idnits 2.17.1 draft-ietf-lisp-lcaf-01.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** The document seems to lack a both a reference to RFC 2119 and the recommended RFC 2119 boilerplate, even if it appears to use RFC 2119 keywords. RFC 2119 keyword, line 182: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 216: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 581: '... See [LISP-MRSIG] for details. The J-bit MUST not be set when the...' Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Using lowercase 'not' together with uppercase 'MUST', 'SHALL', 'SHOULD', or 'RECOMMENDED' is not an accepted usage according to RFC 2119. Please use uppercase 'NOT' together with RFC 2119 keywords (if that is what you mean). Found 'MUST not' in this paragraph: J-bit: this is the Join-Request bit and is used when this LCAF type is present in the destination EID-prefix field of a Map-Request. See [LISP-MRSIG] for details. The J-bit MUST not be set when the L-bit is also set in the same LCAF block. A receiver should not take any specific Join or Leave action when both bits are set. -- The document date (January 7, 2013) is 4098 days in the past. Is this intentional? Checking references for intended status: Experimental ---------------------------------------------------------------------------- ** Obsolete normative reference: RFC 1700 (Obsoleted by RFC 3232) == Outdated reference: A later version (-10) exists of draft-ietf-lisp-alt-06 == Outdated reference: A later version (-24) exists of draft-ietf-lisp-12 == Outdated reference: A later version (-04) exists of draft-fuller-lisp-ddt-01 == Outdated reference: A later version (-06) exists of draft-farinacci-lisp-mr-signaling-00 == Outdated reference: A later version (-19) exists of draft-ermagan-lisp-nat-traversal-00 == Outdated reference: A later version (-12) exists of draft-farinacci-lisp-te-01 Summary: 2 errors (**), 0 flaws (~~), 8 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group D. Farinacci 3 Internet-Draft D. Meyer 4 Intended status: Experimental cisco Systems 5 Expires: July 11, 2013 J. Snijders 6 InTouch N.V. 7 January 7, 2013 9 LISP Canonical Address Format (LCAF) 10 draft-ietf-lisp-lcaf-01 12 Abstract 14 This draft defines a canonical address format encoding used in LISP 15 control messages and in the encoding of lookup keys for the LISP 16 Mapping Database System. 18 Status of this Memo 20 This Internet-Draft is submitted in full conformance with the 21 provisions of BCP 78 and BCP 79. 23 Internet-Drafts are working documents of the Internet Engineering 24 Task Force (IETF). Note that other groups may also distribute 25 working documents as Internet-Drafts. The list of current Internet- 26 Drafts is at http://datatracker.ietf.org/drafts/current/. 28 Internet-Drafts are draft documents valid for a maximum of six months 29 and may be updated, replaced, or obsoleted by other documents at any 30 time. It is inappropriate to use Internet-Drafts as reference 31 material or to cite them other than as "work in progress." 33 This Internet-Draft will expire on July 11, 2013. 35 Copyright Notice 37 Copyright (c) 2013 IETF Trust and the persons identified as the 38 document authors. All rights reserved. 40 This document is subject to BCP 78 and the IETF Trust's Legal 41 Provisions Relating to IETF Documents 42 (http://trustee.ietf.org/license-info) in effect on the date of 43 publication of this document. Please review these documents 44 carefully, as they describe your rights and restrictions with respect 45 to this document. Code Components extracted from this document must 46 include Simplified BSD License text as described in Section 4.e of 47 the Trust Legal Provisions and are provided without warranty as 48 described in the Simplified BSD License. 50 Table of Contents 52 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 53 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 54 3. LISP Canonical Address Format Encodings . . . . . . . . . . . 5 55 4. LISP Canonical Address Applications . . . . . . . . . . . . . 7 56 4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 7 57 4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 8 58 4.3. Convey Application Specific Data . . . . . . . . . . . . . 9 59 4.4. Assigning Geo Coordinates to Locator Addresses . . . . . . 10 60 4.5. Generic Database Mapping Lookups . . . . . . . . . . . . . 11 61 4.6. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 13 62 4.7. PETR Admission Control Functionality . . . . . . . . . . . 14 63 4.8. Multicast Group Membership Information . . . . . . . . . . 16 64 4.9. Traffic Engineering using Re-encapsulating Tunnels . . . . 17 65 4.10. Storing Security Data in the Mapping Database . . . . . . 19 66 4.11. Source/Destination 2-Tuple Lookups . . . . . . . . . . . . 20 67 4.12. Applications for AFI List Type . . . . . . . . . . . . . . 21 68 4.12.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . . 21 69 4.12.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 22 70 4.12.3. ASCII Names in the Mapping Database . . . . . . . . . 22 71 4.12.4. Using Recursive LISP Canonical Address Encodings . . 23 72 4.12.5. Compatibility Mode Use Case . . . . . . . . . . . . . 24 73 5. Security Considerations . . . . . . . . . . . . . . . . . . . 25 74 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 26 75 7. References . . . . . . . . . . . . . . . . . . . . . . . . . . 27 76 7.1. Normative References . . . . . . . . . . . . . . . . . . . 27 77 7.2. Informative References . . . . . . . . . . . . . . . . . . 27 78 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . . 29 79 Appendix B. Document Change Log . . . . . . . . . . . . . . . . . 30 80 B.1. Changes to draft-ietf-lisp-01.txt . . . . . . . . . . . . 30 81 B.2. Changes to draft-ietf-lisp-00.txt . . . . . . . . . . . . 30 82 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 31 84 1. Introduction 86 The LISP architecture and protocols [LISP] introduces two new 87 numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators 88 (RLOCs) which are intended to replace most use of IP addresses on the 89 Internet. To provide flexibility for current and future 90 applications, these values can be encoded in LISP control messages 91 using a general syntax that includes Address Family Identifier (AFI), 92 length, and value fields. 94 Currently defined AFIs include IPv4 and IPv6 addresses, which are 95 formatted according to code-points assigned in [AFI] as follows: 97 IPv4 Encoded Address: 99 0 1 2 3 100 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 101 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 102 | AFI = 1 | IPv4 Address ... | 103 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 104 | ... IPv4 Address | 105 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 107 IPv6 Encoded Address: 109 0 1 2 3 110 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 111 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 112 | AFI = 2 | IPv6 Address ... | 113 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 114 | ... IPv6 Address ... | 115 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 116 | ... IPv6 Address ... | 117 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 118 | ... IPv6 Address ... | 119 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 120 | ... IPv6 Address | 121 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 123 This document describes the currently-defined AFIs the LISP protocol 124 uses along with their encodings and introduces the LISP Canonical 125 Address Format (LCAF) that can be used to define the LISP-specific 126 encodings for arbitrary AFI values. 128 2. Definition of Terms 130 Address Family Identifier (AFI): a term used to describe an address 131 encoding in a packet. An address family currently defined for 132 IPv4 or IPv6 addresses. See [AFI] and [RFC1700] for details. The 133 reserved AFI value of 0 is used in this specification to indicate 134 an unspecified encoded address where the the length of the address 135 is 0 bytes following the 16-bit AFI value of 0. 137 Unspecified Address Format: 139 0 1 2 3 140 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 141 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 142 | AFI = 0 | | 143 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 145 Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value 146 used in the source and destination address fields of the first 147 (most inner) LISP header of a packet. The host obtains a 148 destination EID the same way it obtains a destination address 149 today, for example through a DNS lookup or SIP exchange. The 150 source EID is obtained via existing mechanisms used to set a 151 host's "local" IP address. An EID is allocated to a host from an 152 EID-prefix block associated with the site where the host is 153 located. An EID can be used by a host to refer to other hosts. 155 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress 156 tunnel router (ETR). It is the output of a EID-to-RLOC mapping 157 lookup. An EID maps to one or more RLOCs. Typically, RLOCs are 158 numbered from topologically aggregatable blocks that are assigned 159 to a site at each point to which it attaches to the global 160 Internet; where the topology is defined by the connectivity of 161 provider networks, RLOCs can be thought of as PA addresses. 162 Multiple RLOCs can be assigned to the same ETR device or to 163 multiple ETR devices at a site. 165 3. LISP Canonical Address Format Encodings 167 IANA has assigned AFI value 16387 (0x4003) to the LISP architecture 168 and protocols. This specification defines the encoding format of the 169 LISP Canonical Address (LCA). 171 The first 4 bytes of an LISP Canonical Address are followed by a 172 variable length of fields: 174 0 1 2 3 175 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 176 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 177 | AFI = 16387 | Rsvd1 | Flags | 178 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 179 | Type | Rsvd2 | Length | 180 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 182 Rsvd1: this 8-bit field is reserved for future use and MUST be 183 transmitted as 0 and ignored on receipt. 185 Flags: this 8-bit field is for future definition and use. For now, 186 set to zero on transmission and ignored on receipt. 188 Type: this 8-bit field is specific to the LISP Canonical Address 189 formatted encodings, values are: 191 Type 0: Null Body Type 193 Type 1: AFI List Type 195 Type 2: Instance ID Type 197 Type 3: AS Number Type 199 Type 4: Application Data Type 201 Type 5: Geo Coordinates Type 203 Type 6: Opaque Key Type 205 Type 7: NAT-Traversal Type 207 Type 8: Nonce Locator Type 209 Type 9: Multicast Info Type 210 Type 10: Explicit Locator Path Type 212 Type 11: Security Key Type 214 Type 12: Source/Dest Key Type 216 Rsvd2: this 8-bit field is reserved for future use and MUST be 217 transmitted as 0 and ignored on receipt. 219 Length: this 16-bit field is in units of bytes and covers all of the 220 LISP Canonical Address payload, starting and including the byte 221 after the Length field. So any LCAF encoded address will have a 222 minimum length of 8 bytes when the Length field is 0. The 8 bytes 223 include the AFI, Flags, Type, Reserved, and Length fields. When 224 the AFI is not next to encoded address in a control message, then 225 the encoded address will have a minimum length of 6 bytes when the 226 Length field is 0. The 6 bytes include the Flags, Type, Reserved, 227 and Length fields. 229 4. LISP Canonical Address Applications 231 4.1. Segmentation using LISP 233 When multiple organizations inside of a LISP site are using private 234 addresses [RFC1918] as EID-prefixes, their address spaces must remain 235 segregated due to possible address duplication. An Instance ID in 236 the address encoding can aid in making the entire AFI based address 237 unique. 239 Another use for the Instance ID LISP Canonical Address Format is when 240 creating multiple segmented VPNs inside of a LISP site where keeping 241 EID-prefix based subnets is desirable. 243 Instance ID LISP Canonical Address Format: 245 0 1 2 3 246 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 247 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 248 | AFI = 16387 | Rsvd1 | Flags | 249 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 250 | Type = 2 | IID mask-len | 4 + n | 251 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 252 | Instance ID | 253 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 254 | AFI = x | Address ... | 255 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 257 IID mask-len: if the AFI is set to 0, then this format is not 258 encoding an extended EID-prefix but rather an instance-ID range 259 where the 'IID mask-len' indicates the number of high-order bits 260 used in the Instance ID field for the range. 262 Length value n: length in bytes of the AFI address that follows the 263 Instance ID field including the AFI field itself. 265 Instance ID: the low-order 24-bits that can go into a LISP data 266 header when the I-bit is set. See [LISP] for details. 268 AFI = x: x can be any AFI value from [AFI]. 270 This LISP Canonical Address Type can be used to encode either EID or 271 RLOC addresses. 273 4.2. Carrying AS Numbers in the Mapping Database 275 When an AS number is stored in the LISP Mapping Database System for 276 either policy or documentation reasons, it can be encoded in a LISP 277 Canonical Address. 279 AS Number LISP Canonical Address Format: 281 0 1 2 3 282 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 283 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 284 | AFI = 16387 | Rsvd1 | Flags | 285 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 286 | Type = 3 | Rsvd2 | 4 + n | 287 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 288 | AS Number | 289 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 290 | AFI = x | Address ... | 291 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 293 Length value n: length in bytes of the AFI address that follows the 294 AS Number field including the AFI field itself. 296 AS Number: the 32-bit AS number of the autonomous system that has 297 been assigned either the EID or RLOC that follows. 299 AFI = x: x can be any AFI value from [AFI]. 301 The AS Number Canonical Address Type can be used to encode either EID 302 or RLOC addresses. The former is used to describe the LISP-ALT AS 303 number the EID-prefix for the site is being carried for. The latter 304 is used to describe the AS that is carrying RLOC based prefixes in 305 the underlying routing system. 307 4.3. Convey Application Specific Data 309 When a locator-set needs to be conveyed based on the type of 310 application or the Per-Hop Behavior (PHB) of a packet, the 311 Application Data Type can be used. 313 Application Data LISP Canonical Address Format: 315 0 1 2 3 316 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 317 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 318 | AFI = 16387 | Rsvd1 | Flags | 319 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 320 | Type = 4 | Rsvd2 | 8 + n | 321 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 322 | IP TOS, IPv6 TC, or Flow Label | Protocol | 323 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 324 | Local Port | Remote Port | 325 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 326 | AFI = x | Address ... | 327 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 329 Length value n: length in bytes of the AFI address that follows the 330 8-byte Application Data fields including the AFI field itself. 332 IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS 333 field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow 334 Label used in an IPv6 header. 336 Local Port/Remote Port: these fields are from the TCP, UDP, or SCTP 337 transport header. 339 AFI = x: x can be any AFI value from [AFI]. 341 The Application Data Canonical Address Type is used for an EID 342 encoding when an ITR wants a locator-set for a specific application. 343 When used for an RLOC encoding, the ETR is supplying a locator-set 344 for each specific application is has been configured to advertise. 346 4.4. Assigning Geo Coordinates to Locator Addresses 348 If an ETR desires to send a Map-Reply describing the Geo Coordinates 349 for each locator in its locator-set, it can use the Geo Coordinate 350 Type to convey physical location information. 352 Coordinates are specified using the WGS-84 (World Geodetic System) 353 reference coordinate system [WGS-84]. 355 Geo Coordinate LISP Canonical Address Format: 357 0 1 2 3 358 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 359 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 360 | AFI = 16387 | Rsvd1 | Flags | 361 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 362 | Type = 5 | Rsvd2 | 12 + n | 363 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 364 |N| Latitude Degrees | Minutes | Seconds | 365 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 366 |E| Longitude Degrees | Minutes | Seconds | 367 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 368 | Altitude | 369 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 370 | AFI = x | Address ... | 371 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 373 Length value n: length in bytes of the AFI address that follows the 374 8-byte Longitude and Latitude fields including the AFI field 375 itself. 377 N: When set to 1 means North, otherwise South. 379 Latitude Degrees: Valid values range from 0 to 90 degrees above or 380 below the equator (northern or southern hemisphere, respectively). 382 Latitude Minutes: Valid values range from 0 to 59. 384 Latitude Seconds: Valid values range from 0 to 59. 386 E: When set to 1 means East, otherwise West. 388 Longitude Degrees: Value values are from 0 to 180 degrees right or 389 left of the Prime Meridian. 391 Longitude Minutes: Valid values range from 0 to 59. 393 Longitude Seconds: Valid values range from 0 to 59. 395 Altitude: Height relative to sea level in meters. This is a signed 396 integer meaning that the altitude could be below sea level. A 397 value of 0x7fffffff indicates no Altitude value is encoded. 399 AFI = x: x can be any AFI value from [AFI]. 401 The Geo Coordinates Canonical Address Type can be used to encode 402 either EID or RLOC addresses. When used for EID encodings, you can 403 determine the physical location of an EID along with the topological 404 location by observing the locator-set. 406 4.5. Generic Database Mapping Lookups 408 When the LISP Mapping Database system holds information accessed by a 409 generic formatted key (where the key is not the usual IPv4 or IPv6 410 address), an opaque key may be desirable. 412 Opaque Key LISP Canonical Address Format: 414 0 1 2 3 415 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 416 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 417 | AFI = 16387 | Rsvd1 | Flags | 418 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 419 | Type = 6 | Rsvd2 | n | 420 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 421 | Key Field Num | Key Wildcard Fields | Key . . . | 422 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 423 | . . . Key | 424 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 426 Length value n: length in bytes of the type's payload. The value n 427 is the number of bytes that follow this Length field. 429 Key Field Num: the number of fields (minus 1) the key can be broken 430 up into. The width of the fields are fixed length. So for a key 431 size of 8 bytes, with a Key Field Num of 4 allows 4 fields of 2 432 bytes in length. Valid values for this field range from 0 to 15 433 supporting a maximum of 16 field separations. 435 Key Wildcard Fields: describes which fields in the key are not used 436 as part of the key lookup. This wildcard encoding is a bitfield. 437 Each bit is a don't-care bit for a corresponding field in the key. 438 Bit 0 (the low-order bit) in this bitfield corresponds the first 439 field, right-justified in the key, bit 1 the second field, and so 440 on. When a bit is set in the bitfield it is a don't-care bit and 441 should not be considered as part of the database lookup. When the 442 entire 16-bits is set to 0, then all bits of the key are used for 443 the database lookup. 445 Key: the variable length key used to do a LISP Database Mapping 446 lookup. The length of the key is the value n (shown above) minus 447 3. 449 4.6. NAT Traversal Scenarios 451 When a LISP system is conveying global address and mapped port 452 information when traversing through a NAT device, the NAT-Traversal 453 LCAF Type is used. See [LISP-NATT] for details. 455 NAT-Traversal Canonical Address Format: 457 0 1 2 3 458 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 459 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 460 | AFI = 16387 | Rsvd1 | Flags | 461 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 462 | Type = 7 | Rsvd2 | 4 + n | 463 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 464 | MS UDP Port Number | ETR UDP Port Number | 465 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 466 | AFI = x | Global ETR RLOC Address ... | 467 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 468 | AFI = x | MS RLOC Address ... | 469 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 470 | AFI = x | Private ETR RLOC Address ... | 471 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 472 | AFI = x | RTR RLOC Address 1 ... | 473 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 474 | AFI = x | RTR RLOC Address k ... | 475 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 477 Length value n: length in bytes of the AFI addresses that follows 478 the UDP Port Number field including the AFI fields themselves. 480 MS UDP Port Number: this is the UDP port number of the Map-Server 481 and is set to 4342. 483 ETR UDP Port Number: this is the port number returned to a LISP 484 system which was copied from the source port from a packet that 485 has flowed through a NAT device. 487 AFI = x: x can be any AFI value from [AFI]. 489 Global ETR RLOC Address: this is an address known to be globally 490 unique built by NAT-traversal functionality in a LISP router. 492 MS RLOC Address: this is the address of the Map-Server used in the 493 destination RLOC of a packet that has flowed through a NAT device. 495 Private ETR RLOC Address: this is an address known to be a private 496 address inserted in this LCAF format by a LISP router that resides 497 on the private side of a NAT device. 499 RTR RLOC Address: this is an encapsulation address used by an ITR or 500 PITR which resides behind a NAT device. This address is known to 501 have state in a NAT device so packets can flow from it to the LISP 502 ETR behind the NAT. There can be one or more NTR addresses 503 supplied in these set of fields. The number of NTRs encoded is 504 determined by the LCAF length field. When there are no NTRs 505 supplied, the NTR fields can be omitted and reflected by the LCAF 506 length field or an AFI of 0 can be used to indicate zero NTRs 507 encoded. 509 4.7. PETR Admission Control Functionality 511 When a public PETR device wants to verify who is encapsulating to it, 512 it can check for a specific nonce value in the LISP encapsulated 513 packet. To convey the nonce to admitted ITRs or PITRs, this LCAF 514 format is used in a Map-Register or Map-Reply locator-record. 516 Nonce Locator Canonical Address Format: 518 0 1 2 3 519 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 520 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 521 | AFI = 16387 | Rsvd1 | Flags | 522 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 523 | Type = 8 | Rsvd2 | 4 + n | 524 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 525 | Reserved | Nonce | 526 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 527 | AFI = x | Address ... | 528 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 530 Length value n: length in bytes of the AFI address that follows the 531 Nonce field including the AFI field itself. 533 Reserved: must be set to zero and ignore on receipt. 535 Nonce: this is a nonce value returned by an ETR in a Map-Reply 536 locator-record to be used by an ITR or PITR when encapsulating to 537 the locator address encoded in the AFI field of this LCAF type. 539 AFI = x: x can be any AFI value from [AFI]. 541 4.8. Multicast Group Membership Information 543 Multicast group information can be published in the mapping database 544 so a lookup on an EID based group address can return a replication 545 list of group addresses or a unicast addresses for single replication 546 or multiple head-end replications. This LCAF encoding can be used to 547 send broadcast packets to all members of a subnet when each EIDs are 548 away from their home subnet location. 550 Multicast Info Canonical Address Format: 552 0 1 2 3 553 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 554 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 555 | AFI = 16387 | Rsvd1 | Flags | 556 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 557 | Type = 9 | Rsvd2 |R|L|J| 4 + n | 558 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 559 | Reserved | Source MaskLen| Group MaskLen | 560 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 561 | AFI = x | Source/Subnet Address ... | 562 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 563 | AFI = x | Group Address ... | 564 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 566 Length value n: length in bytes of fields that follow. 568 Reserved: must be set to zero and ignore on receipt. 570 R-bit: this is the RP-bit that represents PIM (S,G,RP-bit) multicast 571 state. This bit can be set for Joins (when the J-bit is set) or 572 for Leaves (when the L-bit is set). See [LISP-MRSIG] for more 573 usage details. 575 L-bit: this is the Leave-Request bit and is used when this LCAF type 576 is present in the destination EID-prefix field of a Map-Request. 577 See [LISP-MRSIG] for details. 579 J-bit: this is the Join-Request bit and is used when this LCAF type 580 is present in the destination EID-prefix field of a Map-Request. 581 See [LISP-MRSIG] for details. The J-bit MUST not be set when the 582 L-bit is also set in the same LCAF block. A receiver should not 583 take any specific Join or Leave action when both bits are set. 585 Source MaskLen: the mask length of the source prefix that follows. 587 Group MaskLen: the mask length of the group prefix that follows. 589 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 590 its own encoding of a multicast address, this field must be either 591 a group address or a broadcast address. 593 4.9. Traffic Engineering using Re-encapsulating Tunnels 595 For a given EID lookup into the mapping database, this LCAF format 596 can be returned to provide a list of locators in an explicit re- 597 encapsulation path. See [LISP-TE] for details. 599 Explicit Locator Path (ELP) Canonical Address Format: 601 0 1 2 3 602 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 603 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 604 | AFI = 16387 | Rsvd1 | Flags | 605 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 606 | Type = 10 | Rsvd2 | n | 607 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 608 | AFI = x | Rsvd3 |L|P|S| 609 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 610 | Reencap Hop 1 ... | 611 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 612 | AFI = x | Rsvd3 |L|P|S| 613 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 614 | Reencap Hop k ... | 615 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 617 Length value n: length in bytes of fields that follow. 619 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 620 its own encoding of a multicast address, this field must be either 621 a group address or a broadcast address. 623 Lookup bit (L): this is the Lookup bit used to indicate to the user 624 of the ELP to not use this address for encapsulation but to look 625 it up in the mapping database system to obtain an encapsulating 626 RLOC address. 628 RLOC-Probe bit (P): this is the RLOC-probe bit which means the 629 Reencap Hop allows RLOC-probe messages to be sent to it. When the 630 R-bit is set to 0, RLOC-probes must not be sent. When a Reencap 631 Hop is an anycast address then multiple physical Reencap Hops are 632 using the same RLOC address. In this case, RLOC-probes are not 633 needed because when the closest RLOC address is not reachable 634 another RLOC address can reachable. 636 Strict bit (S): this the strict bit which means the associated 637 Rencap Hop is required to be used. If this bit is 0, the 638 reencapsulator can skip this Reencap Hop and go to the next one in 639 the list. 641 4.10. Storing Security Data in the Mapping Database 643 When a locator in a locator-set has a security key associated with 644 it, this LCAF format will be used to encode key material. See 645 [LISP-DDT] for details. 647 Security Key Canonical Address Format: 649 0 1 2 3 650 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 651 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 652 | AFI = 16387 | Rsvd1 | Flags | 653 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 654 | Type = 11 | Rsvd2 | 6 + n | 655 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 656 | Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R| 657 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 658 | Key Length | Key Material ... | 659 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 660 | ... Key Material | 661 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 662 | AFI = x | Locator Address ... | 663 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 665 Length value n: length in bytes of fields that start with the Key 666 Material field. 668 Key Count: the Key Count field declares the number of Key sections 669 included in this LCAF. 671 Key Algorithm: the Algorithm field identifies the key's 672 cryptographic algorithm and specifies the format of the Public Key 673 field. 675 R bit: this is the revoke bit and, if set, it specifies that this 676 Key is being Revoked. 678 Key Length: this field determines the length in bytes of the Key 679 Material field. 681 Key Material: the Key Material field stores the key material. The 682 format of the key material stored depends on the Key Algorithm 683 field. 685 AFI = x: x can be any AFI value from [AFI].This is the locator 686 address that owns the encoded security key. 688 4.11. Source/Destination 2-Tuple Lookups 690 When both a source and destination address of a flow needs 691 consideration for different locator-sets, this 2-tuple key is used in 692 EID fields in LISP control messages. When the Source/Dest key is 693 registered to the mapping database, it can be encoded as a source- 694 prefix and destination-prefix. When the Source/Dest is used as a key 695 for a mapping database lookup the source and destination come from a 696 data packet. 698 Source/Dest Key Canonical Address Format: 700 0 1 2 3 701 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 702 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 703 | AFI = 16387 | Rsvd1 | Flags | 704 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 705 | Type = 12 | Rsvd2 | 4 + n | 706 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 707 | Reserved | Source-ML | Dest-ML | 708 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 709 | AFI = x | Source-Prefix ... | 710 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 711 | AFI = x | Destination-Prefix ... | 712 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 714 Length value n: length in bytes of fields that follow. 716 Reserved: must be set to zero and ignore on receipt. 718 Source-ML: the mask length of the source prefix that follows. 720 Dest-ML: the mask length of the destination prefix that follows. 722 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 723 its own encoding of a multicast address, this field must be either 724 a group address or a broadcast address. 726 Refer to [LISP-TE] for usage details. 728 4.12. Applications for AFI List Type 730 4.12.1. Binding IPv4 and IPv6 Addresses 732 When header translation between IPv4 and IPv6 is desirable a LISP 733 Canonical Address can use the AFI List Type to carry multiple AFIs in 734 one LCA AFI. 736 Bounded Address LISP Canonical Address Format: 738 0 1 2 3 739 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 740 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 741 | AFI = 16387 | Rsvd1 | Flags | 742 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 743 | Type = 1 | Rsvd2 | 2 + 4 + 2 + 16 | 744 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 745 | AFI = 1 | IPv4 Address ... | 746 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 747 | ... IPv4 Address | AFI = 2 | 748 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 749 | IPv6 Address ... | 750 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 751 | ... IPv6 Address ... | 752 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 753 | ... IPv6 Address ... | 754 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 755 | ... IPv6 Address | 756 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 758 Length: length in bytes is fixed at 24 when IPv4 and IPv6 AFI 759 encoded addresses are used. 761 This type of address format can be included in a Map-Request when the 762 address is being used as an EID, but the Mapping Database System 763 lookup destination can use only the IPv4 address. This is so a 764 Mapping Database Service Transport System, such as LISP-ALT [ALT], 765 can use the Map-Request destination address to route the control 766 message to the desired LISP site. 768 4.12.2. Layer-2 VPNs 770 When MAC addresses are stored in the LISP Mapping Database System, 771 the AFI List Type can be used to carry AFI 6. 773 MAC Address LISP Canonical Address Format: 775 0 1 2 3 776 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 777 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 778 | AFI = 16387 | Rsvd1 | Flags | 779 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 780 | Type = 1 | Rsvd2 | 2 + 6 | 781 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 782 | AFI = 6 | Layer-2 MAC Address ... | 783 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 784 | ... Layer-2 MAC Address | 785 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 787 Length: length in bytes is fixed at 8 when MAC address AFI encoded 788 addresses are used. 790 This address format can be used to connect layer-2 domains together 791 using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. 792 In this use-case, a MAC address is being used as an EID, and the 793 locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or 794 even another MAC address being used as an RLOC. 796 4.12.3. ASCII Names in the Mapping Database 798 If DNS names or URIs are stored in the LISP Mapping Database System, 799 the AFI List Type can be used to carry an ASCII string where it is 800 delimited by length 'n' of the LCAF Length encoding. 802 ASCII LISP Canonical Address Format: 804 0 1 2 3 805 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 806 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 807 | AFI = 16387 | Rsvd1 | Flags | 808 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 809 | Type = 1 | Rsvd2 | 2 + n | 810 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 811 | AFI = 17 | DNS Name or URI ... | 812 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 814 Length value n: length in bytes AFI=17 field and the null-terminated 815 ASCII string (the last byte of 0 is included). 817 4.12.4. Using Recursive LISP Canonical Address Encodings 819 When any combination of above is desirable, the AFI List Type value 820 can be used to carry within the LCA AFI another LCA AFI. 822 Recursive LISP Canonical Address Format: 824 0 1 2 3 825 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 826 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 827 | AFI = 16387 | Rsvd1 | Flags | 828 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 829 | Type = 1 | Rsvd2 | 4 + 8 + 2 + 4 | 830 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 831 | AFI = 16387 | Rsvd1 | Flags | 832 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 833 | Type = 4 | Rsvd2 | 12 | 834 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 835 | IP TOS, IPv6 QQS or Flow Label | Protocol | 836 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 837 | Local Port | Remote Port | 838 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 839 | AFI = 1 | IPv4 Address ... | 840 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 841 | ... IPv4 Address | 842 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 844 Length: length in bytes is fixed at 18 when an AFI=1 IPv4 address is 845 included. 847 This format could be used by a Mapping Database Transport System, 848 such as LISP-ALT [ALT], where the AFI=1 IPv4 address is used as an 849 EID and placed in the Map-Request destination address by the sending 850 LISP system. The ALT system can deliver the Map-Request to the LISP 851 destination site independent of the Application Data Type AFI payload 852 values. When this AFI is processed by the destination LISP site, it 853 can return different locator-sets based on the type of application or 854 level of service that is being requested. 856 4.12.5. Compatibility Mode Use Case 858 A LISP system should use the AFI List Type format when sending to 859 LISP systems that do not support a particular LCAF Type used to 860 encode locators. This allows the receiving system to be able to 861 parse a locator address for encapsulation purposes. The list of AFIs 862 in an AFI List LCAF Type has no semantic ordering and a receiver 863 should parse each AFI element no matter what the ordering. 865 Compatibility Mode Address Format: 867 0 1 2 3 868 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 869 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 870 | AFI = 16387 | Rsvd1 | Flags | 871 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 872 | Type = 1 | Rsvd2 | 22 + 6 | 873 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 874 | AFI = 16387 | Rsvd1 | Flags | 875 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 876 | Type = 5 | Rsvd2 | 12 + 2 | 877 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 878 |N| Latitude Degrees | Minutes | Seconds | 879 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 880 |E| Longitude Degrees | Minutes | Seconds | 881 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 882 | Altitude | 883 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 884 | AFI = 0 | AFI = 1 | 885 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 886 | IPv4 Address | 887 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 889 If a system does not recognized the Geo Coordinate LCAF Type that is 890 accompanying a locator address, an encoder can include the Geo 891 Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI 892 in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in 893 the list is encoded with a valid AFI value to identify the locator 894 address. 896 A LISP system is required to support the AFI List LCAF Type to use 897 this procedure. It would skip over 10 bytes of the Geo Coordinate 898 LCAF Type to get to the locator address encoding (an IPv4 locator 899 address). A LISP system that does support the Geo Coordinate LCAF 900 Type can support parsing the locator address within the Geo 901 Coordinate LCAF encoding or in the locator encoding that follows in 902 the AFI List LCAF. 904 5. Security Considerations 906 There are no security considerations for this specification. The 907 security considerations are documented for the protocols that use 908 LISP Canonical Addressing. Refer to the those relevant 909 specifications. 911 6. IANA Considerations 913 The Address Family AFI definitions from [AFI] only allocate code- 914 points for the AFI value itself. The length of the address or entity 915 that follows is not defined and is implied based on conventional 916 experience. Where the LISP protocol uses LISP Canonical Addresses 917 specifically, the address length definitions will be in this 918 specification and take precedent over any other specification. 920 An IANA Registry for LCAF Type values will be created. The values 921 that are considered for use by the main LISP specification [LISP] 922 will be in the IANA Registry. Other Type values used for 923 experimentation will be defined and described in this document. 925 7. References 927 7.1. Normative References 929 [RFC1700] Reynolds, J. and J. Postel, "Assigned Numbers", RFC 1700, 930 October 1994. 932 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and 933 E. Lear, "Address Allocation for Private Internets", 934 BCP 5, RFC 1918, February 1996. 936 7.2. Informative References 938 [AFI] IANA, "Address Family Identifier (AFIs)", ADDRESS FAMILY 939 NUMBERS http://www.iana.org/numbers.html, Febuary 2007. 941 [ALT] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, "LISP 942 Alternative Topology (LISP+ALT)", 943 draft-ietf-lisp-alt-06.txt (work in progress), March 2011. 945 [LISP] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, 946 "Locator/ID Separation Protocol (LISP)", 947 draft-ietf-lisp-12.txt (work in progress), April 2011. 949 [LISP-DDT] 950 Fuller, V., Lewis, D., and V. Ermagan, "LISP Delegated 951 Database Tree", draft-fuller-lisp-ddt-01.txt (work in 952 progress). 954 [LISP-MRSIG] 955 Farinacci, D. and M. Napierala, "LISP Control-Plane 956 Multicast Signaling", 957 draft-farinacci-lisp-mr-signaling-00.txt (work in 958 progress). 960 [LISP-NATT] 961 Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, 962 F., and C. White, "NAT traversal for LISP", 963 draft-ermagan-lisp-nat-traversal-00.txt (work in 964 progress). 966 [LISP-TE] Farinacci, D., Lahiri, P., and M. Kowal, "LISP Traffic 967 Engineering Use-Cases", draft-farinacci-lisp-te-01.txt 968 (work in progress). 970 [WGS-84] Geodesy and Geophysics Department, DoD., "World Geodetic 971 System 1984", NIMA TR8350.2, January 2000, . 975 Appendix A. Acknowledgments 977 The authors would like to thank Vince Fuller, Gregg Schudel, Jesper 978 Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for 979 their technical and editorial commentary. 981 The authors would like to thank Victor Moreno for discussions that 982 lead to the definition of the Multicast Info LCAF type. 984 The authors would like to thank Parantap Lahiri and Michael Kowal for 985 discussions that lead to the definition of the Explicit Locator Path 986 (ELP) LCAF type. 988 The authors would like to thank Fabio Maino and Vina Ermagan for 989 discussions that lead to the definition of the Security Key LCAF 990 type. 992 Thanks also goes to Terry Manderson for assistance obtaining a LISP 993 AFI value from IANA. 995 Appendix B. Document Change Log 997 B.1. Changes to draft-ietf-lisp-01.txt 999 o Submitted January 2013. 1001 o Change longitude range from 0-90 to 0-180 in section 4.4. 1003 o Added reference to WGS-84 in section 4.4. 1005 B.2. Changes to draft-ietf-lisp-00.txt 1007 o Posted first working group draft August 2012. 1009 o This draft was renamed from draft-farinacci-lisp-lcaf-10.txt. 1011 Authors' Addresses 1013 Dino Farinacci 1014 cisco Systems 1015 Tasman Drive 1016 San Jose, CA 95134 1017 USA 1019 Email: farinacci@gmail.com 1021 Dave Meyer 1022 cisco Systems 1023 170 Tasman Drive 1024 San Jose, CA 1025 USA 1027 Email: dmm@cisco.com 1029 Job Snijders 1030 InTouch N.V. 1031 Middenweg 76 1032 1097 BS Amsterdam 1033 The Netherlands 1035 Email: job@instituut.net