idnits 2.17.1 draft-ietf-lisp-lcaf-05.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** The document seems to lack a both a reference to RFC 2119 and the recommended RFC 2119 boilerplate, even if it appears to use RFC 2119 keywords. RFC 2119 keyword, line 190: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 230: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 610: '... See [LISP-MRSIG] for details. The J-bit MUST not be set when the...' Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Using lowercase 'not' together with uppercase 'MUST', 'SHALL', 'SHOULD', or 'RECOMMENDED' is not an accepted usage according to RFC 2119. Please use uppercase 'NOT' together with RFC 2119 keywords (if that is what you mean). Found 'MUST not' in this paragraph: J-bit: this is the Join-Request bit and is used when this LCAF type is present in the destination EID-prefix field of a Map-Request. See [LISP-MRSIG] for details. The J-bit MUST not be set when the L-bit is also set in the same LCAF block. A receiver should not take any specific Join or Leave action when both bits are set. -- The document date (May 6, 2014) is 3642 days in the past. Is this intentional? Checking references for intended status: Experimental ---------------------------------------------------------------------------- ** Obsolete normative reference: RFC 1700 (Obsoleted by RFC 3232) ** Obsolete normative reference: RFC 4627 (Obsoleted by RFC 7158, RFC 7159) ** Obsolete normative reference: RFC 6830 (Obsoleted by RFC 9300, RFC 9301) == Outdated reference: A later version (-09) exists of draft-ietf-lisp-ddt-01 == Outdated reference: A later version (-06) exists of draft-farinacci-lisp-mr-signaling-03 == Outdated reference: A later version (-19) exists of draft-ermagan-lisp-nat-traversal-03 == Outdated reference: A later version (-08) exists of draft-coras-lisp-re-03 == Outdated reference: A later version (-12) exists of draft-farinacci-lisp-te-03 Summary: 4 errors (**), 0 flaws (~~), 7 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group D. Farinacci 3 Internet-Draft lispers.net 4 Intended status: Experimental D. Meyer 5 Expires: November 7, 2014 Brocade 6 J. Snijders 7 Hibernia Networks 8 May 6, 2014 10 LISP Canonical Address Format (LCAF) 11 draft-ietf-lisp-lcaf-05 13 Abstract 15 This draft defines a canonical address format encoding used in LISP 16 control messages and in the encoding of lookup keys for the LISP 17 Mapping Database System. 19 Status of this Memo 21 This Internet-Draft is submitted in full conformance with the 22 provisions of BCP 78 and BCP 79. 24 Internet-Drafts are working documents of the Internet Engineering 25 Task Force (IETF). Note that other groups may also distribute 26 working documents as Internet-Drafts. The list of current Internet- 27 Drafts is at http://datatracker.ietf.org/drafts/current/. 29 Internet-Drafts are draft documents valid for a maximum of six months 30 and may be updated, replaced, or obsoleted by other documents at any 31 time. It is inappropriate to use Internet-Drafts as reference 32 material or to cite them other than as "work in progress." 34 This Internet-Draft will expire on November 7, 2014. 36 Copyright Notice 38 Copyright (c) 2014 IETF Trust and the persons identified as the 39 document authors. All rights reserved. 41 This document is subject to BCP 78 and the IETF Trust's Legal 42 Provisions Relating to IETF Documents 43 (http://trustee.ietf.org/license-info) in effect on the date of 44 publication of this document. Please review these documents 45 carefully, as they describe your rights and restrictions with respect 46 to this document. Code Components extracted from this document must 47 include Simplified BSD License text as described in Section 4.e of 48 the Trust Legal Provisions and are provided without warranty as 49 described in the Simplified BSD License. 51 Table of Contents 53 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 54 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 55 3. LISP Canonical Address Format Encodings . . . . . . . . . . . 5 56 4. LISP Canonical Address Applications . . . . . . . . . . . . . 7 57 4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 7 58 4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 8 59 4.3. Convey Application Specific Data . . . . . . . . . . . . . 9 60 4.4. Assigning Geo Coordinates to Locator Addresses . . . . . . 10 61 4.5. Generic Database Mapping Lookups . . . . . . . . . . . . . 12 62 4.6. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 13 63 4.7. PETR Admission Control Functionality . . . . . . . . . . . 15 64 4.8. Multicast Group Membership Information . . . . . . . . . . 16 65 4.9. Traffic Engineering using Re-encapsulating Tunnels . . . . 18 66 4.10. Storing Security Data in the Mapping Database . . . . . . 19 67 4.11. Source/Destination 2-Tuple Lookups . . . . . . . . . . . . 20 68 4.12. Replication List Entries for Multicast Forwarding . . . . 21 69 4.13. Data Model Encoding . . . . . . . . . . . . . . . . . . . 22 70 4.14. Encoding Key/Value Address Pairs . . . . . . . . . . . . . 23 71 4.15. Applications for AFI List Type . . . . . . . . . . . . . . 23 72 4.15.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . . 23 73 4.15.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 25 74 4.15.3. ASCII Names in the Mapping Database . . . . . . . . . 25 75 4.15.4. Using Recursive LISP Canonical Address Encodings . . 26 76 4.15.5. Compatibility Mode Use Case . . . . . . . . . . . . . 27 77 5. Security Considerations . . . . . . . . . . . . . . . . . . . 28 78 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 29 79 7. References . . . . . . . . . . . . . . . . . . . . . . . . . . 30 80 7.1. Normative References . . . . . . . . . . . . . . . . . . . 30 81 7.2. Informative References . . . . . . . . . . . . . . . . . . 30 82 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . . 32 83 Appendix B. Document Change Log . . . . . . . . . . . . . . . . . 33 84 B.1. Changes to draft-ietf-lisp-lcaf-05.txt . . . . . . . . . . 33 85 B.2. Changes to draft-ietf-lisp-lcaf-04.txt . . . . . . . . . . 33 86 B.3. Changes to draft-ietf-lisp-lcaf-03.txt . . . . . . . . . . 33 87 B.4. Changes to draft-ietf-lisp-lcaf-02.txt . . . . . . . . . . 33 88 B.5. Changes to draft-ietf-lisp-lcaf-01.txt . . . . . . . . . . 33 89 B.6. Changes to draft-ietf-lisp-lcaf-00.txt . . . . . . . . . . 34 90 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 35 92 1. Introduction 94 The LISP architecture and protocols [RFC6830] introduces two new 95 numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators 96 (RLOCs) which are intended to replace most use of IP addresses on the 97 Internet. To provide flexibility for current and future 98 applications, these values can be encoded in LISP control messages 99 using a general syntax that includes Address Family Identifier (AFI), 100 length, and value fields. 102 Currently defined AFIs include IPv4 and IPv6 addresses, which are 103 formatted according to code-points assigned in [AFI] as follows: 105 IPv4 Encoded Address: 107 0 1 2 3 108 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 109 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 110 | AFI = 1 | IPv4 Address ... | 111 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 112 | ... IPv4 Address | 113 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 115 IPv6 Encoded Address: 117 0 1 2 3 118 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 119 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 120 | AFI = 2 | IPv6 Address ... | 121 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 122 | ... IPv6 Address ... | 123 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 124 | ... IPv6 Address ... | 125 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 126 | ... IPv6 Address ... | 127 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 128 | ... IPv6 Address | 129 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 131 This document describes the currently-defined AFIs the LISP protocol 132 uses along with their encodings and introduces the LISP Canonical 133 Address Format (LCAF) that can be used to define the LISP-specific 134 encodings for arbitrary AFI values. 136 2. Definition of Terms 138 Address Family Identifier (AFI): a term used to describe an address 139 encoding in a packet. An address family currently defined for 140 IPv4 or IPv6 addresses. See [AFI] and [RFC1700] for details. The 141 reserved AFI value of 0 is used in this specification to indicate 142 an unspecified encoded address where the the length of the address 143 is 0 bytes following the 16-bit AFI value of 0. 145 Unspecified Address Format: 147 0 1 2 3 148 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 149 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 150 | AFI = 0 | | 151 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 153 Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value 154 used in the source and destination address fields of the first 155 (most inner) LISP header of a packet. The host obtains a 156 destination EID the same way it obtains a destination address 157 today, for example through a DNS lookup or SIP exchange. The 158 source EID is obtained via existing mechanisms used to set a 159 host's "local" IP address. An EID is allocated to a host from an 160 EID-prefix block associated with the site where the host is 161 located. An EID can be used by a host to refer to other hosts. 163 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress 164 tunnel router (ETR). It is the output of a EID-to-RLOC mapping 165 lookup. An EID maps to one or more RLOCs. Typically, RLOCs are 166 numbered from topologically aggregatable blocks that are assigned 167 to a site at each point to which it attaches to the global 168 Internet; where the topology is defined by the connectivity of 169 provider networks, RLOCs can be thought of as PA addresses. 170 Multiple RLOCs can be assigned to the same ETR device or to 171 multiple ETR devices at a site. 173 3. LISP Canonical Address Format Encodings 175 IANA has assigned AFI value 16387 (0x4003) to the LISP architecture 176 and protocols. This specification defines the encoding format of the 177 LISP Canonical Address (LCA). 179 The first 4 bytes of an LISP Canonical Address are followed by a 180 variable length of fields: 182 0 1 2 3 183 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 184 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 185 | AFI = 16387 | Rsvd1 | Flags | 186 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 187 | Type | Rsvd2 | Length | 188 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 190 Rsvd1: this 8-bit field is reserved for future use and MUST be 191 transmitted as 0 and ignored on receipt. 193 Flags: this 8-bit field is for future definition and use. For now, 194 set to zero on transmission and ignored on receipt. 196 Type: this 8-bit field is specific to the LISP Canonical Address 197 formatted encodings, values are: 199 Type 0: Null Body Type 201 Type 1: AFI List Type 203 Type 2: Instance ID Type 205 Type 3: AS Number Type 207 Type 4: Application Data Type 209 Type 5: Geo Coordinates Type 211 Type 6: Opaque Key Type 213 Type 7: NAT-Traversal Type 215 Type 8: Nonce Locator Type 217 Type 9: Multicast Info Type 218 Type 10: Explicit Locator Path Type 220 Type 11: Security Key Type 222 Type 12: Source/Dest Key Type 224 Type 13: Replication List Entry Type 226 Type 14: JSON Data Model Type 228 Type 15: Key/Value Address Pair Type 230 Rsvd2: this 8-bit field is reserved for future use and MUST be 231 transmitted as 0 and ignored on receipt. 233 Length: this 16-bit field is in units of bytes and covers all of the 234 LISP Canonical Address payload, starting and including the byte 235 after the Length field. So any LCAF encoded address will have a 236 minimum length of 8 bytes when the Length field is 0. The 8 bytes 237 include the AFI, Flags, Type, Reserved, and Length fields. When 238 the AFI is not next to encoded address in a control message, then 239 the encoded address will have a minimum length of 6 bytes when the 240 Length field is 0. The 6 bytes include the Flags, Type, Reserved, 241 and Length fields. 243 4. LISP Canonical Address Applications 245 4.1. Segmentation using LISP 247 When multiple organizations inside of a LISP site are using private 248 addresses [RFC1918] as EID-prefixes, their address spaces must remain 249 segregated due to possible address duplication. An Instance ID in 250 the address encoding can aid in making the entire AFI based address 251 unique. 253 Another use for the Instance ID LISP Canonical Address Format is when 254 creating multiple segmented VPNs inside of a LISP site where keeping 255 EID-prefix based subnets is desirable. 257 Instance ID LISP Canonical Address Format: 259 0 1 2 3 260 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 261 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 262 | AFI = 16387 | Rsvd1 | Flags | 263 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 264 | Type = 2 | IID mask-len | 4 + n | 265 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 266 | Instance ID | 267 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 268 | AFI = x | Address ... | 269 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 271 IID mask-len: if the AFI is set to 0, then this format is not 272 encoding an extended EID-prefix but rather an instance-ID range 273 where the 'IID mask-len' indicates the number of high-order bits 274 used in the Instance ID field for the range. 276 Length value n: length in bytes of the AFI address that follows the 277 Instance ID field including the AFI field itself. 279 Instance ID: the low-order 24-bits that can go into a LISP data 280 header when the I-bit is set. See [RFC6830] for details. 282 AFI = x: x can be any AFI value from [AFI]. 284 This LISP Canonical Address Type can be used to encode either EID or 285 RLOC addresses. 287 4.2. Carrying AS Numbers in the Mapping Database 289 When an AS number is stored in the LISP Mapping Database System for 290 either policy or documentation reasons, it can be encoded in a LISP 291 Canonical Address. 293 AS Number LISP Canonical Address Format: 295 0 1 2 3 296 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 297 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 298 | AFI = 16387 | Rsvd1 | Flags | 299 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 300 | Type = 3 | Rsvd2 | 4 + n | 301 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 302 | AS Number | 303 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 304 | AFI = x | Address ... | 305 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 307 Length value n: length in bytes of the AFI address that follows the 308 AS Number field including the AFI field itself. 310 AS Number: the 32-bit AS number of the autonomous system that has 311 been assigned either the EID or RLOC that follows. 313 AFI = x: x can be any AFI value from [AFI]. 315 The AS Number Canonical Address Type can be used to encode either EID 316 or RLOC addresses. The former is used to describe the LISP-ALT AS 317 number the EID-prefix for the site is being carried for. The latter 318 is used to describe the AS that is carrying RLOC based prefixes in 319 the underlying routing system. 321 4.3. Convey Application Specific Data 323 When a locator-set needs to be conveyed based on the type of 324 application or the Per-Hop Behavior (PHB) of a packet, the 325 Application Data Type can be used. 327 Application Data LISP Canonical Address Format: 329 0 1 2 3 330 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 331 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 332 | AFI = 16387 | Rsvd1 | Flags | 333 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 334 | Type = 4 | Rsvd2 | 8 + n | 335 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 336 | IP TOS, IPv6 TC, or Flow Label | Protocol | 337 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 338 | Local Port (lower-range) | Local Port (upper-range) | 339 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 340 | Remote Port (lower-range) | Remote Port (upper-range) | 341 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 342 | AFI = x | Address ... | 343 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 345 Length value n: length in bytes of the AFI address that follows the 346 8-byte Application Data fields including the AFI field itself. 348 IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS 349 field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow 350 Label used in an IPv6 header. 352 Local Port/Remote Port Ranges: these fields are from the TCP, UDP, 353 or SCTP transport header. A range can be specified by using a 354 lower value and an upper value. When a single port is encoded, 355 the lower and upper value fields are the same. 357 AFI = x: x can be any AFI value from [AFI]. 359 The Application Data Canonical Address Type is used for an EID 360 encoding when an ITR wants a locator-set for a specific application. 361 When used for an RLOC encoding, the ETR is supplying a locator-set 362 for each specific application is has been configured to advertise. 364 4.4. Assigning Geo Coordinates to Locator Addresses 366 If an ETR desires to send a Map-Reply describing the Geo Coordinates 367 for each locator in its locator-set, it can use the Geo Coordinate 368 Type to convey physical location information. 370 Coordinates are specified using the WGS-84 (World Geodetic System) 371 reference coordinate system [WGS-84]. 373 Geo Coordinate LISP Canonical Address Format: 375 0 1 2 3 376 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 377 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 378 | AFI = 16387 | Rsvd1 | Flags | 379 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 380 | Type = 5 | Rsvd2 | 12 + n | 381 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 382 |N| Latitude Degrees | Minutes | Seconds | 383 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 384 |E| Longitude Degrees | Minutes | Seconds | 385 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 386 | Altitude | 387 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 388 | AFI = x | Address ... | 389 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 391 Length value n: length in bytes of the AFI address that follows the 392 8-byte Longitude and Latitude fields including the AFI field 393 itself. 395 N: When set to 1 means North, otherwise South. 397 Latitude Degrees: Valid values range from 0 to 90 degrees above or 398 below the equator (northern or southern hemisphere, respectively). 400 Latitude Minutes: Valid values range from 0 to 59. 402 Latitude Seconds: Valid values range from 0 to 59. 404 E: When set to 1 means East, otherwise West. 406 Longitude Degrees: Value values are from 0 to 180 degrees right or 407 left of the Prime Meridian. 409 Longitude Minutes: Valid values range from 0 to 59. 411 Longitude Seconds: Valid values range from 0 to 59. 413 Altitude: Height relative to sea level in meters. This is a signed 414 integer meaning that the altitude could be below sea level. A 415 value of 0x7fffffff indicates no Altitude value is encoded. 417 AFI = x: x can be any AFI value from [AFI]. 419 The Geo Coordinates Canonical Address Type can be used to encode 420 either EID or RLOC addresses. When used for EID encodings, you can 421 determine the physical location of an EID along with the topological 422 location by observing the locator-set. 424 4.5. Generic Database Mapping Lookups 426 When the LISP Mapping Database system holds information accessed by a 427 generic formatted key (where the key is not the usual IPv4 or IPv6 428 address), an opaque key may be desirable. 430 Opaque Key LISP Canonical Address Format: 432 0 1 2 3 433 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 434 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 435 | AFI = 16387 | Rsvd1 | Flags | 436 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 437 | Type = 6 | Rsvd2 | n | 438 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 439 | Key Field Num | Key Wildcard Fields | Key . . . | 440 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 441 | . . . Key | 442 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 444 Length value n: length in bytes of the type's payload. The value n 445 is the number of bytes that follow this Length field. 447 Key Field Num: the number of fields (minus 1) the key can be broken 448 up into. The width of the fields are fixed length. So for a key 449 size of 8 bytes, with a Key Field Num of 4 allows 4 fields of 2 450 bytes in length. Valid values for this field range from 0 to 15 451 supporting a maximum of 16 field separations. 453 Key Wildcard Fields: describes which fields in the key are not used 454 as part of the key lookup. This wildcard encoding is a bitfield. 455 Each bit is a don't-care bit for a corresponding field in the key. 456 Bit 0 (the low-order bit) in this bitfield corresponds the first 457 field, right-justified in the key, bit 1 the second field, and so 458 on. When a bit is set in the bitfield it is a don't-care bit and 459 should not be considered as part of the database lookup. When the 460 entire 16-bits is set to 0, then all bits of the key are used for 461 the database lookup. 463 Key: the variable length key used to do a LISP Database Mapping 464 lookup. The length of the key is the value n (shown above) minus 465 3. 467 4.6. NAT Traversal Scenarios 469 When a LISP system is conveying global address and mapped port 470 information when traversing through a NAT device, the NAT-Traversal 471 LCAF Type is used. See [LISP-NATT] for details. 473 NAT-Traversal Canonical Address Format: 475 0 1 2 3 476 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 477 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 478 | AFI = 16387 | Rsvd1 | Flags | 479 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 480 | Type = 7 | Rsvd2 | 4 + n | 481 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 482 | MS UDP Port Number | ETR UDP Port Number | 483 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 484 | AFI = x | Global ETR RLOC Address ... | 485 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 486 | AFI = x | MS RLOC Address ... | 487 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 488 | AFI = x | Private ETR RLOC Address ... | 489 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 490 | AFI = x | RTR RLOC Address 1 ... | 491 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 492 | AFI = x | RTR RLOC Address k ... | 493 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 495 Length value n: length in bytes of the AFI addresses that follows 496 the UDP Port Number field including the AFI fields themselves. 498 MS UDP Port Number: this is the UDP port number of the Map-Server 499 and is set to 4342. 501 ETR UDP Port Number: this is the port number returned to a LISP 502 system which was copied from the source port from a packet that 503 has flowed through a NAT device. 505 AFI = x: x can be any AFI value from [AFI]. 507 Global ETR RLOC Address: this is an address known to be globally 508 unique built by NAT-traversal functionality in a LISP router. 510 MS RLOC Address: this is the address of the Map-Server used in the 511 destination RLOC of a packet that has flowed through a NAT device. 513 Private ETR RLOC Address: this is an address known to be a private 514 address inserted in this LCAF format by a LISP router that resides 515 on the private side of a NAT device. 517 RTR RLOC Address: this is an encapsulation address used by an ITR or 518 PITR which resides behind a NAT device. This address is known to 519 have state in a NAT device so packets can flow from it to the LISP 520 ETR behind the NAT. There can be one or more NTR addresses 521 supplied in these set of fields. The number of NTRs encoded is 522 determined by the LCAF length field. When there are no NTRs 523 supplied, the NTR fields can be omitted and reflected by the LCAF 524 length field or an AFI of 0 can be used to indicate zero NTRs 525 encoded. 527 4.7. PETR Admission Control Functionality 529 When a public PETR device wants to verify who is encapsulating to it, 530 it can check for a specific nonce value in the LISP encapsulated 531 packet. To convey the nonce to admitted ITRs or PITRs, this LCAF 532 format is used in a Map-Register or Map-Reply locator-record. 534 Nonce Locator Canonical Address Format: 536 0 1 2 3 537 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 538 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 539 | AFI = 16387 | Rsvd1 | Flags | 540 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 541 | Type = 8 | Rsvd2 | 4 + n | 542 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 543 | Reserved | Nonce | 544 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 545 | AFI = x | Address ... | 546 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 548 Length value n: length in bytes of the AFI address that follows the 549 Nonce field including the AFI field itself. 551 Reserved: must be set to zero and ignore on receipt. 553 Nonce: this is a nonce value returned by an ETR in a Map-Reply 554 locator-record to be used by an ITR or PITR when encapsulating to 555 the locator address encoded in the AFI field of this LCAF type. 557 AFI = x: x can be any AFI value from [AFI]. 559 4.8. Multicast Group Membership Information 561 Multicast group information can be published in the mapping database 562 so a lookup on an EID based group address can return a replication 563 list of group addresses or a unicast addresses for single replication 564 or multiple head-end replications. The intent of this type of 565 unicast replication is to deliver packets to multiple ETRs at 566 receiver LISP multicast sites. The locator-set encoding for this EID 567 record type can be a list of ETRs when they each register with "Merge 568 Semantics". The encoding can be a typical AFI encoded locator 569 address. When an RTR list is being registered (with multiple levels 570 according to [LISP-RE]), the Replication List Entry LCAF type is used 571 for locator encoding. 573 This LCAF encoding can be used to send broadcast packets to all 574 members of a subnet when each EIDs are away from their home subnet 575 location. 577 Multicast Info Canonical Address Format: 579 0 1 2 3 580 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 581 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 582 | AFI = 16387 | Rsvd1 | Flags | 583 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 584 | Type = 9 | Rsvd2 |R|L|J| 8 + n | 585 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 586 | Instance-ID | 587 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 588 | Reserved | Source MaskLen| Group MaskLen | 589 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 590 | AFI = x | Source/Subnet Address ... | 591 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 592 | AFI = x | Group Address ... | 593 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 595 Length value n: length in bytes of fields that follow. 597 Reserved: must be set to zero and ignore on receipt. 599 R-bit: this is the RP-bit that represents PIM (S,G,RP-bit) multicast 600 state. This bit can be set for Joins (when the J-bit is set) or 601 for Leaves (when the L-bit is set). See [LISP-MRSIG] for more 602 usage details. 604 L-bit: this is the Leave-Request bit and is used when this LCAF type 605 is present in the destination EID-prefix field of a Map-Request. 606 See [LISP-MRSIG] for details. 608 J-bit: this is the Join-Request bit and is used when this LCAF type 609 is present in the destination EID-prefix field of a Map-Request. 610 See [LISP-MRSIG] for details. The J-bit MUST not be set when the 611 L-bit is also set in the same LCAF block. A receiver should not 612 take any specific Join or Leave action when both bits are set. 614 Instance ID: the low-order 24-bits that can go into a LISP data 615 header when the I-bit is set. See [RFC6830] for details. The use 616 of the Instance-ID in this LCAF type is to associate a multicast 617 forwarding entry for a given VPN. The instance-ID describes the 618 VPN and is registered to the mapping database system as a 3-tuple 619 of (Instance-ID, S-prefix, G-prefix). 621 Source MaskLen: the mask length of the source prefix that follows. 623 Group MaskLen: the mask length of the group prefix that follows. 625 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 626 its own encoding of a multicast address, this field must be either 627 a group address or a broadcast address. 629 4.9. Traffic Engineering using Re-encapsulating Tunnels 631 For a given EID lookup into the mapping database, this LCAF format 632 can be returned to provide a list of locators in an explicit re- 633 encapsulation path. See [LISP-TE] for details. 635 Explicit Locator Path (ELP) Canonical Address Format: 637 0 1 2 3 638 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 639 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 640 | AFI = 16387 | Rsvd1 | Flags | 641 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 642 | Type = 10 | Rsvd2 | n | 643 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 644 | Rsvd3 |L|P|S| AFI = x | 645 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 646 | Reencap Hop 1 ... | 647 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 648 | Rsvd3 |L|P|S| AFI = x | 649 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 650 | Reencap Hop k ... | 651 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 653 Length value n: length in bytes of fields that follow. 655 Lookup bit (L): this is the Lookup bit used to indicate to the user 656 of the ELP to not use this address for encapsulation but to look 657 it up in the mapping database system to obtain an encapsulating 658 RLOC address. 660 RLOC-Probe bit (P): this is the RLOC-probe bit which means the 661 Reencap Hop allows RLOC-probe messages to be sent to it. When the 662 R-bit is set to 0, RLOC-probes must not be sent. When a Reencap 663 Hop is an anycast address then multiple physical Reencap Hops are 664 using the same RLOC address. In this case, RLOC-probes are not 665 needed because when the closest RLOC address is not reachable 666 another RLOC address can reachable. 668 Strict bit (S): this the strict bit which means the associated 669 Rencap Hop is required to be used. If this bit is 0, the 670 reencapsulator can skip this Reencap Hop and go to the next one in 671 the list. 673 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 674 its own encoding of a multicast address, this field must be either 675 a group address or a broadcast address. 677 4.10. Storing Security Data in the Mapping Database 679 When a locator in a locator-set has a security key associated with 680 it, this LCAF format will be used to encode key material. See 681 [LISP-DDT] for details. 683 Security Key Canonical Address Format: 685 0 1 2 3 686 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 687 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 688 | AFI = 16387 | Rsvd1 | Flags | 689 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 690 | Type = 11 | Rsvd2 | 6 + n | 691 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 692 | Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R| 693 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 694 | Key Length | Key Material ... | 695 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 696 | ... Key Material | 697 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 698 | AFI = x | Locator Address ... | 699 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 701 Length value n: length in bytes of fields that start with the Key 702 Material field. 704 Key Count: the Key Count field declares the number of Key sections 705 included in this LCAF. 707 Key Algorithm: the Algorithm field identifies the key's 708 cryptographic algorithm and specifies the format of the Public Key 709 field. 711 R bit: this is the revoke bit and, if set, it specifies that this 712 Key is being Revoked. 714 Key Length: this field determines the length in bytes of the Key 715 Material field. 717 Key Material: the Key Material field stores the key material. The 718 format of the key material stored depends on the Key Algorithm 719 field. 721 AFI = x: x can be any AFI value from [AFI].This is the locator 722 address that owns the encoded security key. 724 4.11. Source/Destination 2-Tuple Lookups 726 When both a source and destination address of a flow needs 727 consideration for different locator-sets, this 2-tuple key is used in 728 EID fields in LISP control messages. When the Source/Dest key is 729 registered to the mapping database, it can be encoded as a source- 730 prefix and destination-prefix. When the Source/Dest is used as a key 731 for a mapping database lookup the source and destination come from a 732 data packet. 734 Source/Dest Key Canonical Address Format: 736 0 1 2 3 737 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 738 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 739 | AFI = 16387 | Rsvd1 | Flags | 740 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 741 | Type = 12 | Rsvd2 | 4 + n | 742 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 743 | Reserved | Source-ML | Dest-ML | 744 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 745 | AFI = x | Source-Prefix ... | 746 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 747 | AFI = x | Destination-Prefix ... | 748 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 750 Length value n: length in bytes of fields that follow. 752 Reserved: must be set to zero and ignore on receipt. 754 Source-ML: the mask length of the source prefix that follows. 756 Dest-ML: the mask length of the destination prefix that follows. 758 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 759 its own encoding of a multicast address, this field must be either 760 a group address or a broadcast address. 762 Refer to [LISP-TE] for usage details. 764 4.12. Replication List Entries for Multicast Forwarding 766 The Replication List Entry LCAF type is an encoding for a locator 767 being used for unicast replication according to the specification in 768 [LISP-RE]. This locator encoding is pointed to by a Multicast Info 769 LCAF Type and is registered by Re-encapsulating Tunnel Routers (RTRs) 770 that are participating in an overlay distribution tree. Each RTR 771 will register its locator address and its configured level in the 772 distribution tree. 774 Replication List Entry Address Format: 776 0 1 2 3 777 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 778 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 779 | AFI = 16387 | Rsvd1 | Flags | 780 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 781 | Type = 13 | Rsvd2 | 4 + n | 782 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 783 | Rsvd3 | Rsvd4 | Level Value | 784 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 785 | AFI = x | RTR/ETR #1 ... | 786 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 787 | Rsvd3 | Rsvd4 | Level Value | 788 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 789 | AFI = x | RTR/ETR #n ... | 790 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 792 Length value n: length in bytes of fields that follow. 794 Rsvd{1,2,3,4}: must be set to zero and ignore on receipt. 796 Level Value: this value is associated with the level within the 797 overlay distribution tree hierarchy where the RTR resides. The 798 level numbers are ordered from lowest value being close to the ITR 799 (meaning that ITRs replicate to level-0 RTRs) and higher levels 800 are further downstream on the distribution tree closer to ETRs of 801 multicast receiver sites. 803 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 804 own encoding of either a unicast or multicast locator address. 805 All RTR/ETR entries for the same level should be combined together 806 by a Map-Server to avoid searching through the entire multi-level 807 list of locator entries in a Map-Reply message. 809 4.13. Data Model Encoding 811 This type allows a JSON data model to be encoded either as an EID or 812 RLOC. 814 JSON Data Model Type Address Format: 816 0 1 2 3 817 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 818 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 819 | AFI = 16387 | Rsvd1 | Flags | 820 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 821 | Type = 14 | Rsvd2 |B| n | 822 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 823 | JSON length | JSON binary/text encoding ... | 824 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 825 | AFI = x | Optional Address ... | 826 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 828 Length value n: length in bytes of fields that follow. 830 Rsvd{1,2}: must be set to zero and ignore on receipt. 832 B bit: indicates that the JSON field is binary encoded according to 833 [JSON-BINARY] when the bit is set to 1. Otherwise the encoding is 834 based on text encoding according to [RFC4627]. 836 JSON length: length in octets of the following 'JSON binary/text 837 encoding' field. 839 JSON binary/text encoding field: a variable length field that 840 contains either binary or text encodings. 842 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 843 own encoding of either a unicast or multicast locator address. 844 All RTR/ETR entries for the same level should be combined together 845 by a Map-Server to avoid searching through the entire multi-level 846 list of locator entries in a Map-Reply message. 848 4.14. Encoding Key/Value Address Pairs 850 The Key/Value pair is for example useful for attaching attributes to 851 other elements of LISP packets, such as EIDs or RLOCs. When 852 attaching attributes to EIDs or RLOCs, it's necessary to distinguish 853 between the element that should be used as EID or RLOC, and hence as 854 key for lookups, and additional attributes. This is especially the 855 case when the difference cannot be determined from the types of the 856 elements, such as when two IP addresses are being used. 858 Key/Value Pair Address Format: 860 0 1 2 3 861 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 862 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 863 | AFI = 16387 | Rsvd1 | Flags | 864 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 865 | Type = 15 | Rsvd2 | n | 866 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 867 | AFI = x | Address as Key ... | 868 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 869 | AFI = x | Address as Value ... | 870 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 872 Length value n: length in bytes of fields that follow. 874 Rsvd{1,2}: must be set to zero and ignore on receipt. 876 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 877 own encoding of either a unicast or multicast locator address. 878 All RTR/ETR entries for the same level should be combined together 879 by a Map-Server to avoid searching through the entire multi-level 880 list of locator entries in a Map-Reply message. 882 Address as Key: this AFI encoded address will be attached with the 883 attributes encoded in "Address as Value" which follows this field. 885 Address as Value: this AFI encoded address will be the attribute 886 address that goes along with "Address as Key" which precedes this 887 field. 889 4.15. Applications for AFI List Type 891 4.15.1. Binding IPv4 and IPv6 Addresses 893 When header translation between IPv4 and IPv6 is desirable a LISP 894 Canonical Address can use the AFI List Type to carry multiple AFIs in 895 one LCAF AFI. 897 Address Binding LISP Canonical Address Format: 899 0 1 2 3 900 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 901 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 902 | AFI = 16387 | Rsvd1 | Flags | 903 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 904 | Type = 1 | Rsvd2 | 2 + 4 + 2 + 16 | 905 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 906 | AFI = 1 | IPv4 Address ... | 907 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 908 | ... IPv4 Address | AFI = 2 | 909 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 910 | IPv6 Address ... | 911 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 912 | ... IPv6 Address ... | 913 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 914 | ... IPv6 Address ... | 915 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 916 | ... IPv6 Address | 917 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 919 Length: length in bytes is fixed at 24 when IPv4 and IPv6 AFI 920 encoded addresses are used. 922 This type of address format can be included in a Map-Request when the 923 address is being used as an EID, but the Mapping Database System 924 lookup destination can use only the IPv4 address. This is so a 925 Mapping Database Service Transport System, such as LISP-ALT 926 [RFC6836], can use the Map-Request destination address to route the 927 control message to the desired LISP site. 929 4.15.2. Layer-2 VPNs 931 When MAC addresses are stored in the LISP Mapping Database System, 932 the AFI List Type can be used to carry AFI 6. 934 MAC Address LISP Canonical Address Format: 936 0 1 2 3 937 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 938 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 939 | AFI = 16387 | Rsvd1 | Flags | 940 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 941 | Type = 1 | Rsvd2 | 2 + 6 | 942 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 943 | AFI = 6 | Layer-2 MAC Address ... | 944 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 945 | ... Layer-2 MAC Address | 946 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 948 Length: length in bytes is fixed at 8 when MAC address AFI encoded 949 addresses are used. 951 This address format can be used to connect layer-2 domains together 952 using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. 953 In this use-case, a MAC address is being used as an EID, and the 954 locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or 955 even another MAC address being used as an RLOC. 957 4.15.3. ASCII Names in the Mapping Database 959 If DNS names or URIs are stored in the LISP Mapping Database System, 960 the AFI List Type can be used to carry an ASCII string where it is 961 delimited by length 'n' of the LCAF Length encoding. 963 ASCII LISP Canonical Address Format: 965 0 1 2 3 966 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 967 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 968 | AFI = 16387 | Rsvd1 | Flags | 969 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 970 | Type = 1 | Rsvd2 | 2 + n | 971 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 972 | AFI = 17 | DNS Name or URI ... | 973 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 975 Length value n: length in bytes AFI=17 field and the null-terminated 976 ASCII string (the last byte of 0 is included). 978 4.15.4. Using Recursive LISP Canonical Address Encodings 980 When any combination of above is desirable, the AFI List Type value 981 can be used to carry within the LCAF AFI another LCAF AFI. 983 Recursive LISP Canonical Address Format: 985 0 1 2 3 986 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 987 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 988 | AFI = 16387 | Rsvd1 | Flags | 989 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 990 | Type = 1 | Rsvd2 | 4 + 8 + 2 + 4 | 991 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 992 | AFI = 16387 | Rsvd1 | Flags | 993 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 994 | Type = 4 | Rsvd2 | 12 | 995 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 996 | IP TOS, IPv6 QQS or Flow Label | Protocol | 997 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 998 | Local Port | Remote Port | 999 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1000 | AFI = 1 | IPv4 Address ... | 1001 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1002 | ... IPv4 Address | 1003 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1005 Length: length in bytes is fixed at 18 when an AFI=1 IPv4 address is 1006 included. 1008 This format could be used by a Mapping Database Transport System, 1009 such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is used as 1010 an EID and placed in the Map-Request destination address by the 1011 sending LISP system. The ALT system can deliver the Map-Request to 1012 the LISP destination site independent of the Application Data Type 1013 AFI payload values. When this AFI is processed by the destination 1014 LISP site, it can return different locator-sets based on the type of 1015 application or level of service that is being requested. 1017 4.15.5. Compatibility Mode Use Case 1019 A LISP system should use the AFI List Type format when sending to 1020 LISP systems that do not support a particular LCAF Type used to 1021 encode locators. This allows the receiving system to be able to 1022 parse a locator address for encapsulation purposes. The list of AFIs 1023 in an AFI List LCAF Type has no semantic ordering and a receiver 1024 should parse each AFI element no matter what the ordering. 1026 Compatibility Mode Address Format: 1028 0 1 2 3 1029 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1030 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1031 | AFI = 16387 | Rsvd1 | Flags | 1032 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1033 | Type = 1 | Rsvd2 | 22 + 6 | 1034 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1035 | AFI = 16387 | Rsvd1 | Flags | 1036 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1037 | Type = 5 | Rsvd2 | 12 + 2 | 1038 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1039 |N| Latitude Degrees | Minutes | Seconds | 1040 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1041 |E| Longitude Degrees | Minutes | Seconds | 1042 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1043 | Altitude | 1044 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1045 | AFI = 0 | AFI = 1 | 1046 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1047 | IPv4 Address | 1048 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1050 If a system does not recognized the Geo Coordinate LCAF Type that is 1051 accompanying a locator address, an encoder can include the Geo 1052 Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI 1053 in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in 1054 the list is encoded with a valid AFI value to identify the locator 1055 address. 1057 A LISP system is required to support the AFI List LCAF Type to use 1058 this procedure. It would skip over 10 bytes of the Geo Coordinate 1059 LCAF Type to get to the locator address encoding (an IPv4 locator 1060 address). A LISP system that does support the Geo Coordinate LCAF 1061 Type can support parsing the locator address within the Geo 1062 Coordinate LCAF encoding or in the locator encoding that follows in 1063 the AFI List LCAF. 1065 5. Security Considerations 1067 There are no security considerations for this specification. The 1068 security considerations are documented for the protocols that use 1069 LISP Canonical Addressing. Refer to the those relevant 1070 specifications. 1072 6. IANA Considerations 1074 The Address Family AFI definitions from [AFI] only allocate code- 1075 points for the AFI value itself. The length of the address or entity 1076 that follows is not defined and is implied based on conventional 1077 experience. Where the LISP protocol uses LISP Canonical Addresses 1078 specifically, the address length definitions will be in this 1079 specification and take precedent over any other specification. 1081 An IANA Registry for LCAF Type values will be created. The values 1082 that are considered for use by the main LISP specification [RFC6830] 1083 will be in the IANA Registry. Other Type values used for 1084 experimentation will be defined and described in this document. 1086 7. References 1088 7.1. Normative References 1090 [RFC1700] Reynolds, J. and J. Postel, "Assigned Numbers", RFC 1700, 1091 October 1994. 1093 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and 1094 E. Lear, "Address Allocation for Private Internets", 1095 BCP 5, RFC 1918, February 1996. 1097 [RFC4627] Crockford, D., "The application/json Media Type for 1098 JavaScript Object Notation (JSON)", RFC 4627, July 2006. 1100 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The 1101 Locator/ID Separation Protocol (LISP)", RFC 6830, 1102 January 2013. 1104 [RFC6836] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, 1105 "Locator/ID Separation Protocol Alternative Logical 1106 Topology (LISP+ALT)", RFC 6836, January 2013. 1108 7.2. Informative References 1110 [AFI] IANA, "Address Family Identifier (AFIs)", ADDRESS FAMILY 1111 NUMBERS http://www.iana.org/numbers.html, Febuary 2007. 1113 [JSON-BINARY] 1114 "Universal Binary JSON Specification", 1115 URL http://ubjson.org. 1117 [LISP-DDT] 1118 Fuller, V., Lewis, D., and V. Ermagan, "LISP Delegated 1119 Database Tree", draft-ietf-lisp-ddt-01.txt (work in 1120 progress). 1122 [LISP-MRSIG] 1123 Farinacci, D. and M. Napierala, "LISP Control-Plane 1124 Multicast Signaling", 1125 draft-farinacci-lisp-mr-signaling-03.txt (work in 1126 progress). 1128 [LISP-NATT] 1129 Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, 1130 F., and C. White, "NAT traversal for LISP", 1131 draft-ermagan-lisp-nat-traversal-03.txt (work in 1132 progress). 1134 [LISP-RE] Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J., 1135 Maino, F., and D. Farinacci, "LISP Replication 1136 Engineering", draft-coras-lisp-re-03.txt (work in 1137 progress). 1139 [LISP-TE] Farinacci, D., Lahiri, P., and M. Kowal, "LISP Traffic 1140 Engineering Use-Cases", draft-farinacci-lisp-te-03.txt 1141 (work in progress). 1143 [WGS-84] Geodesy and Geophysics Department, DoD., "World Geodetic 1144 System 1984", NIMA TR8350.2, January 2000, . 1148 Appendix A. Acknowledgments 1150 The authors would like to thank Vince Fuller, Gregg Schudel, Jesper 1151 Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for 1152 their technical and editorial commentary. 1154 The authors would like to thank Victor Moreno for discussions that 1155 lead to the definition of the Multicast Info LCAF type. 1157 The authors would like to thank Parantap Lahiri and Michael Kowal for 1158 discussions that lead to the definition of the Explicit Locator Path 1159 (ELP) LCAF type. 1161 The authors would like to thank Fabio Maino and Vina Ermagan for 1162 discussions that lead to the definition of the Security Key LCAF 1163 type. 1165 The authors would like to thank Albert Cabellos-Aparicio and Florin 1166 Coras for discussions that lead to the definition of the Replication 1167 List Entry LCAF type. 1169 Thanks goes to Michiel Blokzijl and Alberto Rodriguez-Natal for 1170 suggesting new LCAF types. 1172 Thanks also goes to Terry Manderson for assistance obtaining a LISP 1173 AFI value from IANA. 1175 Appendix B. Document Change Log 1177 B.1. Changes to draft-ietf-lisp-lcaf-05.txt 1179 o Submitted May 2014. 1181 o Add a length field of the JSON payload that can be used for either 1182 binary or text encoding of JSON data. 1184 B.2. Changes to draft-ietf-lisp-lcaf-04.txt 1186 o Submitted January 2014. 1188 o Agreement among ELP implementors to have the AFI 16-bit field 1189 adjacent to the address. This will make the encoding consistent 1190 with all other LCAF type address encodings. 1192 B.3. Changes to draft-ietf-lisp-lcaf-03.txt 1194 o Submitted September 2013. 1196 o Updated references and author's affilations. 1198 o Added Instance-ID to the Multicast Info Type so there is relative 1199 ease in parsing (S,G) entries within a VPN. 1201 o Add port range encodings to the Application Data LCAF Type. 1203 o Add a new JSON LCAF Type. 1205 o Add Address Key/Value LCAF Type to allow attributes to be attached 1206 to an address. 1208 B.4. Changes to draft-ietf-lisp-lcaf-02.txt 1210 o Submitted March 2013. 1212 o Added new LCAF Type "Replication List Entry" to support LISP 1213 replication engineering use-cases. 1215 o Changed references to new LISP RFCs. 1217 B.5. Changes to draft-ietf-lisp-lcaf-01.txt 1219 o Submitted January 2013. 1221 o Change longitude range from 0-90 to 0-180 in section 4.4. 1223 o Added reference to WGS-84 in section 4.4. 1225 B.6. Changes to draft-ietf-lisp-lcaf-00.txt 1227 o Posted first working group draft August 2012. 1229 o This draft was renamed from draft-farinacci-lisp-lcaf-10.txt. 1231 Authors' Addresses 1233 Dino Farinacci 1234 lispers.net 1235 San Jose, CA 1236 USA 1238 Email: farinacci@gmail.com 1240 Dave Meyer 1241 Brocade 1242 San Jose, CA 1243 USA 1245 Email: dmm@1-4-5.net 1247 Job Snijders 1248 Hibernia Networks 1249 Tupolevlaan 103a 1250 Schiphol-Rijk, 1119 PA 1251 NL 1253 Email: job.snijders@hibernianetworks.com