idnits 2.17.1 draft-ietf-lisp-lcaf-03.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** The document seems to lack a both a reference to RFC 2119 and the recommended RFC 2119 boilerplate, even if it appears to use RFC 2119 keywords. RFC 2119 keyword, line 188: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 228: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 608: '... See [LISP-MRSIG] for details. The J-bit MUST not be set when the...' Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Using lowercase 'not' together with uppercase 'MUST', 'SHALL', 'SHOULD', or 'RECOMMENDED' is not an accepted usage according to RFC 2119. Please use uppercase 'NOT' together with RFC 2119 keywords (if that is what you mean). Found 'MUST not' in this paragraph: J-bit: this is the Join-Request bit and is used when this LCAF type is present in the destination EID-prefix field of a Map-Request. See [LISP-MRSIG] for details. The J-bit MUST not be set when the L-bit is also set in the same LCAF block. A receiver should not take any specific Join or Leave action when both bits are set. -- The document date (September 16, 2013) is 3873 days in the past. Is this intentional? Checking references for intended status: Experimental ---------------------------------------------------------------------------- ** Obsolete normative reference: RFC 1700 (Obsoleted by RFC 3232) ** Obsolete normative reference: RFC 4627 (Obsoleted by RFC 7158, RFC 7159) ** Obsolete normative reference: RFC 6830 (Obsoleted by RFC 9300, RFC 9301) == Outdated reference: A later version (-09) exists of draft-ietf-lisp-ddt-01 == Outdated reference: A later version (-06) exists of draft-farinacci-lisp-mr-signaling-03 == Outdated reference: A later version (-19) exists of draft-ermagan-lisp-nat-traversal-03 == Outdated reference: A later version (-08) exists of draft-coras-lisp-re-03 == Outdated reference: A later version (-12) exists of draft-farinacci-lisp-te-03 Summary: 4 errors (**), 0 flaws (~~), 7 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group D. Farinacci 3 Internet-Draft lispers.net 4 Intended status: Experimental D. Meyer 5 Expires: March 20, 2014 Brocade 6 J. Snijders 7 Hibernia Networks 8 September 16, 2013 10 LISP Canonical Address Format (LCAF) 11 draft-ietf-lisp-lcaf-03 13 Abstract 15 This draft defines a canonical address format encoding used in LISP 16 control messages and in the encoding of lookup keys for the LISP 17 Mapping Database System. 19 Status of this Memo 21 This Internet-Draft is submitted in full conformance with the 22 provisions of BCP 78 and BCP 79. 24 Internet-Drafts are working documents of the Internet Engineering 25 Task Force (IETF). Note that other groups may also distribute 26 working documents as Internet-Drafts. The list of current Internet- 27 Drafts is at http://datatracker.ietf.org/drafts/current/. 29 Internet-Drafts are draft documents valid for a maximum of six months 30 and may be updated, replaced, or obsoleted by other documents at any 31 time. It is inappropriate to use Internet-Drafts as reference 32 material or to cite them other than as "work in progress." 34 This Internet-Draft will expire on March 20, 2014. 36 Copyright Notice 38 Copyright (c) 2013 IETF Trust and the persons identified as the 39 document authors. All rights reserved. 41 This document is subject to BCP 78 and the IETF Trust's Legal 42 Provisions Relating to IETF Documents 43 (http://trustee.ietf.org/license-info) in effect on the date of 44 publication of this document. Please review these documents 45 carefully, as they describe your rights and restrictions with respect 46 to this document. Code Components extracted from this document must 47 include Simplified BSD License text as described in Section 4.e of 48 the Trust Legal Provisions and are provided without warranty as 49 described in the Simplified BSD License. 51 Table of Contents 53 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 54 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 55 3. LISP Canonical Address Format Encodings . . . . . . . . . . . 5 56 4. LISP Canonical Address Applications . . . . . . . . . . . . . 7 57 4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 7 58 4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 8 59 4.3. Convey Application Specific Data . . . . . . . . . . . . . 9 60 4.4. Assigning Geo Coordinates to Locator Addresses . . . . . . 10 61 4.5. Generic Database Mapping Lookups . . . . . . . . . . . . . 12 62 4.6. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 13 63 4.7. PETR Admission Control Functionality . . . . . . . . . . . 15 64 4.8. Multicast Group Membership Information . . . . . . . . . . 16 65 4.9. Traffic Engineering using Re-encapsulating Tunnels . . . . 18 66 4.10. Storing Security Data in the Mapping Database . . . . . . 19 67 4.11. Source/Destination 2-Tuple Lookups . . . . . . . . . . . . 20 68 4.12. Replication List Entries for Multicast Forwarding . . . . 21 69 4.13. Data Model Encoding . . . . . . . . . . . . . . . . . . . 22 70 4.14. Encoding Key/Value Address Pairs . . . . . . . . . . . . . 23 71 4.15. Applications for AFI List Type . . . . . . . . . . . . . . 23 72 4.15.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . . 23 73 4.15.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 25 74 4.15.3. ASCII Names in the Mapping Database . . . . . . . . . 25 75 4.15.4. Using Recursive LISP Canonical Address Encodings . . 26 76 4.15.5. Compatibility Mode Use Case . . . . . . . . . . . . . 27 77 5. Security Considerations . . . . . . . . . . . . . . . . . . . 28 78 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 29 79 7. References . . . . . . . . . . . . . . . . . . . . . . . . . . 30 80 7.1. Normative References . . . . . . . . . . . . . . . . . . . 30 81 7.2. Informative References . . . . . . . . . . . . . . . . . . 30 82 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . . 32 83 Appendix B. Document Change Log . . . . . . . . . . . . . . . . . 33 84 B.1. Changes to draft-ietf-lisp-lcaf-03.txt . . . . . . . . . . 33 85 B.2. Changes to draft-ietf-lisp-lcaf-02.txt . . . . . . . . . . 33 86 B.3. Changes to draft-ietf-lisp-lcaf-01.txt . . . . . . . . . . 33 87 B.4. Changes to draft-ietf-lisp-lcaf-00.txt . . . . . . . . . . 33 88 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 34 90 1. Introduction 92 The LISP architecture and protocols [RFC6830] introduces two new 93 numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators 94 (RLOCs) which are intended to replace most use of IP addresses on the 95 Internet. To provide flexibility for current and future 96 applications, these values can be encoded in LISP control messages 97 using a general syntax that includes Address Family Identifier (AFI), 98 length, and value fields. 100 Currently defined AFIs include IPv4 and IPv6 addresses, which are 101 formatted according to code-points assigned in [AFI] as follows: 103 IPv4 Encoded Address: 105 0 1 2 3 106 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 107 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 108 | AFI = 1 | IPv4 Address ... | 109 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 110 | ... IPv4 Address | 111 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 113 IPv6 Encoded Address: 115 0 1 2 3 116 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 117 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 118 | AFI = 2 | IPv6 Address ... | 119 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 120 | ... IPv6 Address ... | 121 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 122 | ... IPv6 Address ... | 123 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 124 | ... IPv6 Address ... | 125 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 126 | ... IPv6 Address | 127 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 129 This document describes the currently-defined AFIs the LISP protocol 130 uses along with their encodings and introduces the LISP Canonical 131 Address Format (LCAF) that can be used to define the LISP-specific 132 encodings for arbitrary AFI values. 134 2. Definition of Terms 136 Address Family Identifier (AFI): a term used to describe an address 137 encoding in a packet. An address family currently defined for 138 IPv4 or IPv6 addresses. See [AFI] and [RFC1700] for details. The 139 reserved AFI value of 0 is used in this specification to indicate 140 an unspecified encoded address where the the length of the address 141 is 0 bytes following the 16-bit AFI value of 0. 143 Unspecified Address Format: 145 0 1 2 3 146 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 147 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 148 | AFI = 0 | | 149 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 151 Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value 152 used in the source and destination address fields of the first 153 (most inner) LISP header of a packet. The host obtains a 154 destination EID the same way it obtains a destination address 155 today, for example through a DNS lookup or SIP exchange. The 156 source EID is obtained via existing mechanisms used to set a 157 host's "local" IP address. An EID is allocated to a host from an 158 EID-prefix block associated with the site where the host is 159 located. An EID can be used by a host to refer to other hosts. 161 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress 162 tunnel router (ETR). It is the output of a EID-to-RLOC mapping 163 lookup. An EID maps to one or more RLOCs. Typically, RLOCs are 164 numbered from topologically aggregatable blocks that are assigned 165 to a site at each point to which it attaches to the global 166 Internet; where the topology is defined by the connectivity of 167 provider networks, RLOCs can be thought of as PA addresses. 168 Multiple RLOCs can be assigned to the same ETR device or to 169 multiple ETR devices at a site. 171 3. LISP Canonical Address Format Encodings 173 IANA has assigned AFI value 16387 (0x4003) to the LISP architecture 174 and protocols. This specification defines the encoding format of the 175 LISP Canonical Address (LCA). 177 The first 4 bytes of an LISP Canonical Address are followed by a 178 variable length of fields: 180 0 1 2 3 181 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 182 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 183 | AFI = 16387 | Rsvd1 | Flags | 184 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 185 | Type | Rsvd2 | Length | 186 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 188 Rsvd1: this 8-bit field is reserved for future use and MUST be 189 transmitted as 0 and ignored on receipt. 191 Flags: this 8-bit field is for future definition and use. For now, 192 set to zero on transmission and ignored on receipt. 194 Type: this 8-bit field is specific to the LISP Canonical Address 195 formatted encodings, values are: 197 Type 0: Null Body Type 199 Type 1: AFI List Type 201 Type 2: Instance ID Type 203 Type 3: AS Number Type 205 Type 4: Application Data Type 207 Type 5: Geo Coordinates Type 209 Type 6: Opaque Key Type 211 Type 7: NAT-Traversal Type 213 Type 8: Nonce Locator Type 215 Type 9: Multicast Info Type 216 Type 10: Explicit Locator Path Type 218 Type 11: Security Key Type 220 Type 12: Source/Dest Key Type 222 Type 13: Replication List Entry Type 224 Type 14: JSON Data Model Type 226 Type 15: Key/Value Address Pair Type 228 Rsvd2: this 8-bit field is reserved for future use and MUST be 229 transmitted as 0 and ignored on receipt. 231 Length: this 16-bit field is in units of bytes and covers all of the 232 LISP Canonical Address payload, starting and including the byte 233 after the Length field. So any LCAF encoded address will have a 234 minimum length of 8 bytes when the Length field is 0. The 8 bytes 235 include the AFI, Flags, Type, Reserved, and Length fields. When 236 the AFI is not next to encoded address in a control message, then 237 the encoded address will have a minimum length of 6 bytes when the 238 Length field is 0. The 6 bytes include the Flags, Type, Reserved, 239 and Length fields. 241 4. LISP Canonical Address Applications 243 4.1. Segmentation using LISP 245 When multiple organizations inside of a LISP site are using private 246 addresses [RFC1918] as EID-prefixes, their address spaces must remain 247 segregated due to possible address duplication. An Instance ID in 248 the address encoding can aid in making the entire AFI based address 249 unique. 251 Another use for the Instance ID LISP Canonical Address Format is when 252 creating multiple segmented VPNs inside of a LISP site where keeping 253 EID-prefix based subnets is desirable. 255 Instance ID LISP Canonical Address Format: 257 0 1 2 3 258 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 259 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 260 | AFI = 16387 | Rsvd1 | Flags | 261 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 262 | Type = 2 | IID mask-len | 4 + n | 263 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 264 | Instance ID | 265 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 266 | AFI = x | Address ... | 267 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 269 IID mask-len: if the AFI is set to 0, then this format is not 270 encoding an extended EID-prefix but rather an instance-ID range 271 where the 'IID mask-len' indicates the number of high-order bits 272 used in the Instance ID field for the range. 274 Length value n: length in bytes of the AFI address that follows the 275 Instance ID field including the AFI field itself. 277 Instance ID: the low-order 24-bits that can go into a LISP data 278 header when the I-bit is set. See [RFC6830] for details. 280 AFI = x: x can be any AFI value from [AFI]. 282 This LISP Canonical Address Type can be used to encode either EID or 283 RLOC addresses. 285 4.2. Carrying AS Numbers in the Mapping Database 287 When an AS number is stored in the LISP Mapping Database System for 288 either policy or documentation reasons, it can be encoded in a LISP 289 Canonical Address. 291 AS Number LISP Canonical Address Format: 293 0 1 2 3 294 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 295 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 296 | AFI = 16387 | Rsvd1 | Flags | 297 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 298 | Type = 3 | Rsvd2 | 4 + n | 299 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 300 | AS Number | 301 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 302 | AFI = x | Address ... | 303 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 305 Length value n: length in bytes of the AFI address that follows the 306 AS Number field including the AFI field itself. 308 AS Number: the 32-bit AS number of the autonomous system that has 309 been assigned either the EID or RLOC that follows. 311 AFI = x: x can be any AFI value from [AFI]. 313 The AS Number Canonical Address Type can be used to encode either EID 314 or RLOC addresses. The former is used to describe the LISP-ALT AS 315 number the EID-prefix for the site is being carried for. The latter 316 is used to describe the AS that is carrying RLOC based prefixes in 317 the underlying routing system. 319 4.3. Convey Application Specific Data 321 When a locator-set needs to be conveyed based on the type of 322 application or the Per-Hop Behavior (PHB) of a packet, the 323 Application Data Type can be used. 325 Application Data LISP Canonical Address Format: 327 0 1 2 3 328 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 329 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 330 | AFI = 16387 | Rsvd1 | Flags | 331 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 332 | Type = 4 | Rsvd2 | 8 + n | 333 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 334 | IP TOS, IPv6 TC, or Flow Label | Protocol | 335 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 336 | Local Port (lower-range) | Local Port (upper-range) | 337 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 338 | Remote Port (lower-range) | Remote Port (upper-range) | 339 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 340 | AFI = x | Address ... | 341 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 343 Length value n: length in bytes of the AFI address that follows the 344 8-byte Application Data fields including the AFI field itself. 346 IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS 347 field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow 348 Label used in an IPv6 header. 350 Local Port/Remote Port Ranges: these fields are from the TCP, UDP, 351 or SCTP transport header. A range can be specified by using a 352 lower value and an upper value. When a single port is encoded, 353 the lower and upper value fields are the same. 355 AFI = x: x can be any AFI value from [AFI]. 357 The Application Data Canonical Address Type is used for an EID 358 encoding when an ITR wants a locator-set for a specific application. 359 When used for an RLOC encoding, the ETR is supplying a locator-set 360 for each specific application is has been configured to advertise. 362 4.4. Assigning Geo Coordinates to Locator Addresses 364 If an ETR desires to send a Map-Reply describing the Geo Coordinates 365 for each locator in its locator-set, it can use the Geo Coordinate 366 Type to convey physical location information. 368 Coordinates are specified using the WGS-84 (World Geodetic System) 369 reference coordinate system [WGS-84]. 371 Geo Coordinate LISP Canonical Address Format: 373 0 1 2 3 374 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 375 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 376 | AFI = 16387 | Rsvd1 | Flags | 377 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 378 | Type = 5 | Rsvd2 | 12 + n | 379 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 380 |N| Latitude Degrees | Minutes | Seconds | 381 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 382 |E| Longitude Degrees | Minutes | Seconds | 383 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 384 | Altitude | 385 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 386 | AFI = x | Address ... | 387 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 389 Length value n: length in bytes of the AFI address that follows the 390 8-byte Longitude and Latitude fields including the AFI field 391 itself. 393 N: When set to 1 means North, otherwise South. 395 Latitude Degrees: Valid values range from 0 to 90 degrees above or 396 below the equator (northern or southern hemisphere, respectively). 398 Latitude Minutes: Valid values range from 0 to 59. 400 Latitude Seconds: Valid values range from 0 to 59. 402 E: When set to 1 means East, otherwise West. 404 Longitude Degrees: Value values are from 0 to 180 degrees right or 405 left of the Prime Meridian. 407 Longitude Minutes: Valid values range from 0 to 59. 409 Longitude Seconds: Valid values range from 0 to 59. 411 Altitude: Height relative to sea level in meters. This is a signed 412 integer meaning that the altitude could be below sea level. A 413 value of 0x7fffffff indicates no Altitude value is encoded. 415 AFI = x: x can be any AFI value from [AFI]. 417 The Geo Coordinates Canonical Address Type can be used to encode 418 either EID or RLOC addresses. When used for EID encodings, you can 419 determine the physical location of an EID along with the topological 420 location by observing the locator-set. 422 4.5. Generic Database Mapping Lookups 424 When the LISP Mapping Database system holds information accessed by a 425 generic formatted key (where the key is not the usual IPv4 or IPv6 426 address), an opaque key may be desirable. 428 Opaque Key LISP Canonical Address Format: 430 0 1 2 3 431 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 432 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 433 | AFI = 16387 | Rsvd1 | Flags | 434 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 435 | Type = 6 | Rsvd2 | n | 436 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 437 | Key Field Num | Key Wildcard Fields | Key . . . | 438 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 439 | . . . Key | 440 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 442 Length value n: length in bytes of the type's payload. The value n 443 is the number of bytes that follow this Length field. 445 Key Field Num: the number of fields (minus 1) the key can be broken 446 up into. The width of the fields are fixed length. So for a key 447 size of 8 bytes, with a Key Field Num of 4 allows 4 fields of 2 448 bytes in length. Valid values for this field range from 0 to 15 449 supporting a maximum of 16 field separations. 451 Key Wildcard Fields: describes which fields in the key are not used 452 as part of the key lookup. This wildcard encoding is a bitfield. 453 Each bit is a don't-care bit for a corresponding field in the key. 454 Bit 0 (the low-order bit) in this bitfield corresponds the first 455 field, right-justified in the key, bit 1 the second field, and so 456 on. When a bit is set in the bitfield it is a don't-care bit and 457 should not be considered as part of the database lookup. When the 458 entire 16-bits is set to 0, then all bits of the key are used for 459 the database lookup. 461 Key: the variable length key used to do a LISP Database Mapping 462 lookup. The length of the key is the value n (shown above) minus 463 3. 465 4.6. NAT Traversal Scenarios 467 When a LISP system is conveying global address and mapped port 468 information when traversing through a NAT device, the NAT-Traversal 469 LCAF Type is used. See [LISP-NATT] for details. 471 NAT-Traversal Canonical Address Format: 473 0 1 2 3 474 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 475 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 476 | AFI = 16387 | Rsvd1 | Flags | 477 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 478 | Type = 7 | Rsvd2 | 4 + n | 479 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 480 | MS UDP Port Number | ETR UDP Port Number | 481 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 482 | AFI = x | Global ETR RLOC Address ... | 483 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 484 | AFI = x | MS RLOC Address ... | 485 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 486 | AFI = x | Private ETR RLOC Address ... | 487 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 488 | AFI = x | RTR RLOC Address 1 ... | 489 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 490 | AFI = x | RTR RLOC Address k ... | 491 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 493 Length value n: length in bytes of the AFI addresses that follows 494 the UDP Port Number field including the AFI fields themselves. 496 MS UDP Port Number: this is the UDP port number of the Map-Server 497 and is set to 4342. 499 ETR UDP Port Number: this is the port number returned to a LISP 500 system which was copied from the source port from a packet that 501 has flowed through a NAT device. 503 AFI = x: x can be any AFI value from [AFI]. 505 Global ETR RLOC Address: this is an address known to be globally 506 unique built by NAT-traversal functionality in a LISP router. 508 MS RLOC Address: this is the address of the Map-Server used in the 509 destination RLOC of a packet that has flowed through a NAT device. 511 Private ETR RLOC Address: this is an address known to be a private 512 address inserted in this LCAF format by a LISP router that resides 513 on the private side of a NAT device. 515 RTR RLOC Address: this is an encapsulation address used by an ITR or 516 PITR which resides behind a NAT device. This address is known to 517 have state in a NAT device so packets can flow from it to the LISP 518 ETR behind the NAT. There can be one or more NTR addresses 519 supplied in these set of fields. The number of NTRs encoded is 520 determined by the LCAF length field. When there are no NTRs 521 supplied, the NTR fields can be omitted and reflected by the LCAF 522 length field or an AFI of 0 can be used to indicate zero NTRs 523 encoded. 525 4.7. PETR Admission Control Functionality 527 When a public PETR device wants to verify who is encapsulating to it, 528 it can check for a specific nonce value in the LISP encapsulated 529 packet. To convey the nonce to admitted ITRs or PITRs, this LCAF 530 format is used in a Map-Register or Map-Reply locator-record. 532 Nonce Locator Canonical Address Format: 534 0 1 2 3 535 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 536 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 537 | AFI = 16387 | Rsvd1 | Flags | 538 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 539 | Type = 8 | Rsvd2 | 4 + n | 540 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 541 | Reserved | Nonce | 542 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 543 | AFI = x | Address ... | 544 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 546 Length value n: length in bytes of the AFI address that follows the 547 Nonce field including the AFI field itself. 549 Reserved: must be set to zero and ignore on receipt. 551 Nonce: this is a nonce value returned by an ETR in a Map-Reply 552 locator-record to be used by an ITR or PITR when encapsulating to 553 the locator address encoded in the AFI field of this LCAF type. 555 AFI = x: x can be any AFI value from [AFI]. 557 4.8. Multicast Group Membership Information 559 Multicast group information can be published in the mapping database 560 so a lookup on an EID based group address can return a replication 561 list of group addresses or a unicast addresses for single replication 562 or multiple head-end replications. The intent of this type of 563 unicast replication is to deliver packets to multiple ETRs at 564 receiver LISP multicast sites. The locator-set encoding for this EID 565 record type can be a list of ETRs when they each register with "Merge 566 Semantics". The encoding can be a typical AFI encoded locator 567 address. When an RTR list is being registered (with multiple levels 568 according to [LISP-RE]), the Replication List Entry LCAF type is used 569 for locator encoding. 571 This LCAF encoding can be used to send broadcast packets to all 572 members of a subnet when each EIDs are away from their home subnet 573 location. 575 Multicast Info Canonical Address Format: 577 0 1 2 3 578 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 579 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 580 | AFI = 16387 | Rsvd1 | Flags | 581 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 582 | Type = 9 | Rsvd2 |R|L|J| 8 + n | 583 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 584 | Instance-ID | 585 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 586 | Reserved | Source MaskLen| Group MaskLen | 587 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 588 | AFI = x | Source/Subnet Address ... | 589 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 590 | AFI = x | Group Address ... | 591 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 593 Length value n: length in bytes of fields that follow. 595 Reserved: must be set to zero and ignore on receipt. 597 R-bit: this is the RP-bit that represents PIM (S,G,RP-bit) multicast 598 state. This bit can be set for Joins (when the J-bit is set) or 599 for Leaves (when the L-bit is set). See [LISP-MRSIG] for more 600 usage details. 602 L-bit: this is the Leave-Request bit and is used when this LCAF type 603 is present in the destination EID-prefix field of a Map-Request. 604 See [LISP-MRSIG] for details. 606 J-bit: this is the Join-Request bit and is used when this LCAF type 607 is present in the destination EID-prefix field of a Map-Request. 608 See [LISP-MRSIG] for details. The J-bit MUST not be set when the 609 L-bit is also set in the same LCAF block. A receiver should not 610 take any specific Join or Leave action when both bits are set. 612 Instance ID: the low-order 24-bits that can go into a LISP data 613 header when the I-bit is set. See [RFC6830] for details. The use 614 of the Instance-ID in this LCAF type is to associate a multicast 615 forwarding entry for a given VPN. The instance-ID describes the 616 VPN and is registered to the mapping database system as a 3-tuple 617 of (Instance-ID, S-prefix, G-prefix). 619 Source MaskLen: the mask length of the source prefix that follows. 621 Group MaskLen: the mask length of the group prefix that follows. 623 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 624 its own encoding of a multicast address, this field must be either 625 a group address or a broadcast address. 627 4.9. Traffic Engineering using Re-encapsulating Tunnels 629 For a given EID lookup into the mapping database, this LCAF format 630 can be returned to provide a list of locators in an explicit re- 631 encapsulation path. See [LISP-TE] for details. 633 Explicit Locator Path (ELP) Canonical Address Format: 635 0 1 2 3 636 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 637 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 638 | AFI = 16387 | Rsvd1 | Flags | 639 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 640 | Type = 10 | Rsvd2 | n | 641 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 642 | AFI = x | Rsvd3 |L|P|S| 643 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 644 | Reencap Hop 1 ... | 645 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 646 | AFI = x | Rsvd3 |L|P|S| 647 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 648 | Reencap Hop k ... | 649 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 651 Length value n: length in bytes of fields that follow. 653 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 654 its own encoding of a multicast address, this field must be either 655 a group address or a broadcast address. 657 Lookup bit (L): this is the Lookup bit used to indicate to the user 658 of the ELP to not use this address for encapsulation but to look 659 it up in the mapping database system to obtain an encapsulating 660 RLOC address. 662 RLOC-Probe bit (P): this is the RLOC-probe bit which means the 663 Reencap Hop allows RLOC-probe messages to be sent to it. When the 664 R-bit is set to 0, RLOC-probes must not be sent. When a Reencap 665 Hop is an anycast address then multiple physical Reencap Hops are 666 using the same RLOC address. In this case, RLOC-probes are not 667 needed because when the closest RLOC address is not reachable 668 another RLOC address can reachable. 670 Strict bit (S): this the strict bit which means the associated 671 Rencap Hop is required to be used. If this bit is 0, the 672 reencapsulator can skip this Reencap Hop and go to the next one in 673 the list. 675 4.10. Storing Security Data in the Mapping Database 677 When a locator in a locator-set has a security key associated with 678 it, this LCAF format will be used to encode key material. See 679 [LISP-DDT] for details. 681 Security Key Canonical Address Format: 683 0 1 2 3 684 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 685 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 686 | AFI = 16387 | Rsvd1 | Flags | 687 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 688 | Type = 11 | Rsvd2 | 6 + n | 689 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 690 | Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R| 691 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 692 | Key Length | Key Material ... | 693 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 694 | ... Key Material | 695 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 696 | AFI = x | Locator Address ... | 697 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 699 Length value n: length in bytes of fields that start with the Key 700 Material field. 702 Key Count: the Key Count field declares the number of Key sections 703 included in this LCAF. 705 Key Algorithm: the Algorithm field identifies the key's 706 cryptographic algorithm and specifies the format of the Public Key 707 field. 709 R bit: this is the revoke bit and, if set, it specifies that this 710 Key is being Revoked. 712 Key Length: this field determines the length in bytes of the Key 713 Material field. 715 Key Material: the Key Material field stores the key material. The 716 format of the key material stored depends on the Key Algorithm 717 field. 719 AFI = x: x can be any AFI value from [AFI].This is the locator 720 address that owns the encoded security key. 722 4.11. Source/Destination 2-Tuple Lookups 724 When both a source and destination address of a flow needs 725 consideration for different locator-sets, this 2-tuple key is used in 726 EID fields in LISP control messages. When the Source/Dest key is 727 registered to the mapping database, it can be encoded as a source- 728 prefix and destination-prefix. When the Source/Dest is used as a key 729 for a mapping database lookup the source and destination come from a 730 data packet. 732 Source/Dest Key Canonical Address Format: 734 0 1 2 3 735 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 736 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 737 | AFI = 16387 | Rsvd1 | Flags | 738 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 739 | Type = 12 | Rsvd2 | 4 + n | 740 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 741 | Reserved | Source-ML | Dest-ML | 742 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 743 | AFI = x | Source-Prefix ... | 744 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 745 | AFI = x | Destination-Prefix ... | 746 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 748 Length value n: length in bytes of fields that follow. 750 Reserved: must be set to zero and ignore on receipt. 752 Source-ML: the mask length of the source prefix that follows. 754 Dest-ML: the mask length of the destination prefix that follows. 756 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 757 its own encoding of a multicast address, this field must be either 758 a group address or a broadcast address. 760 Refer to [LISP-TE] for usage details. 762 4.12. Replication List Entries for Multicast Forwarding 764 The Replication List Entry LCAF type is an encoding for a locator 765 being used for unicast replication according to the specification in 766 [LISP-RE]. This locator encoding is pointed to by a Multicast Info 767 LCAF Type and is registered by Re-encapsulating Tunnel Routers (RTRs) 768 that are participating in an overlay distribution tree. Each RTR 769 will register its locator address and its configured level in the 770 distribution tree. 772 Replication List Entry Address Format: 774 0 1 2 3 775 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 776 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 777 | AFI = 16387 | Rsvd1 | Flags | 778 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 779 | Type = 13 | Rsvd2 | 4 + n | 780 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 781 | Rsvd3 | Rsvd4 | Level Value | 782 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 783 | AFI = x | RTR/ETR #1 ... | 784 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 785 | Rsvd3 | Rsvd4 | Level Value | 786 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 787 | AFI = x | RTR/ETR #n ... | 788 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 790 Length value n: length in bytes of fields that follow. 792 Rsvd{1,2,3,4}: must be set to zero and ignore on receipt. 794 Level Value: this value is associated with the level within the 795 overlay distribution tree hierarchy where the RTR resides. The 796 level numbers are ordered from lowest value being close to the ITR 797 (meaning that ITRs replicate to level-0 RTRs) and higher levels 798 are further downstream on the distribution tree closer to ETRs of 799 multicast receiver sites. 801 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 802 own encoding of either a unicast or multicast locator address. 803 All RTR/ETR entries for the same level should be combined together 804 by a Map-Server to avoid searching through the entire multi-level 805 list of locator entries in a Map-Reply message. 807 4.13. Data Model Encoding 809 This type allows a JSON data model to be encoded either as an EID or 810 RLOC. 812 JSON Data Model Type Address Format: 814 0 1 2 3 815 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 816 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 817 | AFI = 16387 | Rsvd1 | Flags | 818 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 819 | Type = 14 | Rsvd2 |B| n | 820 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 821 | JSON binary or text encoding ... | 822 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 823 | AFI = x | Optional Address ... | 824 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 826 Length value n: length in bytes of fields that follow. 828 Rsvd{1,2}: must be set to zero and ignore on receipt. 830 B bit: indicates that the JSON field is binary encoded according to 831 [JSON-BINARY] when the bit is set to 1. Otherwise the encoding is 832 based on text encoding according to [RFC4627]. 834 JSON field: a variable length field that contains either binary or 835 text encodings. 837 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 838 own encoding of either a unicast or multicast locator address. 839 All RTR/ETR entries for the same level should be combined together 840 by a Map-Server to avoid searching through the entire multi-level 841 list of locator entries in a Map-Reply message. 843 4.14. Encoding Key/Value Address Pairs 845 The Key/Value pair is for example useful for attaching attributes to 846 other elements of LISP packets, such as EIDs or RLOCs. When 847 attaching attributes to EIDs or RLOCs, it's necessary to distinguish 848 between the element that should be used as EID or RLOC, and hence as 849 key for lookups, and additional attributes. This is especially the 850 case when the difference cannot be determined from the types of the 851 elements, such as when two IP addresses are being used. 853 Key/Value Pair Address Format: 855 0 1 2 3 856 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 857 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 858 | AFI = 16387 | Rsvd1 | Flags | 859 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 860 | Type = 15 | Rsvd2 | n | 861 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 862 | AFI = x | Address as Key ... | 863 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 864 | AFI = x | Address as Value ... | 865 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 867 Length value n: length in bytes of fields that follow. 869 Rsvd{1,2}: must be set to zero and ignore on receipt. 871 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 872 own encoding of either a unicast or multicast locator address. 873 All RTR/ETR entries for the same level should be combined together 874 by a Map-Server to avoid searching through the entire multi-level 875 list of locator entries in a Map-Reply message. 877 Address as Key: this AFI encoded address will be attached with the 878 attributes encoded in "Address as Value" which follows this field. 880 Address as Value: this AFI encoded address will be the attribute 881 address that goes along with "Address as Key" which precedes this 882 field. 884 4.15. Applications for AFI List Type 886 4.15.1. Binding IPv4 and IPv6 Addresses 888 When header translation between IPv4 and IPv6 is desirable a LISP 889 Canonical Address can use the AFI List Type to carry multiple AFIs in 890 one LCAF AFI. 892 Address Binding LISP Canonical Address Format: 894 0 1 2 3 895 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 896 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 897 | AFI = 16387 | Rsvd1 | Flags | 898 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 899 | Type = 1 | Rsvd2 | 2 + 4 + 2 + 16 | 900 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 901 | AFI = 1 | IPv4 Address ... | 902 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 903 | ... IPv4 Address | AFI = 2 | 904 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 905 | IPv6 Address ... | 906 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 907 | ... IPv6 Address ... | 908 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 909 | ... IPv6 Address ... | 910 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 911 | ... IPv6 Address | 912 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 914 Length: length in bytes is fixed at 24 when IPv4 and IPv6 AFI 915 encoded addresses are used. 917 This type of address format can be included in a Map-Request when the 918 address is being used as an EID, but the Mapping Database System 919 lookup destination can use only the IPv4 address. This is so a 920 Mapping Database Service Transport System, such as LISP-ALT 921 [RFC6836], can use the Map-Request destination address to route the 922 control message to the desired LISP site. 924 4.15.2. Layer-2 VPNs 926 When MAC addresses are stored in the LISP Mapping Database System, 927 the AFI List Type can be used to carry AFI 6. 929 MAC Address LISP Canonical Address Format: 931 0 1 2 3 932 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 933 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 934 | AFI = 16387 | Rsvd1 | Flags | 935 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 936 | Type = 1 | Rsvd2 | 2 + 6 | 937 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 938 | AFI = 6 | Layer-2 MAC Address ... | 939 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 940 | ... Layer-2 MAC Address | 941 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 943 Length: length in bytes is fixed at 8 when MAC address AFI encoded 944 addresses are used. 946 This address format can be used to connect layer-2 domains together 947 using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. 948 In this use-case, a MAC address is being used as an EID, and the 949 locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or 950 even another MAC address being used as an RLOC. 952 4.15.3. ASCII Names in the Mapping Database 954 If DNS names or URIs are stored in the LISP Mapping Database System, 955 the AFI List Type can be used to carry an ASCII string where it is 956 delimited by length 'n' of the LCAF Length encoding. 958 ASCII LISP Canonical Address Format: 960 0 1 2 3 961 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 962 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 963 | AFI = 16387 | Rsvd1 | Flags | 964 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 965 | Type = 1 | Rsvd2 | 2 + n | 966 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 967 | AFI = 17 | DNS Name or URI ... | 968 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 970 Length value n: length in bytes AFI=17 field and the null-terminated 971 ASCII string (the last byte of 0 is included). 973 4.15.4. Using Recursive LISP Canonical Address Encodings 975 When any combination of above is desirable, the AFI List Type value 976 can be used to carry within the LCAF AFI another LCAF AFI. 978 Recursive LISP Canonical Address Format: 980 0 1 2 3 981 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 982 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 983 | AFI = 16387 | Rsvd1 | Flags | 984 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 985 | Type = 1 | Rsvd2 | 4 + 8 + 2 + 4 | 986 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 987 | AFI = 16387 | Rsvd1 | Flags | 988 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 989 | Type = 4 | Rsvd2 | 12 | 990 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 991 | IP TOS, IPv6 QQS or Flow Label | Protocol | 992 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 993 | Local Port | Remote Port | 994 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 995 | AFI = 1 | IPv4 Address ... | 996 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 997 | ... IPv4 Address | 998 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1000 Length: length in bytes is fixed at 18 when an AFI=1 IPv4 address is 1001 included. 1003 This format could be used by a Mapping Database Transport System, 1004 such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is used as 1005 an EID and placed in the Map-Request destination address by the 1006 sending LISP system. The ALT system can deliver the Map-Request to 1007 the LISP destination site independent of the Application Data Type 1008 AFI payload values. When this AFI is processed by the destination 1009 LISP site, it can return different locator-sets based on the type of 1010 application or level of service that is being requested. 1012 4.15.5. Compatibility Mode Use Case 1014 A LISP system should use the AFI List Type format when sending to 1015 LISP systems that do not support a particular LCAF Type used to 1016 encode locators. This allows the receiving system to be able to 1017 parse a locator address for encapsulation purposes. The list of AFIs 1018 in an AFI List LCAF Type has no semantic ordering and a receiver 1019 should parse each AFI element no matter what the ordering. 1021 Compatibility Mode Address Format: 1023 0 1 2 3 1024 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1025 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1026 | AFI = 16387 | Rsvd1 | Flags | 1027 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1028 | Type = 1 | Rsvd2 | 22 + 6 | 1029 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1030 | AFI = 16387 | Rsvd1 | Flags | 1031 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1032 | Type = 5 | Rsvd2 | 12 + 2 | 1033 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1034 |N| Latitude Degrees | Minutes | Seconds | 1035 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1036 |E| Longitude Degrees | Minutes | Seconds | 1037 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1038 | Altitude | 1039 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1040 | AFI = 0 | AFI = 1 | 1041 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1042 | IPv4 Address | 1043 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1045 If a system does not recognized the Geo Coordinate LCAF Type that is 1046 accompanying a locator address, an encoder can include the Geo 1047 Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI 1048 in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in 1049 the list is encoded with a valid AFI value to identify the locator 1050 address. 1052 A LISP system is required to support the AFI List LCAF Type to use 1053 this procedure. It would skip over 10 bytes of the Geo Coordinate 1054 LCAF Type to get to the locator address encoding (an IPv4 locator 1055 address). A LISP system that does support the Geo Coordinate LCAF 1056 Type can support parsing the locator address within the Geo 1057 Coordinate LCAF encoding or in the locator encoding that follows in 1058 the AFI List LCAF. 1060 5. Security Considerations 1062 There are no security considerations for this specification. The 1063 security considerations are documented for the protocols that use 1064 LISP Canonical Addressing. Refer to the those relevant 1065 specifications. 1067 6. IANA Considerations 1069 The Address Family AFI definitions from [AFI] only allocate code- 1070 points for the AFI value itself. The length of the address or entity 1071 that follows is not defined and is implied based on conventional 1072 experience. Where the LISP protocol uses LISP Canonical Addresses 1073 specifically, the address length definitions will be in this 1074 specification and take precedent over any other specification. 1076 An IANA Registry for LCAF Type values will be created. The values 1077 that are considered for use by the main LISP specification [RFC6830] 1078 will be in the IANA Registry. Other Type values used for 1079 experimentation will be defined and described in this document. 1081 7. References 1083 7.1. Normative References 1085 [RFC1700] Reynolds, J. and J. Postel, "Assigned Numbers", RFC 1700, 1086 October 1994. 1088 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and 1089 E. Lear, "Address Allocation for Private Internets", 1090 BCP 5, RFC 1918, February 1996. 1092 [RFC4627] Crockford, D., "The application/json Media Type for 1093 JavaScript Object Notation (JSON)", RFC 4627, July 2006. 1095 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The 1096 Locator/ID Separation Protocol (LISP)", RFC 6830, 1097 January 2013. 1099 [RFC6836] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, 1100 "Locator/ID Separation Protocol Alternative Logical 1101 Topology (LISP+ALT)", RFC 6836, January 2013. 1103 7.2. Informative References 1105 [AFI] IANA, "Address Family Identifier (AFIs)", ADDRESS FAMILY 1106 NUMBERS http://www.iana.org/numbers.html, Febuary 2007. 1108 [JSON-BINARY] 1109 "Universal Binary JSON Specification", 1110 URL http://ubjson.org. 1112 [LISP-DDT] 1113 Fuller, V., Lewis, D., and V. Ermagan, "LISP Delegated 1114 Database Tree", draft-ietf-lisp-ddt-01.txt (work in 1115 progress). 1117 [LISP-MRSIG] 1118 Farinacci, D. and M. Napierala, "LISP Control-Plane 1119 Multicast Signaling", 1120 draft-farinacci-lisp-mr-signaling-03.txt (work in 1121 progress). 1123 [LISP-NATT] 1124 Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, 1125 F., and C. White, "NAT traversal for LISP", 1126 draft-ermagan-lisp-nat-traversal-03.txt (work in 1127 progress). 1129 [LISP-RE] Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J., 1130 Maino, F., and D. Farinacci, "LISP Replication 1131 Engineering", draft-coras-lisp-re-03.txt (work in 1132 progress). 1134 [LISP-TE] Farinacci, D., Lahiri, P., and M. Kowal, "LISP Traffic 1135 Engineering Use-Cases", draft-farinacci-lisp-te-03.txt 1136 (work in progress). 1138 [WGS-84] Geodesy and Geophysics Department, DoD., "World Geodetic 1139 System 1984", NIMA TR8350.2, January 2000, . 1143 Appendix A. Acknowledgments 1145 The authors would like to thank Vince Fuller, Gregg Schudel, Jesper 1146 Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for 1147 their technical and editorial commentary. 1149 The authors would like to thank Victor Moreno for discussions that 1150 lead to the definition of the Multicast Info LCAF type. 1152 The authors would like to thank Parantap Lahiri and Michael Kowal for 1153 discussions that lead to the definition of the Explicit Locator Path 1154 (ELP) LCAF type. 1156 The authors would like to thank Fabio Maino and Vina Ermagan for 1157 discussions that lead to the definition of the Security Key LCAF 1158 type. 1160 The authors would like to thank Albert Cabellos-Aparicio and Florin 1161 Coras for discussions that lead to the definition of the Replication 1162 List Entry LCAF type. 1164 Thanks goes to Michiel Blokzijl and Alberto Rodriguez-Natal for 1165 suggesting new LCAF types. 1167 Thanks also goes to Terry Manderson for assistance obtaining a LISP 1168 AFI value from IANA. 1170 Appendix B. Document Change Log 1172 B.1. Changes to draft-ietf-lisp-lcaf-03.txt 1174 o Submitted September 2013. 1176 o Updated references and author's affilations. 1178 o Added Instance-ID to the Multicast Info Type so there is relative 1179 ease in parsing (S,G) entries within a VPN. 1181 o Add port range encodings to the Application Data LCAF Type. 1183 o Add a new JSON LCAF Type. 1185 o Add Address Key/Value LCAF Type to allow attributes to be attached 1186 to an address. 1188 B.2. Changes to draft-ietf-lisp-lcaf-02.txt 1190 o Submitted March 2013. 1192 o Added new LCAF Type "Replication List Entry" to support LISP 1193 replication engineering use-cases. 1195 o Changed references to new LISP RFCs. 1197 B.3. Changes to draft-ietf-lisp-lcaf-01.txt 1199 o Submitted January 2013. 1201 o Change longitude range from 0-90 to 0-180 in section 4.4. 1203 o Added reference to WGS-84 in section 4.4. 1205 B.4. Changes to draft-ietf-lisp-lcaf-00.txt 1207 o Posted first working group draft August 2012. 1209 o This draft was renamed from draft-farinacci-lisp-lcaf-10.txt. 1211 Authors' Addresses 1213 Dino Farinacci 1214 lispers.net 1215 San Jose, CA 1216 USA 1218 Email: farinacci@gmail.com 1220 Dave Meyer 1221 Brocade 1222 San Jose, CA 1223 USA 1225 Email: dmm@1-4-5.net 1227 Job Snijders 1228 Hibernia Networks 1229 Tupolevlaan 103a 1230 Schiphol-Rijk, 1119 PA 1231 NL 1233 Email: job.snijders@hibernianetworks.com