idnits 2.17.1 draft-ietf-lisp-lcaf-09.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** The document seems to lack a both a reference to RFC 2119 and the recommended RFC 2119 boilerplate, even if it appears to use RFC 2119 keywords. RFC 2119 keyword, line 202: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 244: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 632: '... See [LISP-MRSIG] for details. The J-bit MUST not be set when the...' Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Using lowercase 'not' together with uppercase 'MUST', 'SHALL', 'SHOULD', or 'RECOMMENDED' is not an accepted usage according to RFC 2119. Please use uppercase 'NOT' together with RFC 2119 keywords (if that is what you mean). Found 'MUST not' in this paragraph: J-bit: this is the Join-Request bit and is used when this LCAF type is present in the destination EID-prefix field of a Map-Request. See [LISP-MRSIG] for details. The J-bit MUST not be set when the L-bit is also set in the same LCAF block. A receiver should not take any specific Join or Leave action when both bits are set. -- The document date (June 12, 2015) is 3239 days in the past. Is this intentional? Checking references for intended status: Experimental ---------------------------------------------------------------------------- ** Obsolete normative reference: RFC 1700 (Obsoleted by RFC 3232) ** Obsolete normative reference: RFC 4627 (Obsoleted by RFC 7158, RFC 7159) ** Obsolete normative reference: RFC 5226 (Obsoleted by RFC 8126) ** Obsolete normative reference: RFC 6830 (Obsoleted by RFC 9300, RFC 9301) == Outdated reference: A later version (-04) exists of draft-quinn-vxlan-gpe-03 == Outdated reference: A later version (-03) exists of draft-herbert-gue-02 == Outdated reference: A later version (-09) exists of draft-ietf-lisp-ddt-01 == Outdated reference: A later version (-06) exists of draft-farinacci-lisp-mr-signaling-03 == Outdated reference: A later version (-19) exists of draft-ermagan-lisp-nat-traversal-03 == Outdated reference: A later version (-08) exists of draft-coras-lisp-re-03 == Outdated reference: A later version (-12) exists of draft-farinacci-lisp-te-03 == Outdated reference: A later version (-08) exists of draft-sridharan-virtualization-nvgre-06 Summary: 5 errors (**), 0 flaws (~~), 10 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group D. Farinacci 3 Internet-Draft lispers.net 4 Intended status: Experimental D. Meyer 5 Expires: December 14, 2015 Brocade 6 J. Snijders 7 NTT 8 June 12, 2015 10 LISP Canonical Address Format (LCAF) 11 draft-ietf-lisp-lcaf-09 13 Abstract 15 This draft defines a canonical address format encoding used in LISP 16 control messages and in the encoding of lookup keys for the LISP 17 Mapping Database System. 19 Status of This Memo 21 This Internet-Draft is submitted in full conformance with the 22 provisions of BCP 78 and BCP 79. 24 Internet-Drafts are working documents of the Internet Engineering 25 Task Force (IETF). Note that other groups may also distribute 26 working documents as Internet-Drafts. The list of current Internet- 27 Drafts is at http://datatracker.ietf.org/drafts/current/. 29 Internet-Drafts are draft documents valid for a maximum of six months 30 and may be updated, replaced, or obsoleted by other documents at any 31 time. It is inappropriate to use Internet-Drafts as reference 32 material or to cite them other than as "work in progress." 34 This Internet-Draft will expire on December 14, 2015. 36 Copyright Notice 38 Copyright (c) 2015 IETF Trust and the persons identified as the 39 document authors. All rights reserved. 41 This document is subject to BCP 78 and the IETF Trust's Legal 42 Provisions Relating to IETF Documents 43 (http://trustee.ietf.org/license-info) in effect on the date of 44 publication of this document. Please review these documents 45 carefully, as they describe your rights and restrictions with respect 46 to this document. Code Components extracted from this document must 47 include Simplified BSD License text as described in Section 4.e of 48 the Trust Legal Provisions and are provided without warranty as 49 described in the Simplified BSD License. 51 Table of Contents 53 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 54 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 55 3. LISP Canonical Address Format Encodings . . . . . . . . . . . 4 56 4. LISP Canonical Address Applications . . . . . . . . . . . . . 7 57 4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 7 58 4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 8 59 4.3. Convey Application Specific Data . . . . . . . . . . . . 9 60 4.4. Assigning Geo Coordinates to Locator Addresses . . . . . 10 61 4.5. Generic Database Mapping Lookups . . . . . . . . . . . . 12 62 4.6. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 13 63 4.7. PETR Admission Control Functionality . . . . . . . . . . 15 64 4.8. Multicast Group Membership Information . . . . . . . . . 16 65 4.9. Traffic Engineering using Re-encapsulating Tunnels . . . 18 66 4.10. Storing Security Data in the Mapping Database . . . . . . 19 67 4.11. Source/Destination 2-Tuple Lookups . . . . . . . . . . . 20 68 4.12. Replication List Entries for Multicast Forwarding . . . . 21 69 4.13. Data Model Encoding . . . . . . . . . . . . . . . . . . . 22 70 4.14. Encoding Key/Value Address Pairs . . . . . . . . . . . . 23 71 4.15. Multiple Data-Planes . . . . . . . . . . . . . . . . . . 24 72 4.16. Applications for AFI List Type . . . . . . . . . . . . . 26 73 4.16.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . 26 74 4.16.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 27 75 4.16.3. ASCII Names in the Mapping Database . . . . . . . . 28 76 4.16.4. Using Recursive LISP Canonical Address Encodings . . 29 77 4.16.5. Compatibility Mode Use Case . . . . . . . . . . . . 30 78 5. Security Considerations . . . . . . . . . . . . . . . . . . . 31 79 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 31 80 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 32 81 7.1. Normative References . . . . . . . . . . . . . . . . . . 32 82 7.2. Informative References . . . . . . . . . . . . . . . . . 33 83 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . 34 84 Appendix B. Document Change Log . . . . . . . . . . . . . . . . 35 85 B.1. Changes to draft-ietf-lisp-lcaf-09.txt . . . . . . . . . 35 86 B.2. Changes to draft-ietf-lisp-lcaf-08.txt . . . . . . . . . 35 87 B.3. Changes to draft-ietf-lisp-lcaf-07.txt . . . . . . . . . 35 88 B.4. Changes to draft-ietf-lisp-lcaf-06.txt . . . . . . . . . 36 89 B.5. Changes to draft-ietf-lisp-lcaf-05.txt . . . . . . . . . 36 90 B.6. Changes to draft-ietf-lisp-lcaf-04.txt . . . . . . . . . 36 91 B.7. Changes to draft-ietf-lisp-lcaf-03.txt . . . . . . . . . 36 92 B.8. Changes to draft-ietf-lisp-lcaf-02.txt . . . . . . . . . 36 93 B.9. Changes to draft-ietf-lisp-lcaf-01.txt . . . . . . . . . 37 94 B.10. Changes to draft-ietf-lisp-lcaf-00.txt . . . . . . . . . 37 95 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 37 97 1. Introduction 99 The LISP architecture and protocols [RFC6830] introduces two new 100 numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators 101 (RLOCs) which are intended to replace most use of IP addresses on the 102 Internet. To provide flexibility for current and future 103 applications, these values can be encoded in LISP control messages 104 using a general syntax that includes Address Family Identifier (AFI), 105 length, and value fields. 107 Currently defined AFIs include IPv4 and IPv6 addresses, which are 108 formatted according to code-points assigned in [AFI] as follows: 110 IPv4 Encoded Address: 112 0 1 2 3 113 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 114 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 115 | AFI = 1 | IPv4 Address ... | 116 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 117 | ... IPv4 Address | 118 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 120 IPv6 Encoded Address: 122 0 1 2 3 123 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 124 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 125 | AFI = 2 | IPv6 Address ... | 126 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 127 | ... IPv6 Address ... | 128 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 129 | ... IPv6 Address ... | 130 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 131 | ... IPv6 Address ... | 132 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 133 | ... IPv6 Address | 134 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 136 This document describes the currently-defined AFIs the LISP protocol 137 uses along with their encodings and introduces the LISP Canonical 138 Address Format (LCAF) that can be used to define the LISP-specific 139 encodings for arbitrary AFI values. 141 2. Definition of Terms 143 Address Family Identifier (AFI): a term used to describe an address 144 encoding in a packet. An address family currently defined for 145 IPv4 or IPv6 addresses. See [AFI] and [RFC1700] for details. The 146 reserved AFI value of 0 is used in this specification to indicate 147 an unspecified encoded address where the the length of the address 148 is 0 bytes following the 16-bit AFI value of 0. 150 Unspecified Address Format: 152 0 1 2 3 153 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 154 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 155 | AFI = 0 | | 156 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 158 Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value 159 used in the source and destination address fields of the first 160 (most inner) LISP header of a packet. The host obtains a 161 destination EID the same way it obtains a destination address 162 today, for example through a DNS lookup or SIP exchange. The 163 source EID is obtained via existing mechanisms used to set a 164 host's "local" IP address. An EID is allocated to a host from an 165 EID-prefix block associated with the site where the host is 166 located. An EID can be used by a host to refer to other hosts. 168 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress 169 tunnel router (ETR). It is the output of a EID-to-RLOC mapping 170 lookup. An EID maps to one or more RLOCs. Typically, RLOCs are 171 numbered from topologically aggregatable blocks that are assigned 172 to a site at each point to which it attaches to the global 173 Internet; where the topology is defined by the connectivity of 174 provider networks, RLOCs can be thought of as PA addresses. 175 Multiple RLOCs can be assigned to the same ETR device or to 176 multiple ETR devices at a site. 178 3. LISP Canonical Address Format Encodings 180 IANA has assigned AFI value 16387 (0x4003) to the LISP architecture 181 and protocols. This specification defines the encoding format of the 182 LISP Canonical Address (LCA). 184 The Address Family AFI definitions from [AFI] only allocate code- 185 points for the AFI value itself. The length of the address or entity 186 that follows is not defined and is implied based on conventional 187 experience. Where the LISP protocol uses LISP Canonical Addresses 188 specifically, the address length definitions will be in this 189 specification and take precedent over any other specification. 191 The first 6 bytes of an LISP Canonical Address are followed by a 192 variable length of fields: 194 0 1 2 3 195 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 196 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 197 | AFI = 16387 | Rsvd1 | Flags | 198 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 199 | Type | Rsvd2 | Length | 200 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 202 Rsvd1: this 8-bit field is reserved for future use and MUST be 203 transmitted as 0 and ignored on receipt. 205 Flags: this 8-bit field is for future definition and use. For now, 206 set to zero on transmission and ignored on receipt. 208 Type: this 8-bit field is specific to the LISP Canonical Address 209 formatted encodings, values are: 211 Type 0: Null Body Type 213 Type 1: AFI List Type 215 Type 2: Instance ID Type 217 Type 3: AS Number Type 219 Type 4: Application Data Type 221 Type 5: Geo Coordinates Type 223 Type 6: Opaque Key Type 225 Type 7: NAT-Traversal Type 227 Type 8: Nonce Locator Type 229 Type 9: Multicast Info Type 231 Type 10: Explicit Locator Path Type 233 Type 11: Security Key Type 235 Type 12: Source/Dest Key Type 236 Type 13: Replication List Entry Type 238 Type 14: JSON Data Model Type 240 Type 15: Key/Value Address Pair Type 242 Type 16: Encapsulation Format Type 244 Rsvd2: this 8-bit field is reserved for future use and MUST be 245 transmitted as 0 and ignored on receipt. 247 Length: this 16-bit field is in units of bytes and covers all of the 248 LISP Canonical Address payload, starting and including the byte 249 after the Length field. So any LCAF encoded address will have a 250 minimum length of 8 bytes when the Length field is 0. The 8 bytes 251 include the AFI, Flags, Type, Reserved, and Length fields. When 252 the AFI is not next to encoded address in a control message, then 253 the encoded address will have a minimum length of 6 bytes when the 254 Length field is 0. The 6 bytes include the Flags, Type, Reserved, 255 and Length fields. 257 [RFC6830] states RLOC records are sorted when encoded in control 258 messages so the locator-set has consistent order across all xTRs for 259 a given EID. The sort order is based on sort-key {afi, RLOC- 260 address}. When an RLOC is LCAF encoded, the sort-key is {afi, LCAF- 261 Type, payload}. Therefore, when a locator-set has a mix of AFI 262 records and LCAF records, all LCAF records will appear after all the 263 AFI records. 265 4. LISP Canonical Address Applications 267 4.1. Segmentation using LISP 269 When multiple organizations inside of a LISP site are using private 270 addresses [RFC1918] as EID-prefixes, their address spaces must remain 271 segregated due to possible address duplication. An Instance ID in 272 the address encoding can aid in making the entire AFI based address 273 unique. 275 Another use for the Instance ID LISP Canonical Address Format is when 276 creating multiple segmented VPNs inside of a LISP site where keeping 277 EID-prefix based subnets is desirable. 279 Instance ID LISP Canonical Address Format: 281 0 1 2 3 282 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 283 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 284 | AFI = 16387 | Rsvd1 | Flags | 285 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 286 | Type = 2 | IID mask-len | 4 + n | 287 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 288 | Instance ID | 289 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 290 | AFI = x | Address ... | 291 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 293 IID mask-len: if the AFI is set to 0, then this format is not 294 encoding an extended EID-prefix but rather an instance-ID range 295 where the 'IID mask-len' indicates the number of high-order bits 296 used in the Instance ID field for the range. 298 Length value n: length in bytes of the AFI address that follows the 299 Instance ID field including the AFI field itself. 301 Instance ID: the low-order 24-bits that can go into a LISP data 302 header when the I-bit is set. See [RFC6830] for details. 304 AFI = x: x can be any AFI value from [AFI]. 306 This LISP Canonical Address Type can be used to encode either EID or 307 RLOC addresses. 309 4.2. Carrying AS Numbers in the Mapping Database 311 When an AS number is stored in the LISP Mapping Database System for 312 either policy or documentation reasons, it can be encoded in a LISP 313 Canonical Address. 315 AS Number LISP Canonical Address Format: 317 0 1 2 3 318 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 319 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 320 | AFI = 16387 | Rsvd1 | Flags | 321 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 322 |n Type = 3 | Rsvd2 | 4 + n | 323 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 324 | AS Number | 325 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 326 | AFI = x | Address ... | 327 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 329 Length value n: length in bytes of the AFI address that follows the 330 AS Number field including the AFI field itself. 332 AS Number: the 32-bit AS number of the autonomous system that has 333 been assigned either the EID or RLOC that follows. 335 AFI = x: x can be any AFI value from [AFI]. 337 The AS Number Canonical Address Type can be used to encode either EID 338 or RLOC addresses. The former is used to describe the LISP-ALT AS 339 number the EID-prefix for the site is being carried for. The latter 340 is used to describe the AS that is carrying RLOC based prefixes in 341 the underlying routing system. 343 4.3. Convey Application Specific Data 345 When a locator-set needs to be conveyed based on the type of 346 application or the Per-Hop Behavior (PHB) of a packet, the 347 Application Data Type can be used. 349 Application Data LISP Canonical Address Format: 351 0 1 2 3 352 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 353 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 354 | AFI = 16387 | Rsvd1 | Flags | 355 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 356 | Type = 4 | Rsvd2 | 12 + n | 357 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 358 | IP TOS, IPv6 TC, or Flow Label | Protocol | 359 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 360 | Local Port (lower-range) | Local Port (upper-range) | 361 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 362 | Remote Port (lower-range) | Remote Port (upper-range) | 363 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 364 | AFI = x | Address ... | 365 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 367 Length value n: length in bytes of the AFI address that follows the 368 8-byte Application Data fields including the AFI field itself. 370 IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS 371 field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow 372 Label used in an IPv6 header. 374 Local Port/Remote Port Ranges: these fields are from the TCP, UDP, 375 or SCTP transport header. A range can be specified by using a 376 lower value and an upper value. When a single port is encoded, 377 the lower and upper value fields are the same. 379 AFI = x: x can be any AFI value from [AFI]. 381 The Application Data Canonical Address Type is used for an EID 382 encoding when an ITR wants a locator-set for a specific application. 383 When used for an RLOC encoding, the ETR is supplying a locator-set 384 for each specific application is has been configured to advertise. 386 4.4. Assigning Geo Coordinates to Locator Addresses 388 If an ETR desires to send a Map-Reply describing the Geo Coordinates 389 for each locator in its locator-set, it can use the Geo Coordinate 390 Type to convey physical location information. 392 Coordinates are specified using the WGS-84 (World Geodetic System) 393 reference coordinate system [WGS-84]. 395 Geo Coordinate LISP Canonical Address Format: 397 0 1 2 3 398 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 399 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 400 | AFI = 16387 | Rsvd1 | Flags | 401 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 402 | Type = 5 | Rsvd2 | 12 + n | 403 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 404 |N| Latitude Degrees | Minutes | Seconds | 405 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 406 |E| Longitude Degrees | Minutes | Seconds | 407 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 408 | Altitude | 409 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 410 | AFI = x | Address ... | 411 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 413 Length value n: length in bytes of the AFI address that follows the 414 8-byte Longitude and Latitude fields including the AFI field 415 itself. 417 N: When set to 1 means North, otherwise South. 419 Latitude Degrees: Valid values range from 0 to 90 degrees above or 420 below the equator (northern or southern hemisphere, respectively). 422 Latitude Minutes: Valid values range from 0 to 59. 424 Latitude Seconds: Valid values range from 0 to 59. 426 E: When set to 1 means East, otherwise West. 428 Longitude Degrees: Value values are from 0 to 180 degrees right or 429 left of the Prime Meridian. 431 Longitude Minutes: Valid values range from 0 to 59. 433 Longitude Seconds: Valid values range from 0 to 59. 435 Altitude: Height relative to sea level in meters. This is a signed 436 integer meaning that the altitude could be below sea level. A 437 value of 0x7fffffff indicates no Altitude value is encoded. 439 AFI = x: x can be any AFI value from [AFI]. 441 The Geo Coordinates Canonical Address Type can be used to encode 442 either EID or RLOC addresses. When used for EID encodings, you can 443 determine the physical location of an EID along with the topological 444 location by observing the locator-set. 446 4.5. Generic Database Mapping Lookups 448 When the LISP Mapping Database system holds information accessed by a 449 generic formatted key (where the key is not the usual IPv4 or IPv6 450 address), an opaque key may be desirable. 452 Opaque Key LISP Canonical Address Format: 454 0 1 2 3 455 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 456 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 457 | AFI = 16387 | Rsvd1 | Flags | 458 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 459 | Type = 6 | Rsvd2 | 3 + n | 460 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 461 | Key Field Num | Key Wildcard Fields | Key . . . | 462 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 463 | . . . Key | 464 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 466 Length value n: length in bytes of the type's payload. The value n 467 is the number of bytes that follow this Length field. 469 Key Field Num: the number of fields (minus 1) the key can be broken 470 up into. The width of the fields are fixed length. So for a key 471 size of 8 bytes, with a Key Field Num of 4 allows 4 fields of 2 472 bytes in length. Valid values for this field range from 0 to 15 473 supporting a maximum of 16 field separations. 475 Key Wildcard Fields: describes which fields in the key are not used 476 as part of the key lookup. This wildcard encoding is a bitfield. 477 Each bit is a don't-care bit for a corresponding field in the key. 478 Bit 0 (the low-order bit) in this bitfield corresponds the first 479 field, right-justified in the key, bit 1 the second field, and so 480 on. When a bit is set in the bitfield it is a don't-care bit and 481 should not be considered as part of the database lookup. When the 482 entire 16-bits is set to 0, then all bits of the key are used for 483 the database lookup. 485 Key: the variable length key used to do a LISP Database Mapping 486 lookup. The length of the key is the value n (shown above) minus 487 3. 489 4.6. NAT Traversal Scenarios 491 When a LISP system is conveying global address and mapped port 492 information when traversing through a NAT device, the NAT-Traversal 493 LCAF Type is used. See [LISP-NATT] for details. 495 NAT-Traversal Canonical Address Format: 497 0 1 2 3 498 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 499 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 500 | AFI = 16387 | Rsvd1 | Flags | 501 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 502 | Type = 7 | Rsvd2 | 4 + n | 503 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 504 | MS UDP Port Number | ETR UDP Port Number | 505 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 506 | AFI = x | Global ETR RLOC Address ... | 507 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 508 | AFI = x | MS RLOC Address ... | 509 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 510 | AFI = x | Private ETR RLOC Address ... | 511 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 512 | AFI = x | RTR RLOC Address 1 ... | 513 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 514 | AFI = x | RTR RLOC Address k ... | 515 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 517 Length value n: length in bytes of the AFI addresses that follows 518 the UDP Port Number field including the AFI fields themselves. 520 MS UDP Port Number: this is the UDP port number of the Map-Server 521 and is set to 4342. 523 ETR UDP Port Number: this is the port number returned to a LISP 524 system which was copied from the source port from a packet that 525 has flowed through a NAT device. 527 AFI = x: x can be any AFI value from [AFI]. 529 Global ETR RLOC Address: this is an address known to be globally 530 unique built by NAT-traversal functionality in a LISP router. 532 MS RLOC Address: this is the address of the Map-Server used in the 533 destination RLOC of a packet that has flowed through a NAT device. 535 Private ETR RLOC Address: this is an address known to be a private 536 address inserted in this LCAF format by a LISP router that resides 537 on the private side of a NAT device. 539 RTR RLOC Address: this is an encapsulation address used by an ITR or 540 PITR which resides behind a NAT device. This address is known to 541 have state in a NAT device so packets can flow from it to the LISP 542 ETR behind the NAT. There can be one or more NTR addresses 543 supplied in these set of fields. The number of NTRs encoded is 544 determined by the LCAF length field. When there are no NTRs 545 supplied, the NTR fields can be omitted and reflected by the LCAF 546 length field or an AFI of 0 can be used to indicate zero NTRs 547 encoded. 549 4.7. PETR Admission Control Functionality 551 When a public PETR device wants to verify who is encapsulating to it, 552 it can check for a specific nonce value in the LISP encapsulated 553 packet. To convey the nonce to admitted ITRs or PITRs, this LCAF 554 format is used in a Map-Register or Map-Reply locator-record. 556 Nonce Locator Canonical Address Format: 558 0 1 2 3 559 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 560 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 561 | AFI = 16387 | Rsvd1 | Flags | 562 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 563 | Type = 8 | Rsvd2 | 4 + n | 564 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 565 | Reserved | Nonce | 566 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 567 | AFI = x | Address ... | 568 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 570 Length value n: length in bytes of the AFI address that follows the 571 Nonce field including the AFI field itself. 573 Reserved: must be set to zero and ignore on receipt. 575 Nonce: this is a nonce value returned by an ETR in a Map-Reply 576 locator-record to be used by an ITR or PITR when encapsulating to 577 the locator address encoded in the AFI field of this LCAF type. 579 AFI = x: x can be any AFI value from [AFI]. 581 4.8. Multicast Group Membership Information 583 Multicast group information can be published in the mapping database 584 so a lookup on an EID based group address can return a replication 585 list of group addresses or a unicast addresses for single replication 586 or multiple head-end replications. The intent of this type of 587 unicast replication is to deliver packets to multiple ETRs at 588 receiver LISP multicast sites. The locator-set encoding for this EID 589 record type can be a list of ETRs when they each register with "Merge 590 Semantics". The encoding can be a typical AFI encoded locator 591 address. When an RTR list is being registered (with multiple levels 592 according to [LISP-RE]), the Replication List Entry LCAF type is used 593 for locator encoding. 595 This LCAF encoding can be used to send broadcast packets to all 596 members of a subnet when each EIDs are away from their home subnet 597 location. 599 Multicast Info Canonical Address Format: 601 0 1 2 3 602 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 603 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 604 | AFI = 16387 | Rsvd1 | Flags | 605 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 606 | Type = 9 | Rsvd2 |R|L|J| 8 + n | 607 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 608 | Instance-ID | 609 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 610 | Reserved | Source MaskLen| Group MaskLen | 611 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 612 | AFI = x | Source/Subnet Address ... | 613 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 614 | AFI = x | Group Address ... | 615 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 617 Length value n: length in bytes of fields that follow. 619 Reserved: must be set to zero and ignore on receipt. 621 R-bit: this is the RP-bit that represents PIM (S,G,RP-bit) multicast 622 state. This bit can be set for Joins (when the J-bit is set) or 623 for Leaves (when the L-bit is set). See [LISP-MRSIG] for more 624 usage details. 626 L-bit: this is the Leave-Request bit and is used when this LCAF type 627 is present in the destination EID-prefix field of a Map-Request. 628 See [LISP-MRSIG] for details. 630 J-bit: this is the Join-Request bit and is used when this LCAF type 631 is present in the destination EID-prefix field of a Map-Request. 632 See [LISP-MRSIG] for details. The J-bit MUST not be set when the 633 L-bit is also set in the same LCAF block. A receiver should not 634 take any specific Join or Leave action when both bits are set. 636 Instance ID: the low-order 24-bits that can go into a LISP data 637 header when the I-bit is set. See [RFC6830] for details. The use 638 of the Instance-ID in this LCAF type is to associate a multicast 639 forwarding entry for a given VPN. The instance-ID describes the 640 VPN and is registered to the mapping database system as a 3-tuple 641 of (Instance-ID, S-prefix, G-prefix). 643 Source MaskLen: the mask length of the source prefix that follows. 645 Group MaskLen: the mask length of the group prefix that follows. 647 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 648 its own encoding of a multicast address, this field must be either 649 a group address or a broadcast address. 651 4.9. Traffic Engineering using Re-encapsulating Tunnels 653 For a given EID lookup into the mapping database, this LCAF format 654 can be returned to provide a list of locators in an explicit re- 655 encapsulation path. See [LISP-TE] for details. 657 Explicit Locator Path (ELP) Canonical Address Format: 659 0 1 2 3 660 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 661 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 662 | AFI = 16387 | Rsvd1 | Flags | 663 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 664 | Type = 10 | Rsvd2 | n | 665 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 666 | Rsvd3 |L|P|S| AFI = x | 667 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 668 | Reencap Hop 1 ... | 669 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 670 | Rsvd3 |L|P|S| AFI = x | 671 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 672 | Reencap Hop k ... | 673 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 675 Length value n: length in bytes of fields that follow. 677 Lookup bit (L): this is the Lookup bit used to indicate to the user 678 of the ELP to not use this address for encapsulation but to look 679 it up in the mapping database system to obtain an encapsulating 680 RLOC address. 682 RLOC-Probe bit (P): this is the RLOC-probe bit which means the 683 Reencap Hop allows RLOC-probe messages to be sent to it. When the 684 R-bit is set to 0, RLOC-probes must not be sent. When a Reencap 685 Hop is an anycast address then multiple physical Reencap Hops are 686 using the same RLOC address. In this case, RLOC-probes are not 687 needed because when the closest RLOC address is not reachable 688 another RLOC address can reachable. 690 Strict bit (S): this the strict bit which means the associated 691 Rencap Hop is required to be used. If this bit is 0, the 692 reencapsulator can skip this Reencap Hop and go to the next one in 693 the list. 695 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 696 its own encoding of a multicast address, this field must be either 697 a group address or a broadcast address. 699 4.10. Storing Security Data in the Mapping Database 701 When a locator in a locator-set has a security key associated with 702 it, this LCAF format will be used to encode key material. See 703 [LISP-DDT] for details. 705 Security Key Canonical Address Format: 707 0 1 2 3 708 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 709 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 710 | AFI = 16387 | Rsvd1 | Flags | 711 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 712 | Type = 11 | Rsvd2 | 6 + n | 713 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 714 | Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R| 715 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 716 | Key Length | Key Material ... | 717 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 718 | ... Key Material | 719 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 720 | AFI = x | Locator Address ... | 721 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 723 Length value n: length in bytes of fields that start with the Key 724 Material field. 726 Key Count: the Key Count field declares the number of Key sections 727 included in this LCAF. 729 Key Algorithm: the Algorithm field identifies the key's 730 cryptographic algorithm and specifies the format of the Public Key 731 field. 733 R bit: this is the revoke bit and, if set, it specifies that this 734 Key is being Revoked. 736 Key Length: this field determines the length in bytes of the Key 737 Material field. 739 Key Material: the Key Material field stores the key material. The 740 format of the key material stored depends on the Key Algorithm 741 field. 743 AFI = x: x can be any AFI value from [AFI].This is the locator 744 address that owns the encoded security key. 746 4.11. Source/Destination 2-Tuple Lookups 748 When both a source and destination address of a flow needs 749 consideration for different locator-sets, this 2-tuple key is used in 750 EID fields in LISP control messages. When the Source/Dest key is 751 registered to the mapping database, it can be encoded as a source- 752 prefix and destination-prefix. When the Source/Dest is used as a key 753 for a mapping database lookup the source and destination come from a 754 data packet. 756 Source/Dest Key Canonical Address Format: 758 0 1 2 3 759 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 760 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 761 | AFI = 16387 | Rsvd1 | Flags | 762 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 763 | Type = 12 | Rsvd2 | 4 + n | 764 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 765 | Reserved | Source-ML | Dest-ML | 766 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 767 | AFI = x | Source-Prefix ... | 768 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 769 | AFI = x | Destination-Prefix ... | 770 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 772 Length value n: length in bytes of fields that follow. 774 Reserved: must be set to zero and ignore on receipt. 776 Source-ML: the mask length of the source prefix that follows. 778 Dest-ML: the mask length of the destination prefix that follows. 780 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 781 its own encoding of a multicast address, this field must be either 782 a group address or a broadcast address. 784 Refer to [LISP-TE] for usage details. 786 4.12. Replication List Entries for Multicast Forwarding 788 The Replication List Entry LCAF type is an encoding for a locator 789 being used for unicast replication according to the specification in 790 [LISP-RE]. This locator encoding is pointed to by a Multicast Info 791 LCAF Type and is registered by Re-encapsulating Tunnel Routers (RTRs) 792 that are participating in an overlay distribution tree. Each RTR 793 will register its locator address and its configured level in the 794 distribution tree. 796 Replication List Entry Address Format: 798 0 1 2 3 799 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 800 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 801 | AFI = 16387 | Rsvd1 | Flags | 802 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 803 | Type = 13 | Rsvd2 | 4 + n | 804 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 805 | Rsvd3 | Rsvd4 | Level Value | 806 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 807 | AFI = x | RTR/ETR #1 ... | 808 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 809 | Rsvd3 | Rsvd4 | Level Value | 810 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 811 | AFI = x | RTR/ETR #n ... | 812 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 814 Length value n: length in bytes of fields that follow. 816 Rsvd{1,2,3,4}: must be set to zero and ignore on receipt. 818 Level Value: this value is associated with the level within the 819 overlay distribution tree hierarchy where the RTR resides. The 820 level numbers are ordered from lowest value being close to the ITR 821 (meaning that ITRs replicate to level-0 RTRs) and higher levels 822 are further downstream on the distribution tree closer to ETRs of 823 multicast receiver sites. 825 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 826 own encoding of either a unicast or multicast locator address. 827 All RTR/ETR entries for the same level should be combined together 828 by a Map-Server to avoid searching through the entire multi-level 829 list of locator entries in a Map-Reply message. 831 4.13. Data Model Encoding 833 This type allows a JSON data model to be encoded either as an EID or 834 RLOC. 836 JSON Data Model Type Address Format: 838 0 1 2 3 839 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 840 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 841 | AFI = 16387 | Rsvd1 | Flags | 842 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 843 | Type = 14 | Rsvd2 |B| 2 + n | 844 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 845 | JSON length | JSON binary/text encoding ... | 846 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 847 | AFI = x | Optional Address ... | 848 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 850 Length value n: length in bytes of fields that follow. 852 Rsvd{1,2}: must be set to zero and ignore on receipt. 854 B bit: indicates that the JSON field is binary encoded according to 855 [JSON-BINARY] when the bit is set to 1. Otherwise the encoding is 856 based on text encoding according to [RFC4627]. 858 JSON length: length in octets of the following 'JSON binary/text 859 encoding' field. 861 JSON binary/text encoding field: a variable length field that 862 contains either binary or text encodings. 864 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 865 own encoding of either a unicast or multicast locator address. 866 All RTR/ETR entries for the same level should be combined together 867 by a Map-Server to avoid searching through the entire multi-level 868 list of locator entries in a Map-Reply message. 870 4.14. Encoding Key/Value Address Pairs 872 The Key/Value pair is for example useful for attaching attributes to 873 other elements of LISP packets, such as EIDs or RLOCs. When 874 attaching attributes to EIDs or RLOCs, it's necessary to distinguish 875 between the element that should be used as EID or RLOC, and hence as 876 key for lookups, and additional attributes. This is especially the 877 case when the difference cannot be determined from the types of the 878 elements, such as when two IP addresses are being used. 880 Key/Value Pair Address Format: 882 0 1 2 3 883 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 884 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 885 | AFI = 16387 | Rsvd1 | Flags | 886 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 887 | Type = 15 | Rsvd2 | n | 888 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 889 | AFI = x | Address as Key ... | 890 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 891 | AFI = x | Address as Value ... | 892 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 894 Length value n: length in bytes of fields that follow. 896 Rsvd{1,2}: must be set to zero and ignore on receipt. 898 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 899 own encoding of either a unicast or multicast locator address. 900 All RTR/ETR entries for the same level should be combined together 901 by a Map-Server to avoid searching through the entire multi-level 902 list of locator entries in a Map-Reply message. 904 Address as Key: this AFI encoded address will be attached with the 905 attributes encoded in "Address as Value" which follows this field. 907 Address as Value: this AFI encoded address will be the attribute 908 address that goes along with "Address as Key" which precedes this 909 field. 911 4.15. Multiple Data-Planes 913 Overlays are becoming popular in many parts of the network which have 914 created an explosion of data-plane encapsulation headers. Since the 915 LISP mapping system can hold many types of address formats, it can 916 represent the encapsulation format supported by an RLOC as well. 917 When an encapsulator receives a Map-Reply with an Encapsulation 918 Format LCAF Type encoded in an RLOC-record, it can select an 919 encapsulation format, that it can support, from any of the 920 encapsulation protocols which have the bit set to 1 in this LCAF 921 type. 923 Encapsulation Format Address Format: 925 0 1 2 3 926 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 927 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 928 | AFI = 16387 | Rsvd1 | Flags | 929 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 930 | Type = 16 | Rsvd2 | 4 + n | 931 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 932 | Reserved-for-Future-Encapsulations |U|G|N|v|V|l|L| 933 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 934 | AFI = x | Address ... | 935 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 937 Rsvd1/Rsvd2: must be set to zero and ignored on receipt. 939 Length value n: length in bytes of the AFI address that follows the 940 next 32-bits including the AFI field itself. 942 Reserved-for-Future-Encapsulations: must be set to zero and ignored 943 on receipt. This field will get bits allocated to future 944 encapsulations, as they are created. 946 L: The RLOCs listed in the AFI encoded addresses in the next longword 947 can accept layer3 LISP encapsulation using destination UDP port 948 4341 [RFC6830]. 950 l: The RLOCs listed in the AFI encoded addresses in the next longword 951 can accept layer2 LISP encapsulation using destination UDP port 952 8472 [L2-LISP]. 954 V: The RLOCs listed in the AFI encoded addresses in the next longword 955 can accept VXLAN encapsulation using destination UDP port 4789 956 [RFC7348]. 958 v: The RLOCs listed in the AFI encoded addresses in the next longword 959 can accept VXLAN-GPE encapsulation using destination UDP port 4790 960 [GPE]. 962 N: The RLOCs listed in the AFI encoded addresses in the next longword 963 can accept NV-GRE encapsulation using IPv4/ IPv6 protocol number 964 47 [NVGRE]. 966 G: The RLOCs listed in the AFI encoded addresses in the next longword 967 can accept GENEVE encapsulation using destination UDP port 6081 968 [GENEVE]. 970 U: The RLOCs listed in the AFI encoded addresses in the next longword 971 can accept GUE encapsulation using destination UDP port TBD [GUE]. 973 4.16. Applications for AFI List Type 975 4.16.1. Binding IPv4 and IPv6 Addresses 977 When header translation between IPv4 and IPv6 is desirable a LISP 978 Canonical Address can use the AFI List Type to carry multiple AFIs in 979 one LCAF AFI. 981 Address Binding LISP Canonical Address Format: 983 0 1 2 3 984 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 985 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 986 | AFI = 16387 | Rsvd1 | Flags | 987 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 988 | Type = 1 | Rsvd2 | 2 + 4 + 2 + 16 | 989 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 990 | AFI = 1 | IPv4 Address ... | 991 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 992 | ... IPv4 Address | AFI = 2 | 993 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 994 | IPv6 Address ... | 995 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 996 | ... IPv6 Address ... | 997 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 998 | ... IPv6 Address ... | 999 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1000 | ... IPv6 Address | 1001 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1003 Length: length in bytes is fixed at 24 when IPv4 and IPv6 AFI 1004 encoded addresses are used. 1006 This type of address format can be included in a Map-Request when the 1007 address is being used as an EID, but the Mapping Database System 1008 lookup destination can use only the IPv4 address. This is so a 1009 Mapping Database Service Transport System, such as LISP-ALT 1010 [RFC6836], can use the Map-Request destination address to route the 1011 control message to the desired LISP site. 1013 4.16.2. Layer-2 VPNs 1015 When MAC addresses are stored in the LISP Mapping Database System, 1016 the AFI List Type can be used to carry AFI 6. 1018 MAC Address LISP Canonical Address Format: 1020 0 1 2 3 1021 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1022 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1023 | AFI = 16387 | Rsvd1 | Flags | 1024 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1025 | Type = 1 | Rsvd2 | 2 + 6 | 1026 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1027 | AFI = 6 | Layer-2 MAC Address ... | 1028 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1029 | ... Layer-2 MAC Address | 1030 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1032 Length: length in bytes is fixed at 8 when MAC address AFI encoded 1033 addresses are used. 1035 This address format can be used to connect layer-2 domains together 1036 using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. 1037 In this use-case, a MAC address is being used as an EID, and the 1038 locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or 1039 even another MAC address being used as an RLOC. 1041 4.16.3. ASCII Names in the Mapping Database 1043 If DNS names or URIs are stored in the LISP Mapping Database System, 1044 the AFI List Type can be used to carry an ASCII string where it is 1045 delimited by length 'n' of the LCAF Length encoding. 1047 ASCII LISP Canonical Address Format: 1049 0 1 2 3 1050 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1051 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1052 | AFI = 16387 | Rsvd1 | Flags | 1053 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1054 | Type = 1 | Rsvd2 | 2 + n | 1055 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1056 | AFI = 17 | DNS Name or URI ... | 1057 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1059 Length value n: length in bytes AFI=17 field and the null-terminated 1060 ASCII string (the last byte of 0 is included). 1062 4.16.4. Using Recursive LISP Canonical Address Encodings 1064 When any combination of above is desirable, the AFI List Type value 1065 can be used to carry within the LCAF AFI another LCAF AFI. 1067 Recursive LISP Canonical Address Format: 1069 0 1 2 3 1070 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1071 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1072 | AFI = 16387 | Rsvd1 | Flags | 1073 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1074 | Type = 1 | Rsvd2 | 8 + 18 | 1075 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1076 | AFI = 16387 | Rsvd1 | Flags | 1077 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1078 | Type = 4 | Rsvd2 | 12 + 6 | 1079 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1080 | IP TOS, IPv6 QQS or Flow Label | Protocol | 1081 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1082 | Local Port (lower-range) | Local Port (upper-range) | 1083 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1084 | Remote Port (lower-range) | Remote Port (upper-range) | 1085 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1086 | AFI = 1 | IPv4 Address ... | 1087 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1088 | ... IPv4 Address | 1089 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1091 Length: length in bytes is fixed at 18 when an AFI=1 IPv4 address is 1092 included. 1094 This format could be used by a Mapping Database Transport System, 1095 such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is used as 1096 an EID and placed in the Map-Request destination address by the 1097 sending LISP system. The ALT system can deliver the Map-Request to 1098 the LISP destination site independent of the Application Data Type 1099 AFI payload values. When this AFI is processed by the destination 1100 LISP site, it can return different locator-sets based on the type of 1101 application or level of service that is being requested. 1103 4.16.5. Compatibility Mode Use Case 1105 A LISP system should use the AFI List Type format when sending to 1106 LISP systems that do not support a particular LCAF Type used to 1107 encode locators. This allows the receiving system to be able to 1108 parse a locator address for encapsulation purposes. The list of AFIs 1109 in an AFI List LCAF Type has no semantic ordering and a receiver 1110 should parse each AFI element no matter what the ordering. 1112 Compatibility Mode Address Format: 1114 0 1 2 3 1115 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1116 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1117 | AFI = 16387 | Rsvd1 | Flags | 1118 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1119 | Type = 1 | Rsvd2 | 8 + 14 + 6 | 1120 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1121 | AFI = 16387 | Rsvd1 | Flags | 1122 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1123 | Type = 5 | Rsvd2 | 12 + 2 | 1124 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1125 |N| Latitude Degrees | Minutes | Seconds | 1126 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1127 |E| Longitude Degrees | Minutes | Seconds | 1128 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1129 | Altitude | 1130 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1131 | AFI = 0 | AFI = 1 | 1132 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1133 | IPv4 Address | 1134 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1136 If a system does not recognized the Geo Coordinate LCAF Type that is 1137 accompanying a locator address, an encoder can include the Geo 1138 Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI 1139 in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in 1140 the list is encoded with a valid AFI value to identify the locator 1141 address. 1143 A LISP system is required to support the AFI List LCAF Type to use 1144 this procedure. It would skip over 10 bytes of the Geo Coordinate 1145 LCAF Type to get to the locator address encoding (an IPv4 locator 1146 address). A LISP system that does support the Geo Coordinate LCAF 1147 Type can support parsing the locator address within the Geo 1148 Coordinate LCAF encoding or in the locator encoding that follows in 1149 the AFI List LCAF. 1151 5. Security Considerations 1153 There are no security considerations for this specification. The 1154 security considerations are documented for the protocols that use 1155 LISP Canonical Addressing. Refer to the those relevant 1156 specifications. 1158 6. IANA Considerations 1160 This document defines a canonical address format encoding used in 1161 LISP control messages and in the encoding of lookup keys for the LISP 1162 Mapping Database System. Such address format is based on a fixed AFI 1163 (16387) and a LISP LCAF Type field. 1165 The LISP LCAF Type field is an 8-bit field specific to the LISP 1166 Canonical Address formatted encodings, for which IANA is to create 1167 and maintain a new registry (as outlined in [RFC5226]) entitled "LISP 1168 LCAF Type". Initial values for the LISP LCAF Type registry are given 1169 below. Future assignments are to be made through RFC Publication. 1170 Assignments consist of a LISP LCAF Type name and its associated 1171 value: 1173 +-------+------------------------------+------------+ 1174 | Value | LISP LCAF Type Name | Definition | 1175 +-------+------------------------------+------------+ 1176 | 0 | Null Body Type | Section 3 | 1177 | | | | 1178 | 1 | AFI List Type | Section 3 | 1179 | | | | 1180 | 2 | Instance ID Type | Section 3 | 1181 | | | | 1182 | 3 | AS Number Type | Section 3 | 1183 | | | | 1184 | 4 | Application Data Type | Section 3 | 1185 | | | | 1186 | 5 | Geo Coordinates Type | Section 3 | 1187 | | | | 1188 | 6 | Opaque Key Type | Section 3 | 1189 | | | | 1190 | 7 | NAT-Traversal Type | Section 3 | 1191 | | | | 1192 | 8 | Nonce Locator Type | Section 3 | 1193 | | | | 1194 | 9 | Multicast Info Type | Section 3 | 1195 | | | | 1196 | 10 | Explicit Locator Path Type | Section 3 | 1197 | | | | 1198 | 11 | Security Key Type | Section 3 | 1199 | | | | 1200 | 12 | Source/Dest Key Type | Section 3 | 1201 | | | | 1202 | 13 | Replication List Entry Type | Section 3 | 1203 | | | | 1204 | 14 | JSON Data Model Type | Section 3 | 1205 | | | | 1206 | 15 | Key/Value Address Pair Type | Section 3 | 1207 | | | | 1208 | 16 | Encapsulation Format Type | Section 3 | 1209 +-------+------------------------------+------------+ 1211 Table 1: LISP LCAF Type Initial Values 1213 7. References 1215 7.1. Normative References 1217 [RFC1700] Reynolds, J. and J. Postel, "Assigned Numbers", RFC 1700, 1218 October 1994. 1220 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and 1221 E. Lear, "Address Allocation for Private Internets", BCP 1222 5, RFC 1918, February 1996. 1224 [RFC4627] Crockford, D., "The application/json Media Type for 1225 JavaScript Object Notation (JSON)", RFC 4627, July 2006. 1227 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an 1228 IANA Considerations Section in RFCs", BCP 26, RFC 5226, 1229 May 2008. 1231 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The 1232 Locator/ID Separation Protocol (LISP)", RFC 6830, January 1233 2013. 1235 [RFC6836] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, 1236 "Locator/ID Separation Protocol Alternative Logical 1237 Topology (LISP+ALT)", RFC 6836, January 2013. 1239 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, 1240 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual 1241 eXtensible Local Area Network (VXLAN): A Framework for 1242 Overlaying Virtualized Layer 2 Networks over Layer 3 1243 Networks", RFC 7348, August 2014. 1245 7.2. Informative References 1247 [AFI] IANA, , "Address Family Identifier (AFIs)", ADDRESS FAMILY 1248 NUMBERS http://www.iana.org/numbers.html, Febuary 2007. 1250 [GENEVE] Gross, J., Sridhar, T., Garg, P., Wright, C., Ganga, I., 1251 Agarwal, P., Duda, K., Dutt, D., and J. Hudson, "Geneve: 1252 Generic Network Virtualization Encapsulation", draft- 1253 gross-geneve-02 (work in progress). 1255 [GPE] Quinn, P., Agarwal, P., Fernando, R., Kreeger, L., 1256 Kreeger, L., Lewis, D., Maino, F., Smith, M., Yadav, N., 1257 Yong, L., Xu, X., Elzur, U., and P. Garg, "Generic 1258 Protocol Extension for VXLAN", draft-quinn-vxlan-gpe- 1259 03.txt (work in progress). 1261 [GUE] Herbert, T. and L. Yong, "Generic UDP Encapsulation", 1262 draft-herbert-gue-02.txt (work in progress). 1264 [JSON-BINARY] 1265 "Universal Binary JSON Specification", URL 1266 http://ubjson.org. 1268 [L2-LISP] Smith, M., Dutt, D., Farinacci, D., and F. Maino, "Layer 2 1269 (L2) LISP Encapsulation Format", draft-smith-lisp- 1270 layer2-03.txt (work in progress). 1272 [LISP-DDT] 1273 Fuller, V., Lewis, D., and V. Ermagan, "LISP Delegated 1274 Database Tree", draft-ietf-lisp-ddt-01.txt (work in 1275 progress). 1277 [LISP-MRSIG] 1278 Farinacci, D. and M. Napierala, "LISP Control-Plane 1279 Multicast Signaling", draft-farinacci-lisp-mr-signaling- 1280 03.txt (work in progress). 1282 [LISP-NATT] 1283 Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, 1284 F., and C. White, "NAT traversal for LISP", draft-ermagan- 1285 lisp-nat-traversal-03.txt (work in progress). 1287 [LISP-RE] Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J., 1288 Maino, F., and D. Farinacci, "LISP Replication 1289 Engineering", draft-coras-lisp-re-03.txt (work in 1290 progress). 1292 [LISP-TE] Farinacci, D., Lahiri, P., and M. Kowal, "LISP Traffic 1293 Engineering Use-Cases", draft-farinacci-lisp-te-03.txt 1294 (work in progress). 1296 [NVGRE] Sridharan, M., Greenberg, A., Wang, Y., Garg, P., 1297 Venkataramiah, N., Duda, K., Ganga, I., Lin, G., Pearson, 1298 M., Thaler, P., and C. Tumuluri, "NVGRE: Network 1299 Virtualization using Generic Routing Encapsulation", 1300 draft-sridharan-virtualization-nvgre-06.txt (work in 1301 progress). 1303 [WGS-84] Geodesy and Geophysics Department, DoD., "World Geodetic 1304 System 1984", NIMA TR8350.2, January 2000, . 1307 Appendix A. Acknowledgments 1309 The authors would like to thank Vince Fuller, Gregg Schudel, Jesper 1310 Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for 1311 their technical and editorial commentary. 1313 The authors would like to thank Victor Moreno for discussions that 1314 lead to the definition of the Multicast Info LCAF type. 1316 The authors would like to thank Parantap Lahiri and Michael Kowal for 1317 discussions that lead to the definition of the Explicit Locator Path 1318 (ELP) LCAF type. 1320 The authors would like to thank Fabio Maino and Vina Ermagan for 1321 discussions that lead to the definition of the Security Key LCAF 1322 type. 1324 The authors would like to thank Albert Cabellos-Aparicio and Florin 1325 Coras for discussions that lead to the definition of the Replication 1326 List Entry LCAF type. 1328 Thanks goes to Michiel Blokzijl and Alberto Rodriguez-Natal for 1329 suggesting new LCAF types. 1331 Thanks also goes to Terry Manderson for assistance obtaining a LISP 1332 AFI value from IANA. 1334 Appendix B. Document Change Log 1336 B.1. Changes to draft-ietf-lisp-lcaf-09.txt 1338 o Submitted June 2015. 1340 o Fix IANA Considerations section to request a registry to allocate 1341 and track LCAF Type values. 1343 B.2. Changes to draft-ietf-lisp-lcaf-08.txt 1345 o Submitted April 2015. 1347 o Comment from Florin. The Application Data Type length field has a 1348 typo. The field should be labeled "12 + n" and not "8 + n". 1350 o Fix length fields in the sections titled "Using Recursive LISP 1351 Canonical Address Encodings", "Generic Database Mapping Lookups", 1352 and "Data Model Encoding". 1354 B.3. Changes to draft-ietf-lisp-lcaf-07.txt 1356 o Submitted December 2014. 1358 o Add a new LCAF Type called "Encapsulation Format" so decapsulating 1359 xTRs can inform encapsulating xTRs what data-plane encapsulations 1360 they support. 1362 B.4. Changes to draft-ietf-lisp-lcaf-06.txt 1364 o Submitted October 2014. 1366 o Make it clear how sorted RLOC records are done when LCAFs are used 1367 as the RLOC record. 1369 B.5. Changes to draft-ietf-lisp-lcaf-05.txt 1371 o Submitted May 2014. 1373 o Add a length field of the JSON payload that can be used for either 1374 binary or text encoding of JSON data. 1376 B.6. Changes to draft-ietf-lisp-lcaf-04.txt 1378 o Submitted January 2014. 1380 o Agreement among ELP implementors to have the AFI 16-bit field 1381 adjacent to the address. This will make the encoding consistent 1382 with all other LCAF type address encodings. 1384 B.7. Changes to draft-ietf-lisp-lcaf-03.txt 1386 o Submitted September 2013. 1388 o Updated references and author's affilations. 1390 o Added Instance-ID to the Multicast Info Type so there is relative 1391 ease in parsing (S,G) entries within a VPN. 1393 o Add port range encodings to the Application Data LCAF Type. 1395 o Add a new JSON LCAF Type. 1397 o Add Address Key/Value LCAF Type to allow attributes to be attached 1398 to an address. 1400 B.8. Changes to draft-ietf-lisp-lcaf-02.txt 1402 o Submitted March 2013. 1404 o Added new LCAF Type "Replication List Entry" to support LISP 1405 replication engineering use-cases. 1407 o Changed references to new LISP RFCs. 1409 B.9. Changes to draft-ietf-lisp-lcaf-01.txt 1411 o Submitted January 2013. 1413 o Change longitude range from 0-90 to 0-180 in section 4.4. 1415 o Added reference to WGS-84 in section 4.4. 1417 B.10. Changes to draft-ietf-lisp-lcaf-00.txt 1419 o Posted first working group draft August 2012. 1421 o This draft was renamed from draft-farinacci-lisp-lcaf-10.txt. 1423 Authors' Addresses 1425 Dino Farinacci 1426 lispers.net 1427 San Jose, CA 1428 USA 1430 Email: farinacci@gmail.com 1432 Dave Meyer 1433 Brocade 1434 San Jose, CA 1435 USA 1437 Email: dmm@1-4-5.net 1439 Job Snijders 1440 NTT 1441 Tupolevlaan 103a 1442 Schiphol-Rijk 1119 PA 1443 NL 1445 Email: job@ntt.net