idnits 2.17.1 draft-ietf-lisp-lcaf-00.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** The document seems to lack a both a reference to RFC 2119 and the recommended RFC 2119 boilerplate, even if it appears to use RFC 2119 keywords. RFC 2119 keyword, line 181: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 215: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 577: '... See [LISP-MRSIG] for details. The J-bit MUST not be set when the...' Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Using lowercase 'not' together with uppercase 'MUST', 'SHALL', 'SHOULD', or 'RECOMMENDED' is not an accepted usage according to RFC 2119. Please use uppercase 'NOT' together with RFC 2119 keywords (if that is what you mean). Found 'MUST not' in this paragraph: J-bit: this is the Join-Request bit and is used when this LCAF type is present in the destination EID-prefix field of a Map-Request. See [LISP-MRSIG] for details. The J-bit MUST not be set when the L-bit is also set in the same LCAF block. A receiver should not take any specific Join or Leave action when both bits are set. -- The document date (August 30, 2012) is 4251 days in the past. Is this intentional? Checking references for intended status: Experimental ---------------------------------------------------------------------------- ** Obsolete normative reference: RFC 1700 (Obsoleted by RFC 3232) == Outdated reference: A later version (-10) exists of draft-ietf-lisp-alt-06 == Outdated reference: A later version (-24) exists of draft-ietf-lisp-12 == Outdated reference: A later version (-04) exists of draft-fuller-lisp-ddt-01 == Outdated reference: A later version (-06) exists of draft-farinacci-lisp-mr-signaling-00 == Outdated reference: A later version (-19) exists of draft-ermagan-lisp-nat-traversal-00 == Outdated reference: A later version (-12) exists of draft-farinacci-lisp-te-01 Summary: 2 errors (**), 0 flaws (~~), 8 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group D. Farinacci 3 Internet-Draft D. Meyer 4 Intended status: Experimental cisco Systems 5 Expires: March 3, 2013 J. Snijders 6 InTouch N.V. 7 August 30, 2012 9 LISP Canonical Address Format (LCAF) 10 draft-ietf-lisp-lcaf-00 12 Abstract 14 This draft defines a canonical address format encoding used in LISP 15 control messages and in the encoding of lookup keys for the LISP 16 Mapping Database System. 18 Status of this Memo 20 This Internet-Draft is submitted in full conformance with the 21 provisions of BCP 78 and BCP 79. 23 Internet-Drafts are working documents of the Internet Engineering 24 Task Force (IETF). Note that other groups may also distribute 25 working documents as Internet-Drafts. The list of current Internet- 26 Drafts is at http://datatracker.ietf.org/drafts/current/. 28 Internet-Drafts are draft documents valid for a maximum of six months 29 and may be updated, replaced, or obsoleted by other documents at any 30 time. It is inappropriate to use Internet-Drafts as reference 31 material or to cite them other than as "work in progress." 33 This Internet-Draft will expire on March 3, 2013. 35 Copyright Notice 37 Copyright (c) 2012 IETF Trust and the persons identified as the 38 document authors. All rights reserved. 40 This document is subject to BCP 78 and the IETF Trust's Legal 41 Provisions Relating to IETF Documents 42 (http://trustee.ietf.org/license-info) in effect on the date of 43 publication of this document. Please review these documents 44 carefully, as they describe your rights and restrictions with respect 45 to this document. Code Components extracted from this document must 46 include Simplified BSD License text as described in Section 4.e of 47 the Trust Legal Provisions and are provided without warranty as 48 described in the Simplified BSD License. 50 Table of Contents 52 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 53 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 54 3. LISP Canonical Address Format Encodings . . . . . . . . . . . 5 55 4. LISP Canonical Address Applications . . . . . . . . . . . . . 7 56 4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 7 57 4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 8 58 4.3. Convey Application Specific Data . . . . . . . . . . . . . 9 59 4.4. Assigning Geo Coordinates to Locator Addresses . . . . . . 10 60 4.5. Generic Database Mapping Lookups . . . . . . . . . . . . . 11 61 4.6. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 13 62 4.7. PETR Admission Control Functionality . . . . . . . . . . . 14 63 4.8. Multicast Group Membership Information . . . . . . . . . . 16 64 4.9. Traffic Engineering using Re-encapsulating Tunnels . . . . 17 65 4.10. Storing Security Data in the Mapping Database . . . . . . 19 66 4.11. Source/Destination 2-Tuple Lookups . . . . . . . . . . . . 20 67 4.12. Applications for AFI List Type . . . . . . . . . . . . . . 21 68 4.12.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . . 21 69 4.12.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 22 70 4.12.3. ASCII Names in the Mapping Database . . . . . . . . . 22 71 4.12.4. Using Recursive LISP Canonical Address Encodings . . 23 72 4.12.5. Compatibility Mode Use Case . . . . . . . . . . . . . 24 73 5. Security Considerations . . . . . . . . . . . . . . . . . . . 25 74 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 26 75 7. References . . . . . . . . . . . . . . . . . . . . . . . . . . 27 76 7.1. Normative References . . . . . . . . . . . . . . . . . . . 27 77 7.2. Informative References . . . . . . . . . . . . . . . . . . 27 78 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . . 28 79 Appendix B. Document Change Log . . . . . . . . . . . . . . . . . 29 80 B.1. Changes to draft-ietf-lisp-00.txt . . . . . . . . . . . . 29 81 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 30 83 1. Introduction 85 The LISP architecture and protocols [LISP] introduces two new 86 numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators 87 (RLOCs) which are intended to replace most use of IP addresses on the 88 Internet. To provide flexibility for current and future 89 applications, these values can be encoded in LISP control messages 90 using a general syntax that includes Address Family Identifier (AFI), 91 length, and value fields. 93 Currently defined AFIs include IPv4 and IPv6 addresses, which are 94 formatted according to code-points assigned in [AFI] as follows: 96 IPv4 Encoded Address: 98 0 1 2 3 99 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 100 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 101 | AFI = 1 | IPv4 Address ... | 102 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 103 | ... IPv4 Address | 104 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 106 IPv6 Encoded Address: 108 0 1 2 3 109 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 110 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 111 | AFI = 2 | IPv6 Address ... | 112 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 113 | ... IPv6 Address ... | 114 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 115 | ... IPv6 Address ... | 116 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 117 | ... IPv6 Address ... | 118 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 119 | ... IPv6 Address | 120 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 122 This document describes the currently-defined AFIs the LISP protocol 123 uses along with their encodings and introduces the LISP Canonical 124 Address Format (LCAF) that can be used to define the LISP-specific 125 encodings for arbitrary AFI values. 127 2. Definition of Terms 129 Address Family Identifier (AFI): a term used to describe an address 130 encoding in a packet. An address family currently defined for 131 IPv4 or IPv6 addresses. See [AFI] and [RFC1700] for details. The 132 reserved AFI value of 0 is used in this specification to indicate 133 an unspecified encoded address where the the length of the address 134 is 0 bytes following the 16-bit AFI value of 0. 136 Unspecified Address Format: 138 0 1 2 3 139 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 140 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 141 | AFI = 0 | | 142 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 144 Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value 145 used in the source and destination address fields of the first 146 (most inner) LISP header of a packet. The host obtains a 147 destination EID the same way it obtains a destination address 148 today, for example through a DNS lookup or SIP exchange. The 149 source EID is obtained via existing mechanisms used to set a 150 host's "local" IP address. An EID is allocated to a host from an 151 EID-prefix block associated with the site where the host is 152 located. An EID can be used by a host to refer to other hosts. 154 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress 155 tunnel router (ETR). It is the output of a EID-to-RLOC mapping 156 lookup. An EID maps to one or more RLOCs. Typically, RLOCs are 157 numbered from topologically aggregatable blocks that are assigned 158 to a site at each point to which it attaches to the global 159 Internet; where the topology is defined by the connectivity of 160 provider networks, RLOCs can be thought of as PA addresses. 161 Multiple RLOCs can be assigned to the same ETR device or to 162 multiple ETR devices at a site. 164 3. LISP Canonical Address Format Encodings 166 IANA has assigned AFI value 16387 (0x4003) to the LISP architecture 167 and protocols. This specification defines the encoding format of the 168 LISP Canonical Address (LCA). 170 The first 4 bytes of an LISP Canonical Address are followed by a 171 variable length of fields: 173 0 1 2 3 174 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 175 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 176 | AFI = 16387 | Rsvd1 | Flags | 177 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 178 | Type | Rsvd2 | Length | 179 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 181 Rsvd1: this 8-bit field is reserved for future use and MUST be 182 transmitted as 0 and ignored on receipt. 184 Flags: this 8-bit field is for future definition and use. For now, 185 set to zero on transmission and ignored on receipt. 187 Type: this 8-bit field is specific to the LISP Canonical Address 188 formatted encodings, values are: 190 Type 0: Null Body Type 192 Type 1: AFI List Type 194 Type 2: Instance ID Type 196 Type 3: AS Number Type 198 Type 4: Application Data Type 200 Type 5: Geo Coordinates Type 202 Type 6: Opaque Key Type 204 Type 7: NAT-Traversal Type 206 Type 8: Nonce Locator Type 208 Type 9: Multicast Info Type 209 Type 10: Explicit Locator Path Type 211 Type 11: Security Key Type 213 Type 12: Source/Dest Key Type 215 Rsvd2: this 8-bit field is reserved for future use and MUST be 216 transmitted as 0 and ignored on receipt. 218 Length: this 16-bit field is in units of bytes and covers all of the 219 LISP Canonical Address payload, starting and including the byte 220 after the Length field. So any LCAF encoded address will have a 221 minimum length of 8 bytes when the Length field is 0. The 8 bytes 222 include the AFI, Flags, Type, Reserved, and Length fields. When 223 the AFI is not next to encoded address in a control message, then 224 the encoded address will have a minimum length of 6 bytes when the 225 Length field is 0. The 6 bytes include the Flags, Type, Reserved, 226 and Length fields. 228 4. LISP Canonical Address Applications 230 4.1. Segmentation using LISP 232 When multiple organizations inside of a LISP site are using private 233 addresses [RFC1918] as EID-prefixes, their address spaces must remain 234 segregated due to possible address duplication. An Instance ID in 235 the address encoding can aid in making the entire AFI based address 236 unique. 238 Another use for the Instance ID LISP Canonical Address Format is when 239 creating multiple segmented VPNs inside of a LISP site where keeping 240 EID-prefix based subnets is desirable. 242 Instance ID LISP Canonical Address Format: 244 0 1 2 3 245 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 246 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 247 | AFI = 16387 | Rsvd1 | Flags | 248 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 249 | Type = 2 | IID mask-len | 4 + n | 250 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 251 | Instance ID | 252 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 253 | AFI = x | Address ... | 254 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 256 IID mask-len: if the AFI is set to 0, then this format is not 257 encoding an extended EID-prefix but rather an instance-ID range 258 where the 'IID mask-len' indicates the number of high-order bits 259 used in the Instance ID field for the range. 261 Length value n: length in bytes of the AFI address that follows the 262 Instance ID field including the AFI field itself. 264 Instance ID: the low-order 24-bits that can go into a LISP data 265 header when the I-bit is set. See [LISP] for details. 267 AFI = x: x can be any AFI value from [AFI]. 269 This LISP Canonical Address Type can be used to encode either EID or 270 RLOC addresses. 272 4.2. Carrying AS Numbers in the Mapping Database 274 When an AS number is stored in the LISP Mapping Database System for 275 either policy or documentation reasons, it can be encoded in a LISP 276 Canonical Address. 278 AS Number LISP Canonical Address Format: 280 0 1 2 3 281 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 282 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 283 | AFI = 16387 | Rsvd1 | Flags | 284 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 285 | Type = 3 | Rsvd2 | 4 + n | 286 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 287 | AS Number | 288 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 289 | AFI = x | Address ... | 290 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 292 Length value n: length in bytes of the AFI address that follows the 293 AS Number field including the AFI field itself. 295 AS Number: the 32-bit AS number of the autonomous system that has 296 been assigned either the EID or RLOC that follows. 298 AFI = x: x can be any AFI value from [AFI]. 300 The AS Number Canonical Address Type can be used to encode either EID 301 or RLOC addresses. The former is used to describe the LISP-ALT AS 302 number the EID-prefix for the site is being carried for. The latter 303 is used to describe the AS that is carrying RLOC based prefixes in 304 the underlying routing system. 306 4.3. Convey Application Specific Data 308 When a locator-set needs to be conveyed based on the type of 309 application or the Per-Hop Behavior (PHB) of a packet, the 310 Application Data Type can be used. 312 Application Data LISP Canonical Address Format: 314 0 1 2 3 315 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 316 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 317 | AFI = 16387 | Rsvd1 | Flags | 318 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 319 | Type = 4 | Rsvd2 | 8 + n | 320 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 321 | IP TOS, IPv6 TC, or Flow Label | Protocol | 322 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 323 | Local Port | Remote Port | 324 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 325 | AFI = x | Address ... | 326 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 328 Length value n: length in bytes of the AFI address that follows the 329 8-byte Application Data fields including the AFI field itself. 331 IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS 332 field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow 333 Label used in an IPv6 header. 335 Local Port/Remote Port: these fields are from the TCP, UDP, or SCTP 336 transport header. 338 AFI = x: x can be any AFI value from [AFI]. 340 The Application Data Canonical Address Type is used for an EID 341 encoding when an ITR wants a locator-set for a specific application. 342 When used for an RLOC encoding, the ETR is supplying a locator-set 343 for each specific application is has been configured to advertise. 345 4.4. Assigning Geo Coordinates to Locator Addresses 347 If an ETR desires to send a Map-Reply describing the Geo Coordinates 348 for each locator in its locator-set, it can use the Geo Coordinate 349 Type to convey physical location information. 351 Geo Coordinate LISP Canonical Address Format: 353 0 1 2 3 354 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 355 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 356 | AFI = 16387 | Rsvd1 | Flags | 357 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 358 | Type = 5 | Rsvd2 | 12 + n | 359 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 360 |N| Latitude Degrees | Minutes | Seconds | 361 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 362 |E| Longitude Degrees | Minutes | Seconds | 363 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 364 | Altitude | 365 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 366 | AFI = x | Address ... | 367 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 369 Length value n: length in bytes of the AFI address that follows the 370 8-byte Longitude and Latitude fields including the AFI field 371 itself. 373 N: When set to 1 means North, otherwise South. 375 Latitude Degrees: Valid values range from 0 to 90. degrees above or 376 below the equator (northern or southern hemisphere, respectively). 378 Latitude Minutes: Valid values range from 0 to 59. 380 Latitude Seconds: Valid values range from 0 to 59. 382 E: When set to 1 means East, otherwise West. 384 Longitude Degrees: Value values are from 0 to 90 degrees right or 385 left of the Prime Meridian. 387 Longitude Minutes: Valid values range from 0 to 59. 389 Longitude Seconds: Valid values range from 0 to 59. 391 Altitude: Height relative to sea level in meters. This is a signed 392 integer meaning that the altitude could be below sea level. A 393 value of 0x7fffffff indicates no Altitude value is encoded. 395 AFI = x: x can be any AFI value from [AFI]. 397 The Geo Coordinates Canonical Address Type can be used to encode 398 either EID or RLOC addresses. When used for EID encodings, you can 399 determine the physical location of an EID along with the topological 400 location by observing the locator-set. 402 4.5. Generic Database Mapping Lookups 404 When the LISP Mapping Database system holds information accessed by a 405 generic formatted key (where the key is not the usual IPv4 or IPv6 406 address), an opaque key may be desirable. 408 Opaque Key LISP Canonical Address Format: 410 0 1 2 3 411 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 412 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 413 | AFI = 16387 | Rsvd1 | Flags | 414 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 415 | Type = 6 | Rsvd2 | n | 416 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 417 | Key Field Num | Key Wildcard Fields | Key . . . | 418 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 419 | . . . Key | 420 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 422 Length value n: length in bytes of the type's payload. The value n 423 is the number of bytes that follow this Length field. 425 Key Field Num: the number of fields (minus 1) the key can be broken 426 up into. The width of the fields are fixed length. So for a key 427 size of 8 bytes, with a Key Field Num of 4 allows 4 fields of 2 428 bytes in length. Valid values for this field range from 0 to 15 429 supporting a maximum of 16 field separations. 431 Key Wildcard Fields: describes which fields in the key are not used 432 as part of the key lookup. This wildcard encoding is a bitfield. 433 Each bit is a don't-care bit for a corresponding field in the key. 434 Bit 0 (the low-order bit) in this bitfield corresponds the first 435 field, right-justified in the key, bit 1 the second field, and so 436 on. When a bit is set in the bitfield it is a don't-care bit and 437 should not be considered as part of the database lookup. When the 438 entire 16-bits is set to 0, then all bits of the key are used for 439 the database lookup. 441 Key: the variable length key used to do a LISP Database Mapping 442 lookup. The length of the key is the value n (shown above) minus 443 3. 445 4.6. NAT Traversal Scenarios 447 When a LISP system is conveying global address and mapped port 448 information when traversing through a NAT device, the NAT-Traversal 449 LCAF Type is used. See [LISP-NATT] for details. 451 NAT-Traversal Canonical Address Format: 453 0 1 2 3 454 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 455 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 456 | AFI = 16387 | Rsvd1 | Flags | 457 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 458 | Type = 7 | Rsvd2 | 4 + n | 459 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 460 | MS UDP Port Number | ETR UDP Port Number | 461 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 462 | AFI = x | Global ETR RLOC Address ... | 463 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 464 | AFI = x | MS RLOC Address ... | 465 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 466 | AFI = x | Private ETR RLOC Address ... | 467 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 468 | AFI = x | RTR RLOC Address 1 ... | 469 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 470 | AFI = x | RTR RLOC Address k ... | 471 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 473 Length value n: length in bytes of the AFI addresses that follows 474 the UDP Port Number field including the AFI fields themselves. 476 MS UDP Port Number: this is the UDP port number of the Map-Server 477 and is set to 4342. 479 ETR UDP Port Number: this is the port number returned to a LISP 480 system which was copied from the source port from a packet that 481 has flowed through a NAT device. 483 AFI = x: x can be any AFI value from [AFI]. 485 Global ETR RLOC Address: this is an address known to be globally 486 unique built by NAT-traversal functionality in a LISP router. 488 MS RLOC Address: this is the address of the Map-Server used in the 489 destination RLOC of a packet that has flowed through a NAT device. 491 Private ETR RLOC Address: this is an address known to be a private 492 address inserted in this LCAF format by a LISP router that resides 493 on the private side of a NAT device. 495 RTR RLOC Address: this is an encapsulation address used by an ITR or 496 PITR which resides behind a NAT device. This address is known to 497 have state in a NAT device so packets can flow from it to the LISP 498 ETR behind the NAT. There can be one or more NTR addresses 499 supplied in these set of fields. The number of NTRs encoded is 500 determined by the LCAF length field. When there are no NTRs 501 supplied, the NTR fields can be omitted and reflected by the LCAF 502 length field or an AFI of 0 can be used to indicate zero NTRs 503 encoded. 505 4.7. PETR Admission Control Functionality 507 When a public PETR device wants to verify who is encapsulating to it, 508 it can check for a specific nonce value in the LISP encapsulated 509 packet. To convey the nonce to admitted ITRs or PITRs, this LCAF 510 format is used in a Map-Register or Map-Reply locator-record. 512 Nonce Locator Canonical Address Format: 514 0 1 2 3 515 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 516 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 517 | AFI = 16387 | Rsvd1 | Flags | 518 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 519 | Type = 8 | Rsvd2 | 4 + n | 520 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 521 | Reserved | Nonce | 522 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 523 | AFI = x | Address ... | 524 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 526 Length value n: length in bytes of the AFI address that follows the 527 Nonce field including the AFI field itself. 529 Reserved: must be set to zero and ignore on receipt. 531 Nonce: this is a nonce value returned by an ETR in a Map-Reply 532 locator-record to be used by an ITR or PITR when encapsulating to 533 the locator address encoded in the AFI field of this LCAF type. 535 AFI = x: x can be any AFI value from [AFI]. 537 4.8. Multicast Group Membership Information 539 Multicast group information can be published in the mapping database 540 so a lookup on an EID based group address can return a replication 541 list of group addresses or a unicast addresses for single replication 542 or multiple head-end replications. This LCAF encoding can be used to 543 send broadcast packets to all members of a subnet when each EIDs are 544 away from their home subnet location. 546 Multicast Info Canonical Address Format: 548 0 1 2 3 549 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 550 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 551 | AFI = 16387 | Rsvd1 | Flags | 552 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 553 | Type = 9 | Rsvd2 |R|L|J| 4 + n | 554 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 555 | Reserved | Source MaskLen| Group MaskLen | 556 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 557 | AFI = x | Source/Subnet Address ... | 558 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 559 | AFI = x | Group Address ... | 560 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 562 Length value n: length in bytes of fields that follow. 564 Reserved: must be set to zero and ignore on receipt. 566 R-bit: this is the RP-bit that represents PIM (S,G,RP-bit) multicast 567 state. This bit can be set for Joins (when the J-bit is set) or 568 for Leaves (when the L-bit is set). See [LISP-MRSIG] for more 569 usage details. 571 L-bit: this is the Leave-Request bit and is used when this LCAF type 572 is present in the destination EID-prefix field of a Map-Request. 573 See [LISP-MRSIG] for details. 575 J-bit: this is the Join-Request bit and is used when this LCAF type 576 is present in the destination EID-prefix field of a Map-Request. 577 See [LISP-MRSIG] for details. The J-bit MUST not be set when the 578 L-bit is also set in the same LCAF block. A receiver should not 579 take any specific Join or Leave action when both bits are set. 581 Source MaskLen: the mask length of the source prefix that follows. 583 Group MaskLen: the mask length of the group prefix that follows. 585 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 586 its own encoding of a multicast address, this field must be either 587 a group address or a broadcast address. 589 4.9. Traffic Engineering using Re-encapsulating Tunnels 591 For a given EID lookup into the mapping database, this LCAF format 592 can be returned to provide a list of locators in an explicit re- 593 encapsulation path. See [LISP-TE] for details. 595 Explicit Locator Path (ELP) Canonical Address Format: 597 0 1 2 3 598 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 599 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 600 | AFI = 16387 | Rsvd1 | Flags | 601 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 602 | Type = 10 | Rsvd2 | n | 603 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 604 | AFI = x | Rsvd3 |L|P|S| 605 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 606 | Reencap Hop 1 ... | 607 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 608 | AFI = x | Rsvd3 |L|P|S| 609 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 610 | Reencap Hop k ... | 611 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 613 Length value n: length in bytes of fields that follow. 615 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 616 its own encoding of a multicast address, this field must be either 617 a group address or a broadcast address. 619 Lookup bit (L): this is the Lookup bit used to indicate to the user 620 of the ELP to not use this address for encapsulation but to look 621 it up in the mapping database system to obtain an encapsulating 622 RLOC address. 624 RLOC-Probe bit (P): this is the RLOC-probe bit which means the 625 Reencap Hop allows RLOC-probe messages to be sent to it. When the 626 R-bit is set to 0, RLOC-probes must not be sent. When a Reencap 627 Hop is an anycast address then multiple physical Reencap Hops are 628 using the same RLOC address. In this case, RLOC-probes are not 629 needed because when the closest RLOC address is not reachable 630 another RLOC address can reachable. 632 Strict bit (S): this the strict bit which means the associated 633 Rencap Hop is required to be used. If this bit is 0, the 634 reencapsulator can skip this Reencap Hop and go to the next one in 635 the list. 637 4.10. Storing Security Data in the Mapping Database 639 When a locator in a locator-set has a security key associated with 640 it, this LCAF format will be used to encode key material. See 641 [LISP-DDT] for details. 643 Security Key Canonical Address Format: 645 0 1 2 3 646 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 647 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 648 | AFI = 16387 | Rsvd1 | Flags | 649 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 650 | Type = 11 | Rsvd2 | 6 + n | 651 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 652 | Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R| 653 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 654 | Key Length | Key Material ... | 655 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 656 | ... Key Material | 657 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 658 | AFI = x | Locator Address ... | 659 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 661 Length value n: length in bytes of fields that start with the Key 662 Material field. 664 Key Count: the Key Count field declares the number of Key sections 665 included in this LCAF. 667 Key Algorithm: the Algorithm field identifies the key's 668 cryptographic algorithm and specifies the format of the Public Key 669 field. 671 R bit: this is the revoke bit and, if set, it specifies that this 672 Key is being Revoked. 674 Key Length: this field determines the length in bytes of the Key 675 Material field. 677 Key Material: the Key Material field stores the key material. The 678 format of the key material stored depends on the Key Algorithm 679 field. 681 AFI = x: x can be any AFI value from [AFI].This is the locator 682 address that owns the encoded security key. 684 4.11. Source/Destination 2-Tuple Lookups 686 When both a source and destination address of a flow needs 687 consideration for different locator-sets, this 2-tuple key is used in 688 EID fields in LISP control messages. When the Source/Dest key is 689 registered to the mapping database, it can be encoded as a source- 690 prefix and destination-prefix. When the Source/Dest is used as a key 691 for a mapping database lookup the source and destination come from a 692 data packet. 694 Source/Dest Key Canonical Address Format: 696 0 1 2 3 697 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 698 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 699 | AFI = 16387 | Rsvd1 | Flags | 700 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 701 | Type = 12 | Rsvd2 | 4 + n | 702 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 703 | Reserved | Source-ML | Dest-ML | 704 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 705 | AFI = x | Source-Prefix ... | 706 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 707 | AFI = x | Destination-Prefix ... | 708 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 710 Length value n: length in bytes of fields that follow. 712 Reserved: must be set to zero and ignore on receipt. 714 Source-ML: the mask length of the source prefix that follows. 716 Dest-ML: the mask length of the destination prefix that follows. 718 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 719 its own encoding of a multicast address, this field must be either 720 a group address or a broadcast address. 722 Refer to [LISP-TE] for usage details. 724 4.12. Applications for AFI List Type 726 4.12.1. Binding IPv4 and IPv6 Addresses 728 When header translation between IPv4 and IPv6 is desirable a LISP 729 Canonical Address can use the AFI List Type to carry multiple AFIs in 730 one LCA AFI. 732 Bounded Address LISP Canonical Address Format: 734 0 1 2 3 735 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 736 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 737 | AFI = 16387 | Rsvd1 | Flags | 738 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 739 | Type = 1 | Rsvd2 | 2 + 4 + 2 + 16 | 740 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 741 | AFI = 1 | IPv4 Address ... | 742 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 743 | ... IPv4 Address | AFI = 2 | 744 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 745 | IPv6 Address ... | 746 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 747 | ... IPv6 Address ... | 748 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 749 | ... IPv6 Address ... | 750 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 751 | ... IPv6 Address | 752 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 754 Length: length in bytes is fixed at 24 when IPv4 and IPv6 AFI 755 encoded addresses are used. 757 This type of address format can be included in a Map-Request when the 758 address is being used as an EID, but the Mapping Database System 759 lookup destination can use only the IPv4 address. This is so a 760 Mapping Database Service Transport System, such as LISP-ALT [ALT], 761 can use the Map-Request destination address to route the control 762 message to the desired LISP site. 764 4.12.2. Layer-2 VPNs 766 When MAC addresses are stored in the LISP Mapping Database System, 767 the AFI List Type can be used to carry AFI 6. 769 MAC Address LISP Canonical Address Format: 771 0 1 2 3 772 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 773 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 774 | AFI = 16387 | Rsvd1 | Flags | 775 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 776 | Type = 1 | Rsvd2 | 2 + 6 | 777 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 778 | AFI = 6 | Layer-2 MAC Address ... | 779 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 780 | ... Layer-2 MAC Address | 781 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 783 Length: length in bytes is fixed at 8 when MAC address AFI encoded 784 addresses are used. 786 This address format can be used to connect layer-2 domains together 787 using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. 788 In this use-case, a MAC address is being used as an EID, and the 789 locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or 790 even another MAC address being used as an RLOC. 792 4.12.3. ASCII Names in the Mapping Database 794 If DNS names or URIs are stored in the LISP Mapping Database System, 795 the AFI List Type can be used to carry an ASCII string where it is 796 delimited by length 'n' of the LCAF Length encoding. 798 ASCII LISP Canonical Address Format: 800 0 1 2 3 801 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 802 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 803 | AFI = 16387 | Rsvd1 | Flags | 804 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 805 | Type = 1 | Rsvd2 | 2 + n | 806 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 807 | AFI = 17 | DNS Name or URI ... | 808 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 810 Length value n: length in bytes AFI=17 field and the null-terminated 811 ASCII string (the last byte of 0 is included). 813 4.12.4. Using Recursive LISP Canonical Address Encodings 815 When any combination of above is desirable, the AFI List Type value 816 can be used to carry within the LCA AFI another LCA AFI. 818 Recursive LISP Canonical Address Format: 820 0 1 2 3 821 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 822 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 823 | AFI = 16387 | Rsvd1 | Flags | 824 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 825 | Type = 1 | Rsvd2 | 4 + 8 + 2 + 4 | 826 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 827 | AFI = 16387 | Rsvd1 | Flags | 828 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 829 | Type = 4 | Rsvd2 | 12 | 830 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 831 | IP TOS, IPv6 QQS or Flow Label | Protocol | 832 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 833 | Local Port | Remote Port | 834 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 835 | AFI = 1 | IPv4 Address ... | 836 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 837 | ... IPv4 Address | 838 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 840 Length: length in bytes is fixed at 18 when an AFI=1 IPv4 address is 841 included. 843 This format could be used by a Mapping Database Transport System, 844 such as LISP-ALT [ALT], where the AFI=1 IPv4 address is used as an 845 EID and placed in the Map-Request destination address by the sending 846 LISP system. The ALT system can deliver the Map-Request to the LISP 847 destination site independent of the Application Data Type AFI payload 848 values. When this AFI is processed by the destination LISP site, it 849 can return different locator-sets based on the type of application or 850 level of service that is being requested. 852 4.12.5. Compatibility Mode Use Case 854 A LISP system should use the AFI List Type format when sending to 855 LISP systems that do not support a particular LCAF Type used to 856 encode locators. This allows the receiving system to be able to 857 parse a locator address for encapsulation purposes. The list of AFIs 858 in an AFI List LCAF Type has no semantic ordering and a receiver 859 should parse each AFI element no matter what the ordering. 861 Compatibility Mode Address Format: 863 0 1 2 3 864 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 865 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 866 | AFI = 16387 | Rsvd1 | Flags | 867 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 868 | Type = 1 | Rsvd2 | 22 + 6 | 869 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 870 | AFI = 16387 | Rsvd1 | Flags | 871 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 872 | Type = 5 | Rsvd2 | 12 + 2 | 873 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 874 |N| Latitude Degrees | Minutes | Seconds | 875 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 876 |E| Longitude Degrees | Minutes | Seconds | 877 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 878 | Altitude | 879 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 880 | AFI = 0 | AFI = 1 | 881 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 882 | IPv4 Address | 883 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 885 If a system does not recognized the Geo Coordinate LCAF Type that is 886 accompanying a locator address, an encoder can include the Geo 887 Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI 888 in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in 889 the list is encoded with a valid AFI value to identify the locator 890 address. 892 A LISP system is required to support the AFI List LCAF Type to use 893 this procedure. It would skip over 10 bytes of the Geo Coordinate 894 LCAF Type to get to the locator address encoding (an IPv4 locator 895 address). A LISP system that does support the Geo Coordinate LCAF 896 Type can support parsing the locator address within the Geo 897 Coordinate LCAF encoding or in the locator encoding that follows in 898 the AFI List LCAF. 900 5. Security Considerations 902 There are no security considerations for this specification. The 903 security considerations are documented for the protocols that use 904 LISP Canonical Addressing. Refer to the those relevant 905 specifications. 907 6. IANA Considerations 909 The Address Family AFI definitions from [AFI] only allocate code- 910 points for the AFI value itself. The length of the address or entity 911 that follows is not defined and is implied based on conventional 912 experience. Where the LISP protocol uses LISP Canonical Addresses 913 specifically, the address length definitions will be in this 914 specification and take precedent over any other specification. 916 An IANA Registry for LCAF Type values will be created. The values 917 that are considered for use by the main LISP specification [LISP] 918 will be in the IANA Registry. Other Type values used for 919 experimentation will be defined and described in this document. 921 7. References 923 7.1. Normative References 925 [RFC1700] Reynolds, J. and J. Postel, "Assigned Numbers", RFC 1700, 926 October 1994. 928 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and 929 E. Lear, "Address Allocation for Private Internets", 930 BCP 5, RFC 1918, February 1996. 932 7.2. Informative References 934 [AFI] IANA, "Address Family Identifier (AFIs)", ADDRESS FAMILY 935 NUMBERS http://www.iana.org/numbers.html, Febuary 2007. 937 [ALT] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, "LISP 938 Alternative Topology (LISP+ALT)", 939 draft-ietf-lisp-alt-06.txt (work in progress), March 2011. 941 [LISP] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, 942 "Locator/ID Separation Protocol (LISP)", 943 draft-ietf-lisp-12.txt (work in progress), April 2011. 945 [LISP-DDT] 946 Fuller, V., Lewis, D., and V. Ermagan, "LISP Delegated 947 Database Tree", draft-fuller-lisp-ddt-01.txt (work in 948 progress). 950 [LISP-MRSIG] 951 Farinacci, D. and M. Napierala, "LISP Control-Plane 952 Multicast Signaling", 953 draft-farinacci-lisp-mr-signaling-00.txt (work in 954 progress). 956 [LISP-NATT] 957 Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, 958 F., and C. White, "NAT traversal for LISP", 959 draft-ermagan-lisp-nat-traversal-00.txt (work in 960 progress). 962 [LISP-TE] Farinacci, D., Lahiri, P., and M. Kowal, "LISP Traffic 963 Engineering Use-Cases", draft-farinacci-lisp-te-01.txt 964 (work in progress). 966 Appendix A. Acknowledgments 968 The authors would like to thank Vince Fuller, Gregg Schudel, Jesper 969 Skriver, Luigi Iannone, and Isidor Kouvelas for their technical and 970 editorial commentary. 972 The authors would like to thank Victor Moreno for discussions that 973 lead to the definition of the Multicast Info LCAF type. 975 The authors would like to thank Parantap Lahiri and Michael Kowal for 976 discussions that lead to the definition of the Explicit Locator Path 977 (ELP) LCAF type. 979 The authors would like to thank Fabio Maino and Vina Ermagan for 980 discussions that lead to the definition of the Security Key LCAF 981 type. 983 Thanks also goes to Terry Manderson for assistance obtaining a LISP 984 AFI value from IANA. 986 Appendix B. Document Change Log 988 B.1. Changes to draft-ietf-lisp-00.txt 990 o Posted first working group draft August 2012. 992 o This draft was renamed from draft-farinacci-lisp-lcaf-10.txt. 994 Authors' Addresses 996 Dino Farinacci 997 cisco Systems 998 Tasman Drive 999 San Jose, CA 95134 1000 USA 1002 Email: dino@cisco.com 1004 Dave Meyer 1005 cisco Systems 1006 170 Tasman Drive 1007 San Jose, CA 1008 USA 1010 Email: dmm@cisco.com 1012 Job Snijders 1013 InTouch N.V. 1014 Middenweg 76 1015 1097 BS Amsterdam 1016 The Netherlands 1018 Email: job@instituut.net