idnits 2.17.1 draft-ietf-ippm-stamp-option-tlv-01.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (September 20, 2019) is 1678 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Outdated reference: A later version (-10) exists of draft-ietf-ippm-stamp-07 Summary: 0 errors (**), 0 flaws (~~), 2 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group G. Mirsky 3 Internet-Draft X. Min 4 Intended status: Standards Track ZTE Corp. 5 Expires: March 23, 2020 G. Jun 6 ZTE Corporation 7 H. Nydell 8 Accedian Networks 9 R. Foote 10 Nokia 11 A. Masputra 12 Apple Inc. 13 September 20, 2019 15 Simple Two-way Active Measurement Protocol Optional Extensions 16 draft-ietf-ippm-stamp-option-tlv-01 18 Abstract 20 This document describes optional extensions to Simple Two-way Active 21 Measurement Protocol (STAMP) which enable measurement performance 22 metrics in addition to ones supported by the STAMP base 23 specification. 25 Status of This Memo 27 This Internet-Draft is submitted in full conformance with the 28 provisions of BCP 78 and BCP 79. 30 Internet-Drafts are working documents of the Internet Engineering 31 Task Force (IETF). Note that other groups may also distribute 32 working documents as Internet-Drafts. The list of current Internet- 33 Drafts is at https://datatracker.ietf.org/drafts/current/. 35 Internet-Drafts are draft documents valid for a maximum of six months 36 and may be updated, replaced, or obsoleted by other documents at any 37 time. It is inappropriate to use Internet-Drafts as reference 38 material or to cite them other than as "work in progress." 40 This Internet-Draft will expire on March 23, 2020. 42 Copyright Notice 44 Copyright (c) 2019 IETF Trust and the persons identified as the 45 document authors. All rights reserved. 47 This document is subject to BCP 78 and the IETF Trust's Legal 48 Provisions Relating to IETF Documents 49 (https://trustee.ietf.org/license-info) in effect on the date of 50 publication of this document. Please review these documents 51 carefully, as they describe your rights and restrictions with respect 52 to this document. Code Components extracted from this document must 53 include Simplified BSD License text as described in Section 4.e of 54 the Trust Legal Provisions and are provided without warranty as 55 described in the Simplified BSD License. 57 Table of Contents 59 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 60 2. Conventions used in this document . . . . . . . . . . . . . . 3 61 2.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 3 62 2.2. Requirements Language . . . . . . . . . . . . . . . . . . 3 63 3. Theory of Operation . . . . . . . . . . . . . . . . . . . . . 3 64 4. TLV Extensions to STAMP . . . . . . . . . . . . . . . . . . . 4 65 4.1. Extra Padding TLV . . . . . . . . . . . . . . . . . . . . 6 66 4.2. Location TLV . . . . . . . . . . . . . . . . . . . . . . 6 67 4.3. Timestamp Information TLV . . . . . . . . . . . . . . . . 8 68 4.4. Class of Service TLV . . . . . . . . . . . . . . . . . . 9 69 4.5. Direct Measurement TLV . . . . . . . . . . . . . . . . . 10 70 4.6. Access Report TLV . . . . . . . . . . . . . . . . . . . . 11 71 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 12 72 5.1. STAMP TLV Registry . . . . . . . . . . . . . . . . . . . 12 73 5.2. Synchronization Source Sub-registry . . . . . . . . . . . 13 74 5.3. Timestamping Method Sub-registry . . . . . . . . . . . . 14 75 5.4. Access ID Sub-registry . . . . . . . . . . . . . . . . . 15 76 5.5. Return Code Sub-registry . . . . . . . . . . . . . . . . 16 77 6. Security Considerations . . . . . . . . . . . . . . . . . . . 17 78 7. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 17 79 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 17 80 8.1. Normative References . . . . . . . . . . . . . . . . . . 17 81 8.2. Informative References . . . . . . . . . . . . . . . . . 18 82 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 18 84 1. Introduction 86 Simple Two-way Active Measurement Protocol (STAMP) 87 [I-D.ietf-ippm-stamp] supports the use of optional extensions that 88 use Type-Length-Value (TLV) encoding. Such extensions are to enhance 89 the STAMP base functions, such as measurement of one-way and round- 90 trip delay, latency, packet loss, as well as ability to detect packet 91 duplication and out-of-order delivery of the test packets. This 92 specification provides definitions of optional STAMP extensions, 93 their formats, and theory of operation. 95 2. Conventions used in this document 97 2.1. Terminology 99 STAMP - Simple Two-way Active Measurement Protocol 101 DSCP - Differentiated Services Code Point 103 ECN - Explicit Congestion Notification 105 NTP - Network Time Protocol 107 PTP - Precision Time Protocol 109 HMAC Hashed Message Authentication Code 111 TLV Type-Length-Value 113 BITS Building Integrated Timing Supply 115 SSU Synchronization Supply Unit 117 GPS Global Positioning System 119 GLONASS Global Orbiting Navigation Satellite System 121 LORAN-C Long Range Navigation System Version C 123 MBZ Must Be Zeroed 125 CoS Class of Service 127 PMF Performance Measurement Function 129 2.2. Requirements Language 131 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 132 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and 133 "OPTIONAL" in this document are to be interpreted as described in BCP 134 14 [RFC2119] [RFC8174] when, and only when, they appear in all 135 capitals, as shown here. 137 3. Theory of Operation 139 STAMP Session-Sender transmits test packets to STAMP Session- 140 Reflector. STAMP Session-Reflector receives Session-Sender's packet 141 and acts according to the configuration and optional control 142 information communicated in the Session-Sender's test packet. STAMP 143 defines two different test packet formats, one for packets 144 transmitted by the STAMP-Session-Sender and one for packets 145 transmitted by the STAMP-Session-Reflector. STAMP supports two 146 modes: unauthenticated and authenticated. Unauthenticated STAMP test 147 packets are compatible on the wire with unauthenticated TWAMP-Test 148 [RFC5357] packet formats. 150 By default, STAMP uses symmetrical packets, i.e., the size of the 151 packet transmitted by Session-Reflector equals the size of the packet 152 received by the Session-Reflector. 154 4. TLV Extensions to STAMP 156 Figure 1 displays the format of STAMP Session-Sender test packet in 157 unauthenticated mode that includes a TLV. 159 0 1 2 3 160 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 161 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 162 | Sequence Number | 163 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 164 | Timestamp | 165 | | 166 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 167 | Error Estimate | | 168 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 169 | | 170 | | 171 | MBZ (30 octets) | 172 | | 173 | | 174 | | 175 | | 176 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 177 | Type | Length | 178 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 179 ~ Value ~ 180 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 182 Figure 1: STAMP Session-Sender test packet format with TLV in 183 unauthenticated mode 185 The MBZ (Must Be Zeroed) field of a test packet transmitted by a 186 STAMP Session-Sender MUST be 30 octets long. A STAMP Session-Sender 187 test packet MUST NOT use the Reflect Octets capability defined in 188 [RFC6038]. 190 TLVs (Type-Length-Value tuples) have the two octets long Type field, 191 two octets long Length field that is the length of the Value field in 192 octets. Type values, see Section 5.1, less than 32768 identify 193 mandatory TLVs that MUST be supported by an implementation. Type 194 values greater than or equal to 32768 identify optional TLVs that 195 SHOULD be ignored if the implementation does not understand or 196 support them. If a Type value for TLV or sub-TLV is in the range for 197 Vendor Private Use, the Length MUST be at least 4, and the first four 198 octets MUST be that vendor's the Structure of Management Information 199 (SMI) Private Enterprise Number, in network octet order. The rest of 200 the Value field is private to the vendor. Following sections 201 describe the use of TLVs for STAMP that extend STAMP capability 202 beyond its base specification. 204 Figure 2 displays the format of STAMP Session-Reflector test packet 205 in unauthenticated mode that includes a TLV. 207 0 1 2 3 208 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 209 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 210 | Sequence Number | 211 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 212 | Timestamp | 213 | | 214 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 215 | Error Estimate | MBZ | 216 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 217 | Receive Timestamp | 218 | | 219 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 220 | Session-Sender Sequence Number | 221 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 222 | Session-Sender Timestamp | 223 | | 224 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 225 | Session-Sender Error Estimate | MBZ | 226 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 227 |Ses-Sender TTL | MBZ2 | 228 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 229 | Type | Length | 230 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 231 ~ Value ~ 232 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 234 Figure 2: STAMP Session-Reflector test packet format with TLV in 235 unauthenticated mode 237 The MBZ2 field of a test packet transmitted by a STAMP Session- 238 Reflector MUST be 3 octets long. 240 A STAMP node, whether Session-Sender or Session-Reflector, receiving 241 a test packet MUST determine whether the packet is a base STAMP 242 packet or includes one or more TLVs. The node MUST compare the value 243 in the Length field of the UDP header and the length of the base 244 STAMP test packet in the mode, unauthenticated or authenticated based 245 on the configuration of the particular STAMP test session. If the 246 difference between the two values is larger than the length of UDP 247 header, then the test packet includes one or more STAMP TLVs that 248 immediately follow the base STAMP test packet. 250 4.1. Extra Padding TLV 252 0 1 2 3 253 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 254 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 255 | Extra Padding Type | Length | 256 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 257 | | 258 ~ Extra Padding ~ 259 | | 260 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 262 Figure 3: Extra Padding TLV 264 where fields are defined as the following: 266 o Extra Padding Type - TBA1 allocated by IANA Section 5.1 268 o Length - two octets long field equals length on the Extra Padding 269 field in octets. 271 o Extra Padding - a pseudo-random sequence of numbers. The field 272 MAY be filled with all zeroes. 274 The Extra Padding TLV is similar to the Packet Padding field in 275 TWAMP-Test packet [RFC5357]. The in STAMP the Packet Padding field 276 is used to ensure symmetrical size between Session-Sender and 277 Session-Reflector test packets. Extra Padding TLV MUST be used to 278 create STAMP test packets of larger size. 280 4.2. Location TLV 282 STAMP session-sender MAY include the Location TLV to request 283 information from the session-reflector. The session-sender SHOULD 284 NOT fill any information fields except for Type and Length. The 285 session-reflector MUST validate the Length value against the address 286 family of the transport encapsulating the STAMP test packet. If the 287 value of the Length field is invalid, the session-reflector MUST zero 288 all fields and MUST NOT return any information to the session-sender. 289 The session-reflector MUST ignore all other fields of the received 290 Location TLV. 292 0 1 2 3 293 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 294 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 295 | Location Type | Length | 296 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 297 | Source MAC | 298 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 299 | | Reserved A | 300 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 301 ~ Destination IP Address ~ 302 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 303 ~ Source IP Address ~ 304 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 305 | Dest.port | Src.Port | Reserved B | 306 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 308 Figure 4: Session-Reflector Location TLV 310 where fields are defined as the following: 312 o Location Type - TBA2 allocated by IANA Section 5.1 314 o Length - two octets long field equals length on the Value field in 315 octets. Length field value MUST be 20 octets for the IPv4 address 316 family. For the IPv6 address family value of the Length field 317 MUST be 44 octets. All other values are invalid. 319 o Source MAC - 6 octets 48 bits long field. The session-reflector 320 MUST copy Source MAC of received STAMP packet into this field. 322 o Reserved A - two octets long field. MUST be zeroed on 323 transmission and ignored on reception. 325 o Destination IP Address - IPv4 or IPv6 destination address of the 326 received by the session-reflector STAMP packet. 328 o Source IP Address - IPv4 or IPv6 source address of the received by 329 the session-reflector STAMP packet. 331 o Dest.port - one octet long UDP destination port number of the 332 received STAMP packet. 334 o Src.port - one octet long UDP source port number of the received 335 STAMP packet. 337 o Reserved B - two octets long field. MUST be zeroed on 338 transmission and ignored on reception. 340 The Location TLV MAY be used to determine the last-hop addressing for 341 STAMP packets including source and destination IP addresses as well 342 as the MAC address of the last-hop router. Last-hop MAC address MAY 343 be monitored by the Session-Sender whether there has been a path 344 switch on the last hop, closest to the Session-Reflector. The IP 345 addresses and UDP port will indicate if there is a NAT router on the 346 path, and allows the Session-Sender to identify the IP address of the 347 Session-Reflector behind the NAT, detect changes in the NAT mapping 348 that could cause sending the STAMP packets to the wrong Session- 349 Reflector. 351 4.3. Timestamp Information TLV 353 STAMP session-sender MAY include the Timestamp Information TLV to 354 request information from the session-reflector. The session-sender 355 SHOULD NOT fill any information fields except for Type and Length. 356 The session-reflector MUST validate the Length value of the STAMP 357 test packet. If the value of the Length field is invalid, the 358 session-reflector MUST zero all fields and MUST NOT return any 359 information to the session-sender. 361 0 1 2 3 362 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 363 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 364 | Timestamp Information Type | Length | 365 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 366 | Sync. Src In | Timestamp In | Sync. Src Out | Timestamp Out | 367 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 369 Figure 5: Timestamp Information TLV 371 where fields are defined as the following: 373 o Timestamp Information Type - TBA3 allocated by IANA Section 5.1 375 o Length - two octets long field, equals four octets. 377 o Sync Src In - one octet long field that characterizes the source 378 of clock synchronization at the ingress of Session-Reflector. 379 There are several of methods to synchronize the clock, e.g., 380 Network Time Protocol (NTP) [RFC5905], Precision Time Protocol 381 (PTP) [IEEE.1588.2008], Synchronization Supply Unit (SSU) or 382 Building Integrated Timing Supply (BITS), or Global Positioning 383 System (GPS), Global Orbiting Navigation Satellite System 384 (GLONASS) and Long Range Navigation System Version C (LORAN-C). 385 The value is one of Section 5.2. 387 o Timestamp In - one octet long field that characterizes the method 388 by which the ingress of Session-Reflector obtained the timestamp 389 T2. A timestamp may be obtained with hardware assist, via 390 software API from a local wall clock, or from a remote clock (the 391 latter referred to as "control plane"). The value is one of 392 Section 5.3. 394 o Sync Src Out - one octet long field that characterizes the source 395 of clock synchronization at the egress of Session-Reflector. The 396 value is one of Section 5.2. 398 o Timestamp Out - one octet long field that characterizes the method 399 by which the egress of Session-Reflector obtained the timestamp 400 T3. The value is one of Section 5.3. 402 4.4. Class of Service TLV 404 The STAMP session-sender MAY include Class of Service (CoS) TLV in 405 the STAMP test packet. If the CoS TLV is present in the STAMP test 406 packet and the value of the DSCP1 field is zero, then the STAMP 407 session-reflector MUST copy the values of Differentiated Services 408 Code Point (DSCP) ECN fields from the received STAMP test packet into 409 DSCP2 and ECN fields respectively of the CoS TLV of the reflected 410 STAMP test packet. If the value of the DSCP1 field is non-zero, then 411 the STAMP session-reflector MUST use DSCP1 value from the CoS TLV in 412 the received STAMP test packet as DSCP value of STAMP reflected test 413 packet and MUST copy DSCP and ECN values of the received STAMP test 414 packet into DSCP2 and ECN fields of Class of Service TLV in the STAMP 415 reflected a packet. The Session-Sender, upon receiving the reflected 416 packet, will save the DSCP and ECN values for analysis of the CoS in 417 the reverse direction. 419 0 1 2 3 420 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 421 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 422 | Class of Service Type | Length | 423 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 424 | DSCP1 | DSCP2 |ECN| Reserved | 425 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 427 Figure 6: Class of Service TLV 429 where fields are defined as the following: 431 o Class of Service Type - TBA4 allocated by IANA Section 5.1 433 o Length - two octets long field, equals four octets. 435 o DSCP1 - The Differentiated Services Code Point (DSCP) intended by 436 the Session-Sender. To be used as the return DSCP from the 437 Session-Reflector. 439 o DSCP2 - The received value in the DSCP field at the Session- 440 Reflector in the forward direction. 442 o ECN - The received value in the ECN field at the Session-Reflector 443 in the forward direction. 445 o Reserved - 18 bits long field, must be zeroed in transmission and 446 ignored on receipt. 448 A STAMP Session-Sender that includes the CoS TLV sets the value of 449 the DSCP1 field and zeroes the value of the DSCP2 field. A STAMP 450 Session-Reflector that received the test packet with the CoS TLV MUST 451 include the CoS TLV in the reflected test packet. Also, the Session- 452 Reflector MUST copy the value of the DSCP field of the IP header of 453 the received STAMP test packet into the DSCP2 field in the reflected 454 test packet. And, at last, the Session-Reflector MUST set the value 455 of the DSCP field in the IP header of the reflected test packet equal 456 to the value of the DSCP1 field of the test packet it has received. 458 Re-mapping of CoS in some use cases, for example, in mobile backhaul 459 networks is used to provide multiple services, i.e., 2G, 3G, LTE, 460 over the same network. But if it is misconfigured, then it is often 461 difficult to diagnose the root cause of the problem that is viewed as 462 an excessive packet drop of higher level service while packet drop 463 for lower service packets is at a normal level. Using CoS TLV in 464 STAMP test helps to troubleshoot the existing problem and also verify 465 whether DiffServ policies are processing CoS as required by the 466 configuration. 468 4.5. Direct Measurement TLV 470 The Direct Measurement TLV enables collection of "in profile" IP 471 packets that had been transmitted and received by the Session-Sender 472 and Session-Reflector respectfully. The definition of "in-profile 473 packet" is outside the scope of this document. 475 0 1 2 3 476 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 477 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 478 | Direct Measurement Type | Length | 479 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 480 | Session-Sender Tx counter (S_TxC) | 481 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 482 | Session-Reflector Rx counter (R_RxC) | 483 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 484 | Session-Reflector Tx counter (R_TxC) | 485 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 487 Figure 7: Direct Measurement TLV 489 where fields are defined as the following: 491 o Direct Measurement Type - TBA5 allocated by IANA Section 5.1 493 o Length - two octets long field equals length on the Value field in 494 octets. Length field value MUST be 12 octets. 496 o Session-Sender Tx counter (S_TxC) is four octets long field. 498 o Session-Reflector Rx counter (R_RxC) is four octets long field. 499 MUST be zeroed by the Session-Sender and filled by the Session- 500 Reflector. 502 o Session-Reflector Tx counter (R_TxC) is four octets long field. 503 MUST be zeroed by the Session-Sender and filled by the Session- 504 Reflector. 506 4.6. Access Report TLV 508 A STAMP Session-Sender MAY include Access Report TLV (Figure 8) to 509 indicate changes to the access network status to the Session- 510 Reflector. The definition of an access network is outside the scope 511 of this document. 513 0 1 2 3 514 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 515 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 516 | Access Report Type | Length | 517 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 518 | Access ID | Return Code | Reserved | 519 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 521 Figure 8: Access Report TLV 523 where fields are defined as follows: 525 o Access Report Type - TBA6 allocated by IANA Section 5.1. 527 o Length - two octets long field, equals four octets. 529 o Access ID - one octet long field that identifies the access 530 network, e.g., 3GPP (Radio Access Technologies specified by 3GPP) 531 or Non-3GPP (accesses that are not specified by 3GPP) [TS23501]. 532 The value is one of Section 5.4. 534 o Return Code - one octet long field that identifies the report 535 signal, e.g., available, unavailable. The value is one of 536 Section 5.5. 538 o Reserved - two octets long field, must be zeroed on transmission 539 and ignored on receipt. 541 The STAMP Session-Sender that includes the Access Report TLV sets the 542 value of the Access ID field according to the type of access network 543 it reports on. Also, the Session-Sender sets the value of the Return 544 Code field to reflect the operational state of the access network. 545 The mechanism to determine the state of the access network is outside 546 the scope of this specification. A STAMP Session-Reflector that 547 received the test packet with the Access Report TLV MUST include the 548 Access Report TLV in the reflected test packet. The Session- 549 Reflector MUST set the value of the Access ID and Return Code fields 550 equal to the values of the corresponding fields from the test packet 551 it has received. 553 The Access Report TLV is used by the Performance Measurement Function 554 (PMF) components of the Access Steering, Switching and Splitting 555 feature for 5G networks [TS23501]. The PMF component in the User 556 Equipment acts as the STAMP Session-Sender, and the PMF component in 557 the User Plane Function acts as the STAMP Session-Reflector. 559 5. IANA Considerations 561 5.1. STAMP TLV Registry 563 IANA is requested to create the STAMP TLV Type registry. All code 564 points in the range 1 through 32759 in this registry shall be 565 allocated according to the "IETF Review" procedure as specified in 566 [RFC8126]. Code points in the range 32760 through 65279 in this 567 registry shall be allocated according to the "First Come First 568 Served" procedure as specified in [RFC8126]. Remaining code points 569 are allocated according to Table 1: 571 +---------------+-------------------------+-------------------------+ 572 | Value | Description | Reference | 573 +---------------+-------------------------+-------------------------+ 574 | 0 | Reserved | This document | 575 | 1- 32767 | Mandatory TLV, | IETF Review | 576 | | unassigned | | 577 | 32768 - 65279 | Optional TLV, | First Come First Served | 578 | | unassigned | | 579 | 65280 - 65519 | Experimental | This document | 580 | 65520 - 65534 | Private Use | This document | 581 | 65535 | Reserved | This document | 582 +---------------+-------------------------+-------------------------+ 584 Table 1: STAMP TLV Type Registry 586 This document defines the following new values in the STAMP TLV Type 587 registry: 589 +-------+-----------------------+---------------+ 590 | Value | Description | Reference | 591 +-------+-----------------------+---------------+ 592 | TBA1 | Extra Padding | This document | 593 | TBA2 | Location | This document | 594 | TBA3 | Timestamp Information | This document | 595 | TBA4 | Class of Service | This document | 596 | TBA6 | Access Report | This document | 597 +-------+-----------------------+---------------+ 599 Table 2: STAMP Types 601 5.2. Synchronization Source Sub-registry 603 IANA is requested to create Synchronization Source sub-registry as 604 part of STAMP TLV Type registry. All code points in the range 1 605 through 127 in this registry shall be allocated according to the 606 "IETF Review" procedure as specified in [RFC8126]. Code points in 607 the range 128 through 239 in this registry shall be allocated 608 according to the "First Come First Served" procedure as specified in 609 [RFC8126]. Remaining code points are allocated according to Table 1: 611 +-----------+--------------+-------------------------+ 612 | Value | Description | Reference | 613 +-----------+--------------+-------------------------+ 614 | 0 | Reserved | This document | 615 | 1- 127 | Unassigned | IETF Review | 616 | 128 - 239 | Unassigned | First Come First Served | 617 | 240 - 249 | Experimental | This document | 618 | 250 - 254 | Private Use | This document | 619 | 255 | Reserved | This document | 620 +-----------+--------------+-------------------------+ 622 Table 3: Synchronization Source Sub-registry 624 This document defines the following new values in the Synchronization 625 Source sub-registry: 627 +-------+---------------------+---------------+ 628 | Value | Description | Reference | 629 +-------+---------------------+---------------+ 630 | 1 | NTP | This document | 631 | 2 | PTP | This document | 632 | 3 | SSU/BITS | This document | 633 | 4 | GPS/GLONASS/LORAN-C | This document | 634 | 5 | Local free-running | This document | 635 +-------+---------------------+---------------+ 637 Table 4: Synchronization Sources 639 5.3. Timestamping Method Sub-registry 641 IANA is requested to create Timestamping Method sub-registry as part 642 of STAMP TLV Type registry. All code points in the range 1 through 643 127 in this registry shall be allocated according to the "IETF 644 Review" procedure as specified in [RFC8126]. Code points in the 645 range 128 through 239 in this registry shall be allocated according 646 to the "First Come First Served" procedure as specified in [RFC8126]. 647 Remaining code points are allocated according to Table 1: 649 +-----------+--------------+-------------------------+ 650 | Value | Description | Reference | 651 +-----------+--------------+-------------------------+ 652 | 0 | Reserved | This document | 653 | 1- 127 | Unassigned | IETF Review | 654 | 128 - 239 | Unassigned | First Come First Served | 655 | 240 - 249 | Experimental | This document | 656 | 250 - 254 | Private Use | This document | 657 | 255 | Reserved | This document | 658 +-----------+--------------+-------------------------+ 660 Table 5: Timestamping Method Sub-registry 662 This document defines the following new values in the Timestamping 663 Methods sub-registry: 665 +-------+---------------+---------------+ 666 | Value | Description | Reference | 667 +-------+---------------+---------------+ 668 | 1 | HW Assist | This document | 669 | 2 | SW local | This document | 670 | 3 | Control plane | This document | 671 +-------+---------------+---------------+ 673 Table 6: Timestamping Methods 675 5.4. Access ID Sub-registry 677 IANA is requested to create Access ID sub-registry as part of STAMP 678 TLV Type registry. All code points in the range 1 through 127 in 679 this registry shall be allocated according to the "IETF Review" 680 procedure as specified in [RFC8126]. Code points in the range 128 681 through 239 in this registry shall be allocated according to the 682 "First Come First Served" procedure as specified in [RFC8126]. 683 Remaining code points are allocated according to Table 7: 685 +-----------+--------------+-------------------------+ 686 | Value | Description | Reference | 687 +-----------+--------------+-------------------------+ 688 | 0 | Reserved | This document | 689 | 1- 127 | Unassigned | IETF Review | 690 | 128 - 239 | Unassigned | First Come First Served | 691 | 240 - 249 | Experimental | This document | 692 | 250 - 254 | Private Use | This document | 693 | 255 | Reserved | This document | 694 +-----------+--------------+-------------------------+ 696 Table 7: Access ID Sub-registry 698 This document defines the following new values in the Access ID sub- 699 registry: 701 +-------+-------------+---------------+ 702 | Value | Description | Reference | 703 +-------+-------------+---------------+ 704 | 1 | 3GPP | This document | 705 | 2 | Non-3GPP | This document | 706 +-------+-------------+---------------+ 708 Table 8: Access IDs 710 5.5. Return Code Sub-registry 712 IANA is requested to create Return Code sub-registry as part of STAMP 713 TLV Type registry. All code points in the range 1 through 127 in 714 this registry shall be allocated according to the "IETF Review" 715 procedure as specified in [RFC8126]. Code points in the range 128 716 through 239 in this registry shall be allocated according to the 717 "First Come First Served" procedure as specified in [RFC8126]. 718 Remaining code points are allocated according to Table 7: 720 +-----------+--------------+-------------------------+ 721 | Value | Description | Reference | 722 +-----------+--------------+-------------------------+ 723 | 0 | Reserved | This document | 724 | 1- 127 | Unassigned | IETF Review | 725 | 128 - 239 | Unassigned | First Come First Served | 726 | 240 - 249 | Experimental | This document | 727 | 250 - 254 | Private Use | This document | 728 | 255 | Reserved | This document | 729 +-----------+--------------+-------------------------+ 731 Table 9: Return Code Sub-registry 733 This document defines the following new values in the Return Code 734 sub-registry: 736 +-------+---------------------+---------------+ 737 | Value | Description | Reference | 738 +-------+---------------------+---------------+ 739 | 1 | Network available | This document | 740 | 2 | Network unavailable | This document | 741 +-------+---------------------+---------------+ 743 Table 10: Return Codes 745 6. Security Considerations 747 Use of HMAC in authenticated mode may be used to simultaneously 748 verify both the data integrity and the authentication of the STAMP 749 test packets. 751 7. Acknowledgments 753 Authors much appreciate the thorough review and thoughful comments 754 received from Tianran Zhou. 756 8. References 758 8.1. Normative References 760 [I-D.ietf-ippm-stamp] 761 Mirsky, G., Jun, G., Nydell, H., and R. Foote, "Simple 762 Two-way Active Measurement Protocol", draft-ietf-ippm- 763 stamp-07 (work in progress), August 2019. 765 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 766 Requirement Levels", BCP 14, RFC 2119, 767 DOI 10.17487/RFC2119, March 1997, 768 . 770 [RFC5357] Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J. 771 Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)", 772 RFC 5357, DOI 10.17487/RFC5357, October 2008, 773 . 775 [RFC6038] Morton, A. and L. Ciavattone, "Two-Way Active Measurement 776 Protocol (TWAMP) Reflect Octets and Symmetrical Size 777 Features", RFC 6038, DOI 10.17487/RFC6038, October 2010, 778 . 780 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for 781 Writing an IANA Considerations Section in RFCs", BCP 26, 782 RFC 8126, DOI 10.17487/RFC8126, June 2017, 783 . 785 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 786 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 787 May 2017, . 789 8.2. Informative References 791 [IEEE.1588.2008] 792 "Standard for a Precision Clock Synchronization Protocol 793 for Networked Measurement and Control Systems", 794 IEEE Standard 1588, March 2008. 796 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch, 797 "Network Time Protocol Version 4: Protocol and Algorithms 798 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010, 799 . 801 [TS23501] 3GPP (3rd Generation Partnership Project), "Technical 802 Specification Group Services and System Aspects; System 803 Architecture for the 5G System; Stage 2 (Release 16)", 804 3GPP TS23501, 2019. 806 Authors' Addresses 808 Greg Mirsky 809 ZTE Corp. 811 Email: gregimirsky@gmail.com 813 Xiao Min 814 ZTE Corp. 816 Email: xiao.min2@zte.com.cn 818 Guo Jun 819 ZTE Corporation 820 68# Zijinghua Road 821 Nanjing, Jiangsu 210012 822 P.R.China 824 Phone: +86 18105183663 825 Email: guo.jun2@zte.com.cn 827 Henrik Nydell 828 Accedian Networks 830 Email: hnydell@accedian.com 831 Richard Foote 832 Nokia 834 Email: footer.foote@nokia.com 836 Adi Masputra 837 Apple Inc. 838 One Apple Park Way 839 Cupertino, CA 95014 840 USA 842 Email: adi@apple.com