idnits 2.17.1 draft-ietf-lisp-lcaf-08.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** The document seems to lack a both a reference to RFC 2119 and the recommended RFC 2119 boilerplate, even if it appears to use RFC 2119 keywords. RFC 2119 keyword, line 194: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 236: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 624: '... See [LISP-MRSIG] for details. The J-bit MUST not be set when the...' Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Using lowercase 'not' together with uppercase 'MUST', 'SHALL', 'SHOULD', or 'RECOMMENDED' is not an accepted usage according to RFC 2119. Please use uppercase 'NOT' together with RFC 2119 keywords (if that is what you mean). Found 'MUST not' in this paragraph: J-bit: this is the Join-Request bit and is used when this LCAF type is present in the destination EID-prefix field of a Map-Request. See [LISP-MRSIG] for details. The J-bit MUST not be set when the L-bit is also set in the same LCAF block. A receiver should not take any specific Join or Leave action when both bits are set. -- The document date (April 3, 2015) is 3312 days in the past. Is this intentional? Checking references for intended status: Experimental ---------------------------------------------------------------------------- ** Obsolete normative reference: RFC 1700 (Obsoleted by RFC 3232) ** Obsolete normative reference: RFC 4627 (Obsoleted by RFC 7158, RFC 7159) ** Obsolete normative reference: RFC 6830 (Obsoleted by RFC 9300, RFC 9301) == Outdated reference: A later version (-04) exists of draft-quinn-vxlan-gpe-03 == Outdated reference: A later version (-03) exists of draft-herbert-gue-02 == Outdated reference: A later version (-09) exists of draft-ietf-lisp-ddt-01 == Outdated reference: A later version (-06) exists of draft-farinacci-lisp-mr-signaling-03 == Outdated reference: A later version (-19) exists of draft-ermagan-lisp-nat-traversal-03 == Outdated reference: A later version (-08) exists of draft-coras-lisp-re-03 == Outdated reference: A later version (-12) exists of draft-farinacci-lisp-te-03 == Outdated reference: A later version (-08) exists of draft-sridharan-virtualization-nvgre-06 Summary: 4 errors (**), 0 flaws (~~), 10 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group D. Farinacci 3 Internet-Draft lispers.net 4 Intended status: Experimental D. Meyer 5 Expires: October 5, 2015 Brocade 6 J. Snijders 7 NTT 8 April 3, 2015 10 LISP Canonical Address Format (LCAF) 11 draft-ietf-lisp-lcaf-08 13 Abstract 15 This draft defines a canonical address format encoding used in LISP 16 control messages and in the encoding of lookup keys for the LISP 17 Mapping Database System. 19 Status of This Memo 21 This Internet-Draft is submitted in full conformance with the 22 provisions of BCP 78 and BCP 79. 24 Internet-Drafts are working documents of the Internet Engineering 25 Task Force (IETF). Note that other groups may also distribute 26 working documents as Internet-Drafts. The list of current Internet- 27 Drafts is at http://datatracker.ietf.org/drafts/current/. 29 Internet-Drafts are draft documents valid for a maximum of six months 30 and may be updated, replaced, or obsoleted by other documents at any 31 time. It is inappropriate to use Internet-Drafts as reference 32 material or to cite them other than as "work in progress." 34 This Internet-Draft will expire on October 5, 2015. 36 Copyright Notice 38 Copyright (c) 2015 IETF Trust and the persons identified as the 39 document authors. All rights reserved. 41 This document is subject to BCP 78 and the IETF Trust's Legal 42 Provisions Relating to IETF Documents 43 (http://trustee.ietf.org/license-info) in effect on the date of 44 publication of this document. Please review these documents 45 carefully, as they describe your rights and restrictions with respect 46 to this document. Code Components extracted from this document must 47 include Simplified BSD License text as described in Section 4.e of 48 the Trust Legal Provisions and are provided without warranty as 49 described in the Simplified BSD License. 51 Table of Contents 53 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 54 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 55 3. LISP Canonical Address Format Encodings . . . . . . . . . . . 4 56 4. LISP Canonical Address Applications . . . . . . . . . . . . . 7 57 4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 7 58 4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 8 59 4.3. Convey Application Specific Data . . . . . . . . . . . . 9 60 4.4. Assigning Geo Coordinates to Locator Addresses . . . . . 10 61 4.5. Generic Database Mapping Lookups . . . . . . . . . . . . 12 62 4.6. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 13 63 4.7. PETR Admission Control Functionality . . . . . . . . . . 15 64 4.8. Multicast Group Membership Information . . . . . . . . . 16 65 4.9. Traffic Engineering using Re-encapsulating Tunnels . . . 18 66 4.10. Storing Security Data in the Mapping Database . . . . . . 19 67 4.11. Source/Destination 2-Tuple Lookups . . . . . . . . . . . 20 68 4.12. Replication List Entries for Multicast Forwarding . . . . 21 69 4.13. Data Model Encoding . . . . . . . . . . . . . . . . . . . 22 70 4.14. Encoding Key/Value Address Pairs . . . . . . . . . . . . 23 71 4.15. Multiple Data-Planes . . . . . . . . . . . . . . . . . . 24 72 4.16. Applications for AFI List Type . . . . . . . . . . . . . 26 73 4.16.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . 26 74 4.16.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 27 75 4.16.3. ASCII Names in the Mapping Database . . . . . . . . 28 76 4.16.4. Using Recursive LISP Canonical Address Encodings . . 29 77 4.16.5. Compatibility Mode Use Case . . . . . . . . . . . . 30 78 5. Security Considerations . . . . . . . . . . . . . . . . . . . 31 79 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 31 80 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 31 81 7.1. Normative References . . . . . . . . . . . . . . . . . . 31 82 7.2. Informative References . . . . . . . . . . . . . . . . . 32 83 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . 33 84 Appendix B. Document Change Log . . . . . . . . . . . . . . . . 33 85 B.1. Changes to draft-ietf-lisp-lcaf-08.txt . . . . . . . . . 34 86 B.2. Changes to draft-ietf-lisp-lcaf-07.txt . . . . . . . . . 34 87 B.3. Changes to draft-ietf-lisp-lcaf-06.txt . . . . . . . . . 34 88 B.4. Changes to draft-ietf-lisp-lcaf-05.txt . . . . . . . . . 34 89 B.5. Changes to draft-ietf-lisp-lcaf-04.txt . . . . . . . . . 34 90 B.6. Changes to draft-ietf-lisp-lcaf-03.txt . . . . . . . . . 34 91 B.7. Changes to draft-ietf-lisp-lcaf-02.txt . . . . . . . . . 35 92 B.8. Changes to draft-ietf-lisp-lcaf-01.txt . . . . . . . . . 35 93 B.9. Changes to draft-ietf-lisp-lcaf-00.txt . . . . . . . . . 35 94 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 35 96 1. Introduction 98 The LISP architecture and protocols [RFC6830] introduces two new 99 numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators 100 (RLOCs) which are intended to replace most use of IP addresses on the 101 Internet. To provide flexibility for current and future 102 applications, these values can be encoded in LISP control messages 103 using a general syntax that includes Address Family Identifier (AFI), 104 length, and value fields. 106 Currently defined AFIs include IPv4 and IPv6 addresses, which are 107 formatted according to code-points assigned in [AFI] as follows: 109 IPv4 Encoded Address: 111 0 1 2 3 112 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 113 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 114 | AFI = 1 | IPv4 Address ... | 115 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 116 | ... IPv4 Address | 117 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 119 IPv6 Encoded Address: 121 0 1 2 3 122 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 123 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 124 | AFI = 2 | IPv6 Address ... | 125 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 126 | ... IPv6 Address ... | 127 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 128 | ... IPv6 Address ... | 129 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 130 | ... IPv6 Address ... | 131 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 132 | ... IPv6 Address | 133 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 135 This document describes the currently-defined AFIs the LISP protocol 136 uses along with their encodings and introduces the LISP Canonical 137 Address Format (LCAF) that can be used to define the LISP-specific 138 encodings for arbitrary AFI values. 140 2. Definition of Terms 142 Address Family Identifier (AFI): a term used to describe an address 143 encoding in a packet. An address family currently defined for 144 IPv4 or IPv6 addresses. See [AFI] and [RFC1700] for details. The 145 reserved AFI value of 0 is used in this specification to indicate 146 an unspecified encoded address where the the length of the address 147 is 0 bytes following the 16-bit AFI value of 0. 149 Unspecified Address Format: 151 0 1 2 3 152 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 153 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 154 | AFI = 0 | | 155 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 157 Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value 158 used in the source and destination address fields of the first 159 (most inner) LISP header of a packet. The host obtains a 160 destination EID the same way it obtains a destination address 161 today, for example through a DNS lookup or SIP exchange. The 162 source EID is obtained via existing mechanisms used to set a 163 host's "local" IP address. An EID is allocated to a host from an 164 EID-prefix block associated with the site where the host is 165 located. An EID can be used by a host to refer to other hosts. 167 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress 168 tunnel router (ETR). It is the output of a EID-to-RLOC mapping 169 lookup. An EID maps to one or more RLOCs. Typically, RLOCs are 170 numbered from topologically aggregatable blocks that are assigned 171 to a site at each point to which it attaches to the global 172 Internet; where the topology is defined by the connectivity of 173 provider networks, RLOCs can be thought of as PA addresses. 174 Multiple RLOCs can be assigned to the same ETR device or to 175 multiple ETR devices at a site. 177 3. LISP Canonical Address Format Encodings 179 IANA has assigned AFI value 16387 (0x4003) to the LISP architecture 180 and protocols. This specification defines the encoding format of the 181 LISP Canonical Address (LCA). 183 The first 4 bytes of an LISP Canonical Address are followed by a 184 variable length of fields: 186 0 1 2 3 187 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 188 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 189 | AFI = 16387 | Rsvd1 | Flags | 190 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 191 | Type | Rsvd2 | Length | 192 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 194 Rsvd1: this 8-bit field is reserved for future use and MUST be 195 transmitted as 0 and ignored on receipt. 197 Flags: this 8-bit field is for future definition and use. For now, 198 set to zero on transmission and ignored on receipt. 200 Type: this 8-bit field is specific to the LISP Canonical Address 201 formatted encodings, values are: 203 Type 0: Null Body Type 205 Type 1: AFI List Type 207 Type 2: Instance ID Type 209 Type 3: AS Number Type 211 Type 4: Application Data Type 213 Type 5: Geo Coordinates Type 215 Type 6: Opaque Key Type 217 Type 7: NAT-Traversal Type 219 Type 8: Nonce Locator Type 221 Type 9: Multicast Info Type 223 Type 10: Explicit Locator Path Type 225 Type 11: Security Key Type 227 Type 12: Source/Dest Key Type 229 Type 13: Replication List Entry Type 230 Type 14: JSON Data Model Type 232 Type 15: Key/Value Address Pair Type 234 Type 16: Encapsulation Format Type 236 Rsvd2: this 8-bit field is reserved for future use and MUST be 237 transmitted as 0 and ignored on receipt. 239 Length: this 16-bit field is in units of bytes and covers all of the 240 LISP Canonical Address payload, starting and including the byte 241 after the Length field. So any LCAF encoded address will have a 242 minimum length of 8 bytes when the Length field is 0. The 8 bytes 243 include the AFI, Flags, Type, Reserved, and Length fields. When 244 the AFI is not next to encoded address in a control message, then 245 the encoded address will have a minimum length of 6 bytes when the 246 Length field is 0. The 6 bytes include the Flags, Type, Reserved, 247 and Length fields. 249 [RFC6830] states RLOC records are sorted when encoded in control 250 messages so the locator-set has consistent order across all xTRs for 251 a given EID. The sort order is based on sort-key {afi, RLOC- 252 address}. When an RLOC is LCAF encoded, the sort-key is {afi, LCAF- 253 Type, payload}. Therefore, when a locator-set has a mix of AFI 254 records and LCAF records, all LCAF records will appear after all the 255 AFI records. 257 4. LISP Canonical Address Applications 259 4.1. Segmentation using LISP 261 When multiple organizations inside of a LISP site are using private 262 addresses [RFC1918] as EID-prefixes, their address spaces must remain 263 segregated due to possible address duplication. An Instance ID in 264 the address encoding can aid in making the entire AFI based address 265 unique. 267 Another use for the Instance ID LISP Canonical Address Format is when 268 creating multiple segmented VPNs inside of a LISP site where keeping 269 EID-prefix based subnets is desirable. 271 Instance ID LISP Canonical Address Format: 273 0 1 2 3 274 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 275 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 276 | AFI = 16387 | Rsvd1 | Flags | 277 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 278 | Type = 2 | IID mask-len | 4 + n | 279 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 280 | Instance ID | 281 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 282 | AFI = x | Address ... | 283 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 285 IID mask-len: if the AFI is set to 0, then this format is not 286 encoding an extended EID-prefix but rather an instance-ID range 287 where the 'IID mask-len' indicates the number of high-order bits 288 used in the Instance ID field for the range. 290 Length value n: length in bytes of the AFI address that follows the 291 Instance ID field including the AFI field itself. 293 Instance ID: the low-order 24-bits that can go into a LISP data 294 header when the I-bit is set. See [RFC6830] for details. 296 AFI = x: x can be any AFI value from [AFI]. 298 This LISP Canonical Address Type can be used to encode either EID or 299 RLOC addresses. 301 4.2. Carrying AS Numbers in the Mapping Database 303 When an AS number is stored in the LISP Mapping Database System for 304 either policy or documentation reasons, it can be encoded in a LISP 305 Canonical Address. 307 AS Number LISP Canonical Address Format: 309 0 1 2 3 310 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 311 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 312 | AFI = 16387 | Rsvd1 | Flags | 313 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 314 |n Type = 3 | Rsvd2 | 4 + n | 315 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 316 | AS Number | 317 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 318 | AFI = x | Address ... | 319 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 321 Length value n: length in bytes of the AFI address that follows the 322 AS Number field including the AFI field itself. 324 AS Number: the 32-bit AS number of the autonomous system that has 325 been assigned either the EID or RLOC that follows. 327 AFI = x: x can be any AFI value from [AFI]. 329 The AS Number Canonical Address Type can be used to encode either EID 330 or RLOC addresses. The former is used to describe the LISP-ALT AS 331 number the EID-prefix for the site is being carried for. The latter 332 is used to describe the AS that is carrying RLOC based prefixes in 333 the underlying routing system. 335 4.3. Convey Application Specific Data 337 When a locator-set needs to be conveyed based on the type of 338 application or the Per-Hop Behavior (PHB) of a packet, the 339 Application Data Type can be used. 341 Application Data LISP Canonical Address Format: 343 0 1 2 3 344 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 345 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 346 | AFI = 16387 | Rsvd1 | Flags | 347 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 348 | Type = 4 | Rsvd2 | 12 + n | 349 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 350 | IP TOS, IPv6 TC, or Flow Label | Protocol | 351 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 352 | Local Port (lower-range) | Local Port (upper-range) | 353 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 354 | Remote Port (lower-range) | Remote Port (upper-range) | 355 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 356 | AFI = x | Address ... | 357 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 359 Length value n: length in bytes of the AFI address that follows the 360 8-byte Application Data fields including the AFI field itself. 362 IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS 363 field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow 364 Label used in an IPv6 header. 366 Local Port/Remote Port Ranges: these fields are from the TCP, UDP, 367 or SCTP transport header. A range can be specified by using a 368 lower value and an upper value. When a single port is encoded, 369 the lower and upper value fields are the same. 371 AFI = x: x can be any AFI value from [AFI]. 373 The Application Data Canonical Address Type is used for an EID 374 encoding when an ITR wants a locator-set for a specific application. 375 When used for an RLOC encoding, the ETR is supplying a locator-set 376 for each specific application is has been configured to advertise. 378 4.4. Assigning Geo Coordinates to Locator Addresses 380 If an ETR desires to send a Map-Reply describing the Geo Coordinates 381 for each locator in its locator-set, it can use the Geo Coordinate 382 Type to convey physical location information. 384 Coordinates are specified using the WGS-84 (World Geodetic System) 385 reference coordinate system [WGS-84]. 387 Geo Coordinate LISP Canonical Address Format: 389 0 1 2 3 390 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 391 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 392 | AFI = 16387 | Rsvd1 | Flags | 393 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 394 | Type = 5 | Rsvd2 | 12 + n | 395 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 396 |N| Latitude Degrees | Minutes | Seconds | 397 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 398 |E| Longitude Degrees | Minutes | Seconds | 399 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 400 | Altitude | 401 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 402 | AFI = x | Address ... | 403 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 405 Length value n: length in bytes of the AFI address that follows the 406 8-byte Longitude and Latitude fields including the AFI field 407 itself. 409 N: When set to 1 means North, otherwise South. 411 Latitude Degrees: Valid values range from 0 to 90 degrees above or 412 below the equator (northern or southern hemisphere, respectively). 414 Latitude Minutes: Valid values range from 0 to 59. 416 Latitude Seconds: Valid values range from 0 to 59. 418 E: When set to 1 means East, otherwise West. 420 Longitude Degrees: Value values are from 0 to 180 degrees right or 421 left of the Prime Meridian. 423 Longitude Minutes: Valid values range from 0 to 59. 425 Longitude Seconds: Valid values range from 0 to 59. 427 Altitude: Height relative to sea level in meters. This is a signed 428 integer meaning that the altitude could be below sea level. A 429 value of 0x7fffffff indicates no Altitude value is encoded. 431 AFI = x: x can be any AFI value from [AFI]. 433 The Geo Coordinates Canonical Address Type can be used to encode 434 either EID or RLOC addresses. When used for EID encodings, you can 435 determine the physical location of an EID along with the topological 436 location by observing the locator-set. 438 4.5. Generic Database Mapping Lookups 440 When the LISP Mapping Database system holds information accessed by a 441 generic formatted key (where the key is not the usual IPv4 or IPv6 442 address), an opaque key may be desirable. 444 Opaque Key LISP Canonical Address Format: 446 0 1 2 3 447 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 448 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 449 | AFI = 16387 | Rsvd1 | Flags | 450 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 451 | Type = 6 | Rsvd2 | 3 + n | 452 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 453 | Key Field Num | Key Wildcard Fields | Key . . . | 454 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 455 | . . . Key | 456 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 458 Length value n: length in bytes of the type's payload. The value n 459 is the number of bytes that follow this Length field. 461 Key Field Num: the number of fields (minus 1) the key can be broken 462 up into. The width of the fields are fixed length. So for a key 463 size of 8 bytes, with a Key Field Num of 4 allows 4 fields of 2 464 bytes in length. Valid values for this field range from 0 to 15 465 supporting a maximum of 16 field separations. 467 Key Wildcard Fields: describes which fields in the key are not used 468 as part of the key lookup. This wildcard encoding is a bitfield. 469 Each bit is a don't-care bit for a corresponding field in the key. 470 Bit 0 (the low-order bit) in this bitfield corresponds the first 471 field, right-justified in the key, bit 1 the second field, and so 472 on. When a bit is set in the bitfield it is a don't-care bit and 473 should not be considered as part of the database lookup. When the 474 entire 16-bits is set to 0, then all bits of the key are used for 475 the database lookup. 477 Key: the variable length key used to do a LISP Database Mapping 478 lookup. The length of the key is the value n (shown above) minus 479 3. 481 4.6. NAT Traversal Scenarios 483 When a LISP system is conveying global address and mapped port 484 information when traversing through a NAT device, the NAT-Traversal 485 LCAF Type is used. See [LISP-NATT] for details. 487 NAT-Traversal Canonical Address Format: 489 0 1 2 3 490 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 491 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 492 | AFI = 16387 | Rsvd1 | Flags | 493 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 494 | Type = 7 | Rsvd2 | 4 + n | 495 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 496 | MS UDP Port Number | ETR UDP Port Number | 497 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 498 | AFI = x | Global ETR RLOC Address ... | 499 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 500 | AFI = x | MS RLOC Address ... | 501 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 502 | AFI = x | Private ETR RLOC Address ... | 503 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 504 | AFI = x | RTR RLOC Address 1 ... | 505 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 506 | AFI = x | RTR RLOC Address k ... | 507 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 509 Length value n: length in bytes of the AFI addresses that follows 510 the UDP Port Number field including the AFI fields themselves. 512 MS UDP Port Number: this is the UDP port number of the Map-Server 513 and is set to 4342. 515 ETR UDP Port Number: this is the port number returned to a LISP 516 system which was copied from the source port from a packet that 517 has flowed through a NAT device. 519 AFI = x: x can be any AFI value from [AFI]. 521 Global ETR RLOC Address: this is an address known to be globally 522 unique built by NAT-traversal functionality in a LISP router. 524 MS RLOC Address: this is the address of the Map-Server used in the 525 destination RLOC of a packet that has flowed through a NAT device. 527 Private ETR RLOC Address: this is an address known to be a private 528 address inserted in this LCAF format by a LISP router that resides 529 on the private side of a NAT device. 531 RTR RLOC Address: this is an encapsulation address used by an ITR or 532 PITR which resides behind a NAT device. This address is known to 533 have state in a NAT device so packets can flow from it to the LISP 534 ETR behind the NAT. There can be one or more NTR addresses 535 supplied in these set of fields. The number of NTRs encoded is 536 determined by the LCAF length field. When there are no NTRs 537 supplied, the NTR fields can be omitted and reflected by the LCAF 538 length field or an AFI of 0 can be used to indicate zero NTRs 539 encoded. 541 4.7. PETR Admission Control Functionality 543 When a public PETR device wants to verify who is encapsulating to it, 544 it can check for a specific nonce value in the LISP encapsulated 545 packet. To convey the nonce to admitted ITRs or PITRs, this LCAF 546 format is used in a Map-Register or Map-Reply locator-record. 548 Nonce Locator Canonical Address Format: 550 0 1 2 3 551 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 552 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 553 | AFI = 16387 | Rsvd1 | Flags | 554 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 555 | Type = 8 | Rsvd2 | 4 + n | 556 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 557 | Reserved | Nonce | 558 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 559 | AFI = x | Address ... | 560 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 562 Length value n: length in bytes of the AFI address that follows the 563 Nonce field including the AFI field itself. 565 Reserved: must be set to zero and ignore on receipt. 567 Nonce: this is a nonce value returned by an ETR in a Map-Reply 568 locator-record to be used by an ITR or PITR when encapsulating to 569 the locator address encoded in the AFI field of this LCAF type. 571 AFI = x: x can be any AFI value from [AFI]. 573 4.8. Multicast Group Membership Information 575 Multicast group information can be published in the mapping database 576 so a lookup on an EID based group address can return a replication 577 list of group addresses or a unicast addresses for single replication 578 or multiple head-end replications. The intent of this type of 579 unicast replication is to deliver packets to multiple ETRs at 580 receiver LISP multicast sites. The locator-set encoding for this EID 581 record type can be a list of ETRs when they each register with "Merge 582 Semantics". The encoding can be a typical AFI encoded locator 583 address. When an RTR list is being registered (with multiple levels 584 according to [LISP-RE]), the Replication List Entry LCAF type is used 585 for locator encoding. 587 This LCAF encoding can be used to send broadcast packets to all 588 members of a subnet when each EIDs are away from their home subnet 589 location. 591 Multicast Info Canonical Address Format: 593 0 1 2 3 594 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 595 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 596 | AFI = 16387 | Rsvd1 | Flags | 597 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 598 | Type = 9 | Rsvd2 |R|L|J| 8 + n | 599 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 600 | Instance-ID | 601 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 602 | Reserved | Source MaskLen| Group MaskLen | 603 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 604 | AFI = x | Source/Subnet Address ... | 605 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 606 | AFI = x | Group Address ... | 607 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 609 Length value n: length in bytes of fields that follow. 611 Reserved: must be set to zero and ignore on receipt. 613 R-bit: this is the RP-bit that represents PIM (S,G,RP-bit) multicast 614 state. This bit can be set for Joins (when the J-bit is set) or 615 for Leaves (when the L-bit is set). See [LISP-MRSIG] for more 616 usage details. 618 L-bit: this is the Leave-Request bit and is used when this LCAF type 619 is present in the destination EID-prefix field of a Map-Request. 620 See [LISP-MRSIG] for details. 622 J-bit: this is the Join-Request bit and is used when this LCAF type 623 is present in the destination EID-prefix field of a Map-Request. 624 See [LISP-MRSIG] for details. The J-bit MUST not be set when the 625 L-bit is also set in the same LCAF block. A receiver should not 626 take any specific Join or Leave action when both bits are set. 628 Instance ID: the low-order 24-bits that can go into a LISP data 629 header when the I-bit is set. See [RFC6830] for details. The use 630 of the Instance-ID in this LCAF type is to associate a multicast 631 forwarding entry for a given VPN. The instance-ID describes the 632 VPN and is registered to the mapping database system as a 3-tuple 633 of (Instance-ID, S-prefix, G-prefix). 635 Source MaskLen: the mask length of the source prefix that follows. 637 Group MaskLen: the mask length of the group prefix that follows. 639 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 640 its own encoding of a multicast address, this field must be either 641 a group address or a broadcast address. 643 4.9. Traffic Engineering using Re-encapsulating Tunnels 645 For a given EID lookup into the mapping database, this LCAF format 646 can be returned to provide a list of locators in an explicit re- 647 encapsulation path. See [LISP-TE] for details. 649 Explicit Locator Path (ELP) Canonical Address Format: 651 0 1 2 3 652 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 653 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 654 | AFI = 16387 | Rsvd1 | Flags | 655 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 656 | Type = 10 | Rsvd2 | n | 657 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 658 | Rsvd3 |L|P|S| AFI = x | 659 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 660 | Reencap Hop 1 ... | 661 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 662 | Rsvd3 |L|P|S| AFI = x | 663 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 664 | Reencap Hop k ... | 665 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 667 Length value n: length in bytes of fields that follow. 669 Lookup bit (L): this is the Lookup bit used to indicate to the user 670 of the ELP to not use this address for encapsulation but to look 671 it up in the mapping database system to obtain an encapsulating 672 RLOC address. 674 RLOC-Probe bit (P): this is the RLOC-probe bit which means the 675 Reencap Hop allows RLOC-probe messages to be sent to it. When the 676 R-bit is set to 0, RLOC-probes must not be sent. When a Reencap 677 Hop is an anycast address then multiple physical Reencap Hops are 678 using the same RLOC address. In this case, RLOC-probes are not 679 needed because when the closest RLOC address is not reachable 680 another RLOC address can reachable. 682 Strict bit (S): this the strict bit which means the associated 683 Rencap Hop is required to be used. If this bit is 0, the 684 reencapsulator can skip this Reencap Hop and go to the next one in 685 the list. 687 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 688 its own encoding of a multicast address, this field must be either 689 a group address or a broadcast address. 691 4.10. Storing Security Data in the Mapping Database 693 When a locator in a locator-set has a security key associated with 694 it, this LCAF format will be used to encode key material. See 695 [LISP-DDT] for details. 697 Security Key Canonical Address Format: 699 0 1 2 3 700 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 701 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 702 | AFI = 16387 | Rsvd1 | Flags | 703 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 704 | Type = 11 | Rsvd2 | 6 + n | 705 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 706 | Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R| 707 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 708 | Key Length | Key Material ... | 709 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 710 | ... Key Material | 711 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 712 | AFI = x | Locator Address ... | 713 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 715 Length value n: length in bytes of fields that start with the Key 716 Material field. 718 Key Count: the Key Count field declares the number of Key sections 719 included in this LCAF. 721 Key Algorithm: the Algorithm field identifies the key's 722 cryptographic algorithm and specifies the format of the Public Key 723 field. 725 R bit: this is the revoke bit and, if set, it specifies that this 726 Key is being Revoked. 728 Key Length: this field determines the length in bytes of the Key 729 Material field. 731 Key Material: the Key Material field stores the key material. The 732 format of the key material stored depends on the Key Algorithm 733 field. 735 AFI = x: x can be any AFI value from [AFI].This is the locator 736 address that owns the encoded security key. 738 4.11. Source/Destination 2-Tuple Lookups 740 When both a source and destination address of a flow needs 741 consideration for different locator-sets, this 2-tuple key is used in 742 EID fields in LISP control messages. When the Source/Dest key is 743 registered to the mapping database, it can be encoded as a source- 744 prefix and destination-prefix. When the Source/Dest is used as a key 745 for a mapping database lookup the source and destination come from a 746 data packet. 748 Source/Dest Key Canonical Address Format: 750 0 1 2 3 751 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 752 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 753 | AFI = 16387 | Rsvd1 | Flags | 754 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 755 | Type = 12 | Rsvd2 | 4 + n | 756 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 757 | Reserved | Source-ML | Dest-ML | 758 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 759 | AFI = x | Source-Prefix ... | 760 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 761 | AFI = x | Destination-Prefix ... | 762 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 764 Length value n: length in bytes of fields that follow. 766 Reserved: must be set to zero and ignore on receipt. 768 Source-ML: the mask length of the source prefix that follows. 770 Dest-ML: the mask length of the destination prefix that follows. 772 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 773 its own encoding of a multicast address, this field must be either 774 a group address or a broadcast address. 776 Refer to [LISP-TE] for usage details. 778 4.12. Replication List Entries for Multicast Forwarding 780 The Replication List Entry LCAF type is an encoding for a locator 781 being used for unicast replication according to the specification in 782 [LISP-RE]. This locator encoding is pointed to by a Multicast Info 783 LCAF Type and is registered by Re-encapsulating Tunnel Routers (RTRs) 784 that are participating in an overlay distribution tree. Each RTR 785 will register its locator address and its configured level in the 786 distribution tree. 788 Replication List Entry Address Format: 790 0 1 2 3 791 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 792 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 793 | AFI = 16387 | Rsvd1 | Flags | 794 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 795 | Type = 13 | Rsvd2 | 4 + n | 796 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 797 | Rsvd3 | Rsvd4 | Level Value | 798 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 799 | AFI = x | RTR/ETR #1 ... | 800 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 801 | Rsvd3 | Rsvd4 | Level Value | 802 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 803 | AFI = x | RTR/ETR #n ... | 804 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 806 Length value n: length in bytes of fields that follow. 808 Rsvd{1,2,3,4}: must be set to zero and ignore on receipt. 810 Level Value: this value is associated with the level within the 811 overlay distribution tree hierarchy where the RTR resides. The 812 level numbers are ordered from lowest value being close to the ITR 813 (meaning that ITRs replicate to level-0 RTRs) and higher levels 814 are further downstream on the distribution tree closer to ETRs of 815 multicast receiver sites. 817 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 818 own encoding of either a unicast or multicast locator address. 819 All RTR/ETR entries for the same level should be combined together 820 by a Map-Server to avoid searching through the entire multi-level 821 list of locator entries in a Map-Reply message. 823 4.13. Data Model Encoding 825 This type allows a JSON data model to be encoded either as an EID or 826 RLOC. 828 JSON Data Model Type Address Format: 830 0 1 2 3 831 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 832 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 833 | AFI = 16387 | Rsvd1 | Flags | 834 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 835 | Type = 14 | Rsvd2 |B| 2 + n | 836 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 837 | JSON length | JSON binary/text encoding ... | 838 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 839 | AFI = x | Optional Address ... | 840 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 842 Length value n: length in bytes of fields that follow. 844 Rsvd{1,2}: must be set to zero and ignore on receipt. 846 B bit: indicates that the JSON field is binary encoded according to 847 [JSON-BINARY] when the bit is set to 1. Otherwise the encoding is 848 based on text encoding according to [RFC4627]. 850 JSON length: length in octets of the following 'JSON binary/text 851 encoding' field. 853 JSON binary/text encoding field: a variable length field that 854 contains either binary or text encodings. 856 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 857 own encoding of either a unicast or multicast locator address. 858 All RTR/ETR entries for the same level should be combined together 859 by a Map-Server to avoid searching through the entire multi-level 860 list of locator entries in a Map-Reply message. 862 4.14. Encoding Key/Value Address Pairs 864 The Key/Value pair is for example useful for attaching attributes to 865 other elements of LISP packets, such as EIDs or RLOCs. When 866 attaching attributes to EIDs or RLOCs, it's necessary to distinguish 867 between the element that should be used as EID or RLOC, and hence as 868 key for lookups, and additional attributes. This is especially the 869 case when the difference cannot be determined from the types of the 870 elements, such as when two IP addresses are being used. 872 Key/Value Pair Address Format: 874 0 1 2 3 875 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 876 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 877 | AFI = 16387 | Rsvd1 | Flags | 878 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 879 | Type = 15 | Rsvd2 | n | 880 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 881 | AFI = x | Address as Key ... | 882 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 883 | AFI = x | Address as Value ... | 884 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 886 Length value n: length in bytes of fields that follow. 888 Rsvd{1,2}: must be set to zero and ignore on receipt. 890 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 891 own encoding of either a unicast or multicast locator address. 892 All RTR/ETR entries for the same level should be combined together 893 by a Map-Server to avoid searching through the entire multi-level 894 list of locator entries in a Map-Reply message. 896 Address as Key: this AFI encoded address will be attached with the 897 attributes encoded in "Address as Value" which follows this field. 899 Address as Value: this AFI encoded address will be the attribute 900 address that goes along with "Address as Key" which precedes this 901 field. 903 4.15. Multiple Data-Planes 905 Overlays are becoming popular in many parts of the network which have 906 created an explosion of data-plane encapsulation headers. Since the 907 LISP mapping system can hold many types of address formats, it can 908 represent the encapsulation format supported by an RLOC as well. 909 When an encapsulator receives a Map-Reply with an Encapsulation 910 Format LCAF Type encoded in an RLOC-record, it can select an 911 encapsulation format, that it can support, from any of the 912 encapsulation protocols which have the bit set to 1 in this LCAF 913 type. 915 Encapsulation Format Address Format: 917 0 1 2 3 918 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 919 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 920 | AFI = 16387 | Rsvd1 | Flags | 921 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 922 | Type = 16 | Rsvd2 | 4 + n | 923 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 924 | Reserved-for-Future-Encapsulations |U|G|N|v|V|l|L| 925 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 926 | AFI = x | Address ... | 927 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 929 Rsvd1/Rsvd2: must be set to zero and ignored on receipt. 931 Length value n: length in bytes of the AFI address that follows the 932 next 32-bits including the AFI field itself. 934 Reserved-for-Future-Encapsulations: must be set to zero and ignored 935 on receipt. This field will get bits allocated to future 936 encapsulations, as they are created. 938 L: The RLOCs listed in the AFI encoded addresses in the next longword 939 can accept layer3 LISP encapsulation using destination UDP port 940 4341 [RFC6830]. 942 l: The RLOCs listed in the AFI encoded addresses in the next longword 943 can accept layer2 LISP encapsulation using destination UDP port 944 8472 [L2-LISP]. 946 V: The RLOCs listed in the AFI encoded addresses in the next longword 947 can accept VXLAN encapsulation using destination UDP port 4789 948 [RFC7348]. 950 v: The RLOCs listed in the AFI encoded addresses in the next longword 951 can accept VXLAN-GPE encapsulation using destination UDP port 4790 952 [GPE]. 954 N: The RLOCs listed in the AFI encoded addresses in the next longword 955 can accept NV-GRE encapsulation using IPv4/ IPv6 protocol number 956 47 [NVGRE]. 958 G: The RLOCs listed in the AFI encoded addresses in the next longword 959 can accept GENEVE encapsulation using destination UDP port 6081 960 [GENEVE]. 962 U: The RLOCs listed in the AFI encoded addresses in the next longword 963 can accept GUE encapsulation using destination UDP port TBD [GUE]. 965 4.16. Applications for AFI List Type 967 4.16.1. Binding IPv4 and IPv6 Addresses 969 When header translation between IPv4 and IPv6 is desirable a LISP 970 Canonical Address can use the AFI List Type to carry multiple AFIs in 971 one LCAF AFI. 973 Address Binding LISP Canonical Address Format: 975 0 1 2 3 976 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 977 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 978 | AFI = 16387 | Rsvd1 | Flags | 979 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 980 | Type = 1 | Rsvd2 | 2 + 4 + 2 + 16 | 981 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 982 | AFI = 1 | IPv4 Address ... | 983 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 984 | ... IPv4 Address | AFI = 2 | 985 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 986 | IPv6 Address ... | 987 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 988 | ... IPv6 Address ... | 989 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 990 | ... IPv6 Address ... | 991 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 992 | ... IPv6 Address | 993 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 995 Length: length in bytes is fixed at 24 when IPv4 and IPv6 AFI 996 encoded addresses are used. 998 This type of address format can be included in a Map-Request when the 999 address is being used as an EID, but the Mapping Database System 1000 lookup destination can use only the IPv4 address. This is so a 1001 Mapping Database Service Transport System, such as LISP-ALT 1002 [RFC6836], can use the Map-Request destination address to route the 1003 control message to the desired LISP site. 1005 4.16.2. Layer-2 VPNs 1007 When MAC addresses are stored in the LISP Mapping Database System, 1008 the AFI List Type can be used to carry AFI 6. 1010 MAC Address LISP Canonical Address Format: 1012 0 1 2 3 1013 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1014 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1015 | AFI = 16387 | Rsvd1 | Flags | 1016 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1017 | Type = 1 | Rsvd2 | 2 + 6 | 1018 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1019 | AFI = 6 | Layer-2 MAC Address ... | 1020 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1021 | ... Layer-2 MAC Address | 1022 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1024 Length: length in bytes is fixed at 8 when MAC address AFI encoded 1025 addresses are used. 1027 This address format can be used to connect layer-2 domains together 1028 using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. 1029 In this use-case, a MAC address is being used as an EID, and the 1030 locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or 1031 even another MAC address being used as an RLOC. 1033 4.16.3. ASCII Names in the Mapping Database 1035 If DNS names or URIs are stored in the LISP Mapping Database System, 1036 the AFI List Type can be used to carry an ASCII string where it is 1037 delimited by length 'n' of the LCAF Length encoding. 1039 ASCII LISP Canonical Address Format: 1041 0 1 2 3 1042 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1043 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1044 | AFI = 16387 | Rsvd1 | Flags | 1045 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1046 | Type = 1 | Rsvd2 | 2 + n | 1047 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1048 | AFI = 17 | DNS Name or URI ... | 1049 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1051 Length value n: length in bytes AFI=17 field and the null-terminated 1052 ASCII string (the last byte of 0 is included). 1054 4.16.4. Using Recursive LISP Canonical Address Encodings 1056 When any combination of above is desirable, the AFI List Type value 1057 can be used to carry within the LCAF AFI another LCAF AFI. 1059 Recursive LISP Canonical Address Format: 1061 0 1 2 3 1062 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1063 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1064 | AFI = 16387 | Rsvd1 | Flags | 1065 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1066 | Type = 1 | Rsvd2 | 8 + 18 | 1067 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1068 | AFI = 16387 | Rsvd1 | Flags | 1069 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1070 | Type = 4 | Rsvd2 | 12 + 6 | 1071 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1072 | IP TOS, IPv6 QQS or Flow Label | Protocol | 1073 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1074 | Local Port (lower-range) | Local Port (upper-range) | 1075 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1076 | Remote Port (lower-range) | Remote Port (upper-range) | 1077 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1078 | AFI = 1 | IPv4 Address ... | 1079 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1080 | ... IPv4 Address | 1081 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1083 Length: length in bytes is fixed at 18 when an AFI=1 IPv4 address is 1084 included. 1086 This format could be used by a Mapping Database Transport System, 1087 such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is used as 1088 an EID and placed in the Map-Request destination address by the 1089 sending LISP system. The ALT system can deliver the Map-Request to 1090 the LISP destination site independent of the Application Data Type 1091 AFI payload values. When this AFI is processed by the destination 1092 LISP site, it can return different locator-sets based on the type of 1093 application or level of service that is being requested. 1095 4.16.5. Compatibility Mode Use Case 1097 A LISP system should use the AFI List Type format when sending to 1098 LISP systems that do not support a particular LCAF Type used to 1099 encode locators. This allows the receiving system to be able to 1100 parse a locator address for encapsulation purposes. The list of AFIs 1101 in an AFI List LCAF Type has no semantic ordering and a receiver 1102 should parse each AFI element no matter what the ordering. 1104 Compatibility Mode Address Format: 1106 0 1 2 3 1107 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1108 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1109 | AFI = 16387 | Rsvd1 | Flags | 1110 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1111 | Type = 1 | Rsvd2 | 8 + 14 + 6 | 1112 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1113 | AFI = 16387 | Rsvd1 | Flags | 1114 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1115 | Type = 5 | Rsvd2 | 12 + 2 | 1116 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1117 |N| Latitude Degrees | Minutes | Seconds | 1118 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1119 |E| Longitude Degrees | Minutes | Seconds | 1120 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1121 | Altitude | 1122 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1123 | AFI = 0 | AFI = 1 | 1124 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1125 | IPv4 Address | 1126 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1128 If a system does not recognized the Geo Coordinate LCAF Type that is 1129 accompanying a locator address, an encoder can include the Geo 1130 Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI 1131 in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in 1132 the list is encoded with a valid AFI value to identify the locator 1133 address. 1135 A LISP system is required to support the AFI List LCAF Type to use 1136 this procedure. It would skip over 10 bytes of the Geo Coordinate 1137 LCAF Type to get to the locator address encoding (an IPv4 locator 1138 address). A LISP system that does support the Geo Coordinate LCAF 1139 Type can support parsing the locator address within the Geo 1140 Coordinate LCAF encoding or in the locator encoding that follows in 1141 the AFI List LCAF. 1143 5. Security Considerations 1145 There are no security considerations for this specification. The 1146 security considerations are documented for the protocols that use 1147 LISP Canonical Addressing. Refer to the those relevant 1148 specifications. 1150 6. IANA Considerations 1152 The Address Family AFI definitions from [AFI] only allocate code- 1153 points for the AFI value itself. The length of the address or entity 1154 that follows is not defined and is implied based on conventional 1155 experience. Where the LISP protocol uses LISP Canonical Addresses 1156 specifically, the address length definitions will be in this 1157 specification and take precedent over any other specification. 1159 An IANA Registry for LCAF Type values will be created. The values 1160 that are considered for use by the main LISP specification [RFC6830] 1161 will be in the IANA Registry. Other Type values used for 1162 experimentation will be defined and described in this document. 1164 7. References 1166 7.1. Normative References 1168 [RFC1700] Reynolds, J. and J. Postel, "Assigned Numbers", RFC 1700, 1169 October 1994. 1171 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and 1172 E. Lear, "Address Allocation for Private Internets", BCP 1173 5, RFC 1918, February 1996. 1175 [RFC4627] Crockford, D., "The application/json Media Type for 1176 JavaScript Object Notation (JSON)", RFC 4627, July 2006. 1178 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The 1179 Locator/ID Separation Protocol (LISP)", RFC 6830, January 1180 2013. 1182 [RFC6836] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, 1183 "Locator/ID Separation Protocol Alternative Logical 1184 Topology (LISP+ALT)", RFC 6836, January 2013. 1186 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, 1187 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual 1188 eXtensible Local Area Network (VXLAN): A Framework for 1189 Overlaying Virtualized Layer 2 Networks over Layer 3 1190 Networks", RFC 7348, August 2014. 1192 7.2. Informative References 1194 [AFI] IANA, , "Address Family Identifier (AFIs)", ADDRESS FAMILY 1195 NUMBERS http://www.iana.org/numbers.html, Febuary 2007. 1197 [GENEVE] Gross, J., Sridhar, T., Garg, P., Wright, C., Ganga, I., 1198 Agarwal, P., Duda, K., Dutt, D., and J. Hudson, "Geneve: 1199 Generic Network Virtualization Encapsulation", draft- 1200 gross-geneve-02 (work in progress). 1202 [GPE] Quinn, P., Agarwal, P., Fernando, R., Kreeger, L., 1203 Kreeger, L., Lewis, D., Maino, F., Smith, M., Yadav, N., 1204 Yong, L., Xu, X., Elzur, U., and P. Garg, "Generic 1205 Protocol Extension for VXLAN", draft-quinn-vxlan-gpe- 1206 03.txt (work in progress). 1208 [GUE] Herbert, T. and L. Yong, "Generic UDP Encapsulation", 1209 draft-herbert-gue-02.txt (work in progress). 1211 [JSON-BINARY] 1212 "Universal Binary JSON Specification", URL 1213 http://ubjson.org. 1215 [L2-LISP] Smith, M., Dutt, D., Farinacci, D., and F. Maino, "Layer 2 1216 (L2) LISP Encapsulation Format", draft-smith-lisp- 1217 layer2-03.txt (work in progress). 1219 [LISP-DDT] 1220 Fuller, V., Lewis, D., and V. Ermagan, "LISP Delegated 1221 Database Tree", draft-ietf-lisp-ddt-01.txt (work in 1222 progress). 1224 [LISP-MRSIG] 1225 Farinacci, D. and M. Napierala, "LISP Control-Plane 1226 Multicast Signaling", draft-farinacci-lisp-mr-signaling- 1227 03.txt (work in progress). 1229 [LISP-NATT] 1230 Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, 1231 F., and C. White, "NAT traversal for LISP", draft-ermagan- 1232 lisp-nat-traversal-03.txt (work in progress). 1234 [LISP-RE] Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J., 1235 Maino, F., and D. Farinacci, "LISP Replication 1236 Engineering", draft-coras-lisp-re-03.txt (work in 1237 progress). 1239 [LISP-TE] Farinacci, D., Lahiri, P., and M. Kowal, "LISP Traffic 1240 Engineering Use-Cases", draft-farinacci-lisp-te-03.txt 1241 (work in progress). 1243 [NVGRE] Sridharan, M., Greenberg, A., Wang, Y., Garg, P., 1244 Venkataramiah, N., Duda, K., Ganga, I., Lin, G., Pearson, 1245 M., Thaler, P., and C. Tumuluri, "NVGRE: Network 1246 Virtualization using Generic Routing Encapsulation", 1247 draft-sridharan-virtualization-nvgre-06.txt (work in 1248 progress). 1250 [WGS-84] Geodesy and Geophysics Department, DoD., "World Geodetic 1251 System 1984", NIMA TR8350.2, January 2000, . 1254 Appendix A. Acknowledgments 1256 The authors would like to thank Vince Fuller, Gregg Schudel, Jesper 1257 Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for 1258 their technical and editorial commentary. 1260 The authors would like to thank Victor Moreno for discussions that 1261 lead to the definition of the Multicast Info LCAF type. 1263 The authors would like to thank Parantap Lahiri and Michael Kowal for 1264 discussions that lead to the definition of the Explicit Locator Path 1265 (ELP) LCAF type. 1267 The authors would like to thank Fabio Maino and Vina Ermagan for 1268 discussions that lead to the definition of the Security Key LCAF 1269 type. 1271 The authors would like to thank Albert Cabellos-Aparicio and Florin 1272 Coras for discussions that lead to the definition of the Replication 1273 List Entry LCAF type. 1275 Thanks goes to Michiel Blokzijl and Alberto Rodriguez-Natal for 1276 suggesting new LCAF types. 1278 Thanks also goes to Terry Manderson for assistance obtaining a LISP 1279 AFI value from IANA. 1281 Appendix B. Document Change Log 1282 B.1. Changes to draft-ietf-lisp-lcaf-08.txt 1284 o Submitted April 2015. 1286 o Comment from Florin. The Application Data Type length field has a 1287 typo. The field should be labeled "12 + n" and not "8 + n". 1289 o Fix length fields in the sections titled "Using Recursive LISP 1290 Canonical Address Encodings", "Generic Database Mapping Lookups", 1291 and "Data Model Encoding". 1293 B.2. Changes to draft-ietf-lisp-lcaf-07.txt 1295 o Submitted December 2014. 1297 o Add a new LCAF Type called "Encapsulation Format" so decapsulating 1298 xTRs can inform encapsulating xTRs what data-plane encapsulations 1299 they support. 1301 B.3. Changes to draft-ietf-lisp-lcaf-06.txt 1303 o Submitted October 2014. 1305 o Make it clear how sorted RLOC records are done when LCAFs are used 1306 as the RLOC record. 1308 B.4. Changes to draft-ietf-lisp-lcaf-05.txt 1310 o Submitted May 2014. 1312 o Add a length field of the JSON payload that can be used for either 1313 binary or text encoding of JSON data. 1315 B.5. Changes to draft-ietf-lisp-lcaf-04.txt 1317 o Submitted January 2014. 1319 o Agreement among ELP implementors to have the AFI 16-bit field 1320 adjacent to the address. This will make the encoding consistent 1321 with all other LCAF type address encodings. 1323 B.6. Changes to draft-ietf-lisp-lcaf-03.txt 1325 o Submitted September 2013. 1327 o Updated references and author's affilations. 1329 o Added Instance-ID to the Multicast Info Type so there is relative 1330 ease in parsing (S,G) entries within a VPN. 1332 o Add port range encodings to the Application Data LCAF Type. 1334 o Add a new JSON LCAF Type. 1336 o Add Address Key/Value LCAF Type to allow attributes to be attached 1337 to an address. 1339 B.7. Changes to draft-ietf-lisp-lcaf-02.txt 1341 o Submitted March 2013. 1343 o Added new LCAF Type "Replication List Entry" to support LISP 1344 replication engineering use-cases. 1346 o Changed references to new LISP RFCs. 1348 B.8. Changes to draft-ietf-lisp-lcaf-01.txt 1350 o Submitted January 2013. 1352 o Change longitude range from 0-90 to 0-180 in section 4.4. 1354 o Added reference to WGS-84 in section 4.4. 1356 B.9. Changes to draft-ietf-lisp-lcaf-00.txt 1358 o Posted first working group draft August 2012. 1360 o This draft was renamed from draft-farinacci-lisp-lcaf-10.txt. 1362 Authors' Addresses 1364 Dino Farinacci 1365 lispers.net 1366 San Jose, CA 1367 USA 1369 Email: farinacci@gmail.com 1370 Dave Meyer 1371 Brocade 1372 San Jose, CA 1373 USA 1375 Email: dmm@1-4-5.net 1377 Job Snijders 1378 NTT 1379 Tupolevlaan 103a 1380 Schiphol-Rijk 1119 PA 1381 NL 1383 Email: job@ntt.net