idnits 2.17.1 draft-ietf-ippm-stamp-option-tlv-03.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (February 21, 2020) is 1498 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) No issues found here. Summary: 0 errors (**), 0 flaws (~~), 1 warning (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group G. Mirsky 3 Internet-Draft X. Min 4 Intended status: Standards Track ZTE Corp. 5 Expires: August 24, 2020 H. Nydell 6 Accedian Networks 7 R. Foote 8 Nokia 9 A. Masputra 10 Apple Inc. 11 E. Ruffini 12 OutSys 13 February 21, 2020 15 Simple Two-way Active Measurement Protocol Optional Extensions 16 draft-ietf-ippm-stamp-option-tlv-03 18 Abstract 20 This document describes optional extensions to Simple Two-way Active 21 Measurement Protocol (STAMP) which enable measurement performance 22 metrics in addition to ones supported by the STAMP base 23 specification. 25 Status of This Memo 27 This Internet-Draft is submitted in full conformance with the 28 provisions of BCP 78 and BCP 79. 30 Internet-Drafts are working documents of the Internet Engineering 31 Task Force (IETF). Note that other groups may also distribute 32 working documents as Internet-Drafts. The list of current Internet- 33 Drafts is at https://datatracker.ietf.org/drafts/current/. 35 Internet-Drafts are draft documents valid for a maximum of six months 36 and may be updated, replaced, or obsoleted by other documents at any 37 time. It is inappropriate to use Internet-Drafts as reference 38 material or to cite them other than as "work in progress." 40 This Internet-Draft will expire on August 24, 2020. 42 Copyright Notice 44 Copyright (c) 2020 IETF Trust and the persons identified as the 45 document authors. All rights reserved. 47 This document is subject to BCP 78 and the IETF Trust's Legal 48 Provisions Relating to IETF Documents 49 (https://trustee.ietf.org/license-info) in effect on the date of 50 publication of this document. Please review these documents 51 carefully, as they describe your rights and restrictions with respect 52 to this document. Code Components extracted from this document must 53 include Simplified BSD License text as described in Section 4.e of 54 the Trust Legal Provisions and are provided without warranty as 55 described in the Simplified BSD License. 57 Table of Contents 59 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 60 2. Conventions used in this document . . . . . . . . . . . . . . 3 61 2.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 3 62 2.2. Requirements Language . . . . . . . . . . . . . . . . . . 3 63 3. STAMP Test Session Identifier . . . . . . . . . . . . . . . . 4 64 4. TLV Extensions to STAMP . . . . . . . . . . . . . . . . . . . 8 65 4.1. Extra Padding TLV . . . . . . . . . . . . . . . . . . . . 9 66 4.2. Location TLV . . . . . . . . . . . . . . . . . . . . . . 10 67 4.3. Timestamp Information TLV . . . . . . . . . . . . . . . . 11 68 4.4. Class of Service TLV . . . . . . . . . . . . . . . . . . 12 69 4.5. Direct Measurement TLV . . . . . . . . . . . . . . . . . 14 70 4.6. Access Report TLV . . . . . . . . . . . . . . . . . . . . 14 71 4.7. Follow-up Telemetry TLV . . . . . . . . . . . . . . . . . 16 72 4.8. HMAC TLV . . . . . . . . . . . . . . . . . . . . . . . . 17 73 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 19 74 5.1. STAMP TLV Registry . . . . . . . . . . . . . . . . . . . 19 75 5.2. Synchronization Source Sub-registry . . . . . . . . . . . 20 76 5.3. Timestamping Method Sub-registry . . . . . . . . . . . . 20 77 5.4. Access ID Sub-registry . . . . . . . . . . . . . . . . . 21 78 5.5. Return Code Sub-registry . . . . . . . . . . . . . . . . 22 79 6. Security Considerations . . . . . . . . . . . . . . . . . . . 23 80 7. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 23 81 8. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 23 82 9. References . . . . . . . . . . . . . . . . . . . . . . . . . 23 83 9.1. Normative References . . . . . . . . . . . . . . . . . . 23 84 9.2. Informative References . . . . . . . . . . . . . . . . . 24 85 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 24 87 1. Introduction 89 Simple Two-way Active Measurement Protocol (STAMP) 90 [I-D.ietf-ippm-stamp] supports the use of optional extensions that 91 use Type-Length-Value (TLV) encoding. Such extensions are to enhance 92 the STAMP base functions, such as measurement of one-way and round- 93 trip delay, latency, packet loss, as well as ability to detect packet 94 duplication and out-of-order delivery of the test packets. This 95 specification provides definitions of optional STAMP extensions, 96 their formats, and theory of operation. 98 2. Conventions used in this document 100 2.1. Terminology 102 STAMP - Simple Two-way Active Measurement Protocol 104 DSCP - Differentiated Services Code Point 106 ECN - Explicit Congestion Notification 108 NTP - Network Time Protocol 110 PTP - Precision Time Protocol 112 HMAC Hashed Message Authentication Code 114 TLV Type-Length-Value 116 BITS Building Integrated Timing Supply 118 SSU Synchronization Supply Unit 120 GPS Global Positioning System 122 GLONASS Global Orbiting Navigation Satellite System 124 LORAN-C Long Range Navigation System Version C 126 MBZ Must Be Zeroed 128 CoS Class of Service 130 PMF Performance Measurement Function 132 SSID STAMP Session Identifier 134 2.2. Requirements Language 136 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 137 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and 138 "OPTIONAL" in this document are to be interpreted as described in BCP 139 14 [RFC2119] [RFC8174] when, and only when, they appear in all 140 capitals, as shown here. 142 3. STAMP Test Session Identifier 144 STAMP Session-Sender transmits test packets to STAMP Session- 145 Reflector. STAMP Session-Reflector receives Session-Sender's packet 146 and acts according to the configuration and optional control 147 information communicated in the Session-Sender's test packet. STAMP 148 defines two different test packet formats, one for packets 149 transmitted by the STAMP-Session-Sender and one for packets 150 transmitted by the STAMP-Session-Reflector. STAMP supports two 151 modes: unauthenticated and authenticated. Unauthenticated STAMP test 152 packets are compatible on the wire with unauthenticated TWAMP-Test 153 [RFC5357] packet formats. 155 By default, STAMP uses symmetrical packets, i.e., the size of the 156 packet transmitted by Session-Reflector equals the size of the packet 157 received by the Session-Reflector. 159 A STAMP Session is identified using 4-tuple (source and destination 160 IP addresses, source and destination UDP port numbers). A STAMP 161 Session-Sender MAY generate locally unique STAMP Session Identifier 162 (SSID). SSID is two octets long non-zero unsigned integer. A 163 Session-Sender MAY use SSID to identify a STAMP test session. If 164 SSID is used, it MUST be present in each test packet of the given 165 test session. In the unauthenticated mode, SSID is located, as 166 displayed in Figure 1. 168 0 1 2 3 169 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 170 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 171 | Sequence Number | 172 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 173 | Timestamp | 174 | | 175 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 176 | Error Estimate | SSID | 177 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 178 | | 179 | | 180 | MBZ (28 octets) | 181 | | 182 | | 183 | | 184 | | 185 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 186 | Type | Length | 187 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 188 ~ Value ~ 189 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 191 Figure 1: STAMP Session-Sender test packet format with TLV in 192 unauthenticated mode 194 An implementation of STAMP Session-Reflector that supports this 195 specification SHOULD identify a STAMP Session using the SSID in 196 combination with elements of the usual 4-tuple. A conforming 197 implementation of STAMP Session-Reflector MUST copy the SSID value 198 from the received test packet and put it into the reflected packet as 199 displayed in Figure 2. 201 0 1 2 3 202 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 203 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 204 | Sequence Number | 205 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 206 | Timestamp | 207 | | 208 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 209 | Error Estimate | SSID | 210 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 211 | Receive Timestamp | 212 | | 213 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 214 | Session-Sender Sequence Number | 215 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 216 | Session-Sender Timestamp | 217 | | 218 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 219 | Session-Sender Error Estimate | MBZ | 220 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 221 |Ses-Sender TTL | Reserved | 222 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 223 | Type | Length | 224 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 225 ~ Value ~ 226 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 228 Figure 2: STAMP Session-Reflector test packet format with TLV in 229 unauthenticated mode 231 A STAMP Session-Reflector that does not support this specification, 232 will return the zeroed SSID field in the reflected STAMP test packet. 233 The Session-Sender MUST NOT stop the session if it receives a zeroed 234 SSID field. 236 In the authenticated mode, location of SSID field is shown in 237 Figure 3 and Figure 4. 239 0 1 2 3 240 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 241 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 242 | Sequence Number | 243 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 244 | | 245 | MBZ (12 octets) | 246 | | 247 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 248 | Timestamp | 249 | | 250 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 251 | Error Estimate | SSID | 252 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 253 ~ ~ 254 | MBZ (68 octets) | 255 ~ ~ 256 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 257 | | 258 | HMAC (16 octets) | 259 | | 260 | | 261 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 263 Figure 3: STAMP Session-Sender test packet format in authenticated 264 mode 266 0 1 2 3 267 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 268 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 269 | Sequence Number | 270 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 271 | MBZ (12 octets) | 272 | | 273 | | 274 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 275 | Timestamp | 276 | | 277 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 278 | Error Estimate | SSID | 279 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 280 | MBZ (4 octets) | 281 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 282 | Receive Timestamp | 283 | | 284 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 285 | MBZ (8 octets) | 286 | | 287 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 288 | Session-Sender Sequence Number | 289 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 290 | MBZ (12 octets) | 291 | | 292 | | 293 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 294 | Session-Sender Timestamp | 295 | | 296 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 297 | Session-Sender Error Estimate | | 298 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + 299 | MBZ (6 octets) | 300 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 301 |Ses-Sender TTL | | 302 +-+-+-+-+-+-+-+-+ + 303 | | 304 | MBZ (15 octets) | 305 | | 306 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 307 | HMAC (16 octets) | 308 | | 309 | | 310 | | 311 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 313 Figure 4: STAMP Session-Reflector test packet format in authenticated 314 mode 316 4. TLV Extensions to STAMP 318 Type-Length-Value (TLV) encoding scheme provides flexible extension 319 mechanism for optional informational elements. TLV is an optional 320 field in the STAMP test packet. TLVs have the two octets long Type 321 field, two octets long Length field that is the length of the Value 322 field in octets. Type values, see Section 5.1, less than 32768 323 identify mandatory TLVs that MUST be supported by an implementation. 324 Type values greater than or equal to 32768 identify optional TLVs 325 that SHOULD be ignored if the implementation does not understand or 326 support them. If a Type value for TLV or sub-TLV is in the range for 327 Vendor Private Use, the Length MUST be at least 4, and the first four 328 octets MUST be that vendor's the Structure of Management Information 329 (SMI) Private Enterprise Number, in network octet order. The rest of 330 the Value field is private to the vendor. Following sections 331 describe the use of TLVs for STAMP that extend STAMP capability 332 beyond its base specification. 334 A STAMP node, whether Session-Sender or Session-Reflector, receiving 335 a test packet MUST determine whether the packet is a base STAMP 336 packet or includes one or more TLVs. The node MUST compare the value 337 in the Length field of the UDP header and the length of the base 338 STAMP test packet in the mode, unauthenticated or authenticated based 339 on the configuration of the particular STAMP test session. If the 340 difference between the two values is larger than the length of UDP 341 header, then the test packet includes one or more STAMP TLVs that 342 immediately follow the base STAMP test packet. 344 A system that has received a STAMP test packet with extension TLVs 345 MUST validate each fixed-size TLV by verifying that the value in the 346 Length field equals the value defined for the particular type. If 347 the values are not equal, the processing of extension TLVs MUST be 348 stopped and the event logged (logging SHOULD be throttled). Also, if 349 the system is the Session-Reflector in that test, it MUST send 350 (transmission of ICMP Error messages SHOULD be throttled) the ICMP 351 Parameter Problem message with Code set to 0 and the Pointer 352 referring to the Length field of the TLV. 354 4.1. Extra Padding TLV 356 0 1 2 3 357 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 358 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 359 | Extra Padding Type | Length | 360 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 361 | | 362 ~ Extra Padding ~ 363 | | 364 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 366 Figure 5: Extra Padding TLV 368 where fields are defined as the following: 370 o Extra Padding Type - TBA1 allocated by IANA Section 5.1 372 o Length - two octets long field equals length on the Extra Padding 373 field in octets. 375 o Extra Padding - a pseudo-random sequence of numbers. The field 376 MAY be filled with all zeroes. 378 The Extra Padding TLV is similar to the Packet Padding field in 379 TWAMP-Test packet [RFC5357]. The Extra Padding TLV MUST be used to 380 create STAMP test packets of larger size. The Extra Padding TLV MUST 381 be the last TLV in a STAMP test packet. 383 4.2. Location TLV 385 STAMP session-sender MAY include the Location TLV to request 386 information from the session-reflector. The session-sender SHOULD 387 NOT fill any information fields except for Type and Length. The 388 session-reflector MUST validate the Length value against the address 389 family of the transport encapsulating the STAMP test packet. If the 390 value of the Length field is invalid, the session-reflector MUST zero 391 all fields and MUST NOT return any information to the session-sender. 392 The session-reflector MUST ignore all other fields of the received 393 Location TLV. 395 0 1 2 3 396 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 397 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 398 | Location Type | Length | 399 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 400 | Source MAC | 401 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 402 | | Reserved | 403 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 404 ~ Destination IP Address ~ 405 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 406 ~ Source IP Address ~ 407 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 408 | Destination Port | Source Port | 409 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 411 Figure 6: Session-Reflector Location TLV 413 where fields are defined as the following: 415 o Location Type - TBA2 allocated by IANA Section 5.1 417 o Length - two octets long field equals length on the Value field in 418 octets. Length field value MUST be 20 octets for the IPv4 address 419 family. For the IPv6 address family value of the Length field 420 MUST be 44 octets. All other values are invalid. 422 o Source MAC - 6 octets 48 bits long field. The session-reflector 423 MUST copy Source MAC of received STAMP packet into this field. 425 o Reserved - two octets long field. MUST be zeroed on transmission 426 and ignored on reception. 428 o Destination IP Address - IPv4 or IPv6 destination address of the 429 received by the session-reflector STAMP packet. 431 o Source IP Address - IPv4 or IPv6 source address of the received by 432 the session-reflector STAMP packet. 434 o Destination Port - two octets long UDP destination port number of 435 the received STAMP packet. 437 o Source Port - two octets long UDP source port number of the 438 received STAMP packet. 440 The Location TLV MAY be used to determine the last-hop addressing for 441 STAMP packets including source and destination IP addresses as well 442 as the MAC address of the last-hop router. Last-hop MAC address MAY 443 be monitored by the Session-Sender whether there has been a path 444 switch on the last hop, closest to the Session-Reflector. The IP 445 addresses and UDP port will indicate if there is a NAT router on the 446 path, and allows the Session-Sender to identify the IP address of the 447 Session-Reflector behind the NAT, detect changes in the NAT mapping 448 that could cause sending the STAMP packets to the wrong Session- 449 Reflector. 451 4.3. Timestamp Information TLV 453 STAMP session-sender MAY include the Timestamp Information TLV to 454 request information from the session-reflector. The session-sender 455 SHOULD NOT fill any information fields except for Type and Length. 456 The session-reflector MUST validate the Length value of the STAMP 457 test packet. If the value of the Length field is invalid, the 458 session-reflector MUST zero all fields and MUST NOT return any 459 information to the session-sender. 461 0 1 2 3 462 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 463 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 464 | Timestamp Information Type | Length | 465 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 466 | Sync. Src In | Timestamp In | Sync. Src Out | Timestamp Out | 467 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 469 Figure 7: Timestamp Information TLV 471 where fields are defined as the following: 473 o Timestamp Information Type - TBA3 allocated by IANA Section 5.1 475 o Length - two octets long field, equals four octets. 477 o Sync Src In - one octet long field that characterizes the source 478 of clock synchronization at the ingress of Session-Reflector. 480 There are several of methods to synchronize the clock, e.g., 481 Network Time Protocol (NTP) [RFC5905], Precision Time Protocol 482 (PTP) [IEEE.1588.2008], Synchronization Supply Unit (SSU) or 483 Building Integrated Timing Supply (BITS), or Global Positioning 484 System (GPS), Global Orbiting Navigation Satellite System 485 (GLONASS) and Long Range Navigation System Version C (LORAN-C). 486 The value is one of the listed in Table 4. 488 o Timestamp In - one octet long field that characterizes the method 489 by which the ingress of Session-Reflector obtained the timestamp 490 T2. A timestamp may be obtained with hardware assist, via 491 software API from a local wall clock, or from a remote clock (the 492 latter referred to as "control plane"). The value is one of the 493 listed in Table 6. 495 o Sync Src Out - one octet long field that characterizes the source 496 of clock synchronization at the egress of Session-Reflector. The 497 value is one of the listed in Table 4. 499 o Timestamp Out - one octet long field that characterizes the method 500 by which the egress of Session-Reflector obtained the timestamp 501 T3. The value is one of the listed in Table 6. 503 4.4. Class of Service TLV 505 The STAMP session-sender MAY include Class of Service (CoS) TLV in 506 the STAMP test packet. If the CoS TLV is present in the STAMP test 507 packet and the value of the DSCP1 field is zero, then the STAMP 508 session-reflector MUST copy the values of Differentiated Services 509 Code Point (DSCP) ECN fields from the received STAMP test packet into 510 DSCP2 and ECN fields respectively of the CoS TLV of the reflected 511 STAMP test packet. If the value of the DSCP1 field is non-zero, then 512 the STAMP session-reflector MUST use DSCP1 value from the CoS TLV in 513 the received STAMP test packet as DSCP value of STAMP reflected test 514 packet and MUST copy DSCP and ECN values of the received STAMP test 515 packet into DSCP2 and ECN fields of Class of Service TLV in the STAMP 516 reflected a packet. The Session-Sender, upon receiving the reflected 517 packet, will save the DSCP and ECN values for analysis of the CoS in 518 the reverse direction. 520 0 1 2 3 521 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 522 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 523 | Class of Service Type | Length | 524 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 525 | DSCP1 | DSCP2 |ECN| Reserved | 526 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 528 Figure 8: Class of Service TLV 530 where fields are defined as the following: 532 o Class of Service Type - TBA4 allocated by IANA Section 5.1 534 o Length - two octets long field, equals four octets. 536 o DSCP1 - The Differentiated Services Code Point (DSCP) intended by 537 the Session-Sender. To be used as the return DSCP from the 538 Session-Reflector. 540 o DSCP2 - The received value in the DSCP field at the Session- 541 Reflector in the forward direction. 543 o ECN - The received value in the ECN field at the Session-Reflector 544 in the forward direction. 546 o Reserved - 18 bits long field, must be zeroed in transmission and 547 ignored on receipt. 549 A STAMP Session-Sender that includes the CoS TLV sets the value of 550 the DSCP1 field and zeroes the value of the DSCP2 field. A STAMP 551 Session-Reflector that received the test packet with the CoS TLV MUST 552 include the CoS TLV in the reflected test packet. Also, the Session- 553 Reflector MUST copy the value of the DSCP field of the IP header of 554 the received STAMP test packet into the DSCP2 field in the reflected 555 test packet. And, at last, the Session-Reflector MUST set the value 556 of the DSCP field in the IP header of the reflected test packet equal 557 to the value of the DSCP1 field of the test packet it has received. 559 Re-mapping of CoS in some use cases, for example, in mobile backhaul 560 networks is used to provide multiple services, i.e., 2G, 3G, LTE, 561 over the same network. But if it is misconfigured, then it is often 562 difficult to diagnose the root cause of the problem that is viewed as 563 an excessive packet drop of higher level service while packet drop 564 for lower service packets is at a normal level. Using CoS TLV in 565 STAMP test helps to troubleshoot the existing problem and also verify 566 whether DiffServ policies are processing CoS as required by the 567 configuration. 569 4.5. Direct Measurement TLV 571 The Direct Measurement TLV enables collection of "in profile" IP 572 packets that had been transmitted and received by the Session-Sender 573 and Session-Reflector respectfully. The definition of "in-profile 574 packet" is outside the scope of this document. 576 0 1 2 3 577 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 578 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 579 | Direct Measurement Type | Length | 580 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 581 | Session-Sender Tx counter (S_TxC) | 582 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 583 | Session-Reflector Rx counter (R_RxC) | 584 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 585 | Session-Reflector Tx counter (R_TxC) | 586 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 588 Figure 9: Direct Measurement TLV 590 where fields are defined as the following: 592 o Direct Measurement Type - TBA5 allocated by IANA Section 5.1 594 o Length - two octets long field equals length on the Value field in 595 octets. Length field value MUST be 12 octets. 597 o Session-Sender Tx counter (S_TxC) is four octets long field. 599 o Session-Reflector Rx counter (R_RxC) is four octets long field. 600 MUST be zeroed by the Session-Sender and filled by the Session- 601 Reflector. 603 o Session-Reflector Tx counter (R_TxC) is four octets long field. 604 MUST be zeroed by the Session-Sender and filled by the Session- 605 Reflector. 607 4.6. Access Report TLV 609 A STAMP Session-Sender MAY include Access Report TLV (Figure 10) to 610 indicate changes to the access network status to the Session- 611 Reflector. The definition of an access network is outside the scope 612 of this document. 614 0 1 2 3 615 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 616 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 617 | Access Report Type | Length | 618 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 619 | Access ID | Return Code | Reserved | 620 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 622 Figure 10: Access Report TLV 624 where fields are defined as follows: 626 o Access Report Type - TBA6 allocated by IANA Section 5.1. 628 o Length - two octets long field, equals four octets. 630 o Access ID - one octet long field that identifies the access 631 network, e.g., 3GPP (Radio Access Technologies specified by 3GPP) 632 or Non-3GPP (accesses that are not specified by 3GPP) [TS23501]. 633 The value is one of Section 5.4. 635 o Return Code - one octet long field that identifies the report 636 signal, e.g., available, unavailable. The value is one of 637 Section 5.5. 639 o Reserved - two octets long field, must be zeroed on transmission 640 and ignored on receipt. 642 The STAMP Session-Sender that includes the Access Report TLV sets the 643 value of the Access ID field according to the type of access network 644 it reports on. Also, the Session-Sender sets the value of the Return 645 Code field to reflect the operational state of the access network. 646 The mechanism to determine the state of the access network is outside 647 the scope of this specification. A STAMP Session-Reflector that 648 received the test packet with the Access Report TLV MUST include the 649 Access Report TLV in the reflected test packet. The Session- 650 Reflector MUST set the value of the Access ID and Return Code fields 651 equal to the values of the corresponding fields from the test packet 652 it has received. 654 The Session-Sender MUST also arm a retransmission timer after sending 655 a test packet that includes the Access Report TLV. This timer MUST 656 be disarmed upon the reception of the reflected STAMP test packet 657 that includes Access Report TLV. In the event the timer expires 658 before such a packet is received, the Session-Sender MUST retransmit 659 the STAMP test packet that contains the Access Report TLV. This 660 retransmission SHOULD be repeated up to four times before the 661 procedure is aborted. Setting the value for the retransmission timer 662 is based on local policies, network environment. The default value 663 of the retransmission timer for Access Report TLV SHOULD be three 664 seconds. An implementation MUST provide control of the 665 retransmission timer value and the number of retransmissions. 667 The Access Report TLV is used by the Performance Measurement Function 668 (PMF) components of the Access Steering, Switching and Splitting 669 feature for 5G networks [TS23501]. The PMF component in the User 670 Equipment acts as the STAMP Session-Sender, and the PMF component in 671 the User Plane Function acts as the STAMP Session-Reflector. 673 4.7. Follow-up Telemetry TLV 675 A Session-Reflector might be able to put in the Timestamp field only 676 a "SW Local" (see Table 6) timestamp. But the hosting system might 677 provide the timestamp closer to the start of actual packet 678 transmission even though when it is not possible to deliver the 679 information to the Session-Sender in the packet itself. This 680 timestamp might nevertheless be important for the Session-Sender, as 681 it helps in to improve the accuracy of measuring network delay by 682 minimizing the impact of egress queuing delays on the measurement. 684 A STAMP Session-Sender MAY include the Follow-up Telemetry TLV to 685 request information from the Session-Reflector. The Session-Sender 686 MUST set the Follow-up Telemetry Type and Length fields to their 687 appropriate values. Sequence Number and Timestamp fields MUST be 688 zeroed on transmission by the Session-Sender and ignored by the 689 Session-Reflector upon receipt of the STAMP test packet that includes 690 the Follow-up Telemetry TLV. The Session-Reflector MUST validate the 691 Length value of the STAMP test packet. If the value of the Length 692 field is invalid, the Session-Reflector MUST zero Sequence Number and 693 Timestamp fields. If the Session-Reflector is in stateless mode 694 (defined in Section 4.2 [I-D.ietf-ippm-stamp]), it MUST zero Sequence 695 Number and Timestamp fields. 697 0 1 2 3 698 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 699 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 700 | Follow-up Telemetry Type | Length | 701 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 702 | Sequence Number | 703 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 704 | Follow-up Timestamp | 705 | | 706 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 707 | Timestamp M | Reserved | 708 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 710 Figure 11: Follow-up Telemetry TLV 712 where fields are defined as follows: 714 o Follow-up Telemetry Type - TBA7 allocated by IANA Section 5.1. 716 o Length - two octets long field, equals 16 octets. 718 o Sequence Number - four octets long field indicating the sequence 719 number of the last packet reflected in the same STAMP-test 720 session. Since the Session-Reflector runs in the stateful mode 721 (defined in Section 4.2 [I-D.ietf-ippm-stamp]), it is the Session- 722 Reflector's Sequence Number of the previous reflected packet. 724 o Follow-up Timestamp - eight octets long field, with the format 725 indicated by the Z flag of the Error Estimate field of the packet 726 transmitted by a Session-Reflector, as described in Section 4.1 727 [I-D.ietf-ippm-stamp]. It carries the timestamp when the 728 reflected packet with the specified sequence number was sent.. 730 o Timestamp M(ode) - one octet long field that characterizes the 731 method by which the entity that transmits a reflected STAMP packet 732 obtained the Follow-up Timestamp. The value is one of the listed 733 in Table 6. 735 o Reserved - the three octest-long field. Its value MUST be zeroed 736 on transmission and ignored on receipt. 738 4.8. HMAC TLV 740 The STAMP authenticated mode protects the integrity of data collected 741 in STAMP base packet. STAMP extensions are designed to provide 742 valuable information about the condition of a network, and protecting 743 the integrity of that data is also essential. The keyed Hashed 744 Message Authentication Code (HMAC) TLV MUST be included in a STAMP 745 test packet in the authenticated mode, excluding when the only TLV 746 present is Extra Padding TLV. The HMAC TLV MUST follow all TLVs 747 included in a STAMP test packet, except for the Extra Padding TLV. 748 The HMAC TLV MAY be used to protect the integrity of STAMP extensions 749 in STAMP unauthenticated mode. 751 0 1 2 3 752 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 753 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 754 | HMAC Type | Length | 755 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 756 | | 757 | HMAC | 758 | | 759 | | 760 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 762 Figure 12: HMAC TLV 764 where fields are defined as follows: 766 o HMAC Type - is two octets long field, value TBA8 allocated by IANA 767 Section 5.1. 769 o Length - two octets long field, equals 16 octets. 771 o HMAC - is 16 octets long field that carries HMAC digest of the 772 text of all preceding TLVs. 774 As defined in [I-D.ietf-ippm-stamp], STAMP uses HMAC-SHA-256 775 truncated to 128 bits ([RFC4868]). All considerations regarding 776 using the key and key distribution and management listed in 777 Section 4.4 of [I-D.ietf-ippm-stamp] are fully applicable to the use 778 of the HMAC TLV. HMAC is calculated as defined in [RFC2104] over 779 text as the concatenation of all preceding TLVs. The digest then 780 MUST be truncated to 128 bits and written into the HMAC field. In 781 the authenticated mode, HMAC MUST be verified before using any data 782 in the included STAMP TLVs. If HMAC verification by the Session- 783 Reflector fails, then an ICMP Parameter Problem message MUST be 784 generated (with consideration of limiting the rate of error 785 messages). The Code value MUST be set to 0 and the Pointer 786 identifying HMAC Type. Also, both Session-Sender and Session- 787 Reflector SHOULD log the notification that HMAC verification of STAMP 788 TLVs failed. The packet that failed HMAC verification MUST be 789 dropped. 791 5. IANA Considerations 793 5.1. STAMP TLV Registry 795 IANA is requested to create the STAMP TLV Type registry. All code 796 points in the range 1 through 32759 in this registry shall be 797 allocated according to the "IETF Review" procedure as specified in 798 [RFC8126]. Code points in the range 32760 through 65279 in this 799 registry shall be allocated according to the "First Come First 800 Served" procedure as specified in [RFC8126]. Remaining code points 801 are allocated according to Table 1: 803 +---------------+-------------------------+-------------------------+ 804 | Value | Description | Reference | 805 +---------------+-------------------------+-------------------------+ 806 | 0 | Reserved | This document | 807 | 1- 32767 | Mandatory TLV, | IETF Review | 808 | | unassigned | | 809 | 32768 - 65279 | Optional TLV, | First Come First Served | 810 | | unassigned | | 811 | 65280 - 65519 | Experimental | This document | 812 | 65520 - 65534 | Private Use | This document | 813 | 65535 | Reserved | This document | 814 +---------------+-------------------------+-------------------------+ 816 Table 1: STAMP TLV Type Registry 818 This document defines the following new values in the STAMP TLV Type 819 registry: 821 +-------+-----------------------+---------------+ 822 | Value | Description | Reference | 823 +-------+-----------------------+---------------+ 824 | TBA1 | Extra Padding | This document | 825 | TBA2 | Location | This document | 826 | TBA3 | Timestamp Information | This document | 827 | TBA4 | Class of Service | This document | 828 | TBA5 | Direct Measurement | This document | 829 | TBA6 | Access Report | This document | 830 | TBA7 | Follow-up Telemetry | This document | 831 | TBA8 | HMAC | This document | 832 +-------+-----------------------+---------------+ 834 Table 2: STAMP Types 836 5.2. Synchronization Source Sub-registry 838 IANA is requested to create Synchronization Source sub-registry as 839 part of STAMP TLV Type registry. All code points in the range 1 840 through 127 in this registry shall be allocated according to the 841 "IETF Review" procedure as specified in [RFC8126]. Code points in 842 the range 128 through 239 in this registry shall be allocated 843 according to the "First Come First Served" procedure as specified in 844 [RFC8126]. Remaining code points are allocated according to Table 1: 846 +-----------+--------------+-------------------------+ 847 | Value | Description | Reference | 848 +-----------+--------------+-------------------------+ 849 | 0 | Reserved | This document | 850 | 1- 127 | Unassigned | IETF Review | 851 | 128 - 239 | Unassigned | First Come First Served | 852 | 240 - 249 | Experimental | This document | 853 | 250 - 254 | Private Use | This document | 854 | 255 | Reserved | This document | 855 +-----------+--------------+-------------------------+ 857 Table 3: Synchronization Source Sub-registry 859 This document defines the following new values in the Synchronization 860 Source sub-registry: 862 +-------+---------------------+---------------+ 863 | Value | Description | Reference | 864 +-------+---------------------+---------------+ 865 | 1 | NTP | This document | 866 | 2 | PTP | This document | 867 | 3 | SSU/BITS | This document | 868 | 4 | GPS/GLONASS/LORAN-C | This document | 869 | 5 | Local free-running | This document | 870 +-------+---------------------+---------------+ 872 Table 4: Synchronization Sources 874 5.3. Timestamping Method Sub-registry 876 IANA is requested to create Timestamping Method sub-registry as part 877 of STAMP TLV Type registry. All code points in the range 1 through 878 127 in this registry shall be allocated according to the "IETF 879 Review" procedure as specified in [RFC8126]. Code points in the 880 range 128 through 239 in this registry shall be allocated according 881 to the "First Come First Served" procedure as specified in [RFC8126]. 882 Remaining code points are allocated according to Table 1: 884 +-----------+--------------+-------------------------+ 885 | Value | Description | Reference | 886 +-----------+--------------+-------------------------+ 887 | 0 | Reserved | This document | 888 | 1- 127 | Unassigned | IETF Review | 889 | 128 - 239 | Unassigned | First Come First Served | 890 | 240 - 249 | Experimental | This document | 891 | 250 - 254 | Private Use | This document | 892 | 255 | Reserved | This document | 893 +-----------+--------------+-------------------------+ 895 Table 5: Timestamping Method Sub-registry 897 This document defines the following new values in the Timestamping 898 Methods sub-registry: 900 +-------+---------------+---------------+ 901 | Value | Description | Reference | 902 +-------+---------------+---------------+ 903 | 1 | HW Assist | This document | 904 | 2 | SW local | This document | 905 | 3 | Control plane | This document | 906 +-------+---------------+---------------+ 908 Table 6: Timestamping Methods 910 5.4. Access ID Sub-registry 912 IANA is requested to create Access ID sub-registry as part of STAMP 913 TLV Type registry. All code points in the range 1 through 127 in 914 this registry shall be allocated according to the "IETF Review" 915 procedure as specified in [RFC8126]. Code points in the range 128 916 through 239 in this registry shall be allocated according to the 917 "First Come First Served" procedure as specified in [RFC8126]. 918 Remaining code points are allocated according to Table 7: 920 +-----------+--------------+-------------------------+ 921 | Value | Description | Reference | 922 +-----------+--------------+-------------------------+ 923 | 0 | Reserved | This document | 924 | 1- 127 | Unassigned | IETF Review | 925 | 128 - 239 | Unassigned | First Come First Served | 926 | 240 - 249 | Experimental | This document | 927 | 250 - 254 | Private Use | This document | 928 | 255 | Reserved | This document | 929 +-----------+--------------+-------------------------+ 931 Table 7: Access ID Sub-registry 933 This document defines the following new values in the Access ID sub- 934 registry: 936 +-------+-------------+---------------+ 937 | Value | Description | Reference | 938 +-------+-------------+---------------+ 939 | 1 | 3GPP | This document | 940 | 2 | Non-3GPP | This document | 941 +-------+-------------+---------------+ 943 Table 8: Access IDs 945 5.5. Return Code Sub-registry 947 IANA is requested to create Return Code sub-registry as part of STAMP 948 TLV Type registry. All code points in the range 1 through 127 in 949 this registry shall be allocated according to the "IETF Review" 950 procedure as specified in [RFC8126]. Code points in the range 128 951 through 239 in this registry shall be allocated according to the 952 "First Come First Served" procedure as specified in [RFC8126]. 953 Remaining code points are allocated according to Table 7: 955 +-----------+--------------+-------------------------+ 956 | Value | Description | Reference | 957 +-----------+--------------+-------------------------+ 958 | 0 | Reserved | This document | 959 | 1- 127 | Unassigned | IETF Review | 960 | 128 - 239 | Unassigned | First Come First Served | 961 | 240 - 249 | Experimental | This document | 962 | 250 - 254 | Private Use | This document | 963 | 255 | Reserved | This document | 964 +-----------+--------------+-------------------------+ 966 Table 9: Return Code Sub-registry 968 This document defines the following new values in the Return Code 969 sub-registry: 971 +-------+---------------------+---------------+ 972 | Value | Description | Reference | 973 +-------+---------------------+---------------+ 974 | 1 | Network available | This document | 975 | 2 | Network unavailable | This document | 976 +-------+---------------------+---------------+ 978 Table 10: Return Codes 980 6. Security Considerations 982 Use of HMAC in authenticated mode may be used to simultaneously 983 verify both the data integrity and the authentication of the STAMP 984 test packets. 986 7. Acknowledgments 988 Authors much appreciate the thorough review and thoughful comments 989 received from Tianran Zhou. 991 8. Contributors 993 The following people contributed text to this document: 995 Guo Jun 996 ZTE Corporation 997 68# Zijinghua Road 998 Nanjing, Jiangsu 210012 999 P.R.China 1001 Phone: +86 18105183663 1002 Email: guo.jun2@zte.com.cn 1004 9. References 1006 9.1. Normative References 1008 [I-D.ietf-ippm-stamp] 1009 Mirsky, G., Jun, G., Nydell, H., and R. Foote, "Simple 1010 Two-way Active Measurement Protocol", draft-ietf-ippm- 1011 stamp-10 (work in progress), October 2019. 1013 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1014 Requirement Levels", BCP 14, RFC 2119, 1015 DOI 10.17487/RFC2119, March 1997, 1016 . 1018 [RFC5357] Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J. 1019 Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)", 1020 RFC 5357, DOI 10.17487/RFC5357, October 2008, 1021 . 1023 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for 1024 Writing an IANA Considerations Section in RFCs", BCP 26, 1025 RFC 8126, DOI 10.17487/RFC8126, June 2017, 1026 . 1028 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 1029 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 1030 May 2017, . 1032 9.2. Informative References 1034 [IEEE.1588.2008] 1035 "Standard for a Precision Clock Synchronization Protocol 1036 for Networked Measurement and Control Systems", 1037 IEEE Standard 1588, March 2008. 1039 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed- 1040 Hashing for Message Authentication", RFC 2104, 1041 DOI 10.17487/RFC2104, February 1997, 1042 . 1044 [RFC4868] Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA- 1045 384, and HMAC-SHA-512 with IPsec", RFC 4868, 1046 DOI 10.17487/RFC4868, May 2007, 1047 . 1049 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch, 1050 "Network Time Protocol Version 4: Protocol and Algorithms 1051 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010, 1052 . 1054 [TS23501] 3GPP (3rd Generation Partnership Project), "Technical 1055 Specification Group Services and System Aspects; System 1056 Architecture for the 5G System; Stage 2 (Release 16)", 1057 3GPP TS23501, 2019. 1059 Authors' Addresses 1061 Greg Mirsky 1062 ZTE Corp. 1064 Email: gregimirsky@gmail.com 1066 Xiao Min 1067 ZTE Corp. 1069 Email: xiao.min2@zte.com.cn 1070 Henrik Nydell 1071 Accedian Networks 1073 Email: hnydell@accedian.com 1075 Richard Foote 1076 Nokia 1078 Email: footer.foote@nokia.com 1080 Adi Masputra 1081 Apple Inc. 1082 One Apple Park Way 1083 Cupertino, CA 95014 1084 USA 1086 Email: adi@apple.com 1088 Ernesto Ruffini 1089 OutSys 1090 via Caracciolo, 65 1091 Milano 20155 1092 Italy 1094 Email: eruffini@outsys.org