hannes Gredler 317 RtBrick Inc. 318 Email: hannes@rtbrick.com 320 6. Acknowledgements 322 The authors wish to acknowledge comments from Ketan Talaulikar. 324 7. References 326 7.1. Normative References 328 [I-D.ietf-lsr-isis-rfc7810bis] 329 Ginsberg, L., Previdi, S., Giacalone, S., Ward, D., Drake, 330 J., and Q. Wu, "IS-IS Traffic Engineering (TE) Metric 331 Extensions", draft-ietf-lsr-isis-rfc7810bis-03 (work in 332 progress), November 2018. 334 [RFC7471] Giacalone, S., Ward, D., Drake, J., Atlas, A., and S. 335 Previdi, "OSPF Traffic Engineering (TE) Metric 336 Extensions", RFC 7471, DOI 10.17487/RFC7471, March 2015, 337 . 339 [RFC7752] Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and 340 S. Ray, "North-Bound Distribution of Link-State and 341 Traffic Engineering (TE) Information Using BGP", RFC 7752, 342 DOI 10.17487/RFC7752, March 2016, 343 . 345 7.2. Informative References 347 [RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A 348 Border Gateway Protocol 4 (BGP-4)", RFC 4271, 349 DOI 10.17487/RFC4271, January 2006, 350 . 352 [RFC4272] Murphy, S., "BGP Security Vulnerabilities Analysis", 353 RFC 4272, DOI 10.17487/RFC4272, January 2006, 354 . 356 [RFC6952] Jethanandani, M., Patel, K., and L. Zheng, "Analysis of 357 BGP, LDP, PCEP, and MSDP Issues According to the Keying 358 and Authentication for Routing Protocols (KARP) Design 359 Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013, 360 . 362 Authors' Addresses 363 Les Ginsberg (editor) 364 Cisco Systems, Inc. 365 US 367 Email: ginsberg@cisco.com 369 Stefano Previdi 370 Huawei 371 IT 373 Email: stefano@previdi.net 375 Qin Wu 376 Huawei 377 101 Software Avenue, Yuhua District 378 Nanjing, Jiangsu 210012 379 China 381 Email: bill.wu@huawei.com 383 Jeff Tantsura 384 Apstra, Inc. 385 US 387 Email: jefftant.ietf@gmail.com 389 Clarence Filsfils 390 Cisco Systems, Inc. 391 Brussels 392 BE 394 Email: cfilsfil@cisco.com