idnits 2.17.1 draft-ietf-jose-json-web-signature-03.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (July 6, 2012) is 4312 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) -- Looks like a reference, but probably isn't: '123' on line 1330 -- Looks like a reference, but probably isn't: '34' on line 1330 -- Looks like a reference, but probably isn't: '97' on line 1338 -- Looks like a reference, but probably isn't: '108' on line 1338 -- Looks like a reference, but probably isn't: '103' on line 1330 -- Looks like a reference, but probably isn't: '58' on line 1330 -- Looks like a reference, but probably isn't: '82' on line 1053 -- Looks like a reference, but probably isn't: '83' on line 1330 -- Looks like a reference, but probably isn't: '50' on line 1330 -- Looks like a reference, but probably isn't: '53' on line 1330 -- Looks like a reference, but probably isn't: '54' on line 1210 -- Looks like a reference, but probably isn't: '125' on line 1330 -- Looks like a reference, but probably isn't: '1' on line 1116 -- Looks like a reference, but probably isn't: '0' on line 1565 -- Looks like a reference, but probably isn't: '69' on line 1330 -- Looks like a reference, but probably isn't: '49' on line 1330 -- Looks like a reference, but probably isn't: '80' on line 1338 -- Looks like a reference, but probably isn't: '121' on line 1338 -- Looks like a reference, but probably isn't: '111' on line 1338 -- Looks like a reference, but probably isn't: '100' on line 1338 -- Possible downref: Non-RFC (?) normative reference: ref. 'ITU.X690.1994' -- Possible downref: Non-RFC (?) normative reference: ref. 'JWA' -- Possible downref: Non-RFC (?) normative reference: ref. 'JWK' ** Downref: Normative reference to an Historic RFC: RFC 1421 ** Obsolete normative reference: RFC 2818 (Obsoleted by RFC 9110) ** Obsolete normative reference: RFC 4288 (Obsoleted by RFC 6838) ** Obsolete normative reference: RFC 4627 (Obsoleted by RFC 7158, RFC 7159) ** Obsolete normative reference: RFC 5226 (Obsoleted by RFC 8126) ** Obsolete normative reference: RFC 5246 (Obsoleted by RFC 8446) -- Possible downref: Non-RFC (?) normative reference: ref. 'USA15' -- Possible downref: Non-RFC (?) normative reference: ref. 'USASCII' Summary: 6 errors (**), 0 flaws (~~), 1 warning (==), 26 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 JOSE Working Group M. Jones 3 Internet-Draft Microsoft 4 Intended status: Standards Track J. Bradley 5 Expires: January 7, 2013 Ping Identity 6 N. Sakimura 7 NRI 8 July 6, 2012 10 JSON Web Signature (JWS) 11 draft-ietf-jose-json-web-signature-03 13 Abstract 15 JSON Web Signature (JWS) is a means of representing content secured 16 with digital signatures or Message Authentication Codes (MACs) using 17 JavaScript Object Notation (JSON) data structures. Cryptographic 18 algorithms and identifiers for use with this specification are 19 described in the separate JSON Web Algorithms (JWA) specification. 20 Related encryption capabilities are described in the separate JSON 21 Web Encryption (JWE) specification. 23 Status of this Memo 25 This Internet-Draft is submitted in full conformance with the 26 provisions of BCP 78 and BCP 79. 28 Internet-Drafts are working documents of the Internet Engineering 29 Task Force (IETF). Note that other groups may also distribute 30 working documents as Internet-Drafts. The list of current Internet- 31 Drafts is at http://datatracker.ietf.org/drafts/current/. 33 Internet-Drafts are draft documents valid for a maximum of six months 34 and may be updated, replaced, or obsoleted by other documents at any 35 time. It is inappropriate to use Internet-Drafts as reference 36 material or to cite them other than as "work in progress." 38 This Internet-Draft will expire on January 7, 2013. 40 Copyright Notice 42 Copyright (c) 2012 IETF Trust and the persons identified as the 43 document authors. All rights reserved. 45 This document is subject to BCP 78 and the IETF Trust's Legal 46 Provisions Relating to IETF Documents 47 (http://trustee.ietf.org/license-info) in effect on the date of 48 publication of this document. Please review these documents 49 carefully, as they describe your rights and restrictions with respect 50 to this document. Code Components extracted from this document must 51 include Simplified BSD License text as described in Section 4.e of 52 the Trust Legal Provisions and are provided without warranty as 53 described in the Simplified BSD License. 55 Table of Contents 57 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4 58 1.1. Notational Conventions . . . . . . . . . . . . . . . . . . 4 59 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 4 60 3. JSON Web Signature (JWS) Overview . . . . . . . . . . . . . . 5 61 3.1. Example JWS . . . . . . . . . . . . . . . . . . . . . . . 6 62 4. JWS Header . . . . . . . . . . . . . . . . . . . . . . . . . . 7 63 4.1. Reserved Header Parameter Names . . . . . . . . . . . . . 7 64 4.1.1. "alg" (Algorithm) Header Parameter . . . . . . . . . . 7 65 4.1.2. "jku" (JWK Set URL) Header Parameter . . . . . . . . . 8 66 4.1.3. "jwk" (JSON Web Key) Header Parameter . . . . . . . . 8 67 4.1.4. "x5u" (X.509 URL) Header Parameter . . . . . . . . . . 8 68 4.1.5. "x5t" (X.509 Certificate Thumbprint) Header 69 Parameter . . . . . . . . . . . . . . . . . . . . . . 8 70 4.1.6. "x5c" (X.509 Certificate Chain) Header Parameter . . . 9 71 4.1.7. "kid" (Key ID) Header Parameter . . . . . . . . . . . 9 72 4.1.8. "typ" (Type) Header Parameter . . . . . . . . . . . . 9 73 4.1.9. "cty" (Content Type) Header Parameter . . . . . . . . 10 74 4.2. Public Header Parameter Names . . . . . . . . . . . . . . 10 75 4.3. Private Header Parameter Names . . . . . . . . . . . . . . 10 76 5. Rules for Creating and Validating a JWS . . . . . . . . . . . 10 77 6. Securing JWSs with Cryptographic Algorithms . . . . . . . . . 12 78 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 13 79 7.1. JSON Web Signature and Encryption Header Parameters 80 Registry . . . . . . . . . . . . . . . . . . . . . . . . . 13 81 7.1.1. Registration Template . . . . . . . . . . . . . . . . 13 82 7.1.2. Initial Registry Contents . . . . . . . . . . . . . . 14 83 7.2. JSON Web Signature and Encryption Type Values Registry . . 15 84 7.2.1. Registration Template . . . . . . . . . . . . . . . . 15 85 7.2.2. Initial Registry Contents . . . . . . . . . . . . . . 16 86 7.3. Media Type Registration . . . . . . . . . . . . . . . . . 16 87 7.3.1. Registry Contents . . . . . . . . . . . . . . . . . . 16 88 8. Security Considerations . . . . . . . . . . . . . . . . . . . 17 89 8.1. Cryptographic Security Considerations . . . . . . . . . . 17 90 8.2. JSON Security Considerations . . . . . . . . . . . . . . . 18 91 8.3. Unicode Comparison Security Considerations . . . . . . . . 18 92 9. Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . 18 93 10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 19 94 10.1. Normative References . . . . . . . . . . . . . . . . . . . 19 95 10.2. Informative References . . . . . . . . . . . . . . . . . . 20 97 Appendix A. JWS Examples . . . . . . . . . . . . . . . . . . . . 21 98 A.1. JWS using HMAC SHA-256 . . . . . . . . . . . . . . . . . . 21 99 A.1.1. Encoding . . . . . . . . . . . . . . . . . . . . . . . 21 100 A.1.2. Decoding . . . . . . . . . . . . . . . . . . . . . . . 23 101 A.1.3. Validating . . . . . . . . . . . . . . . . . . . . . . 23 102 A.2. JWS using RSA SHA-256 . . . . . . . . . . . . . . . . . . 23 103 A.2.1. Encoding . . . . . . . . . . . . . . . . . . . . . . . 23 104 A.2.2. Decoding . . . . . . . . . . . . . . . . . . . . . . . 27 105 A.2.3. Validating . . . . . . . . . . . . . . . . . . . . . . 27 106 A.3. JWS using ECDSA P-256 SHA-256 . . . . . . . . . . . . . . 27 107 A.3.1. Encoding . . . . . . . . . . . . . . . . . . . . . . . 27 108 A.3.2. Decoding . . . . . . . . . . . . . . . . . . . . . . . 29 109 A.3.3. Validating . . . . . . . . . . . . . . . . . . . . . . 29 110 A.4. JWS using ECDSA P-521 SHA-512 . . . . . . . . . . . . . . 30 111 A.4.1. Encoding . . . . . . . . . . . . . . . . . . . . . . . 30 112 A.4.2. Decoding . . . . . . . . . . . . . . . . . . . . . . . 32 113 A.4.3. Validating . . . . . . . . . . . . . . . . . . . . . . 32 114 A.5. Example Plaintext JWS . . . . . . . . . . . . . . . . . . 32 115 Appendix B. "x5c" (X.509 Certificate Chain) Example . . . . . . . 33 116 Appendix C. Notes on implementing base64url encoding without 117 padding . . . . . . . . . . . . . . . . . . . . . . . 35 118 Appendix D. Acknowledgements . . . . . . . . . . . . . . . . . . 36 119 Appendix E. Document History . . . . . . . . . . . . . . . . . . 36 120 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 38 122 1. Introduction 124 JSON Web Signature (JWS) is a compact format for representing content 125 secured with digital signatures or Message Authentication Codes 126 (MACs) intended for space constrained environments such as HTTP 127 Authorization headers and URI query parameters. It represents this 128 content using JavaScript Object Notation (JSON) [RFC4627] data 129 structures. The JWS cryptographic mechanisms provide integrity 130 protection for arbitrary sequences of bytes. 132 Cryptographic algorithms and identifiers for use with this 133 specification are described in the separate JSON Web Algorithms (JWA) 134 [JWA] specification. Related encryption capabilities are described 135 in the separate JSON Web Encryption (JWE) [JWE] specification. 137 1.1. Notational Conventions 139 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 140 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 141 document are to be interpreted as described in Key words for use in 142 RFCs to Indicate Requirement Levels [RFC2119]. 144 2. Terminology 146 JSON Web Signature (JWS) A data structure cryptographically securing 147 a JWS Header and a JWS Payload with a JWS Signature value. 149 JWS Header A string representing a JSON object that describes the 150 digital signature or MAC operation applied to create the JWS 151 Signature value. 153 JWS Payload The bytes to be secured - a.k.a., the message. The 154 payload can contain an arbitrary sequence of bytes. 156 JWS Signature A byte array containing the cryptographic material 157 that secures the JWS Header and the JWS Payload. 159 Encoded JWS Header Base64url encoding of the bytes of the UTF-8 160 [RFC3629] representation of the JWS Header. 162 Encoded JWS Payload Base64url encoding of the JWS Payload. 164 Encoded JWS Signature Base64url encoding of the JWS Signature. 166 JWS Secured Input The concatenation of the Encoded JWS Header, a 167 period ('.') character, and the Encoded JWS Payload. 169 Header Parameter Name The name of a member of the JSON object 170 representing a JWS Header. 172 Header Parameter Value The value of a member of the JSON object 173 representing a JWS Header. 175 JWS Compact Serialization A representation of the JWS as the 176 concatenation of the Encoded JWS Header, the Encoded JWS Payload, 177 and the Encoded JWS Signature in that order, with the three 178 strings being separated by period ('.') characters. 180 Base64url Encoding For the purposes of this specification, this term 181 always refers to the URL- and filename-safe Base64 encoding 182 described in RFC 4648 [RFC4648], Section 5, with the (non URL- 183 safe) '=' padding characters omitted, as permitted by Section 3.2. 184 (See Appendix C for notes on implementing base64url encoding 185 without padding.) 187 Collision Resistant Namespace A namespace that allows names to be 188 allocated in a manner such that they are highly unlikely to 189 collide with other names. For instance, collision resistance can 190 be achieved through administrative delegation of portions of the 191 namespace or through use of collision-resistant name allocation 192 functions. Examples of Collision Resistant Namespaces include: 193 Domain Names, Object Identifiers (OIDs) as defined in the ITU-T 194 X.660 and X.670 Recommendation series, and Universally Unique 195 IDentifiers (UUIDs) [RFC4122]. When using an administratively 196 delegated namespace, the definer of a name needs to take 197 reasonable precautions to ensure they are in control of the 198 portion of the namespace they use to define the name. 200 StringOrURI A JSON string value, with the additional requirement 201 that while arbitrary string values MAY be used, any value 202 containing a ":" character MUST be a URI [RFC3986]. 204 3. JSON Web Signature (JWS) Overview 206 JWS represents digitally signed or MACed content using JSON data 207 structures and base64url encoding. The representation consists of 208 three parts: the JWS Header, the JWS Payload, and the JWS Signature. 209 In the Compact Serialization, the three parts are base64url-encoded 210 for transmission, and represented as the concatenation of the encoded 211 strings in that order, with the three strings being separated by 212 period ('.') characters. (A JSON Serialization for this information 213 is defined in the separate JSON Web Signature JSON Serialization 214 (JWS-JS) [JWS-JS] specification.) 216 The JWS Header describes the signature or MAC method and parameters 217 employed. The JWS Payload is the message content to be secured. The 218 JWS Signature ensures the integrity of both the JWS Header and the 219 JWS Payload. 221 3.1. Example JWS 223 The following example JWS Header declares that the encoded object is 224 a JSON Web Token (JWT) [JWT] and the JWS Header and the JWS Payload 225 are secured using the HMAC SHA-256 algorithm: 226 {"typ":"JWT", 227 "alg":"HS256"} 229 Base64url encoding the bytes of the UTF-8 representation of the JWS 230 Header yields this Encoded JWS Header value: 231 eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9 233 The following is an example of a JSON object that can be used as a 234 JWS Payload. (Note that the payload can be any content, and need not 235 be a representation of a JSON object.) 236 {"iss":"joe", 237 "exp":1300819380, 238 "http://example.com/is_root":true} 240 Base64url encoding the bytes of the UTF-8 representation of the JSON 241 object yields the following Encoded JWS Payload (with line breaks for 242 display purposes only): 243 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt 244 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ 246 Computing the HMAC of the bytes of the ASCII [USASCII] representation 247 of the JWS Secured Input (the concatenation of the Encoded JWS 248 Header, a period ('.') character, and the Encoded JWS Payload) with 249 the HMAC SHA-256 algorithm using the key specified in Appendix A.1 250 and base64url encoding the result yields this Encoded JWS Signature 251 value: 252 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk 254 Concatenating these parts in the order Header.Payload.Signature with 255 period characters between the parts yields this complete JWS 256 representation (with line breaks for display purposes only): 258 eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9 259 . 260 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt 261 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ 262 . 263 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk 265 This computation is illustrated in more detail in Appendix A.1. 267 4. JWS Header 269 The members of the JSON object represented by the JWS Header describe 270 the digital signature or MAC applied to the Encoded JWS Header and 271 the Encoded JWS Payload and optionally additional properties of the 272 JWS. The Header Parameter Names within this object MUST be unique; 273 JWSs with duplicate Header Parameter Names MUST be rejected. 274 Implementations MUST understand the entire contents of the header; 275 otherwise, the JWS MUST be rejected. 277 There are three classes of Header Parameter Names: Reserved Header 278 Parameter Names, Public Header Parameter Names, and Private Header 279 Parameter Names. 281 4.1. Reserved Header Parameter Names 283 The following header parameter names are reserved with meanings as 284 defined below. All the names are short because a core goal of JWSs 285 is for the representations to be compact. 287 Additional reserved header parameter names MAY be defined via the 288 IANA JSON Web Signature and Encryption Header Parameters registry 289 Section 7.1. As indicated by the common registry, JWSs and JWEs 290 share a common header parameter space; when a parameter is used by 291 both specifications, its usage must be compatible between the 292 specifications. 294 4.1.1. "alg" (Algorithm) Header Parameter 296 The "alg" (algorithm) header parameter identifies the cryptographic 297 algorithm used to secure the JWS. The algorithm specified by the 298 "alg" value MUST be supported by the implementation and there MUST be 299 a key for use with that algorithm associated with the party that 300 digitally signed or MACed the content or the JWS MUST be rejected. 301 The "alg" value is case sensitive. Its value MUST be a string 302 containing a StringOrURI value. This header parameter is REQUIRED. 304 A list of defined "alg" values for use with JWS is presented in 305 Section 3.1 of the JSON Web Algorithms (JWA) [JWA] specification. 306 "alg" values SHOULD either be registered in the IANA JSON Web 307 Signature and Encryption Algorithms registry [JWA] or be a URI that 308 contains a Collision Resistant Namespace. 310 4.1.2. "jku" (JWK Set URL) Header Parameter 312 The "jku" (JWK Set URL) header parameter is a URI [RFC3986] that 313 refers to a resource for a set of JSON-encoded public keys, one of 314 which corresponds to the key used to digitally sign the JWS. The 315 keys MUST be encoded as a JSON Web Key Set (JWK Set) [JWK]. The 316 protocol used to acquire the resource MUST provide integrity 317 protection; an HTTP GET request to retrieve the certificate MUST use 318 TLS [RFC2818] [RFC5246]; the identity of the server MUST be 319 validated, as per Section 3.1 of HTTP Over TLS [RFC2818]. This 320 header parameter is OPTIONAL. 322 4.1.3. "jwk" (JSON Web Key) Header Parameter 324 The "jwk" (JSON Web Key) header parameter is a public key that 325 corresponds to the key used to digitally sign the JWS. This key is 326 represented as a JSON Web Key [JWK]. This header parameter is 327 OPTIONAL. 329 4.1.4. "x5u" (X.509 URL) Header Parameter 331 The "x5u" (X.509 URL) header parameter is a URI [RFC3986] that refers 332 to a resource for the X.509 public key certificate or certificate 333 chain [RFC5280] corresponding to the key used to digitally sign the 334 JWS. The identified resource MUST provide a representation of the 335 certificate or certificate chain that conforms to RFC 5280 [RFC5280] 336 in PEM encoded form [RFC1421]. The certificate containing the public 337 key of the entity that digitally signed the JWS MUST be the first 338 certificate. This MAY be followed by additional certificates, with 339 each subsequent certificate being the one used to certify the 340 previous one. The protocol used to acquire the resource MUST provide 341 integrity protection; an HTTP GET request to retrieve the certificate 342 MUST use TLS [RFC2818] [RFC5246]; the identity of the server MUST be 343 validated, as per Section 3.1 of HTTP Over TLS [RFC2818]. This 344 header parameter is OPTIONAL. 346 4.1.5. "x5t" (X.509 Certificate Thumbprint) Header Parameter 348 The "x5t" (X.509 Certificate Thumbprint) header parameter provides a 349 base64url encoded SHA-1 thumbprint (a.k.a. digest) of the DER 350 encoding of the X.509 certificate [RFC5280] corresponding to the key 351 used to digitally sign the JWS. This header parameter is OPTIONAL. 353 If, in the future, certificate thumbprints need to be computed using 354 hash functions other than SHA-1, it is suggested that additional 355 related header parameters be defined for that purpose. For example, 356 it is suggested that a new "x5t#S256" (X.509 Certificate Thumbprint 357 using SHA-256) header parameter could be defined by registering it in 358 the IANA JSON Web Signature and Encryption Header Parameters registry 359 Section 7.1. 361 4.1.6. "x5c" (X.509 Certificate Chain) Header Parameter 363 The "x5c" (X.509 Certificate Chain) header parameter contains the 364 X.509 public key certificate or certificate chain [RFC5280] 365 corresponding to the key used to digitally sign the JWS. The 366 certificate or certificate chain is represented as an array of 367 certificate values. Each value is a base64 encoded ([RFC4648] 368 Section 4 - not base64url encoded) DER [ITU.X690.1994] PKIX 369 certificate value. The certificate containing the public key of the 370 entity that digitally signed the JWS MUST be the first certificate. 371 This MAY be followed by additional certificates, with each subsequent 372 certificate being the one used to certify the previous one. The 373 recipient MUST verify the certificate chain according to [RFC5280] 374 and reject the JWS if any validation failure occurs. This header 375 parameter is OPTIONAL. 377 See Appendix B for an example "x5c" value. 379 4.1.7. "kid" (Key ID) Header Parameter 381 The "kid" (key ID) header parameter is a hint indicating which key 382 was used to secure the JWS. This parameter allows originators to 383 explicitly signal a change of key to recipients. Should the 384 recipient be unable to locate a key corresponding to the "kid" value, 385 they SHOULD treat that condition as an error. The interpretation of 386 the "kid" value is unspecified. Its value MUST be a string. This 387 header parameter is OPTIONAL. 389 When used with a JWK, the "kid" value MAY be used to match a JWK 390 "kid" parameter value. 392 4.1.8. "typ" (Type) Header Parameter 394 The "typ" (type) header parameter is used to declare the type of this 395 object. The type value "JWS" MAY be used to indicate that this 396 object is a JWS. The "typ" value is case sensitive. Its value MUST 397 be a string. This header parameter is OPTIONAL. 399 MIME Media Type [RFC2046] values MAY be used as "typ" values. 401 "typ" values SHOULD either be registered in the IANA JSON Web 402 Signature and Encryption Type Values registry Section 7.2 or be a URI 403 that contains a Collision Resistant Namespace. 405 4.1.9. "cty" (Content Type) Header Parameter 407 The "cty" (content type) header parameter is used to declare the type 408 of the secured content (the Payload). The "cty" value is case 409 sensitive. Its value MUST be a string. This header parameter is 410 OPTIONAL. 412 The values used for the "cty" header parameter come from the same 413 value space as the "typ" header parameter, with the same rules 414 applying. 416 4.2. Public Header Parameter Names 418 Additional header parameter names can be defined by those using JWSs. 419 However, in order to prevent collisions, any new header parameter 420 name SHOULD either be registered in the IANA JSON Web Signature and 421 Encryption Header Parameters registry Section 7.1 or be a URI that 422 contains a Collision Resistant Namespace. In each case, the definer 423 of the name or value needs to take reasonable precautions to make 424 sure they are in control of the part of the namespace they use to 425 define the header parameter name. 427 New header parameters should be introduced sparingly, as they can 428 result in non-interoperable JWSs. 430 4.3. Private Header Parameter Names 432 A producer and consumer of a JWS may agree to any header parameter 433 name that is not a Reserved Name Section 4.1 or a Public Name 434 Section 4.2. Unlike Public Names, these private names are subject to 435 collision and should be used with caution. 437 5. Rules for Creating and Validating a JWS 439 To create a JWS, one MUST perform these steps. The order of the 440 steps is not significant in cases where there are no dependencies 441 between the inputs and outputs of the steps. 443 1. Create the content to be used as the JWS Payload. 445 2. Base64url encode the bytes of the JWS Payload. This encoding 446 becomes the Encoded JWS Payload. 448 3. Create a JWS Header containing the desired set of header 449 parameters. Note that white space is explicitly allowed in the 450 representation and no canonicalization need be performed before 451 encoding. 453 4. Base64url encode the bytes of the UTF-8 representation of the JWS 454 Header to create the Encoded JWS Header. 456 5. Compute the JWS Signature in the manner defined for the 457 particular algorithm being used. The JWS Secured Input is always 458 the concatenation of the Encoded JWS Header, a period ('.') 459 character, and the Encoded JWS Payload. The "alg" (algorithm) 460 header parameter MUST be present in the JSON Header, with the 461 algorithm value accurately representing the algorithm used to 462 construct the JWS Signature. 464 6. Base64url encode the representation of the JWS Signature to 465 create the Encoded JWS Signature. 467 7. The three encoded parts, taken together, are the result. The 468 Compact Serialization of this result is the concatenation of the 469 Encoded JWS Header, the Encoded JWS Payload, and the Encoded JWS 470 Signature in that order, with the three strings being separated 471 by period ('.') characters. 473 When validating a JWS, the following steps MUST be taken. The order 474 of the steps is not significant in cases where there are no 475 dependencies between the inputs and outputs of the steps. If any of 476 the listed steps fails, then the JWS MUST be rejected. 478 1. Parse the three parts of the input (which are separated by period 479 characters when using the JWS Compact Serialization) into the 480 Encoded JWS Header, the Encoded JWS Payload, and the Encoded JWS 481 Signature. 483 2. The Encoded JWS Header MUST be successfully base64url decoded 484 following the restriction given in this specification that no 485 padding characters have been used. 487 3. The resulting JWS Header MUST be completely valid JSON syntax 488 conforming to RFC 4627 [RFC4627]. 490 4. The resulting JWS Header MUST be validated to only include 491 parameters and values whose syntax and semantics are both 492 understood and supported. 494 5. The Encoded JWS Payload MUST be successfully base64url decoded 495 following the restriction given in this specification that no 496 padding characters have been used. 498 6. The Encoded JWS Signature MUST be successfully base64url decoded 499 following the restriction given in this specification that no 500 padding characters have been used. 502 7. The JWS Signature MUST be successfully validated against the JWS 503 Secured Input (the concatenation of the Encoded JWS Header, a 504 period ('.') character, and the Encoded JWS Payload) in the 505 manner defined for the algorithm being used, which MUST be 506 accurately represented by the value of the "alg" (algorithm) 507 header parameter, which MUST be present. 509 Processing a JWS inevitably requires comparing known strings to 510 values in the header. For example, in checking what the algorithm 511 is, the Unicode string encoding "alg" will be checked against the 512 member names in the JWS Header to see if there is a matching header 513 parameter name. A similar process occurs when determining if the 514 value of the "alg" header parameter represents a supported algorithm. 516 Comparisons between JSON strings and other Unicode strings MUST be 517 performed as specified below: 519 1. Remove any JSON applied escaping to produce an array of Unicode 520 code points. 522 2. Unicode Normalization [USA15] MUST NOT be applied at any point to 523 either the JSON string or to the string it is to be compared 524 against. 526 3. Comparisons between the two strings MUST be performed as a 527 Unicode code point to code point equality comparison. 529 6. Securing JWSs with Cryptographic Algorithms 531 JWS uses cryptographic algorithms to digitally sign or MAC the JWS 532 Header and the JWS Payload. The JSON Web Algorithms (JWA) [JWA] 533 specification describes a set of cryptographic algorithms and 534 identifiers to be used with this specification. Specifically, 535 Section 3.1 specifies a set of "alg" (algorithm) header parameter 536 values intended for use this specification. It also describes the 537 semantics and operations that are specific to these algorithms and 538 algorithm families. 540 Public keys employed for digital signing can be identified using the 541 Header Parameter methods described in Section 4.1 or can be 542 distributed using methods that are outside the scope of this 543 specification. 545 7. IANA Considerations 547 The following registration procedure is used for all the registries 548 established by this specification. 550 Values are registered with a Specification Required [RFC5226] after a 551 two week review period on the [TBD]@ietf.org mailing list, on the 552 advice of one or more Designated Experts. However, to allow for the 553 allocation of values prior to publication, the Designated Expert(s) 554 may approve registration once they are satisfied that such a 555 specification will be published. 557 Registration requests must be sent to the [TBD]@ietf.org mailing list 558 for review and comment, with an appropriate subject (e.g., "Request 559 for access token type: example"). [[ Note to RFC-EDITOR: The name of 560 the mailing list should be determined in consultation with the IESG 561 and IANA. Suggested name: jose-reg-review. ]] 563 Within the review period, the Designated Expert(s) will either 564 approve or deny the registration request, communicating this decision 565 to the review list and IANA. Denials should include an explanation 566 and, if applicable, suggestions as to how to make the request 567 successful. 569 IANA must only accept registry updates from the Designated Expert(s), 570 and should direct all requests for registration to the review mailing 571 list. 573 7.1. JSON Web Signature and Encryption Header Parameters Registry 575 This specification establishes the IANA JSON Web Signature and 576 Encryption Header Parameters registry for reserved JWS and JWE header 577 parameter names. The registry records the reserved header parameter 578 name and a reference to the specification that defines it. The same 579 Header Parameter Name may be registered multiple times, provided that 580 the parameter usage is compatible between the specifications. 582 7.1.1. Registration Template 584 Header Parameter Name: 585 The name requested (e.g., "example"). 587 Change Controller: 588 For standards-track RFCs, state "IETF". For others, give the name 589 of the responsible party. Other details (e.g., postal address, 590 e-mail address, home page URI) may also be included. 592 Specification Document(s): 593 Reference to the document that specifies the parameter, preferably 594 including a URI that can be used to retrieve a copy of the 595 document. An indication of the relevant sections may also be 596 included, but is not required. 598 7.1.2. Initial Registry Contents 600 This specification registers the Header Parameter Names defined in 601 Section 4.1 in this registry. 603 o Header Parameter Name: "alg" 605 o Change Controller: IETF 607 o Specification Document(s): Section 4.1.1 of [[ this document ]] 609 o Header Parameter Name: "jku" 611 o Change Controller: IETF 613 o Specification Document(s): Section 4.1.2 of [[ this document ]] 615 o Header Parameter Name: "jwk" 617 o Change Controller: IETF 619 o Specification document(s): Section 4.1.3 of [[ this document ]] 621 o Header Parameter Name: "x5u" 623 o Change Controller: IETF 625 o Specification Document(s): Section 4.1.4 of [[ this document ]] 627 o Header Parameter Name: "x5t" 629 o Change Controller: IETF 631 o Specification Document(s): Section 4.1.5 of [[ this document ]] 632 o Header Parameter Name: "x5c" 634 o Change Controller: IETF 636 o Specification Document(s): Section 4.1.6 of [[ this document ]] 638 o Header Parameter Name: "kid" 640 o Change Controller: IETF 642 o Specification Document(s): Section 4.1.7 of [[ this document ]] 644 o Header Parameter Name: "typ" 646 o Change Controller: IETF 648 o Specification Document(s): Section 4.1.8 of [[ this document ]] 650 o Header Parameter Name: "cty" 652 o Change Controller: IETF 654 o Specification Document(s): Section 4.1.9 of [[ this document ]] 656 7.2. JSON Web Signature and Encryption Type Values Registry 658 This specification establishes the IANA JSON Web Signature and 659 Encryption Type Values registry for values of the JWS and JWE "typ" 660 (type) header parameter. It is RECOMMENDED that all registered "typ" 661 values also include a MIME Media Type [RFC2046] value that the 662 registered value is a short name for. The registry records the "typ" 663 value, the MIME type value that it is an abbreviation for (if any), 664 and a reference to the specification that defines it. 666 MIME Media Type [RFC2046] values MUST NOT be directly registered as 667 new "typ" values; rather, new "typ" values MAY be registered as short 668 names for MIME types. 670 7.2.1. Registration Template 672 "typ" Header Parameter Value: 673 The name requested (e.g., "example"). 675 Abbreviation for MIME Type: 676 The MIME type that this name is an abbreviation for (e.g., 677 "application/example"). 679 Change Controller: 680 For standards-track RFCs, state "IETF". For others, give the name 681 of the responsible party. Other details (e.g., postal address, 682 e-mail address, home page URI) may also be included. 684 Specification Document(s): 685 Reference to the document that specifies the parameter, preferably 686 including a URI that can be used to retrieve a copy of the 687 document. An indication of the relevant sections may also be 688 included, but is not required. 690 7.2.2. Initial Registry Contents 692 This specification registers the "JWS" type value in this registry: 694 o "typ" Header Parameter Value: "JWS" 696 o Abbreviation for MIME type: application/jws 698 o Change Controller: IETF 700 o Specification Document(s): Section 4.1.8 of [[ this document ]] 702 7.3. Media Type Registration 704 7.3.1. Registry Contents 706 This specification registers the "application/jws" Media Type 707 [RFC2046] in the MIME Media Type registry [RFC4288] to indicate that 708 the content is a JWS using the Compact Serialization. 710 o Type name: application 712 o Subtype name: jws 714 o Required parameters: n/a 716 o Optional parameters: n/a 718 o Encoding considerations: JWS values are encoded as a series of 719 base64url encoded values (some of which may be the empty string) 720 separated by period ('.') characters 722 o Security considerations: See the Security Considerations section 723 of this document 725 o Interoperability considerations: n/a 726 o Published specification: [[ this document ]] 728 o Applications that use this media type: OpenID Connect, Mozilla 729 Browser ID, Salesforce, Google, numerous others that use signed 730 JWTs 732 o Additional information: Magic number(s): n/a, File extension(s): 733 n/a, Macintosh file type code(s): n/a 735 o Person & email address to contact for further information: Michael 736 B. Jones, mbj@microsoft.com 738 o Intended usage: COMMON 740 o Restrictions on usage: none 742 o Author: Michael B. Jones, mbj@microsoft.com 744 o Change Controller: IETF 746 8. Security Considerations 748 8.1. Cryptographic Security Considerations 750 All of the security issues faced by any cryptographic application 751 must be faced by a JWS/JWE/JWK agent. Among these issues are 752 protecting the user's private key, preventing various attacks, and 753 helping the user avoid mistakes such as inadvertently encrypting a 754 message for the wrong recipient. The entire list of security 755 considerations is beyond the scope of this document, but some 756 significant concerns are listed here. 758 All the security considerations in XML DSIG 2.0 759 [W3C.CR-xmldsig-core2-20120124], also apply to this specification, 760 other than those that are XML specific. Likewise, many of the best 761 practices documented in XML Signature Best Practices 762 [W3C.WD-xmldsig-bestpractices-20110809] also apply to this 763 specification, other than those that are XML specific. 765 Keys are only as strong as the amount of entropy used to generate 766 them. A minimum of 128 bits of entropy should be used for all keys, 767 and depending upon the application context, more may be required. 769 When utilizing TLS to retrieve information, the authority providing 770 the resource MUST be authenticated and the information retrieved MUST 771 be free from modification. 773 When cryptographic algorithms are implemented in such a way that 774 successful operations take a different amount of time than 775 unsuccessful operations, attackers may be able to use the time 776 difference to obtain information about the keys employed. Therefore, 777 such timing differences must be avoided. 779 TBD: Write security considerations about the implications of using a 780 SHA-1 hash (for compatibility reasons) for the "x5t" (x.509 781 certificate thumbprint). 783 TBD: We need a section on generating randomness in browsers; it's 784 easy to screw up. 786 8.2. JSON Security Considerations 788 TBD: We need to look into any issues relating to security and JSON 789 parsing. One wonders just how secure most JSON parsing libraries 790 are. Were they ever hardened for security scenarios? If not, what 791 kind of holes does that open up? We need to put in text about why 792 strict JSON validation is necessary - basically, that if malformed 793 JSON is received then the intent of the sender is impossible to 794 reliably discern. 796 8.3. Unicode Comparison Security Considerations 798 Header parameter names and algorithm names are Unicode strings. For 799 security reasons, the representations of these names must be compared 800 verbatim after performing any escape processing (as per RFC 4627 801 [RFC4627], Section 2.5). This means, for instance, that these JSON 802 strings must compare as being equal ("sig", "\u0073ig"), whereas 803 these must all compare as being not equal to the first set or to each 804 other ("SIG", "Sig", "si\u0047"). 806 JSON strings MAY contain characters outside the Unicode Basic 807 Multilingual Plane. For instance, the G clef character (U+1D11E) may 808 be represented in a JSON string as "\uD834\uDD1E". Ideally, JWS 809 implementations SHOULD ensure that characters outside the Basic 810 Multilingual Plane are preserved and compared correctly; 811 alternatively, if this is not possible due to these characters 812 exercising limitations present in the underlying JSON implementation, 813 then input containing them MUST be rejected. 815 9. Open Issues 817 [[ to be removed by the RFC editor before publication as an RFC ]] 819 The following items remain to be considered or done in this draft: 821 o Should we define an optional nonce and/or timestamp header 822 parameter? (Use of a nonce is an effective countermeasure to some 823 kinds of attacks.) 825 o Finish the Security Considerations section. 827 10. References 829 10.1. Normative References 831 [ITU.X690.1994] 832 International Telecommunications Union, "Information 833 Technology - ASN.1 encoding rules: Specification of Basic 834 Encoding Rules (BER), Canonical Encoding Rules (CER) and 835 Distinguished Encoding Rules (DER)", ITU-T Recommendation 836 X.690, 1994. 838 [JWA] Jones, M., "JSON Web Algorithms (JWA)", July 2012. 840 [JWK] Jones, M., "JSON Web Key (JWK)", July 2012. 842 [RFC1421] Linn, J., "Privacy Enhancement for Internet Electronic 843 Mail: Part I: Message Encryption and Authentication 844 Procedures", RFC 1421, February 1993. 846 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail 847 Extensions (MIME) Part Two: Media Types", RFC 2046, 848 November 1996. 850 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 851 Requirement Levels", BCP 14, RFC 2119, March 1997. 853 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000. 855 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO 856 10646", STD 63, RFC 3629, November 2003. 858 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform 859 Resource Identifier (URI): Generic Syntax", STD 66, 860 RFC 3986, January 2005. 862 [RFC4288] Freed, N. and J. Klensin, "Media Type Specifications and 863 Registration Procedures", BCP 13, RFC 4288, December 2005. 865 [RFC4627] Crockford, D., "The application/json Media Type for 866 JavaScript Object Notation (JSON)", RFC 4627, July 2006. 868 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data 869 Encodings", RFC 4648, October 2006. 871 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an 872 IANA Considerations Section in RFCs", BCP 26, RFC 5226, 873 May 2008. 875 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security 876 (TLS) Protocol Version 1.2", RFC 5246, August 2008. 878 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., 879 Housley, R., and W. Polk, "Internet X.509 Public Key 880 Infrastructure Certificate and Certificate Revocation List 881 (CRL) Profile", RFC 5280, May 2008. 883 [USA15] Davis, M., Whistler, K., and M. Duerst, "Unicode 884 Normalization Forms", Unicode Standard Annex 15, 09 2009. 886 [USASCII] American National Standards Institute, "Coded Character 887 Set -- 7-bit American Standard Code for Information 888 Interchange", ANSI X3.4, 1986. 890 10.2. Informative References 892 [CanvasApp] 893 Facebook, "Canvas Applications", 2010. 895 [JSS] Bradley, J. and N. Sakimura (editor), "JSON Simple Sign", 896 September 2010. 898 [JWE] Jones, M., Rescorla, E., and J. Hildebrand, "JSON Web 899 Encryption (JWE)", July 2012. 901 [JWS-JS] Jones, M., Bradley, J., and N. Sakimura, "JSON Web 902 Signature JSON Serialization (JWS-JS)", July 2012. 904 [JWT] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token 905 (JWT)", July 2012. 907 [MagicSignatures] 908 Panzer (editor), J., Laurie, B., and D. Balfanz, "Magic 909 Signatures", January 2011. 911 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally 912 Unique IDentifier (UUID) URN Namespace", RFC 4122, 913 July 2005. 915 [W3C.CR-xmldsig-core2-20120124] 916 Reagle, J., Solo, D., Datta, P., Hirsch, F., Eastlake, D., 917 Roessler, T., Cantor, S., and K. Yiu, "XML Signature 918 Syntax and Processing Version 2.0", World Wide Web 919 Consortium CR CR-xmldsig-core2-20120124, January 2012, 920 . 922 [W3C.WD-xmldsig-bestpractices-20110809] 923 Datta, P. and F. Hirsch, "XML Signature Best Practices", 924 World Wide Web Consortium WD WD-xmldsig-bestpractices- 925 20110809, August 2011, . 928 Appendix A. JWS Examples 930 This section provides several examples of JWSs. While these examples 931 all represent JSON Web Tokens (JWTs) [JWT], the payload can be any 932 base64url encoded content. 934 A.1. JWS using HMAC SHA-256 936 A.1.1. Encoding 938 The following example JWS Header declares that the data structure is 939 a JSON Web Token (JWT) [JWT] and the JWS Secured Input is secured 940 using the HMAC SHA-256 algorithm. 941 {"typ":"JWT", 942 "alg":"HS256"} 944 The following byte array contains the UTF-8 representation of the JWS 945 Header: 947 [123, 34, 116, 121, 112, 34, 58, 34, 74, 87, 84, 34, 44, 13, 10, 32, 948 34, 97, 108, 103, 34, 58, 34, 72, 83, 50, 53, 54, 34, 125] 950 Base64url encoding these bytes yields this Encoded JWS Header value: 951 eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9 953 The JWS Payload used in this example is the bytes of the UTF-8 954 representation of the JSON object below. (Note that the payload can 955 be any base64url encoded sequence of bytes, and need not be a 956 base64url encoded JSON object.) 957 {"iss":"joe", 958 "exp":1300819380, 959 "http://example.com/is_root":true} 961 The following byte array, which is the UTF-8 representation of the 962 JSON object above, is the JWS Payload: 964 [123, 34, 105, 115, 115, 34, 58, 34, 106, 111, 101, 34, 44, 13, 10, 965 32, 34, 101, 120, 112, 34, 58, 49, 51, 48, 48, 56, 49, 57, 51, 56, 966 48, 44, 13, 10, 32, 34, 104, 116, 116, 112, 58, 47, 47, 101, 120, 97, 967 109, 112, 108, 101, 46, 99, 111, 109, 47, 105, 115, 95, 114, 111, 968 111, 116, 34, 58, 116, 114, 117, 101, 125] 970 Base64url encoding the above yields the Encoded JWS Payload value 971 (with line breaks for display purposes only): 972 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt 973 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ 975 Concatenating the Encoded JWS Header, a period character, and the 976 Encoded JWS Payload yields this JWS Secured Input value (with line 977 breaks for display purposes only): 978 eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9 979 . 980 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt 981 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ 983 The ASCII representation of the JWS Secured Input is the following 984 byte array: 986 [101, 121, 74, 48, 101, 88, 65, 105, 79, 105, 74, 75, 86, 49, 81, 987 105, 76, 65, 48, 75, 73, 67, 74, 104, 98, 71, 99, 105, 79, 105, 74, 988 73, 85, 122, 73, 49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51, 989 77, 105, 79, 105, 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 990 74, 108, 101, 72, 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 991 107, 122, 79, 68, 65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100, 992 72, 65, 54, 76, 121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76, 993 109, 78, 118, 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 994 106, 112, 48, 99, 110, 86, 108, 102, 81] 996 HMACs are generated using keys. This example uses the key 997 represented by the following byte array: 999 [3, 35, 53, 75, 43, 15, 165, 188, 131, 126, 6, 101, 119, 123, 166, 1000 143, 90, 179, 40, 230, 240, 84, 201, 40, 169, 15, 132, 178, 210, 80, 1001 46, 191, 211, 251, 90, 146, 210, 6, 71, 239, 150, 138, 180, 195, 119, 1002 98, 61, 34, 61, 46, 33, 114, 5, 46, 79, 8, 192, 205, 154, 245, 103, 1003 208, 128, 163] 1005 Running the HMAC SHA-256 algorithm on the bytes of the ASCII 1006 representation of the JWS Secured Input with this key yields the 1007 following byte array: 1009 [116, 24, 223, 180, 151, 153, 224, 37, 79, 250, 96, 125, 216, 173, 1010 187, 186, 22, 212, 37, 77, 105, 214, 191, 240, 91, 88, 5, 88, 83, 1011 132, 141, 121] 1012 Base64url encoding the above HMAC output yields the Encoded JWS 1013 Signature value: 1014 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk 1016 A.1.2. Decoding 1018 Decoding the JWS requires base64url decoding the Encoded JWS Header, 1019 Encoded JWS Payload, and Encoded JWS Signature to produce the JWS 1020 Header, JWS Payload, and JWS Signature byte arrays. The byte array 1021 containing the UTF-8 representation of the JWS Header is decoded into 1022 the JWS Header string. 1024 A.1.3. Validating 1026 Next we validate the decoded results. Since the "alg" parameter in 1027 the header is "HS256", we validate the HMAC SHA-256 value contained 1028 in the JWS Signature. If any of the validation steps fail, the JWS 1029 MUST be rejected. 1031 First, we validate that the JWS Header string is legal JSON. 1033 To validate the HMAC value, we repeat the previous process of using 1034 the correct key and the ASCII representation of the JWS Secured Input 1035 as input to the HMAC SHA-256 function and then taking the output and 1036 determining if it matches the JWS Signature. If it matches exactly, 1037 the HMAC has been validated. 1039 A.2. JWS using RSA SHA-256 1041 A.2.1. Encoding 1043 The JWS Header in this example is different from the previous example 1044 in two ways: First, because a different algorithm is being used, the 1045 "alg" value is different. Second, for illustration purposes only, 1046 the optional "typ" parameter is not used. (This difference is not 1047 related to the algorithm employed.) The JWS Header used is: 1048 {"alg":"RS256"} 1050 The following byte array contains the UTF-8 representation of the JWS 1051 Header: 1053 [123, 34, 97, 108, 103, 34, 58, 34, 82, 83, 50, 53, 54, 34, 125] 1055 Base64url encoding these bytes yields this Encoded JWS Header value: 1056 eyJhbGciOiJSUzI1NiJ9 1058 The JWS Payload used in this example, which follows, is the same as 1059 in the previous example. Since the Encoded JWS Payload will 1060 therefore be the same, its computation is not repeated here. 1061 {"iss":"joe", 1062 "exp":1300819380, 1063 "http://example.com/is_root":true} 1065 Concatenating the Encoded JWS Header, a period character, and the 1066 Encoded JWS Payload yields this JWS Secured Input value (with line 1067 breaks for display purposes only): 1068 eyJhbGciOiJSUzI1NiJ9 1069 . 1070 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt 1071 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ 1073 The ASCII representation of the JWS Secured Input is the following 1074 byte array: 1076 [101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 122, 73, 1077 49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51, 77, 105, 79, 105, 1078 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101, 72, 1079 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68, 1080 65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76, 1081 121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76, 109, 78, 118, 1082 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48, 1083 99, 110, 86, 108, 102, 81] 1085 The RSA key consists of a public part (Modulus, Exponent), and a 1086 Private Exponent. The values of the RSA key used in this example, 1087 presented as the byte arrays representing big endian integers are: 1089 +-----------+-------------------------------------------------------+ 1090 | Parameter | Value | 1091 | Name | | 1092 +-----------+-------------------------------------------------------+ 1093 | Modulus | [161, 248, 22, 10, 226, 227, 201, 180, 101, 206, 141, | 1094 | | 45, 101, 98, 99, 54, 43, 146, 125, 190, 41, 225, 240, | 1095 | | 36, 119, 252, 22, 37, 204, 144, 161, 54, 227, 139, | 1096 | | 217, 52, 151, 197, 182, 234, 99, 221, 119, 17, 230, | 1097 | | 124, 116, 41, 249, 86, 176, 251, 138, 143, 8, 154, | 1098 | | 220, 75, 105, 137, 60, 193, 51, 63, 83, 237, 208, 25, | 1099 | | 184, 119, 132, 37, 47, 236, 145, 79, 228, 133, 119, | 1100 | | 105, 89, 75, 234, 66, 128, 211, 44, 15, 85, 191, 98, | 1101 | | 148, 79, 19, 3, 150, 188, 110, 155, 223, 110, 189, | 1102 | | 210, 189, 163, 103, 142, 236, 160, 198, 104, 247, 1, | 1103 | | 179, 141, 191, 251, 56, 200, 52, 44, 226, 254, 109, | 1104 | | 39, 250, 222, 74, 90, 72, 116, 151, 157, 212, 185, | 1105 | | 207, 154, 222, 196, 199, 91, 5, 133, 44, 44, 15, 94, | 1106 | | 248, 165, 193, 117, 3, 146, 249, 68, 232, 237, 100, | 1107 | | 193, 16, 198, 182, 71, 96, 154, 164, 120, 58, 235, | 1108 | | 156, 108, 154, 215, 85, 49, 48, 80, 99, 139, 131, | 1109 | | 102, 92, 111, 111, 122, 130, 163, 150, 112, 42, 31, | 1110 | | 100, 27, 130, 211, 235, 242, 57, 34, 25, 73, 31, 182, | 1111 | | 134, 135, 44, 87, 22, 245, 10, 248, 53, 141, 154, | 1112 | | 139, 157, 23, 195, 64, 114, 143, 127, 135, 216, 154, | 1113 | | 24, 216, 252, 171, 103, 173, 132, 89, 12, 46, 207, | 1114 | | 117, 147, 57, 54, 60, 7, 3, 77, 111, 96, 111, 158, | 1115 | | 33, 224, 84, 86, 202, 229, 233, 161] | 1116 | Exponent | [1, 0, 1] | 1117 | Private | [18, 174, 113, 164, 105, 205, 10, 43, 195, 126, 82, | 1118 | Exponent | 108, 69, 0, 87, 31, 29, 97, 117, 29, 100, 233, 73, | 1119 | | 112, 123, 98, 89, 15, 157, 11, 165, 124, 150, 60, 64, | 1120 | | 30, 63, 207, 47, 44, 211, 189, 236, 136, 229, 3, 191, | 1121 | | 198, 67, 155, 11, 40, 200, 47, 125, 55, 151, 103, 31, | 1122 | | 82, 19, 238, 216, 193, 90, 37, 216, 213, 206, 160, 2, | 1123 | | 94, 227, 171, 46, 139, 127, 121, 33, 111, 198, 59, | 1124 | | 234, 86, 39, 83, 180, 6, 68, 198, 161, 81, 39, 217, | 1125 | | 178, 149, 69, 64, 160, 187, 225, 163, 5, 86, 152, 45, | 1126 | | 78, 159, 222, 95, 100, 37, 241, 77, 75, 113, 52, 65, | 1127 | | 181, 93, 199, 59, 155, 74, 237, 204, 146, 172, 227, | 1128 | | 146, 126, 55, 245, 125, 12, 253, 94, 117, 129, 250, | 1129 | | 81, 44, 143, 73, 97, 169, 235, 11, 128, 248, 168, 7, | 1130 | | 70, 114, 138, 85, 255, 70, 71, 31, 52, 37, 6, 59, | 1131 | | 157, 83, 100, 47, 94, 222, 30, 132, 214, 19, 8, 26, | 1132 | | 250, 92, 34, 208, 81, 40, 91, 214, 59, 148, 59, 86, | 1133 | | 93, 137, 138, 5, 104, 84, 19, 229, 60, 60, 108, 101, | 1134 | | 37, 255, 31, 227, 78, 61, 220, 112, 240, 213, 100, | 1135 | | 80, 253, 164, 139, 161, 46, 16, 78, 157, 235, 159, | 1136 | | 184, 24, 129, 225, 196, 189, 242, 93, 146, 71, 244, | 1137 | | 80, 200, 101, 146, 121, 104, 231, 115, 52, 244, 65, | 1138 | | 79, 117, 167, 80, 225, 57, 84, 110, 58, 138, 115, | 1139 | | 157] | 1140 +-----------+-------------------------------------------------------+ 1142 The RSA private key (Modulus, Private Exponent) is then passed to the 1143 RSA signing function, which also takes the hash type, SHA-256, and 1144 the bytes of the ASCII representation of the JWS Secured Input as 1145 inputs. The result of the digital signature is a byte array, which 1146 represents a big endian integer. In this example, it is: 1148 [112, 46, 33, 137, 67, 232, 143, 209, 30, 181, 216, 45, 191, 120, 69, 1149 243, 65, 6, 174, 27, 129, 255, 247, 115, 17, 22, 173, 209, 113, 125, 1150 131, 101, 109, 66, 10, 253, 60, 150, 238, 221, 115, 162, 102, 62, 81, 1151 102, 104, 123, 0, 11, 135, 34, 110, 1, 135, 237, 16, 115, 249, 69, 1152 229, 130, 173, 252, 239, 22, 216, 90, 121, 142, 232, 198, 109, 219, 1153 61, 184, 151, 91, 23, 208, 148, 2, 190, 237, 213, 217, 217, 112, 7, 1154 16, 141, 178, 129, 96, 213, 248, 4, 12, 167, 68, 87, 98, 184, 31, 1155 190, 127, 249, 217, 46, 10, 231, 111, 36, 242, 91, 51, 187, 230, 244, 1156 74, 230, 30, 177, 4, 10, 203, 32, 4, 77, 62, 249, 18, 142, 212, 1, 1157 48, 121, 91, 212, 189, 59, 65, 238, 202, 208, 102, 171, 101, 25, 129, 1158 253, 228, 141, 247, 127, 55, 45, 195, 139, 159, 175, 221, 59, 239, 1159 177, 139, 93, 163, 204, 60, 46, 176, 47, 158, 58, 65, 214, 18, 202, 1160 173, 21, 145, 18, 115, 160, 95, 35, 185, 232, 56, 250, 175, 132, 157, 1161 105, 132, 41, 239, 90, 30, 136, 121, 130, 54, 195, 212, 14, 96, 69, 1162 34, 165, 68, 200, 242, 122, 122, 45, 184, 6, 99, 209, 108, 247, 202, 1163 234, 86, 222, 64, 92, 178, 33, 90, 69, 178, 194, 85, 102, 181, 90, 1164 193, 167, 72, 160, 112, 223, 200, 163, 42, 70, 149, 67, 208, 25, 238, 1165 251, 71] 1167 Base64url encoding the digital signature produces this value for the 1168 Encoded JWS Signature (with line breaks for display purposes only): 1169 cC4hiUPoj9Eetdgtv3hF80EGrhuB__dzERat0XF9g2VtQgr9PJbu3XOiZj5RZmh7 1170 AAuHIm4Bh-0Qc_lF5YKt_O8W2Fp5jujGbds9uJdbF9CUAr7t1dnZcAcQjbKBYNX4 1171 BAynRFdiuB--f_nZLgrnbyTyWzO75vRK5h6xBArLIARNPvkSjtQBMHlb1L07Qe7K 1172 0GarZRmB_eSN9383LcOLn6_dO--xi12jzDwusC-eOkHWEsqtFZESc6BfI7noOPqv 1173 hJ1phCnvWh6IeYI2w9QOYEUipUTI8np6LbgGY9Fs98rqVt5AXLIhWkWywlVmtVrB 1174 p0igcN_IoypGlUPQGe77Rw 1176 A.2.2. Decoding 1178 Decoding the JWS requires base64url decoding the Encoded JWS Header, 1179 Encoded JWS Payload, and Encoded JWS Signature to produce the JWS 1180 Header, JWS Payload, and JWS Signature byte arrays. The byte array 1181 containing the UTF-8 representation of the JWS Header is decoded into 1182 the JWS Header string. 1184 A.2.3. Validating 1186 Since the "alg" parameter in the header is "RS256", we validate the 1187 RSA SHA-256 digital signature contained in the JWS Signature. If any 1188 of the validation steps fail, the JWS MUST be rejected. 1190 First, we validate that the JWS Header string is legal JSON. 1192 Validating the JWS Signature is a little different from the previous 1193 example. First, we base64url decode the Encoded JWS Signature to 1194 produce a digital signature S to check. We then pass (n, e), S and 1195 the bytes of the ASCII representation of the JWS Secured Input to an 1196 RSA signature verifier that has been configured to use the SHA-256 1197 hash function. 1199 A.3. JWS using ECDSA P-256 SHA-256 1201 A.3.1. Encoding 1203 The JWS Header for this example differs from the previous example 1204 because a different algorithm is being used. The JWS Header used is: 1205 {"alg":"ES256"} 1207 The following byte array contains the UTF-8 representation of the JWS 1208 Header: 1210 [123, 34, 97, 108, 103, 34, 58, 34, 69, 83, 50, 53, 54, 34, 125] 1212 Base64url encoding these bytes yields this Encoded JWS Header value: 1214 eyJhbGciOiJFUzI1NiJ9 1216 The JWS Payload used in this example, which follows, is the same as 1217 in the previous examples. Since the Encoded JWS Payload will 1218 therefore be the same, its computation is not repeated here. 1219 {"iss":"joe", 1220 "exp":1300819380, 1221 "http://example.com/is_root":true} 1223 Concatenating the Encoded JWS Header, a period character, and the 1224 Encoded JWS Payload yields this JWS Secured Input value (with line 1225 breaks for display purposes only): 1226 eyJhbGciOiJFUzI1NiJ9 1227 . 1228 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt 1229 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ 1231 The ASCII representation of the JWS Secured Input is the following 1232 byte array: 1234 [101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 70, 85, 122, 73, 1235 49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51, 77, 105, 79, 105, 1236 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101, 72, 1237 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68, 1238 65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76, 1239 121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76, 109, 78, 118, 1240 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48, 1241 99, 110, 86, 108, 102, 81] 1243 The ECDSA key consists of a public part, the EC point (x, y), and a 1244 private part d. The values of the ECDSA key used in this example, 1245 presented as the byte arrays representing three 256 bit big endian 1246 integers are: 1248 +-----------+-------------------------------------------------------+ 1249 | Parameter | Value | 1250 | Name | | 1251 +-----------+-------------------------------------------------------+ 1252 | x | [127, 205, 206, 39, 112, 246, 196, 93, 65, 131, 203, | 1253 | | 238, 111, 219, 75, 123, 88, 7, 51, 53, 123, 233, 239, | 1254 | | 19, 186, 207, 110, 60, 123, 209, 84, 69] | 1255 | y | [199, 241, 68, 205, 27, 189, 155, 126, 135, 44, 223, | 1256 | | 237, 185, 238, 185, 244, 179, 105, 93, 110, 169, 11, | 1257 | | 36, 173, 138, 70, 35, 40, 133, 136, 229, 173] | 1258 | d | [142, 155, 16, 158, 113, 144, 152, 191, 152, 4, 135, | 1259 | | 223, 31, 93, 119, 233, 203, 41, 96, 110, 190, 210, | 1260 | | 38, 59, 95, 87, 194, 19, 223, 132, 244, 178] | 1261 +-----------+-------------------------------------------------------+ 1262 The ECDSA private part d is then passed to an ECDSA signing function, 1263 which also takes the curve type, P-256, the hash type, SHA-256, and 1264 the bytes of the ASCII representation of the JWS Secured Input as 1265 inputs. The result of the digital signature is the EC point (R, S), 1266 where R and S are unsigned integers. In this example, the R and S 1267 values, given as byte arrays representing big endian integers are: 1269 +--------+----------------------------------------------------------+ 1270 | Result | Value | 1271 | Name | | 1272 +--------+----------------------------------------------------------+ 1273 | R | [14, 209, 33, 83, 121, 99, 108, 72, 60, 47, 127, 21, 88, | 1274 | | 7, 212, 2, 163, 178, 40, 3, 58, 249, 124, 126, 23, 129, | 1275 | | 154, 195, 22, 158, 166, 101] | 1276 | S | [197, 10, 7, 211, 140, 60, 112, 229, 216, 241, 45, 175, | 1277 | | 8, 74, 84, 128, 166, 101, 144, 197, 242, 147, 80, 154, | 1278 | | 143, 63, 127, 138, 131, 163, 84, 213] | 1279 +--------+----------------------------------------------------------+ 1281 Concatenating the S array to the end of the R array and base64url 1282 encoding the result produces this value for the Encoded JWS Signature 1283 (with line breaks for display purposes only): 1284 DtEhU3ljbEg8L38VWAfUAqOyKAM6-Xx-F4GawxaepmXFCgfTjDxw5djxLa8ISlSA 1285 pmWQxfKTUJqPP3-Kg6NU1Q 1287 A.3.2. Decoding 1289 Decoding the JWS requires base64url decoding the Encoded JWS Header, 1290 Encoded JWS Payload, and Encoded JWS Signature to produce the JWS 1291 Header, JWS Payload, and JWS Signature byte arrays. The byte array 1292 containing the UTF-8 representation of the JWS Header is decoded into 1293 the JWS Header string. 1295 A.3.3. Validating 1297 Since the "alg" parameter in the header is "ES256", we validate the 1298 ECDSA P-256 SHA-256 digital signature contained in the JWS Signature. 1299 If any of the validation steps fail, the JWS MUST be rejected. 1301 First, we validate that the JWS Header string is legal JSON. 1303 Validating the JWS Signature is a little different from the first 1304 example. First, we base64url decode the Encoded JWS Signature as in 1305 the previous examples but we then need to split the 64 member byte 1306 array that must result into two 32 byte arrays, the first R and the 1307 second S. We then pass (x, y), (R, S) and the bytes of the ASCII 1308 representation of the JWS Secured Input to an ECDSA signature 1309 verifier that has been configured to use the P-256 curve with the 1310 SHA-256 hash function. 1312 As explained in Section 3.4 of the JSON Web Algorithms (JWA) [JWA] 1313 specification, the use of the K value in ECDSA means that we cannot 1314 validate the correctness of the digital signature in the same way we 1315 validated the correctness of the HMAC. Instead, implementations MUST 1316 use an ECDSA validator to validate the digital signature. 1318 A.4. JWS using ECDSA P-521 SHA-512 1320 A.4.1. Encoding 1322 The JWS Header for this example differs from the previous example 1323 because a different ECDSA curve and hash function are used. The JWS 1324 Header used is: 1325 {"alg":"ES512"} 1327 The following byte array contains the UTF-8 representation of the JWS 1328 Header: 1330 [123, 34, 97, 108, 103, 34, 58, 34, 69, 83, 53, 49, 50, 34, 125] 1332 Base64url encoding these bytes yields this Encoded JWS Header value: 1333 eyJhbGciOiJFUzUxMiJ9 1335 The JWS Payload used in this example, is the ASCII string "Payload". 1336 The representation of this string is the byte array: 1338 [80, 97, 121, 108, 111, 97, 100] 1340 Base64url encoding these bytes yields the Encoded JWS Payload value: 1341 UGF5bG9hZA 1343 Concatenating the Encoded JWS Header, a period character, and the 1344 Encoded JWS Payload yields this JWS Secured Input value: 1345 eyJhbGciOiJFUzUxMiJ9.UGF5bG9hZA 1347 The ASCII representation of the JWS Secured Input is the following 1348 byte array: 1350 [101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 70, 85, 122, 85, 1351 120, 77, 105, 74, 57, 46, 85, 71, 70, 53, 98, 71, 57, 104, 90, 65] 1353 The ECDSA key consists of a public part, the EC point (x, y), and a 1354 private part d. The values of the ECDSA key used in this example, 1355 presented as the byte arrays representing three 521 bit big endian 1356 integers are: 1358 +-----------+-------------------------------------------------------+ 1359 | Parameter | Value | 1360 | Name | | 1361 +-----------+-------------------------------------------------------+ 1362 | x | [1, 233, 41, 5, 15, 18, 79, 198, 188, 85, 199, 213, | 1363 | | 57, 51, 101, 223, 157, 239, 74, 176, 194, 44, 178, | 1364 | | 87, 152, 249, 52, 235, 4, 227, 198, 186, 227, 112, | 1365 | | 26, 87, 167, 145, 14, 157, 129, 191, 54, 49, 89, 232, | 1366 | | 235, 203, 21, 93, 99, 73, 244, 189, 182, 204, 248, | 1367 | | 169, 76, 92, 89, 199, 170, 193, 1, 164] | 1368 | y | [0, 52, 166, 68, 14, 55, 103, 80, 210, 55, 31, 209, | 1369 | | 189, 194, 200, 243, 183, 29, 47, 78, 229, 234, 52, | 1370 | | 50, 200, 21, 204, 163, 21, 96, 254, 93, 147, 135, | 1371 | | 236, 119, 75, 85, 131, 134, 48, 229, 203, 191, 90, | 1372 | | 140, 190, 10, 145, 221, 0, 100, 198, 153, 154, 31, | 1373 | | 110, 110, 103, 250, 221, 237, 228, 200, 200, 246] | 1374 | d | [1, 142, 105, 111, 176, 52, 80, 88, 129, 221, 17, 11, | 1375 | | 72, 62, 184, 125, 50, 206, 73, 95, 227, 107, 55, 69, | 1376 | | 237, 242, 216, 202, 228, 240, 242, 83, 159, 70, 21, | 1377 | | 160, 233, 142, 171, 82, 179, 192, 197, 234, 196, 206, | 1378 | | 7, 81, 133, 168, 231, 187, 71, 222, 172, 29, 29, 231, | 1379 | | 123, 204, 246, 97, 53, 230, 61, 130] | 1380 +-----------+-------------------------------------------------------+ 1382 The ECDSA private part d is then passed to an ECDSA signing function, 1383 which also takes the curve type, P-521, the hash type, SHA-512, and 1384 the bytes of the ASCII representation of the JWS Secured Input as 1385 inputs. The result of the digital signature is the EC point (R, S), 1386 where R and S are unsigned integers. In this example, the R and S 1387 values, given as byte arrays representing big endian integers are: 1389 +--------+----------------------------------------------------------+ 1390 | Result | Value | 1391 | Name | | 1392 +--------+----------------------------------------------------------+ 1393 | R | [1, 220, 12, 129, 231, 171, 194, 209, 232, 135, 233, | 1394 | | 117, 247, 105, 122, 210, 26, 125, 192, 1, 217, 21, 82, | 1395 | | 91, 45, 240, 255, 83, 19, 34, 239, 71, 48, 157, 147, | 1396 | | 152, 105, 18, 53, 108, 163, 214, 68, 231, 62, 153, 150, | 1397 | | 106, 194, 164, 246, 72, 143, 138, 24, 50, 129, 223, 133, | 1398 | | 206, 209, 172, 63, 237, 119, 109] | 1399 | S | [0, 111, 6, 105, 44, 5, 41, 208, 128, 61, 152, 40, 92, | 1400 | | 61, 152, 4, 150, 66, 60, 69, 247, 196, 170, 81, 193, | 1401 | | 199, 78, 59, 194, 169, 16, 124, 9, 143, 42, 142, 131, | 1402 | | 48, 206, 238, 34, 175, 83, 203, 220, 159, 3, 107, 155, | 1403 | | 22, 27, 73, 111, 68, 68, 21, 238, 144, 229, 232, 148, | 1404 | | 188, 222, 59, 242, 103] | 1405 +--------+----------------------------------------------------------+ 1406 Concatenating the S array to the end of the R array and base64url 1407 encoding the result produces this value for the Encoded JWS Signature 1408 (with line breaks for display purposes only): 1409 AdwMgeerwtHoh-l192l60hp9wAHZFVJbLfD_UxMi70cwnZOYaRI1bKPWROc-mZZq 1410 wqT2SI-KGDKB34XO0aw_7XdtAG8GaSwFKdCAPZgoXD2YBJZCPEX3xKpRwcdOO8Kp 1411 EHwJjyqOgzDO7iKvU8vcnwNrmxYbSW9ERBXukOXolLzeO_Jn 1413 A.4.2. Decoding 1415 Decoding the JWS requires base64url decoding the Encoded JWS Header, 1416 Encoded JWS Payload, and Encoded JWS Signature to produce the JWS 1417 Header, JWS Payload, and JWS Signature byte arrays. The byte array 1418 containing the UTF-8 representation of the JWS Header is decoded into 1419 the JWS Header string. 1421 A.4.3. Validating 1423 Since the "alg" parameter in the header is "ES512", we validate the 1424 ECDSA P-521 SHA-512 digital signature contained in the JWS Signature. 1425 If any of the validation steps fail, the JWS MUST be rejected. 1427 First, we validate that the JWS Header string is legal JSON. 1429 Validating the JWS Signature is similar to the previous example. 1430 First, we base64url decode the Encoded JWS Signature as in the 1431 previous examples but we then need to split the 132 member byte array 1432 that must result into two 66 byte arrays, the first R and the second 1433 S. We then pass (x, y), (R, S) and the bytes of the ASCII 1434 representation of the JWS Secured Input to an ECDSA signature 1435 verifier that has been configured to use the P-521 curve with the 1436 SHA-512 hash function. 1438 As explained in Section 3.4 of the JSON Web Algorithms (JWA) [JWA] 1439 specification, the use of the K value in ECDSA means that we cannot 1440 validate the correctness of the digital signature in the same way we 1441 validated the correctness of the HMAC. Instead, implementations MUST 1442 use an ECDSA validator to validate the digital signature. 1444 A.5. Example Plaintext JWS 1446 The following example JWS Header declares that the encoded object is 1447 a Plaintext JWS: 1448 {"alg":"none"} 1450 Base64url encoding the bytes of the UTF-8 representation of the JWS 1451 Header yields this Encoded JWS Header: 1452 eyJhbGciOiJub25lIn0 1453 The JWS Payload used in this example, which follows, is the same as 1454 in the previous examples. Since the Encoded JWS Payload will 1455 therefore be the same, its computation is not repeated here. 1456 {"iss":"joe", 1457 "exp":1300819380, 1458 "http://example.com/is_root":true} 1460 The Encoded JWS Signature is the empty string. 1462 Concatenating these parts in the order Header.Payload.Signature with 1463 period characters between the parts yields this complete JWS (with 1464 line breaks for display purposes only): 1465 eyJhbGciOiJub25lIn0 1466 . 1467 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt 1468 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ 1469 . 1471 Appendix B. "x5c" (X.509 Certificate Chain) Example 1473 The string below is an example of a certificate chain that could be 1474 used as the value of an "x5c" (X.509 Certificate Chain) header 1475 parameter, per Section 4.1.6. 1476 -----BEGIN CERTIFICATE----- 1477 MIIE3jCCA8agAwIBAgICAwEwDQYJKoZIhvcNAQEFBQAwYzELMAkGA1UEBhMCVVM 1478 xITAfBgNVBAoTGFRoZSBHbyBEYWRkeSBHcm91cCwgSW5jLjExMC8GA1UECxMoR2 1479 8gRGFkZHkgQ2xhc3MgMiBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eTAeFw0wNjExM 1480 TYwMTU0MzdaFw0yNjExMTYwMTU0MzdaMIHKMQswCQYDVQQGEwJVUzEQMA4GA1UE 1481 CBMHQXJpem9uYTETMBEGA1UEBxMKU2NvdHRzZGFsZTEaMBgGA1UEChMRR29EYWR 1482 keS5jb20sIEluYy4xMzAxBgNVBAsTKmh0dHA6Ly9jZXJ0aWZpY2F0ZXMuZ29kYW 1483 RkeS5jb20vcmVwb3NpdG9yeTEwMC4GA1UEAxMnR28gRGFkZHkgU2VjdXJlIENlc 1484 nRpZmljYXRpb24gQXV0aG9yaXR5MREwDwYDVQQFEwgwNzk2OTI4NzCCASIwDQYJ 1485 KoZIhvcNAQEBBQADggEPADCCAQoCggEBAMQt1RWMnCZM7DI161+4WQFapmGBWTt 1486 wY6vj3D3HKrjJM9N55DrtPDAjhI6zMBS2sofDPZVUBJ7fmd0LJR4h3mUpfjWoqV 1487 Tr9vcyOdQmVZWt7/v+WIbXnvQAjYwqDL1CBM6nPwT27oDyqu9SoWlm2r4arV3aL 1488 GbqGmu75RpRSgAvSMeYddi5Kcju+GZtCpyz8/x4fKL4o/K1w/O5epHBp+YlLpyo 1489 7RJlbmr2EkRTcDCVw5wrWCs9CHRK8r5RsL+H0EwnWGu1NcWdrxcx+AuP7q2BNgW 1490 JCJjPOq8lh8BJ6qf9Z/dFjpfMFDniNoW1fho3/Rb2cRGadDAW/hOUoz+EDU8CAw 1491 EAAaOCATIwggEuMB0GA1UdDgQWBBT9rGEyk2xF1uLuhV+auud2mWjM5zAfBgNVH 1492 SMEGDAWgBTSxLDSkdRMEXGzYcs9of7dqGrU4zASBgNVHRMBAf8ECDAGAQH/AgEA 1493 MDMGCCsGAQUFBwEBBCcwJTAjBggrBgEFBQcwAYYXaHR0cDovL29jc3AuZ29kYWR 1494 keS5jb20wRgYDVR0fBD8wPTA7oDmgN4Y1aHR0cDovL2NlcnRpZmljYXRlcy5nb2 1495 RhZGR5LmNvbS9yZXBvc2l0b3J5L2dkcm9vdC5jcmwwSwYDVR0gBEQwQjBABgRVH 1496 SAAMDgwNgYIKwYBBQUHAgEWKmh0dHA6Ly9jZXJ0aWZpY2F0ZXMuZ29kYWRkeS5j 1497 b20vcmVwb3NpdG9yeTAOBgNVHQ8BAf8EBAMCAQYwDQYJKoZIhvcNAQEFBQADggE 1498 BANKGwOy9+aG2Z+5mC6IGOgRQjhVyrEp0lVPLN8tESe8HkGsz2ZbwlFalEzAFPI 1499 UyIXvJxwqoJKSQ3kbTJSMUA2fCENZvD117esyfxVgqwcSeIaha86ykRvOe5GPLL 1500 5CkKSkB2XIsKd83ASe8T+5o0yGPwLPk9Qnt0hCqU7S+8MxZC9Y7lhyVJEnfzuz9 1501 p0iRFEUOOjZv2kWzRaJBydTXRE4+uXR21aITVSzGh6O1mawGhId/dQb8vxRMDsx 1502 uxN89txJx9OjxUUAiKEngHUuHqDTMBqLdElrRhjZkAzVvb3du6/KFUJheqwNTrZ 1503 EjYx8WnM25sgVjOuH0aBsXBTWVU+4= 1504 -----END CERTIFICATE----- 1505 -----BEGIN CERTIFICATE----- 1506 MIIE+zCCBGSgAwIBAgICAQ0wDQYJKoZIhvcNAQEFBQAwgbsxJDAiBgNVBAcTG1Z 1507 hbGlDZXJ0IFZhbGlkYXRpb24gTmV0d29yazEXMBUGA1UEChMOVmFsaUNlcnQsIE 1508 luYy4xNTAzBgNVBAsTLFZhbGlDZXJ0IENsYXNzIDIgUG9saWN5IFZhbGlkYXRpb 1509 24gQXV0aG9yaXR5MSEwHwYDVQQDExhodHRwOi8vd3d3LnZhbGljZXJ0LmNvbS8x 1510 IDAeBgkqhkiG9w0BCQEWEWluZm9AdmFsaWNlcnQuY29tMB4XDTA0MDYyOTE3MDY 1511 yMFoXDTI0MDYyOTE3MDYyMFowYzELMAkGA1UEBhMCVVMxITAfBgNVBAoTGFRoZS 1512 BHbyBEYWRkeSBHcm91cCwgSW5jLjExMC8GA1UECxMoR28gRGFkZHkgQ2xhc3MgM 1513 iBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eTCCASAwDQYJKoZIhvcNAQEBBQADggEN 1514 ADCCAQgCggEBAN6d1+pXGEmhW+vXX0iG6r7d/+TvZxz0ZWizV3GgXne77ZtJ6XC 1515 APVYYYwhv2vLM0D9/AlQiVBDYsoHUwHU9S3/Hd8M+eKsaA7Ugay9qK7HFiH7Eux 1516 6wwdhFJ2+qN1j3hybX2C32qRe3H3I2TqYXP2WYktsqbl2i/ojgC95/5Y0V4evLO 1517 tXiEqITLdiOr18SPaAIBQi2XKVlOARFmR6jYGB0xUGlcmIbYsUfb18aQr4CUWWo 1518 riMYavx4A6lNf4DD+qta/KFApMoZFv6yyO9ecw3ud72a9nmYvLEHZ6IVDd2gWMZ 1519 Eewo+YihfukEHU1jPEX44dMX4/7VpkI+EdOqXG68CAQOjggHhMIIB3TAdBgNVHQ 1520 4EFgQU0sSw0pHUTBFxs2HLPaH+3ahq1OMwgdIGA1UdIwSByjCBx6GBwaSBvjCBu 1521 zEkMCIGA1UEBxMbVmFsaUNlcnQgVmFsaWRhdGlvbiBOZXR3b3JrMRcwFQYDVQQK 1522 Ew5WYWxpQ2VydCwgSW5jLjE1MDMGA1UECxMsVmFsaUNlcnQgQ2xhc3MgMiBQb2x 1523 pY3kgVmFsaWRhdGlvbiBBdXRob3JpdHkxITAfBgNVBAMTGGh0dHA6Ly93d3cudm 1524 FsaWNlcnQuY29tLzEgMB4GCSqGSIb3DQEJARYRaW5mb0B2YWxpY2VydC5jb22CA 1525 QEwDwYDVR0TAQH/BAUwAwEB/zAzBggrBgEFBQcBAQQnMCUwIwYIKwYBBQUHMAGG 1526 F2h0dHA6Ly9vY3NwLmdvZGFkZHkuY29tMEQGA1UdHwQ9MDswOaA3oDWGM2h0dHA 1527 6Ly9jZXJ0aWZpY2F0ZXMuZ29kYWRkeS5jb20vcmVwb3NpdG9yeS9yb290LmNybD 1528 BLBgNVHSAERDBCMEAGBFUdIAAwODA2BggrBgEFBQcCARYqaHR0cDovL2NlcnRpZ 1529 mljYXRlcy5nb2RhZGR5LmNvbS9yZXBvc2l0b3J5MA4GA1UdDwEB/wQEAwIBBjAN 1530 BgkqhkiG9w0BAQUFAAOBgQC1QPmnHfbq/qQaQlpE9xXUhUaJwL6e4+PrxeNYiY+ 1531 Sn1eocSxI0YGyeR+sBjUZsE4OWBsUs5iB0QQeyAfJg594RAoYC5jcdnplDQ1tgM 1532 QLARzLrUc+cb53S8wGd9D0VmsfSxOaFIqII6hR8INMqzW/Rn453HWkrugp++85j 1533 09VZw== 1534 -----END CERTIFICATE----- 1535 -----BEGIN CERTIFICATE----- 1536 MIIC5zCCAlACAQEwDQYJKoZIhvcNAQEFBQAwgbsxJDAiBgNVBAcTG1ZhbGlDZXJ 1537 0IFZhbGlkYXRpb24gTmV0d29yazEXMBUGA1UEChMOVmFsaUNlcnQsIEluYy4xNT 1538 AzBgNVBAsTLFZhbGlDZXJ0IENsYXNzIDIgUG9saWN5IFZhbGlkYXRpb24gQXV0a 1539 G9yaXR5MSEwHwYDVQQDExhodHRwOi8vd3d3LnZhbGljZXJ0LmNvbS8xIDAeBgkq 1540 hkiG9w0BCQEWEWluZm9AdmFsaWNlcnQuY29tMB4XDTk5MDYyNjAwMTk1NFoXDTE 1541 5MDYyNjAwMTk1NFowgbsxJDAiBgNVBAcTG1ZhbGlDZXJ0IFZhbGlkYXRpb24gTm 1542 V0d29yazEXMBUGA1UEChMOVmFsaUNlcnQsIEluYy4xNTAzBgNVBAsTLFZhbGlDZ 1543 XJ0IENsYXNzIDIgUG9saWN5IFZhbGlkYXRpb24gQXV0aG9yaXR5MSEwHwYDVQQD 1544 ExhodHRwOi8vd3d3LnZhbGljZXJ0LmNvbS8xIDAeBgkqhkiG9w0BCQEWEWluZm9 1545 AdmFsaWNlcnQuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDOOnHK5a 1546 vIWZJV16vYdA757tn2VUdZZUcOBVXc65g2PFxTXdMwzzjsvUGJ7SVCCSRrCl6zf 1547 N1SLUzm1NZ9WlmpZdRJEy0kTRxQb7XBhVQ7/nHk01xC+YDgkRoKWzk2Z/M/VXwb 1548 P7RfZHM047QSv4dk+NoS/zcnwbNDu+97bi5p9wIDAQABMA0GCSqGSIb3DQEBBQU 1549 AA4GBADt/UG9vUJSZSWI4OB9L+KXIPqeCgfYrx+jFzug6EILLGACOTb2oWH+heQ 1550 C1u+mNr0HZDzTuIYEZoDJJKPTEjlbVUjP9UNV+mWwD5MlM/Mtsq2azSiGM5bUMM 1551 j4QssxsodyamEwCW/POuZ6lcg5Ktz885hZo+L7tdEy8W9ViH0Pd 1552 -----END CERTIFICATE----- 1554 Appendix C. Notes on implementing base64url encoding without padding 1556 This appendix describes how to implement base64url encoding and 1557 decoding functions without padding based upon standard base64 1558 encoding and decoding functions that do use padding. 1560 To be concrete, example C# code implementing these functions is shown 1561 below. Similar code could be used in other languages. 1562 static string base64urlencode(byte [] arg) 1563 { 1564 string s = Convert.ToBase64String(arg); // Standard base64 encoder 1565 s = s.Split('=')[0]; // Remove any trailing '='s 1566 s = s.Replace('+', '-'); // 62nd char of encoding 1567 s = s.Replace('/', '_'); // 63rd char of encoding 1568 return s; 1569 } 1571 static byte [] base64urldecode(string arg) 1572 { 1573 string s = arg; 1574 s = s.Replace('-', '+'); // 62nd char of encoding 1575 s = s.Replace('_', '/'); // 63rd char of encoding 1576 switch (s.Length % 4) // Pad with trailing '='s 1577 { 1578 case 0: break; // No pad chars in this case 1579 case 2: s += "=="; break; // Two pad chars 1580 case 3: s += "="; break; // One pad char 1581 default: throw new System.Exception( 1582 "Illegal base64url string!"); 1583 } 1584 return Convert.FromBase64String(s); // Standard base64 decoder 1585 } 1587 As per the example code above, the number of '=' padding characters 1588 that needs to be added to the end of a base64url encoded string 1589 without padding to turn it into one with padding is a deterministic 1590 function of the length of the encoded string. Specifically, if the 1591 length mod 4 is 0, no padding is added; if the length mod 4 is 2, two 1592 '=' padding characters are added; if the length mod 4 is 3, one '=' 1593 padding character is added; if the length mod 4 is 1, the input is 1594 malformed. 1596 An example correspondence between unencoded and encoded values 1597 follows. The byte sequence below encodes into the string below, 1598 which when decoded, reproduces the byte sequence. 1599 3 236 255 224 193 1600 A-z_4ME 1602 Appendix D. Acknowledgements 1604 Solutions for signing JSON content were previously explored by Magic 1605 Signatures [MagicSignatures], JSON Simple Sign [JSS], and Canvas 1606 Applications [CanvasApp], all of which influenced this draft. Dirk 1607 Balfanz, Yaron Y. Goland, John Panzer, and Paul Tarjan all made 1608 significant contributions to the design of this specification. 1610 My thanks to Axel Nennker for his early implementation and feedback 1611 on the JWS and JWE specifications. 1613 Appendix E. Document History 1615 [[ to be removed by the RFC editor before publication as an RFC ]] 1617 -03 1619 o Added the "cty" (content type) header parameter for declaring type 1620 information about the secured content, as opposed to the "typ" 1621 (type) header parameter, which declares type information about 1622 this object. 1624 o Added "Collision Resistant Namespace" to the terminology section. 1626 o Reference ITU.X690.1994 for DER encoding. 1628 o Added an example JWS using ECDSA P-521 SHA-512. This has 1629 particular illustrative value because of the use of the 521 bit 1630 integers in the key and signature values. This is also an example 1631 in which the payload is not a base64url encoded JSON object. 1633 o Added an example "x5c" value. 1635 o No longer say "the UTF-8 representation of the JWS Secured Input 1636 (which is the same as the ASCII representation)". Just call it 1637 "the ASCII representation of the JWS Secured Input". 1639 o Added Registration Template sections for defined registries. 1641 o Added Registry Contents sections to populate registry values. 1643 o Changed name of the JSON Web Signature and Encryption "typ" Values 1644 registry to be the JSON Web Signature and Encryption Type Values 1645 registry, since it is used for more than just values of the "typ" 1646 parameter. 1648 o Moved registries JSON Web Signature and Encryption Header 1649 Parameters and JSON Web Signature and Encryption Type Values to 1650 the JWS specification. 1652 o Numerous editorial improvements. 1654 -02 1656 o Clarified that it is an error when a "kid" value is included and 1657 no matching key is found. 1659 o Removed assumption that "kid" (key ID) can only refer to an 1660 asymmetric key. 1662 o Clarified that JWSs with duplicate Header Parameter Names MUST be 1663 rejected. 1665 o Clarified the relationship between "typ" header parameter values 1666 and MIME types. 1668 o Registered application/jws MIME type and "JWS" typ header 1669 parameter value. 1671 o Simplified JWK terminology to get replace the "JWK Key Object" and 1672 "JWK Container Object" terms with simply "JSON Web Key (JWK)" and 1673 "JSON Web Key Set (JWK Set)" and to eliminate potential confusion 1674 between single keys and sets of keys. As part of this change, the 1675 header parameter name for a public key value was changed from 1676 "jpk" (JSON Public Key) to "jwk" (JSON Web Key). 1678 o Added suggestion on defining additional header parameters such as 1679 "x5t#S256" in the future for certificate thumbprints using hash 1680 algorithms other than SHA-1. 1682 o Specify RFC 2818 server identity validation, rather than RFC 6125 1683 (paralleling the same decision in the OAuth specs). 1685 o Generalized language to refer to Message Authentication Codes 1686 (MACs) rather than Hash-based Message Authentication Codes (HMACs) 1687 unless in a context specific to HMAC algorithms. 1689 o Reformatted to give each header parameter its own section heading. 1691 -01 1693 o Moved definition of Plaintext JWSs (using "alg":"none") here from 1694 the JWT specification since this functionality is likely to be 1695 useful in more contexts that just for JWTs. 1697 o Added "jpk" and "x5c" header parameters for including JWK public 1698 keys and X.509 certificate chains directly in the header. 1700 o Clarified that this specification is defining the JWS Compact 1701 Serialization. Referenced the new JWS-JS spec, which defines the 1702 JWS JSON Serialization. 1704 o Added text "New header parameters should be introduced sparingly 1705 since an implementation that does not understand a parameter MUST 1706 reject the JWS". 1708 o Clarified that the order of the creation and validation steps is 1709 not significant in cases where there are no dependencies between 1710 the inputs and outputs of the steps. 1712 o Changed "no canonicalization is performed" to "no canonicalization 1713 need be performed". 1715 o Corrected the Magic Signatures reference. 1717 o Made other editorial improvements suggested by JOSE working group 1718 participants. 1720 -00 1722 o Created the initial IETF draft based upon 1723 draft-jones-json-web-signature-04 with no normative changes. 1725 o Changed terminology to no longer call both digital signatures and 1726 HMACs "signatures". 1728 Authors' Addresses 1730 Michael B. Jones 1731 Microsoft 1733 Email: mbj@microsoft.com 1734 URI: http://self-issued.info/ 1735 John Bradley 1736 Ping Identity 1738 Email: ve7jtb@ve7jtb.com 1740 Nat Sakimura 1741 Nomura Research Institute 1743 Email: n-sakimura@nri.co.jp