idnits 2.17.1 draft-ietf-lisp-lcaf-02.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** The document seems to lack a both a reference to RFC 2119 and the recommended RFC 2119 boilerplate, even if it appears to use RFC 2119 keywords. RFC 2119 keyword, line 184: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 220: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 594: '... See [LISP-MRSIG] for details. The J-bit MUST not be set when the...' Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Using lowercase 'not' together with uppercase 'MUST', 'SHALL', 'SHOULD', or 'RECOMMENDED' is not an accepted usage according to RFC 2119. Please use uppercase 'NOT' together with RFC 2119 keywords (if that is what you mean). Found 'MUST not' in this paragraph: J-bit: this is the Join-Request bit and is used when this LCAF type is present in the destination EID-prefix field of a Map-Request. See [LISP-MRSIG] for details. The J-bit MUST not be set when the L-bit is also set in the same LCAF block. A receiver should not take any specific Join or Leave action when both bits are set. -- The document date (March 10, 2013) is 4037 days in the past. Is this intentional? Checking references for intended status: Experimental ---------------------------------------------------------------------------- ** Obsolete normative reference: RFC 1700 (Obsoleted by RFC 3232) ** Obsolete normative reference: RFC 6830 (Obsoleted by RFC 9300, RFC 9301) == Outdated reference: A later version (-04) exists of draft-fuller-lisp-ddt-01 == Outdated reference: A later version (-06) exists of draft-farinacci-lisp-mr-signaling-00 == Outdated reference: A later version (-19) exists of draft-ermagan-lisp-nat-traversal-00 == Outdated reference: A later version (-08) exists of draft-coras-lisp-re-02 == Outdated reference: A later version (-12) exists of draft-farinacci-lisp-te-01 Summary: 3 errors (**), 0 flaws (~~), 7 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group D. Farinacci 3 Internet-Draft D. Meyer 4 Intended status: Experimental cisco Systems 5 Expires: September 11, 2013 J. Snijders 6 InTouch N.V. 7 March 10, 2013 9 LISP Canonical Address Format (LCAF) 10 draft-ietf-lisp-lcaf-02 12 Abstract 14 This draft defines a canonical address format encoding used in LISP 15 control messages and in the encoding of lookup keys for the LISP 16 Mapping Database System. 18 Status of this Memo 20 This Internet-Draft is submitted in full conformance with the 21 provisions of BCP 78 and BCP 79. 23 Internet-Drafts are working documents of the Internet Engineering 24 Task Force (IETF). Note that other groups may also distribute 25 working documents as Internet-Drafts. The list of current Internet- 26 Drafts is at http://datatracker.ietf.org/drafts/current/. 28 Internet-Drafts are draft documents valid for a maximum of six months 29 and may be updated, replaced, or obsoleted by other documents at any 30 time. It is inappropriate to use Internet-Drafts as reference 31 material or to cite them other than as "work in progress." 33 This Internet-Draft will expire on September 11, 2013. 35 Copyright Notice 37 Copyright (c) 2013 IETF Trust and the persons identified as the 38 document authors. All rights reserved. 40 This document is subject to BCP 78 and the IETF Trust's Legal 41 Provisions Relating to IETF Documents 42 (http://trustee.ietf.org/license-info) in effect on the date of 43 publication of this document. Please review these documents 44 carefully, as they describe your rights and restrictions with respect 45 to this document. Code Components extracted from this document must 46 include Simplified BSD License text as described in Section 4.e of 47 the Trust Legal Provisions and are provided without warranty as 48 described in the Simplified BSD License. 50 Table of Contents 52 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 53 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 54 3. LISP Canonical Address Format Encodings . . . . . . . . . . . 5 55 4. LISP Canonical Address Applications . . . . . . . . . . . . . 7 56 4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 7 57 4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 8 58 4.3. Convey Application Specific Data . . . . . . . . . . . . . 9 59 4.4. Assigning Geo Coordinates to Locator Addresses . . . . . . 10 60 4.5. Generic Database Mapping Lookups . . . . . . . . . . . . . 12 61 4.6. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 13 62 4.7. PETR Admission Control Functionality . . . . . . . . . . . 15 63 4.8. Multicast Group Membership Information . . . . . . . . . . 16 64 4.9. Traffic Engineering using Re-encapsulating Tunnels . . . . 18 65 4.10. Storing Security Data in the Mapping Database . . . . . . 19 66 4.11. Source/Destination 2-Tuple Lookups . . . . . . . . . . . . 20 67 4.12. Replication List Entries for Multicast Forwarding . . . . 21 68 4.13. Applications for AFI List Type . . . . . . . . . . . . . . 22 69 4.13.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . . 22 70 4.13.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 23 71 4.13.3. ASCII Names in the Mapping Database . . . . . . . . . 23 72 4.13.4. Using Recursive LISP Canonical Address Encodings . . 24 73 4.13.5. Compatibility Mode Use Case . . . . . . . . . . . . . 25 74 5. Security Considerations . . . . . . . . . . . . . . . . . . . 26 75 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 27 76 7. References . . . . . . . . . . . . . . . . . . . . . . . . . . 28 77 7.1. Normative References . . . . . . . . . . . . . . . . . . . 28 78 7.2. Informative References . . . . . . . . . . . . . . . . . . 28 79 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . . 30 80 Appendix B. Document Change Log . . . . . . . . . . . . . . . . . 31 81 B.1. Changes to draft-ietf-lisp-lcaf-02.txt . . . . . . . . . . 31 82 B.2. Changes to draft-ietf-lisp-lcaf-01.txt . . . . . . . . . . 31 83 B.3. Changes to draft-ietf-lisp-lcaf-00.txt . . . . . . . . . . 31 84 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 32 86 1. Introduction 88 The LISP architecture and protocols [RFC6830] introduces two new 89 numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators 90 (RLOCs) which are intended to replace most use of IP addresses on the 91 Internet. To provide flexibility for current and future 92 applications, these values can be encoded in LISP control messages 93 using a general syntax that includes Address Family Identifier (AFI), 94 length, and value fields. 96 Currently defined AFIs include IPv4 and IPv6 addresses, which are 97 formatted according to code-points assigned in [AFI] as follows: 99 IPv4 Encoded Address: 101 0 1 2 3 102 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 103 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 104 | AFI = 1 | IPv4 Address ... | 105 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 106 | ... IPv4 Address | 107 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 109 IPv6 Encoded Address: 111 0 1 2 3 112 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 113 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 114 | AFI = 2 | IPv6 Address ... | 115 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 116 | ... IPv6 Address ... | 117 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 118 | ... IPv6 Address ... | 119 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 120 | ... IPv6 Address ... | 121 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 122 | ... IPv6 Address | 123 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 125 This document describes the currently-defined AFIs the LISP protocol 126 uses along with their encodings and introduces the LISP Canonical 127 Address Format (LCAF) that can be used to define the LISP-specific 128 encodings for arbitrary AFI values. 130 2. Definition of Terms 132 Address Family Identifier (AFI): a term used to describe an address 133 encoding in a packet. An address family currently defined for 134 IPv4 or IPv6 addresses. See [AFI] and [RFC1700] for details. The 135 reserved AFI value of 0 is used in this specification to indicate 136 an unspecified encoded address where the the length of the address 137 is 0 bytes following the 16-bit AFI value of 0. 139 Unspecified Address Format: 141 0 1 2 3 142 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 143 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 144 | AFI = 0 | | 145 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 147 Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value 148 used in the source and destination address fields of the first 149 (most inner) LISP header of a packet. The host obtains a 150 destination EID the same way it obtains a destination address 151 today, for example through a DNS lookup or SIP exchange. The 152 source EID is obtained via existing mechanisms used to set a 153 host's "local" IP address. An EID is allocated to a host from an 154 EID-prefix block associated with the site where the host is 155 located. An EID can be used by a host to refer to other hosts. 157 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress 158 tunnel router (ETR). It is the output of a EID-to-RLOC mapping 159 lookup. An EID maps to one or more RLOCs. Typically, RLOCs are 160 numbered from topologically aggregatable blocks that are assigned 161 to a site at each point to which it attaches to the global 162 Internet; where the topology is defined by the connectivity of 163 provider networks, RLOCs can be thought of as PA addresses. 164 Multiple RLOCs can be assigned to the same ETR device or to 165 multiple ETR devices at a site. 167 3. LISP Canonical Address Format Encodings 169 IANA has assigned AFI value 16387 (0x4003) to the LISP architecture 170 and protocols. This specification defines the encoding format of the 171 LISP Canonical Address (LCA). 173 The first 4 bytes of an LISP Canonical Address are followed by a 174 variable length of fields: 176 0 1 2 3 177 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 178 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 179 | AFI = 16387 | Rsvd1 | Flags | 180 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 181 | Type | Rsvd2 | Length | 182 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 184 Rsvd1: this 8-bit field is reserved for future use and MUST be 185 transmitted as 0 and ignored on receipt. 187 Flags: this 8-bit field is for future definition and use. For now, 188 set to zero on transmission and ignored on receipt. 190 Type: this 8-bit field is specific to the LISP Canonical Address 191 formatted encodings, values are: 193 Type 0: Null Body Type 195 Type 1: AFI List Type 197 Type 2: Instance ID Type 199 Type 3: AS Number Type 201 Type 4: Application Data Type 203 Type 5: Geo Coordinates Type 205 Type 6: Opaque Key Type 207 Type 7: NAT-Traversal Type 209 Type 8: Nonce Locator Type 211 Type 9: Multicast Info Type 212 Type 10: Explicit Locator Path Type 214 Type 11: Security Key Type 216 Type 12: Source/Dest Key Type 218 Type 13: Replication List Entry Type 220 Rsvd2: this 8-bit field is reserved for future use and MUST be 221 transmitted as 0 and ignored on receipt. 223 Length: this 16-bit field is in units of bytes and covers all of the 224 LISP Canonical Address payload, starting and including the byte 225 after the Length field. So any LCAF encoded address will have a 226 minimum length of 8 bytes when the Length field is 0. The 8 bytes 227 include the AFI, Flags, Type, Reserved, and Length fields. When 228 the AFI is not next to encoded address in a control message, then 229 the encoded address will have a minimum length of 6 bytes when the 230 Length field is 0. The 6 bytes include the Flags, Type, Reserved, 231 and Length fields. 233 4. LISP Canonical Address Applications 235 4.1. Segmentation using LISP 237 When multiple organizations inside of a LISP site are using private 238 addresses [RFC1918] as EID-prefixes, their address spaces must remain 239 segregated due to possible address duplication. An Instance ID in 240 the address encoding can aid in making the entire AFI based address 241 unique. 243 Another use for the Instance ID LISP Canonical Address Format is when 244 creating multiple segmented VPNs inside of a LISP site where keeping 245 EID-prefix based subnets is desirable. 247 Instance ID LISP Canonical Address Format: 249 0 1 2 3 250 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 251 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 252 | AFI = 16387 | Rsvd1 | Flags | 253 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 254 | Type = 2 | IID mask-len | 4 + n | 255 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 256 | Instance ID | 257 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 258 | AFI = x | Address ... | 259 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 261 IID mask-len: if the AFI is set to 0, then this format is not 262 encoding an extended EID-prefix but rather an instance-ID range 263 where the 'IID mask-len' indicates the number of high-order bits 264 used in the Instance ID field for the range. 266 Length value n: length in bytes of the AFI address that follows the 267 Instance ID field including the AFI field itself. 269 Instance ID: the low-order 24-bits that can go into a LISP data 270 header when the I-bit is set. See [RFC6830] for details. 272 AFI = x: x can be any AFI value from [AFI]. 274 This LISP Canonical Address Type can be used to encode either EID or 275 RLOC addresses. 277 4.2. Carrying AS Numbers in the Mapping Database 279 When an AS number is stored in the LISP Mapping Database System for 280 either policy or documentation reasons, it can be encoded in a LISP 281 Canonical Address. 283 AS Number LISP Canonical Address Format: 285 0 1 2 3 286 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 287 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 288 | AFI = 16387 | Rsvd1 | Flags | 289 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 290 | Type = 3 | Rsvd2 | 4 + n | 291 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 292 | AS Number | 293 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 294 | AFI = x | Address ... | 295 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 297 Length value n: length in bytes of the AFI address that follows the 298 AS Number field including the AFI field itself. 300 AS Number: the 32-bit AS number of the autonomous system that has 301 been assigned either the EID or RLOC that follows. 303 AFI = x: x can be any AFI value from [AFI]. 305 The AS Number Canonical Address Type can be used to encode either EID 306 or RLOC addresses. The former is used to describe the LISP-ALT AS 307 number the EID-prefix for the site is being carried for. The latter 308 is used to describe the AS that is carrying RLOC based prefixes in 309 the underlying routing system. 311 4.3. Convey Application Specific Data 313 When a locator-set needs to be conveyed based on the type of 314 application or the Per-Hop Behavior (PHB) of a packet, the 315 Application Data Type can be used. 317 Application Data LISP Canonical Address Format: 319 0 1 2 3 320 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 321 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 322 | AFI = 16387 | Rsvd1 | Flags | 323 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 324 | Type = 4 | Rsvd2 | 8 + n | 325 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 326 | IP TOS, IPv6 TC, or Flow Label | Protocol | 327 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 328 | Local Port | Remote Port | 329 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 330 | AFI = x | Address ... | 331 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 333 Length value n: length in bytes of the AFI address that follows the 334 8-byte Application Data fields including the AFI field itself. 336 IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS 337 field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow 338 Label used in an IPv6 header. 340 Local Port/Remote Port: these fields are from the TCP, UDP, or SCTP 341 transport header. 343 AFI = x: x can be any AFI value from [AFI]. 345 The Application Data Canonical Address Type is used for an EID 346 encoding when an ITR wants a locator-set for a specific application. 347 When used for an RLOC encoding, the ETR is supplying a locator-set 348 for each specific application is has been configured to advertise. 350 4.4. Assigning Geo Coordinates to Locator Addresses 352 If an ETR desires to send a Map-Reply describing the Geo Coordinates 353 for each locator in its locator-set, it can use the Geo Coordinate 354 Type to convey physical location information. 356 Coordinates are specified using the WGS-84 (World Geodetic System) 357 reference coordinate system [WGS-84]. 359 Geo Coordinate LISP Canonical Address Format: 361 0 1 2 3 362 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 363 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 364 | AFI = 16387 | Rsvd1 | Flags | 365 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 366 | Type = 5 | Rsvd2 | 12 + n | 367 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 368 |N| Latitude Degrees | Minutes | Seconds | 369 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 370 |E| Longitude Degrees | Minutes | Seconds | 371 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 372 | Altitude | 373 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 374 | AFI = x | Address ... | 375 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 377 Length value n: length in bytes of the AFI address that follows the 378 8-byte Longitude and Latitude fields including the AFI field 379 itself. 381 N: When set to 1 means North, otherwise South. 383 Latitude Degrees: Valid values range from 0 to 90 degrees above or 384 below the equator (northern or southern hemisphere, respectively). 386 Latitude Minutes: Valid values range from 0 to 59. 388 Latitude Seconds: Valid values range from 0 to 59. 390 E: When set to 1 means East, otherwise West. 392 Longitude Degrees: Value values are from 0 to 180 degrees right or 393 left of the Prime Meridian. 395 Longitude Minutes: Valid values range from 0 to 59. 397 Longitude Seconds: Valid values range from 0 to 59. 399 Altitude: Height relative to sea level in meters. This is a signed 400 integer meaning that the altitude could be below sea level. A 401 value of 0x7fffffff indicates no Altitude value is encoded. 403 AFI = x: x can be any AFI value from [AFI]. 405 The Geo Coordinates Canonical Address Type can be used to encode 406 either EID or RLOC addresses. When used for EID encodings, you can 407 determine the physical location of an EID along with the topological 408 location by observing the locator-set. 410 4.5. Generic Database Mapping Lookups 412 When the LISP Mapping Database system holds information accessed by a 413 generic formatted key (where the key is not the usual IPv4 or IPv6 414 address), an opaque key may be desirable. 416 Opaque Key LISP Canonical Address Format: 418 0 1 2 3 419 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 420 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 421 | AFI = 16387 | Rsvd1 | Flags | 422 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 423 | Type = 6 | Rsvd2 | n | 424 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 425 | Key Field Num | Key Wildcard Fields | Key . . . | 426 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 427 | . . . Key | 428 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 430 Length value n: length in bytes of the type's payload. The value n 431 is the number of bytes that follow this Length field. 433 Key Field Num: the number of fields (minus 1) the key can be broken 434 up into. The width of the fields are fixed length. So for a key 435 size of 8 bytes, with a Key Field Num of 4 allows 4 fields of 2 436 bytes in length. Valid values for this field range from 0 to 15 437 supporting a maximum of 16 field separations. 439 Key Wildcard Fields: describes which fields in the key are not used 440 as part of the key lookup. This wildcard encoding is a bitfield. 441 Each bit is a don't-care bit for a corresponding field in the key. 442 Bit 0 (the low-order bit) in this bitfield corresponds the first 443 field, right-justified in the key, bit 1 the second field, and so 444 on. When a bit is set in the bitfield it is a don't-care bit and 445 should not be considered as part of the database lookup. When the 446 entire 16-bits is set to 0, then all bits of the key are used for 447 the database lookup. 449 Key: the variable length key used to do a LISP Database Mapping 450 lookup. The length of the key is the value n (shown above) minus 451 3. 453 4.6. NAT Traversal Scenarios 455 When a LISP system is conveying global address and mapped port 456 information when traversing through a NAT device, the NAT-Traversal 457 LCAF Type is used. See [LISP-NATT] for details. 459 NAT-Traversal Canonical Address Format: 461 0 1 2 3 462 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 463 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 464 | AFI = 16387 | Rsvd1 | Flags | 465 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 466 | Type = 7 | Rsvd2 | 4 + n | 467 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 468 | MS UDP Port Number | ETR UDP Port Number | 469 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 470 | AFI = x | Global ETR RLOC Address ... | 471 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 472 | AFI = x | MS RLOC Address ... | 473 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 474 | AFI = x | Private ETR RLOC Address ... | 475 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 476 | AFI = x | RTR RLOC Address 1 ... | 477 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 478 | AFI = x | RTR RLOC Address k ... | 479 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 481 Length value n: length in bytes of the AFI addresses that follows 482 the UDP Port Number field including the AFI fields themselves. 484 MS UDP Port Number: this is the UDP port number of the Map-Server 485 and is set to 4342. 487 ETR UDP Port Number: this is the port number returned to a LISP 488 system which was copied from the source port from a packet that 489 has flowed through a NAT device. 491 AFI = x: x can be any AFI value from [AFI]. 493 Global ETR RLOC Address: this is an address known to be globally 494 unique built by NAT-traversal functionality in a LISP router. 496 MS RLOC Address: this is the address of the Map-Server used in the 497 destination RLOC of a packet that has flowed through a NAT device. 499 Private ETR RLOC Address: this is an address known to be a private 500 address inserted in this LCAF format by a LISP router that resides 501 on the private side of a NAT device. 503 RTR RLOC Address: this is an encapsulation address used by an ITR or 504 PITR which resides behind a NAT device. This address is known to 505 have state in a NAT device so packets can flow from it to the LISP 506 ETR behind the NAT. There can be one or more NTR addresses 507 supplied in these set of fields. The number of NTRs encoded is 508 determined by the LCAF length field. When there are no NTRs 509 supplied, the NTR fields can be omitted and reflected by the LCAF 510 length field or an AFI of 0 can be used to indicate zero NTRs 511 encoded. 513 4.7. PETR Admission Control Functionality 515 When a public PETR device wants to verify who is encapsulating to it, 516 it can check for a specific nonce value in the LISP encapsulated 517 packet. To convey the nonce to admitted ITRs or PITRs, this LCAF 518 format is used in a Map-Register or Map-Reply locator-record. 520 Nonce Locator Canonical Address Format: 522 0 1 2 3 523 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 524 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 525 | AFI = 16387 | Rsvd1 | Flags | 526 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 527 | Type = 8 | Rsvd2 | 4 + n | 528 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 529 | Reserved | Nonce | 530 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 531 | AFI = x | Address ... | 532 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 534 Length value n: length in bytes of the AFI address that follows the 535 Nonce field including the AFI field itself. 537 Reserved: must be set to zero and ignore on receipt. 539 Nonce: this is a nonce value returned by an ETR in a Map-Reply 540 locator-record to be used by an ITR or PITR when encapsulating to 541 the locator address encoded in the AFI field of this LCAF type. 543 AFI = x: x can be any AFI value from [AFI]. 545 4.8. Multicast Group Membership Information 547 Multicast group information can be published in the mapping database 548 so a lookup on an EID based group address can return a replication 549 list of group addresses or a unicast addresses for single replication 550 or multiple head-end replications. The intent of this type of 551 unicast replication is to deliver packets to multiple ETRs at 552 receiver LISP multicast sites. The locator-set encoding for this EID 553 record type can be a list of ETRs when they each regsiter with "Merge 554 Semantics". The encoding can be a typical AFI encoded locator 555 address. When an RTR list is being registered (with multiple levels 556 acccording to [LISP-RE]), the Replication List Entry LCAF type is 557 used for locator encoding. 559 This LCAF encoding can be used to send broadcast packets to all 560 members of a subnet when each EIDs are away from their home subnet 561 location. 563 Multicast Info Canonical Address Format: 565 0 1 2 3 566 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 567 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 568 | AFI = 16387 | Rsvd1 | Flags | 569 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 570 | Type = 9 | Rsvd2 |R|L|J| 4 + n | 571 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 572 | Reserved | Source MaskLen| Group MaskLen | 573 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 574 | AFI = x | Source/Subnet Address ... | 575 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 576 | AFI = x | Group Address ... | 577 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 579 Length value n: length in bytes of fields that follow. 581 Reserved: must be set to zero and ignore on receipt. 583 R-bit: this is the RP-bit that represents PIM (S,G,RP-bit) multicast 584 state. This bit can be set for Joins (when the J-bit is set) or 585 for Leaves (when the L-bit is set). See [LISP-MRSIG] for more 586 usage details. 588 L-bit: this is the Leave-Request bit and is used when this LCAF type 589 is present in the destination EID-prefix field of a Map-Request. 590 See [LISP-MRSIG] for details. 592 J-bit: this is the Join-Request bit and is used when this LCAF type 593 is present in the destination EID-prefix field of a Map-Request. 594 See [LISP-MRSIG] for details. The J-bit MUST not be set when the 595 L-bit is also set in the same LCAF block. A receiver should not 596 take any specific Join or Leave action when both bits are set. 598 Source MaskLen: the mask length of the source prefix that follows. 600 Group MaskLen: the mask length of the group prefix that follows. 602 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 603 its own encoding of a multicast address, this field must be either 604 a group address or a broadcast address. 606 4.9. Traffic Engineering using Re-encapsulating Tunnels 608 For a given EID lookup into the mapping database, this LCAF format 609 can be returned to provide a list of locators in an explicit re- 610 encapsulation path. See [LISP-TE] for details. 612 Explicit Locator Path (ELP) Canonical Address Format: 614 0 1 2 3 615 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 616 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 617 | AFI = 16387 | Rsvd1 | Flags | 618 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 619 | Type = 10 | Rsvd2 | n | 620 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 621 | AFI = x | Rsvd3 |L|P|S| 622 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 623 | Reencap Hop 1 ... | 624 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 625 | AFI = x | Rsvd3 |L|P|S| 626 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 627 | Reencap Hop k ... | 628 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 630 Length value n: length in bytes of fields that follow. 632 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 633 its own encoding of a multicast address, this field must be either 634 a group address or a broadcast address. 636 Lookup bit (L): this is the Lookup bit used to indicate to the user 637 of the ELP to not use this address for encapsulation but to look 638 it up in the mapping database system to obtain an encapsulating 639 RLOC address. 641 RLOC-Probe bit (P): this is the RLOC-probe bit which means the 642 Reencap Hop allows RLOC-probe messages to be sent to it. When the 643 R-bit is set to 0, RLOC-probes must not be sent. When a Reencap 644 Hop is an anycast address then multiple physical Reencap Hops are 645 using the same RLOC address. In this case, RLOC-probes are not 646 needed because when the closest RLOC address is not reachable 647 another RLOC address can reachable. 649 Strict bit (S): this the strict bit which means the associated 650 Rencap Hop is required to be used. If this bit is 0, the 651 reencapsulator can skip this Reencap Hop and go to the next one in 652 the list. 654 4.10. Storing Security Data in the Mapping Database 656 When a locator in a locator-set has a security key associated with 657 it, this LCAF format will be used to encode key material. See 658 [LISP-DDT] for details. 660 Security Key Canonical Address Format: 662 0 1 2 3 663 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 664 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 665 | AFI = 16387 | Rsvd1 | Flags | 666 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 667 | Type = 11 | Rsvd2 | 6 + n | 668 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 669 | Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R| 670 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 671 | Key Length | Key Material ... | 672 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 673 | ... Key Material | 674 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 675 | AFI = x | Locator Address ... | 676 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 678 Length value n: length in bytes of fields that start with the Key 679 Material field. 681 Key Count: the Key Count field declares the number of Key sections 682 included in this LCAF. 684 Key Algorithm: the Algorithm field identifies the key's 685 cryptographic algorithm and specifies the format of the Public Key 686 field. 688 R bit: this is the revoke bit and, if set, it specifies that this 689 Key is being Revoked. 691 Key Length: this field determines the length in bytes of the Key 692 Material field. 694 Key Material: the Key Material field stores the key material. The 695 format of the key material stored depends on the Key Algorithm 696 field. 698 AFI = x: x can be any AFI value from [AFI].This is the locator 699 address that owns the encoded security key. 701 4.11. Source/Destination 2-Tuple Lookups 703 When both a source and destination address of a flow needs 704 consideration for different locator-sets, this 2-tuple key is used in 705 EID fields in LISP control messages. When the Source/Dest key is 706 registered to the mapping database, it can be encoded as a source- 707 prefix and destination-prefix. When the Source/Dest is used as a key 708 for a mapping database lookup the source and destination come from a 709 data packet. 711 Source/Dest Key Canonical Address Format: 713 0 1 2 3 714 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 715 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 716 | AFI = 16387 | Rsvd1 | Flags | 717 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 718 | Type = 12 | Rsvd2 | 4 + n | 719 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 720 | Reserved | Source-ML | Dest-ML | 721 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 722 | AFI = x | Source-Prefix ... | 723 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 724 | AFI = x | Destination-Prefix ... | 725 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 727 Length value n: length in bytes of fields that follow. 729 Reserved: must be set to zero and ignore on receipt. 731 Source-ML: the mask length of the source prefix that follows. 733 Dest-ML: the mask length of the destination prefix that follows. 735 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 736 its own encoding of a multicast address, this field must be either 737 a group address or a broadcast address. 739 Refer to [LISP-TE] for usage details. 741 4.12. Replication List Entries for Multicast Forwarding 743 The Replication List Entry LCAF type is an encoding for a locator 744 being used for unicast replication according to the specification in 745 [LISP-RE]. This locator encoding is pointed to by a Multicast Info 746 LCAF Type and is registered by Re-encapsulating Tunnel Routers (RTRs) 747 that are participating in an overlay distribution tree. Each RTR 748 will register its locator address and its configured level in the 749 distribution tree. 751 Replication List Entry Address Format: 753 0 1 2 3 754 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 755 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 756 | AFI = 16387 | Rsvd1 | Flags | 757 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 758 | Type = 13 | Rsvd2 | 4 + n | 759 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 760 | Rsvd3 | Rsvd4 | Level Value | 761 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 762 | AFI = x | RTR/ETR #1 ... | 763 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 764 | Rsvd3 | Rsvd4 | Level Value | 765 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 766 | AFI = x | RTR/ETR #n ... | 767 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 769 Length value n: length in bytes of fields that follow. 771 Rsvd{1,2,3,4}: must be set to zero and ignore on receipt. 773 Level Value: this value is associated with the level of hierarchy 774 the RTR resides in an overlay distribution tree. The level 775 numbers are ordered from lowest value being close to the ITR 776 (meaning that ITRs replicate to level-0 RTRs) and higher levels 777 are further downstream on the distribution tree closer to ETRs of 778 multicast receiver sites. 780 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 781 own encoding of either a unicast or multicast locator address. 782 All RTR/ETR entries for the same level should be combined together 783 by a Map-Server to avoid searching through the entire multi-level 784 list of locator entries in a Map-Reply message. 786 4.13. Applications for AFI List Type 788 4.13.1. Binding IPv4 and IPv6 Addresses 790 When header translation between IPv4 and IPv6 is desirable a LISP 791 Canonical Address can use the AFI List Type to carry multiple AFIs in 792 one LCA AFI. 794 Bounded Address LISP Canonical Address Format: 796 0 1 2 3 797 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 798 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 799 | AFI = 16387 | Rsvd1 | Flags | 800 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 801 | Type = 1 | Rsvd2 | 2 + 4 + 2 + 16 | 802 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 803 | AFI = 1 | IPv4 Address ... | 804 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 805 | ... IPv4 Address | AFI = 2 | 806 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 807 | IPv6 Address ... | 808 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 809 | ... IPv6 Address ... | 810 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 811 | ... IPv6 Address ... | 812 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 813 | ... IPv6 Address | 814 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 816 Length: length in bytes is fixed at 24 when IPv4 and IPv6 AFI 817 encoded addresses are used. 819 This type of address format can be included in a Map-Request when the 820 address is being used as an EID, but the Mapping Database System 821 lookup destination can use only the IPv4 address. This is so a 822 Mapping Database Service Transport System, such as LISP-ALT 823 [RFC6836], can use the Map-Request destination address to route the 824 control message to the desired LISP site. 826 4.13.2. Layer-2 VPNs 828 When MAC addresses are stored in the LISP Mapping Database System, 829 the AFI List Type can be used to carry AFI 6. 831 MAC Address LISP Canonical Address Format: 833 0 1 2 3 834 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 835 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 836 | AFI = 16387 | Rsvd1 | Flags | 837 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 838 | Type = 1 | Rsvd2 | 2 + 6 | 839 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 840 | AFI = 6 | Layer-2 MAC Address ... | 841 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 842 | ... Layer-2 MAC Address | 843 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 845 Length: length in bytes is fixed at 8 when MAC address AFI encoded 846 addresses are used. 848 This address format can be used to connect layer-2 domains together 849 using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. 850 In this use-case, a MAC address is being used as an EID, and the 851 locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or 852 even another MAC address being used as an RLOC. 854 4.13.3. ASCII Names in the Mapping Database 856 If DNS names or URIs are stored in the LISP Mapping Database System, 857 the AFI List Type can be used to carry an ASCII string where it is 858 delimited by length 'n' of the LCAF Length encoding. 860 ASCII LISP Canonical Address Format: 862 0 1 2 3 863 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 864 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 865 | AFI = 16387 | Rsvd1 | Flags | 866 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 867 | Type = 1 | Rsvd2 | 2 + n | 868 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 869 | AFI = 17 | DNS Name or URI ... | 870 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 872 Length value n: length in bytes AFI=17 field and the null-terminated 873 ASCII string (the last byte of 0 is included). 875 4.13.4. Using Recursive LISP Canonical Address Encodings 877 When any combination of above is desirable, the AFI List Type value 878 can be used to carry within the LCA AFI another LCA AFI. 880 Recursive LISP Canonical Address Format: 882 0 1 2 3 883 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 884 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 885 | AFI = 16387 | Rsvd1 | Flags | 886 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 887 | Type = 1 | Rsvd2 | 4 + 8 + 2 + 4 | 888 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 889 | AFI = 16387 | Rsvd1 | Flags | 890 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 891 | Type = 4 | Rsvd2 | 12 | 892 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 893 | IP TOS, IPv6 QQS or Flow Label | Protocol | 894 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 895 | Local Port | Remote Port | 896 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 897 | AFI = 1 | IPv4 Address ... | 898 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 899 | ... IPv4 Address | 900 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 902 Length: length in bytes is fixed at 18 when an AFI=1 IPv4 address is 903 included. 905 This format could be used by a Mapping Database Transport System, 906 such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is used as 907 an EID and placed in the Map-Request destination address by the 908 sending LISP system. The ALT system can deliver the Map-Request to 909 the LISP destination site independent of the Application Data Type 910 AFI payload values. When this AFI is processed by the destination 911 LISP site, it can return different locator-sets based on the type of 912 application or level of service that is being requested. 914 4.13.5. Compatibility Mode Use Case 916 A LISP system should use the AFI List Type format when sending to 917 LISP systems that do not support a particular LCAF Type used to 918 encode locators. This allows the receiving system to be able to 919 parse a locator address for encapsulation purposes. The list of AFIs 920 in an AFI List LCAF Type has no semantic ordering and a receiver 921 should parse each AFI element no matter what the ordering. 923 Compatibility Mode Address Format: 925 0 1 2 3 926 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 927 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 928 | AFI = 16387 | Rsvd1 | Flags | 929 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 930 | Type = 1 | Rsvd2 | 22 + 6 | 931 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 932 | AFI = 16387 | Rsvd1 | Flags | 933 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 934 | Type = 5 | Rsvd2 | 12 + 2 | 935 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 936 |N| Latitude Degrees | Minutes | Seconds | 937 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 938 |E| Longitude Degrees | Minutes | Seconds | 939 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 940 | Altitude | 941 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 942 | AFI = 0 | AFI = 1 | 943 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 944 | IPv4 Address | 945 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 947 If a system does not recognized the Geo Coordinate LCAF Type that is 948 accompanying a locator address, an encoder can include the Geo 949 Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI 950 in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in 951 the list is encoded with a valid AFI value to identify the locator 952 address. 954 A LISP system is required to support the AFI List LCAF Type to use 955 this procedure. It would skip over 10 bytes of the Geo Coordinate 956 LCAF Type to get to the locator address encoding (an IPv4 locator 957 address). A LISP system that does support the Geo Coordinate LCAF 958 Type can support parsing the locator address within the Geo 959 Coordinate LCAF encoding or in the locator encoding that follows in 960 the AFI List LCAF. 962 5. Security Considerations 964 There are no security considerations for this specification. The 965 security considerations are documented for the protocols that use 966 LISP Canonical Addressing. Refer to the those relevant 967 specifications. 969 6. IANA Considerations 971 The Address Family AFI definitions from [AFI] only allocate code- 972 points for the AFI value itself. The length of the address or entity 973 that follows is not defined and is implied based on conventional 974 experience. Where the LISP protocol uses LISP Canonical Addresses 975 specifically, the address length definitions will be in this 976 specification and take precedent over any other specification. 978 An IANA Registry for LCAF Type values will be created. The values 979 that are considered for use by the main LISP specification [RFC6830] 980 will be in the IANA Registry. Other Type values used for 981 experimentation will be defined and described in this document. 983 7. References 985 7.1. Normative References 987 [RFC1700] Reynolds, J. and J. Postel, "Assigned Numbers", RFC 1700, 988 October 1994. 990 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and 991 E. Lear, "Address Allocation for Private Internets", 992 BCP 5, RFC 1918, February 1996. 994 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The 995 Locator/ID Separation Protocol (LISP)", RFC 6830, 996 January 2013. 998 [RFC6836] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, 999 "Locator/ID Separation Protocol Alternative Logical 1000 Topology (LISP+ALT)", RFC 6836, January 2013. 1002 7.2. Informative References 1004 [AFI] IANA, "Address Family Identifier (AFIs)", ADDRESS FAMILY 1005 NUMBERS http://www.iana.org/numbers.html, Febuary 2007. 1007 [LISP-DDT] 1008 Fuller, V., Lewis, D., and V. Ermagan, "LISP Delegated 1009 Database Tree", draft-fuller-lisp-ddt-01.txt (work in 1010 progress). 1012 [LISP-MRSIG] 1013 Farinacci, D. and M. Napierala, "LISP Control-Plane 1014 Multicast Signaling", 1015 draft-farinacci-lisp-mr-signaling-00.txt (work in 1016 progress). 1018 [LISP-NATT] 1019 Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, 1020 F., and C. White, "NAT traversal for LISP", 1021 draft-ermagan-lisp-nat-traversal-00.txt (work in 1022 progress). 1024 [LISP-RE] Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J., 1025 Maino, F., and D. Farinacci, "LISP Replication 1026 Engineering", draft-coras-lisp-re-02.txt (work in 1027 progress). 1029 [LISP-TE] Farinacci, D., Lahiri, P., and M. Kowal, "LISP Traffic 1030 Engineering Use-Cases", draft-farinacci-lisp-te-01.txt 1031 (work in progress). 1033 [WGS-84] Geodesy and Geophysics Department, DoD., "World Geodetic 1034 System 1984", NIMA TR8350.2, January 2000, . 1038 Appendix A. Acknowledgments 1040 The authors would like to thank Vince Fuller, Gregg Schudel, Jesper 1041 Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for 1042 their technical and editorial commentary. 1044 The authors would like to thank Victor Moreno for discussions that 1045 lead to the definition of the Multicast Info LCAF type. 1047 The authors would like to thank Parantap Lahiri and Michael Kowal for 1048 discussions that lead to the definition of the Explicit Locator Path 1049 (ELP) LCAF type. 1051 The authors would like to thank Fabio Maino and Vina Ermagan for 1052 discussions that lead to the definition of the Security Key LCAF 1053 type. 1055 The authors would like to thank Albert Cabellos-Aparicio and Florin 1056 Coras for discussions that lead to the definition of the Replication 1057 List Entry LCAF type. 1059 Thanks also goes to Terry Manderson for assistance obtaining a LISP 1060 AFI value from IANA. 1062 Appendix B. Document Change Log 1064 B.1. Changes to draft-ietf-lisp-lcaf-02.txt 1066 o Submitted March 2013. 1068 o Added new LCAF Type "Replication List Entry" to support LISP 1069 replication engineering use-cases. 1071 o Changed references to new LISP RFCs. 1073 B.2. Changes to draft-ietf-lisp-lcaf-01.txt 1075 o Submitted January 2013. 1077 o Change longitude range from 0-90 to 0-180 in section 4.4. 1079 o Added reference to WGS-84 in section 4.4. 1081 B.3. Changes to draft-ietf-lisp-lcaf-00.txt 1083 o Posted first working group draft August 2012. 1085 o This draft was renamed from draft-farinacci-lisp-lcaf-10.txt. 1087 Authors' Addresses 1089 Dino Farinacci 1090 cisco Systems 1091 Tasman Drive 1092 San Jose, CA 95134 1093 USA 1095 Email: farinacci@gmail.com 1097 Dave Meyer 1098 cisco Systems 1099 170 Tasman Drive 1100 San Jose, CA 1101 USA 1103 Email: dmm@cisco.com 1105 Job Snijders 1106 InTouch N.V. 1107 Middenweg 76 1108 1097 BS Amsterdam 1109 The Netherlands 1111 Email: job@instituut.net