idnits 2.17.1 draft-ietf-lisp-lcaf-10.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** The document seems to lack a both a reference to RFC 2119 and the recommended RFC 2119 boilerplate, even if it appears to use RFC 2119 keywords. RFC 2119 keyword, line 204: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 246: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 634: '... See [LISP-MRSIG] for details. The J-bit MUST not be set when the...' Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Using lowercase 'not' together with uppercase 'MUST', 'SHALL', 'SHOULD', or 'RECOMMENDED' is not an accepted usage according to RFC 2119. Please use uppercase 'NOT' together with RFC 2119 keywords (if that is what you mean). Found 'MUST not' in this paragraph: J-bit: this is the Join-Request bit and is used when this LCAF type is present in the destination EID-prefix field of a Map-Request. See [LISP-MRSIG] for details. The J-bit MUST not be set when the L-bit is also set in the same LCAF block. A receiver should not take any specific Join or Leave action when both bits are set. -- The document date (June 12, 2015) is 3241 days in the past. Is this intentional? Checking references for intended status: Experimental ---------------------------------------------------------------------------- ** Obsolete normative reference: RFC 1700 (Obsoleted by RFC 3232) ** Obsolete normative reference: RFC 4627 (Obsoleted by RFC 7158, RFC 7159) ** Obsolete normative reference: RFC 5226 (Obsoleted by RFC 8126) ** Obsolete normative reference: RFC 6830 (Obsoleted by RFC 9300, RFC 9301) == Outdated reference: A later version (-04) exists of draft-quinn-vxlan-gpe-03 == Outdated reference: A later version (-03) exists of draft-herbert-gue-02 == Outdated reference: A later version (-09) exists of draft-ietf-lisp-ddt-01 == Outdated reference: A later version (-06) exists of draft-farinacci-lisp-mr-signaling-03 == Outdated reference: A later version (-19) exists of draft-ermagan-lisp-nat-traversal-03 == Outdated reference: A later version (-08) exists of draft-coras-lisp-re-03 == Outdated reference: A later version (-12) exists of draft-farinacci-lisp-te-03 == Outdated reference: A later version (-08) exists of draft-sridharan-virtualization-nvgre-06 Summary: 5 errors (**), 0 flaws (~~), 10 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group D. Farinacci 3 Internet-Draft lispers.net 4 Intended status: Experimental D. Meyer 5 Expires: December 14, 2015 Brocade 6 J. Snijders 7 NTT Communications 8 June 12, 2015 10 LISP Canonical Address Format (LCAF) 11 draft-ietf-lisp-lcaf-10 13 Abstract 15 This draft defines a canonical address format encoding used in LISP 16 control messages and in the encoding of lookup keys for the LISP 17 Mapping Database System. 19 Status of This Memo 21 This Internet-Draft is submitted in full conformance with the 22 provisions of BCP 78 and BCP 79. 24 Internet-Drafts are working documents of the Internet Engineering 25 Task Force (IETF). Note that other groups may also distribute 26 working documents as Internet-Drafts. The list of current Internet- 27 Drafts is at http://datatracker.ietf.org/drafts/current/. 29 Internet-Drafts are draft documents valid for a maximum of six months 30 and may be updated, replaced, or obsoleted by other documents at any 31 time. It is inappropriate to use Internet-Drafts as reference 32 material or to cite them other than as "work in progress." 34 This Internet-Draft will expire on December 14, 2015. 36 Copyright Notice 38 Copyright (c) 2015 IETF Trust and the persons identified as the 39 document authors. All rights reserved. 41 This document is subject to BCP 78 and the IETF Trust's Legal 42 Provisions Relating to IETF Documents 43 (http://trustee.ietf.org/license-info) in effect on the date of 44 publication of this document. Please review these documents 45 carefully, as they describe your rights and restrictions with respect 46 to this document. Code Components extracted from this document must 47 include Simplified BSD License text as described in Section 4.e of 48 the Trust Legal Provisions and are provided without warranty as 49 described in the Simplified BSD License. 51 Table of Contents 53 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 54 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 55 3. LISP Canonical Address Format Encodings . . . . . . . . . . . 4 56 4. LISP Canonical Address Applications . . . . . . . . . . . . . 7 57 4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 7 58 4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 8 59 4.3. Convey Application Specific Data . . . . . . . . . . . . 9 60 4.4. Assigning Geo Coordinates to Locator Addresses . . . . . 10 61 4.5. Generic Database Mapping Lookups . . . . . . . . . . . . 12 62 4.6. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 13 63 4.7. PETR Admission Control Functionality . . . . . . . . . . 15 64 4.8. Multicast Group Membership Information . . . . . . . . . 16 65 4.9. Traffic Engineering using Re-encapsulating Tunnels . . . 18 66 4.10. Storing Security Data in the Mapping Database . . . . . . 19 67 4.11. Source/Destination 2-Tuple Lookups . . . . . . . . . . . 20 68 4.12. Replication List Entries for Multicast Forwarding . . . . 21 69 4.13. Data Model Encoding . . . . . . . . . . . . . . . . . . . 22 70 4.14. Encoding Key/Value Address Pairs . . . . . . . . . . . . 23 71 4.15. Multiple Data-Planes . . . . . . . . . . . . . . . . . . 24 72 4.16. Applications for AFI List Type . . . . . . . . . . . . . 26 73 4.16.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . 26 74 4.16.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 27 75 4.16.3. ASCII Names in the Mapping Database . . . . . . . . 28 76 4.16.4. Using Recursive LISP Canonical Address Encodings . . 29 77 4.16.5. Compatibility Mode Use Case . . . . . . . . . . . . 30 78 5. Security Considerations . . . . . . . . . . . . . . . . . . . 31 79 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 31 80 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 32 81 7.1. Normative References . . . . . . . . . . . . . . . . . . 32 82 7.2. Informative References . . . . . . . . . . . . . . . . . 33 83 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . 34 84 Appendix B. Document Change Log . . . . . . . . . . . . . . . . 35 85 B.1. Changes to draft-ietf-lisp-lcaf-10.txt . . . . . . . . . 35 86 B.2. Changes to draft-ietf-lisp-lcaf-09.txt . . . . . . . . . 35 87 B.3. Changes to draft-ietf-lisp-lcaf-08.txt . . . . . . . . . 35 88 B.4. Changes to draft-ietf-lisp-lcaf-07.txt . . . . . . . . . 36 89 B.5. Changes to draft-ietf-lisp-lcaf-06.txt . . . . . . . . . 36 90 B.6. Changes to draft-ietf-lisp-lcaf-05.txt . . . . . . . . . 36 91 B.7. Changes to draft-ietf-lisp-lcaf-04.txt . . . . . . . . . 36 92 B.8. Changes to draft-ietf-lisp-lcaf-03.txt . . . . . . . . . 36 93 B.9. Changes to draft-ietf-lisp-lcaf-02.txt . . . . . . . . . 37 94 B.10. Changes to draft-ietf-lisp-lcaf-01.txt . . . . . . . . . 37 95 B.11. Changes to draft-ietf-lisp-lcaf-00.txt . . . . . . . . . 37 97 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 37 99 1. Introduction 101 The LISP architecture and protocols [RFC6830] introduces two new 102 numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators 103 (RLOCs) which are intended to replace most use of IP addresses on the 104 Internet. To provide flexibility for current and future 105 applications, these values can be encoded in LISP control messages 106 using a general syntax that includes Address Family Identifier (AFI), 107 length, and value fields. 109 Currently defined AFIs include IPv4 and IPv6 addresses, which are 110 formatted according to code-points assigned in [AFI] as follows: 112 IPv4 Encoded Address: 114 0 1 2 3 115 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 116 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 117 | AFI = 1 | IPv4 Address ... | 118 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 119 | ... IPv4 Address | 120 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 122 IPv6 Encoded Address: 124 0 1 2 3 125 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 126 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 127 | AFI = 2 | IPv6 Address ... | 128 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 129 | ... IPv6 Address ... | 130 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 131 | ... IPv6 Address ... | 132 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 133 | ... IPv6 Address ... | 134 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 135 | ... IPv6 Address | 136 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 138 This document describes the currently-defined AFIs the LISP protocol 139 uses along with their encodings and introduces the LISP Canonical 140 Address Format (LCAF) that can be used to define the LISP-specific 141 encodings for arbitrary AFI values. 143 2. Definition of Terms 145 Address Family Identifier (AFI): a term used to describe an address 146 encoding in a packet. An address family currently defined for 147 IPv4 or IPv6 addresses. See [AFI] and [RFC1700] for details. The 148 reserved AFI value of 0 is used in this specification to indicate 149 an unspecified encoded address where the the length of the address 150 is 0 bytes following the 16-bit AFI value of 0. 152 Unspecified Address Format: 154 0 1 2 3 155 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 156 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 157 | AFI = 0 | | 158 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 160 Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value 161 used in the source and destination address fields of the first 162 (most inner) LISP header of a packet. The host obtains a 163 destination EID the same way it obtains a destination address 164 today, for example through a DNS lookup or SIP exchange. The 165 source EID is obtained via existing mechanisms used to set a 166 host's "local" IP address. An EID is allocated to a host from an 167 EID-prefix block associated with the site where the host is 168 located. An EID can be used by a host to refer to other hosts. 170 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress 171 tunnel router (ETR). It is the output of a EID-to-RLOC mapping 172 lookup. An EID maps to one or more RLOCs. Typically, RLOCs are 173 numbered from topologically aggregatable blocks that are assigned 174 to a site at each point to which it attaches to the global 175 Internet; where the topology is defined by the connectivity of 176 provider networks, RLOCs can be thought of as PA addresses. 177 Multiple RLOCs can be assigned to the same ETR device or to 178 multiple ETR devices at a site. 180 3. LISP Canonical Address Format Encodings 182 IANA has assigned AFI value 16387 (0x4003) to the LISP architecture 183 and protocols. This specification defines the encoding format of the 184 LISP Canonical Address (LCA). 186 The Address Family AFI definitions from [AFI] only allocate code- 187 points for the AFI value itself. The length of the address or entity 188 that follows is not defined and is implied based on conventional 189 experience. Where the LISP protocol uses LISP Canonical Addresses 190 specifically, the address length definitions will be in this 191 specification and take precedent over any other specification. 193 The first 6 bytes of an LISP Canonical Address are followed by a 194 variable length of fields: 196 0 1 2 3 197 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 198 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 199 | AFI = 16387 | Rsvd1 | Flags | 200 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 201 | Type | Rsvd2 | Length | 202 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 204 Rsvd1: this 8-bit field is reserved for future use and MUST be 205 transmitted as 0 and ignored on receipt. 207 Flags: this 8-bit field is for future definition and use. For now, 208 set to zero on transmission and ignored on receipt. 210 Type: this 8-bit field is specific to the LISP Canonical Address 211 formatted encodings, values are: 213 Type 0: Null Body Type 215 Type 1: AFI List Type 217 Type 2: Instance ID Type 219 Type 3: AS Number Type 221 Type 4: Application Data Type 223 Type 5: Geo Coordinates Type 225 Type 6: Opaque Key Type 227 Type 7: NAT-Traversal Type 229 Type 8: Nonce Locator Type 231 Type 9: Multicast Info Type 233 Type 10: Explicit Locator Path Type 235 Type 11: Security Key Type 237 Type 12: Source/Dest Key Type 238 Type 13: Replication List Entry Type 240 Type 14: JSON Data Model Type 242 Type 15: Key/Value Address Pair Type 244 Type 16: Encapsulation Format Type 246 Rsvd2: this 8-bit field is reserved for future use and MUST be 247 transmitted as 0 and ignored on receipt. 249 Length: this 16-bit field is in units of bytes and covers all of the 250 LISP Canonical Address payload, starting and including the byte 251 after the Length field. So any LCAF encoded address will have a 252 minimum length of 8 bytes when the Length field is 0. The 8 bytes 253 include the AFI, Flags, Type, Reserved, and Length fields. When 254 the AFI is not next to encoded address in a control message, then 255 the encoded address will have a minimum length of 6 bytes when the 256 Length field is 0. The 6 bytes include the Flags, Type, Reserved, 257 and Length fields. 259 [RFC6830] states RLOC records are sorted when encoded in control 260 messages so the locator-set has consistent order across all xTRs for 261 a given EID. The sort order is based on sort-key {afi, RLOC- 262 address}. When an RLOC is LCAF encoded, the sort-key is {afi, LCAF- 263 Type, payload}. Therefore, when a locator-set has a mix of AFI 264 records and LCAF records, all LCAF records will appear after all the 265 AFI records. 267 4. LISP Canonical Address Applications 269 4.1. Segmentation using LISP 271 When multiple organizations inside of a LISP site are using private 272 addresses [RFC1918] as EID-prefixes, their address spaces must remain 273 segregated due to possible address duplication. An Instance ID in 274 the address encoding can aid in making the entire AFI based address 275 unique. 277 Another use for the Instance ID LISP Canonical Address Format is when 278 creating multiple segmented VPNs inside of a LISP site where keeping 279 EID-prefix based subnets is desirable. 281 Instance ID LISP Canonical Address Format: 283 0 1 2 3 284 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 285 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 286 | AFI = 16387 | Rsvd1 | Flags | 287 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 288 | Type = 2 | IID mask-len | 4 + n | 289 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 290 | Instance ID | 291 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 292 | AFI = x | Address ... | 293 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 295 IID mask-len: if the AFI is set to 0, then this format is not 296 encoding an extended EID-prefix but rather an instance-ID range 297 where the 'IID mask-len' indicates the number of high-order bits 298 used in the Instance ID field for the range. 300 Length value n: length in bytes of the AFI address that follows the 301 Instance ID field including the AFI field itself. 303 Instance ID: the low-order 24-bits that can go into a LISP data 304 header when the I-bit is set. See [RFC6830] for details. 306 AFI = x: x can be any AFI value from [AFI]. 308 This LISP Canonical Address Type can be used to encode either EID or 309 RLOC addresses. 311 4.2. Carrying AS Numbers in the Mapping Database 313 When an AS number is stored in the LISP Mapping Database System for 314 either policy or documentation reasons, it can be encoded in a LISP 315 Canonical Address. 317 AS Number LISP Canonical Address Format: 319 0 1 2 3 320 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 321 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 322 | AFI = 16387 | Rsvd1 | Flags | 323 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 324 |n Type = 3 | Rsvd2 | 4 + n | 325 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 326 | AS Number | 327 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 328 | AFI = x | Address ... | 329 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 331 Length value n: length in bytes of the AFI address that follows the 332 AS Number field including the AFI field itself. 334 AS Number: the 32-bit AS number of the autonomous system that has 335 been assigned either the EID or RLOC that follows. 337 AFI = x: x can be any AFI value from [AFI]. 339 The AS Number Canonical Address Type can be used to encode either EID 340 or RLOC addresses. The former is used to describe the LISP-ALT AS 341 number the EID-prefix for the site is being carried for. The latter 342 is used to describe the AS that is carrying RLOC based prefixes in 343 the underlying routing system. 345 4.3. Convey Application Specific Data 347 When a locator-set needs to be conveyed based on the type of 348 application or the Per-Hop Behavior (PHB) of a packet, the 349 Application Data Type can be used. 351 Application Data LISP Canonical Address Format: 353 0 1 2 3 354 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 355 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 356 | AFI = 16387 | Rsvd1 | Flags | 357 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 358 | Type = 4 | Rsvd2 | 12 + n | 359 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 360 | IP TOS, IPv6 TC, or Flow Label | Protocol | 361 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 362 | Local Port (lower-range) | Local Port (upper-range) | 363 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 364 | Remote Port (lower-range) | Remote Port (upper-range) | 365 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 366 | AFI = x | Address ... | 367 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 369 Length value n: length in bytes of the AFI address that follows the 370 8-byte Application Data fields including the AFI field itself. 372 IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS 373 field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow 374 Label used in an IPv6 header. 376 Local Port/Remote Port Ranges: these fields are from the TCP, UDP, 377 or SCTP transport header. A range can be specified by using a 378 lower value and an upper value. When a single port is encoded, 379 the lower and upper value fields are the same. 381 AFI = x: x can be any AFI value from [AFI]. 383 The Application Data Canonical Address Type is used for an EID 384 encoding when an ITR wants a locator-set for a specific application. 385 When used for an RLOC encoding, the ETR is supplying a locator-set 386 for each specific application is has been configured to advertise. 388 4.4. Assigning Geo Coordinates to Locator Addresses 390 If an ETR desires to send a Map-Reply describing the Geo Coordinates 391 for each locator in its locator-set, it can use the Geo Coordinate 392 Type to convey physical location information. 394 Coordinates are specified using the WGS-84 (World Geodetic System) 395 reference coordinate system [WGS-84]. 397 Geo Coordinate LISP Canonical Address Format: 399 0 1 2 3 400 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 401 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 402 | AFI = 16387 | Rsvd1 | Flags | 403 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 404 | Type = 5 | Rsvd2 | 12 + n | 405 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 406 |N| Latitude Degrees | Minutes | Seconds | 407 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 408 |E| Longitude Degrees | Minutes | Seconds | 409 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 410 | Altitude | 411 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 412 | AFI = x | Address ... | 413 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 415 Length value n: length in bytes of the AFI address that follows the 416 8-byte Longitude and Latitude fields including the AFI field 417 itself. 419 N: When set to 1 means North, otherwise South. 421 Latitude Degrees: Valid values range from 0 to 90 degrees above or 422 below the equator (northern or southern hemisphere, respectively). 424 Latitude Minutes: Valid values range from 0 to 59. 426 Latitude Seconds: Valid values range from 0 to 59. 428 E: When set to 1 means East, otherwise West. 430 Longitude Degrees: Value values are from 0 to 180 degrees right or 431 left of the Prime Meridian. 433 Longitude Minutes: Valid values range from 0 to 59. 435 Longitude Seconds: Valid values range from 0 to 59. 437 Altitude: Height relative to sea level in meters. This is a signed 438 integer meaning that the altitude could be below sea level. A 439 value of 0x7fffffff indicates no Altitude value is encoded. 441 AFI = x: x can be any AFI value from [AFI]. 443 The Geo Coordinates Canonical Address Type can be used to encode 444 either EID or RLOC addresses. When used for EID encodings, you can 445 determine the physical location of an EID along with the topological 446 location by observing the locator-set. 448 4.5. Generic Database Mapping Lookups 450 When the LISP Mapping Database system holds information accessed by a 451 generic formatted key (where the key is not the usual IPv4 or IPv6 452 address), an opaque key may be desirable. 454 Opaque Key LISP Canonical Address Format: 456 0 1 2 3 457 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 458 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 459 | AFI = 16387 | Rsvd1 | Flags | 460 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 461 | Type = 6 | Rsvd2 | 3 + n | 462 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 463 | Key Field Num | Key Wildcard Fields | Key . . . | 464 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 465 | . . . Key | 466 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 468 Length value n: length in bytes of the type's payload. The value n 469 is the number of bytes that follow this Length field. 471 Key Field Num: the number of fields (minus 1) the key can be broken 472 up into. The width of the fields are fixed length. So for a key 473 size of 8 bytes, with a Key Field Num of 4 allows 4 fields of 2 474 bytes in length. Valid values for this field range from 0 to 15 475 supporting a maximum of 16 field separations. 477 Key Wildcard Fields: describes which fields in the key are not used 478 as part of the key lookup. This wildcard encoding is a bitfield. 479 Each bit is a don't-care bit for a corresponding field in the key. 480 Bit 0 (the low-order bit) in this bitfield corresponds the first 481 field, right-justified in the key, bit 1 the second field, and so 482 on. When a bit is set in the bitfield it is a don't-care bit and 483 should not be considered as part of the database lookup. When the 484 entire 16-bits is set to 0, then all bits of the key are used for 485 the database lookup. 487 Key: the variable length key used to do a LISP Database Mapping 488 lookup. The length of the key is the value n (shown above) minus 489 3. 491 4.6. NAT Traversal Scenarios 493 When a LISP system is conveying global address and mapped port 494 information when traversing through a NAT device, the NAT-Traversal 495 LCAF Type is used. See [LISP-NATT] for details. 497 NAT-Traversal Canonical Address Format: 499 0 1 2 3 500 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 501 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 502 | AFI = 16387 | Rsvd1 | Flags | 503 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 504 | Type = 7 | Rsvd2 | 4 + n | 505 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 506 | MS UDP Port Number | ETR UDP Port Number | 507 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 508 | AFI = x | Global ETR RLOC Address ... | 509 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 510 | AFI = x | MS RLOC Address ... | 511 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 512 | AFI = x | Private ETR RLOC Address ... | 513 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 514 | AFI = x | RTR RLOC Address 1 ... | 515 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 516 | AFI = x | RTR RLOC Address k ... | 517 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 519 Length value n: length in bytes of the AFI addresses that follows 520 the UDP Port Number field including the AFI fields themselves. 522 MS UDP Port Number: this is the UDP port number of the Map-Server 523 and is set to 4342. 525 ETR UDP Port Number: this is the port number returned to a LISP 526 system which was copied from the source port from a packet that 527 has flowed through a NAT device. 529 AFI = x: x can be any AFI value from [AFI]. 531 Global ETR RLOC Address: this is an address known to be globally 532 unique built by NAT-traversal functionality in a LISP router. 534 MS RLOC Address: this is the address of the Map-Server used in the 535 destination RLOC of a packet that has flowed through a NAT device. 537 Private ETR RLOC Address: this is an address known to be a private 538 address inserted in this LCAF format by a LISP router that resides 539 on the private side of a NAT device. 541 RTR RLOC Address: this is an encapsulation address used by an ITR or 542 PITR which resides behind a NAT device. This address is known to 543 have state in a NAT device so packets can flow from it to the LISP 544 ETR behind the NAT. There can be one or more NTR addresses 545 supplied in these set of fields. The number of NTRs encoded is 546 determined by the LCAF length field. When there are no NTRs 547 supplied, the NTR fields can be omitted and reflected by the LCAF 548 length field or an AFI of 0 can be used to indicate zero NTRs 549 encoded. 551 4.7. PETR Admission Control Functionality 553 When a public PETR device wants to verify who is encapsulating to it, 554 it can check for a specific nonce value in the LISP encapsulated 555 packet. To convey the nonce to admitted ITRs or PITRs, this LCAF 556 format is used in a Map-Register or Map-Reply locator-record. 558 Nonce Locator Canonical Address Format: 560 0 1 2 3 561 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 562 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 563 | AFI = 16387 | Rsvd1 | Flags | 564 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 565 | Type = 8 | Rsvd2 | 4 + n | 566 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 567 | Reserved | Nonce | 568 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 569 | AFI = x | Address ... | 570 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 572 Length value n: length in bytes of the AFI address that follows the 573 Nonce field including the AFI field itself. 575 Reserved: must be set to zero and ignore on receipt. 577 Nonce: this is a nonce value returned by an ETR in a Map-Reply 578 locator-record to be used by an ITR or PITR when encapsulating to 579 the locator address encoded in the AFI field of this LCAF type. 581 AFI = x: x can be any AFI value from [AFI]. 583 4.8. Multicast Group Membership Information 585 Multicast group information can be published in the mapping database 586 so a lookup on an EID based group address can return a replication 587 list of group addresses or a unicast addresses for single replication 588 or multiple head-end replications. The intent of this type of 589 unicast replication is to deliver packets to multiple ETRs at 590 receiver LISP multicast sites. The locator-set encoding for this EID 591 record type can be a list of ETRs when they each register with "Merge 592 Semantics". The encoding can be a typical AFI encoded locator 593 address. When an RTR list is being registered (with multiple levels 594 according to [LISP-RE]), the Replication List Entry LCAF type is used 595 for locator encoding. 597 This LCAF encoding can be used to send broadcast packets to all 598 members of a subnet when each EIDs are away from their home subnet 599 location. 601 Multicast Info Canonical Address Format: 603 0 1 2 3 604 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 605 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 606 | AFI = 16387 | Rsvd1 | Flags | 607 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 608 | Type = 9 | Rsvd2 |R|L|J| 8 + n | 609 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 610 | Instance-ID | 611 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 612 | Reserved | Source MaskLen| Group MaskLen | 613 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 614 | AFI = x | Source/Subnet Address ... | 615 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 616 | AFI = x | Group Address ... | 617 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 619 Length value n: length in bytes of fields that follow. 621 Reserved: must be set to zero and ignore on receipt. 623 R-bit: this is the RP-bit that represents PIM (S,G,RP-bit) multicast 624 state. This bit can be set for Joins (when the J-bit is set) or 625 for Leaves (when the L-bit is set). See [LISP-MRSIG] for more 626 usage details. 628 L-bit: this is the Leave-Request bit and is used when this LCAF type 629 is present in the destination EID-prefix field of a Map-Request. 630 See [LISP-MRSIG] for details. 632 J-bit: this is the Join-Request bit and is used when this LCAF type 633 is present in the destination EID-prefix field of a Map-Request. 634 See [LISP-MRSIG] for details. The J-bit MUST not be set when the 635 L-bit is also set in the same LCAF block. A receiver should not 636 take any specific Join or Leave action when both bits are set. 638 Instance ID: the low-order 24-bits that can go into a LISP data 639 header when the I-bit is set. See [RFC6830] for details. The use 640 of the Instance-ID in this LCAF type is to associate a multicast 641 forwarding entry for a given VPN. The instance-ID describes the 642 VPN and is registered to the mapping database system as a 3-tuple 643 of (Instance-ID, S-prefix, G-prefix). 645 Source MaskLen: the mask length of the source prefix that follows. 647 Group MaskLen: the mask length of the group prefix that follows. 649 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 650 its own encoding of a multicast address, this field must be either 651 a group address or a broadcast address. 653 4.9. Traffic Engineering using Re-encapsulating Tunnels 655 For a given EID lookup into the mapping database, this LCAF format 656 can be returned to provide a list of locators in an explicit re- 657 encapsulation path. See [LISP-TE] for details. 659 Explicit Locator Path (ELP) Canonical Address Format: 661 0 1 2 3 662 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 663 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 664 | AFI = 16387 | Rsvd1 | Flags | 665 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 666 | Type = 10 | Rsvd2 | n | 667 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 668 | Rsvd3 |L|P|S| AFI = x | 669 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 670 | Reencap Hop 1 ... | 671 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 672 | Rsvd3 |L|P|S| AFI = x | 673 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 674 | Reencap Hop k ... | 675 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 677 Length value n: length in bytes of fields that follow. 679 Lookup bit (L): this is the Lookup bit used to indicate to the user 680 of the ELP to not use this address for encapsulation but to look 681 it up in the mapping database system to obtain an encapsulating 682 RLOC address. 684 RLOC-Probe bit (P): this is the RLOC-probe bit which means the 685 Reencap Hop allows RLOC-probe messages to be sent to it. When the 686 R-bit is set to 0, RLOC-probes must not be sent. When a Reencap 687 Hop is an anycast address then multiple physical Reencap Hops are 688 using the same RLOC address. In this case, RLOC-probes are not 689 needed because when the closest RLOC address is not reachable 690 another RLOC address can reachable. 692 Strict bit (S): this the strict bit which means the associated 693 Rencap Hop is required to be used. If this bit is 0, the 694 reencapsulator can skip this Reencap Hop and go to the next one in 695 the list. 697 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 698 its own encoding of a multicast address, this field must be either 699 a group address or a broadcast address. 701 4.10. Storing Security Data in the Mapping Database 703 When a locator in a locator-set has a security key associated with 704 it, this LCAF format will be used to encode key material. See 705 [LISP-DDT] for details. 707 Security Key Canonical Address Format: 709 0 1 2 3 710 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 711 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 712 | AFI = 16387 | Rsvd1 | Flags | 713 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 714 | Type = 11 | Rsvd2 | 6 + n | 715 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 716 | Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R| 717 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 718 | Key Length | Key Material ... | 719 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 720 | ... Key Material | 721 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 722 | AFI = x | Locator Address ... | 723 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 725 Length value n: length in bytes of fields that start with the Key 726 Material field. 728 Key Count: the Key Count field declares the number of Key sections 729 included in this LCAF. 731 Key Algorithm: the Algorithm field identifies the key's 732 cryptographic algorithm and specifies the format of the Public Key 733 field. 735 R bit: this is the revoke bit and, if set, it specifies that this 736 Key is being Revoked. 738 Key Length: this field determines the length in bytes of the Key 739 Material field. 741 Key Material: the Key Material field stores the key material. The 742 format of the key material stored depends on the Key Algorithm 743 field. 745 AFI = x: x can be any AFI value from [AFI].This is the locator 746 address that owns the encoded security key. 748 4.11. Source/Destination 2-Tuple Lookups 750 When both a source and destination address of a flow needs 751 consideration for different locator-sets, this 2-tuple key is used in 752 EID fields in LISP control messages. When the Source/Dest key is 753 registered to the mapping database, it can be encoded as a source- 754 prefix and destination-prefix. When the Source/Dest is used as a key 755 for a mapping database lookup the source and destination come from a 756 data packet. 758 Source/Dest Key Canonical Address Format: 760 0 1 2 3 761 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 762 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 763 | AFI = 16387 | Rsvd1 | Flags | 764 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 765 | Type = 12 | Rsvd2 | 4 + n | 766 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 767 | Reserved | Source-ML | Dest-ML | 768 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 769 | AFI = x | Source-Prefix ... | 770 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 771 | AFI = x | Destination-Prefix ... | 772 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 774 Length value n: length in bytes of fields that follow. 776 Reserved: must be set to zero and ignore on receipt. 778 Source-ML: the mask length of the source prefix that follows. 780 Dest-ML: the mask length of the destination prefix that follows. 782 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 783 its own encoding of a multicast address, this field must be either 784 a group address or a broadcast address. 786 Refer to [LISP-TE] for usage details. 788 4.12. Replication List Entries for Multicast Forwarding 790 The Replication List Entry LCAF type is an encoding for a locator 791 being used for unicast replication according to the specification in 792 [LISP-RE]. This locator encoding is pointed to by a Multicast Info 793 LCAF Type and is registered by Re-encapsulating Tunnel Routers (RTRs) 794 that are participating in an overlay distribution tree. Each RTR 795 will register its locator address and its configured level in the 796 distribution tree. 798 Replication List Entry Address Format: 800 0 1 2 3 801 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 802 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 803 | AFI = 16387 | Rsvd1 | Flags | 804 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 805 | Type = 13 | Rsvd2 | 4 + n | 806 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 807 | Rsvd3 | Rsvd4 | Level Value | 808 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 809 | AFI = x | RTR/ETR #1 ... | 810 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 811 | Rsvd3 | Rsvd4 | Level Value | 812 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 813 | AFI = x | RTR/ETR #n ... | 814 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 816 Length value n: length in bytes of fields that follow. 818 Rsvd{1,2,3,4}: must be set to zero and ignore on receipt. 820 Level Value: this value is associated with the level within the 821 overlay distribution tree hierarchy where the RTR resides. The 822 level numbers are ordered from lowest value being close to the ITR 823 (meaning that ITRs replicate to level-0 RTRs) and higher levels 824 are further downstream on the distribution tree closer to ETRs of 825 multicast receiver sites. 827 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 828 own encoding of either a unicast or multicast locator address. 829 All RTR/ETR entries for the same level should be combined together 830 by a Map-Server to avoid searching through the entire multi-level 831 list of locator entries in a Map-Reply message. 833 4.13. Data Model Encoding 835 This type allows a JSON data model to be encoded either as an EID or 836 RLOC. 838 JSON Data Model Type Address Format: 840 0 1 2 3 841 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 842 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 843 | AFI = 16387 | Rsvd1 | Flags | 844 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 845 | Type = 14 | Rsvd2 |B| 2 + n | 846 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 847 | JSON length | JSON binary/text encoding ... | 848 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 849 | AFI = x | Optional Address ... | 850 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 852 Length value n: length in bytes of fields that follow. 854 Rsvd{1,2}: must be set to zero and ignore on receipt. 856 B bit: indicates that the JSON field is binary encoded according to 857 [JSON-BINARY] when the bit is set to 1. Otherwise the encoding is 858 based on text encoding according to [RFC4627]. 860 JSON length: length in octets of the following 'JSON binary/text 861 encoding' field. 863 JSON binary/text encoding field: a variable length field that 864 contains either binary or text encodings. 866 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 867 own encoding of either a unicast or multicast locator address. 868 All RTR/ETR entries for the same level should be combined together 869 by a Map-Server to avoid searching through the entire multi-level 870 list of locator entries in a Map-Reply message. 872 4.14. Encoding Key/Value Address Pairs 874 The Key/Value pair is for example useful for attaching attributes to 875 other elements of LISP packets, such as EIDs or RLOCs. When 876 attaching attributes to EIDs or RLOCs, it's necessary to distinguish 877 between the element that should be used as EID or RLOC, and hence as 878 key for lookups, and additional attributes. This is especially the 879 case when the difference cannot be determined from the types of the 880 elements, such as when two IP addresses are being used. 882 Key/Value Pair Address Format: 884 0 1 2 3 885 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 886 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 887 | AFI = 16387 | Rsvd1 | Flags | 888 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 889 | Type = 15 | Rsvd2 | n | 890 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 891 | AFI = x | Address as Key ... | 892 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 893 | AFI = x | Address as Value ... | 894 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 896 Length value n: length in bytes of fields that follow. 898 Rsvd{1,2}: must be set to zero and ignore on receipt. 900 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 901 own encoding of either a unicast or multicast locator address. 902 All RTR/ETR entries for the same level should be combined together 903 by a Map-Server to avoid searching through the entire multi-level 904 list of locator entries in a Map-Reply message. 906 Address as Key: this AFI encoded address will be attached with the 907 attributes encoded in "Address as Value" which follows this field. 909 Address as Value: this AFI encoded address will be the attribute 910 address that goes along with "Address as Key" which precedes this 911 field. 913 4.15. Multiple Data-Planes 915 Overlays are becoming popular in many parts of the network which have 916 created an explosion of data-plane encapsulation headers. Since the 917 LISP mapping system can hold many types of address formats, it can 918 represent the encapsulation format supported by an RLOC as well. 919 When an encapsulator receives a Map-Reply with an Encapsulation 920 Format LCAF Type encoded in an RLOC-record, it can select an 921 encapsulation format, that it can support, from any of the 922 encapsulation protocols which have the bit set to 1 in this LCAF 923 type. 925 Encapsulation Format Address Format: 927 0 1 2 3 928 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 929 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 930 | AFI = 16387 | Rsvd1 | Flags | 931 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 932 | Type = 16 | Rsvd2 | 4 + n | 933 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 934 | Reserved-for-Future-Encapsulations |U|G|N|v|V|l|L| 935 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 936 | AFI = x | Address ... | 937 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 939 Rsvd1/Rsvd2: must be set to zero and ignored on receipt. 941 Length value n: length in bytes of the AFI address that follows the 942 next 32-bits including the AFI field itself. 944 Reserved-for-Future-Encapsulations: must be set to zero and ignored 945 on receipt. This field will get bits allocated to future 946 encapsulations, as they are created. 948 L: The RLOCs listed in the AFI encoded addresses in the next longword 949 can accept layer3 LISP encapsulation using destination UDP port 950 4341 [RFC6830]. 952 l: The RLOCs listed in the AFI encoded addresses in the next longword 953 can accept layer2 LISP encapsulation using destination UDP port 954 8472 [L2-LISP]. 956 V: The RLOCs listed in the AFI encoded addresses in the next longword 957 can accept VXLAN encapsulation using destination UDP port 4789 958 [RFC7348]. 960 v: The RLOCs listed in the AFI encoded addresses in the next longword 961 can accept VXLAN-GPE encapsulation using destination UDP port 4790 962 [GPE]. 964 N: The RLOCs listed in the AFI encoded addresses in the next longword 965 can accept NV-GRE encapsulation using IPv4/ IPv6 protocol number 966 47 [NVGRE]. 968 G: The RLOCs listed in the AFI encoded addresses in the next longword 969 can accept GENEVE encapsulation using destination UDP port 6081 970 [GENEVE]. 972 U: The RLOCs listed in the AFI encoded addresses in the next longword 973 can accept GUE encapsulation using destination UDP port TBD [GUE]. 975 4.16. Applications for AFI List Type 977 4.16.1. Binding IPv4 and IPv6 Addresses 979 When header translation between IPv4 and IPv6 is desirable a LISP 980 Canonical Address can use the AFI List Type to carry multiple AFIs in 981 one LCAF AFI. 983 Address Binding LISP Canonical Address Format: 985 0 1 2 3 986 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 987 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 988 | AFI = 16387 | Rsvd1 | Flags | 989 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 990 | Type = 1 | Rsvd2 | 2 + 4 + 2 + 16 | 991 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 992 | AFI = 1 | IPv4 Address ... | 993 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 994 | ... IPv4 Address | AFI = 2 | 995 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 996 | IPv6 Address ... | 997 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 998 | ... IPv6 Address ... | 999 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1000 | ... IPv6 Address ... | 1001 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1002 | ... IPv6 Address | 1003 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1005 Length: length in bytes is fixed at 24 when IPv4 and IPv6 AFI 1006 encoded addresses are used. 1008 This type of address format can be included in a Map-Request when the 1009 address is being used as an EID, but the Mapping Database System 1010 lookup destination can use only the IPv4 address. This is so a 1011 Mapping Database Service Transport System, such as LISP-ALT 1012 [RFC6836], can use the Map-Request destination address to route the 1013 control message to the desired LISP site. 1015 4.16.2. Layer-2 VPNs 1017 When MAC addresses are stored in the LISP Mapping Database System, 1018 the AFI List Type can be used to carry AFI 6. 1020 MAC Address LISP Canonical Address Format: 1022 0 1 2 3 1023 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1024 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1025 | AFI = 16387 | Rsvd1 | Flags | 1026 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1027 | Type = 1 | Rsvd2 | 2 + 6 | 1028 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1029 | AFI = 6 | Layer-2 MAC Address ... | 1030 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1031 | ... Layer-2 MAC Address | 1032 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1034 Length: length in bytes is fixed at 8 when MAC address AFI encoded 1035 addresses are used. 1037 This address format can be used to connect layer-2 domains together 1038 using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. 1039 In this use-case, a MAC address is being used as an EID, and the 1040 locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or 1041 even another MAC address being used as an RLOC. 1043 4.16.3. ASCII Names in the Mapping Database 1045 If DNS names or URIs are stored in the LISP Mapping Database System, 1046 the AFI List Type can be used to carry an ASCII string where it is 1047 delimited by length 'n' of the LCAF Length encoding. 1049 ASCII LISP Canonical Address Format: 1051 0 1 2 3 1052 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1053 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1054 | AFI = 16387 | Rsvd1 | Flags | 1055 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1056 | Type = 1 | Rsvd2 | 2 + n | 1057 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1058 | AFI = 17 | DNS Name or URI ... | 1059 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1061 Length value n: length in bytes AFI=17 field and the null-terminated 1062 ASCII string (the last byte of 0 is included). 1064 4.16.4. Using Recursive LISP Canonical Address Encodings 1066 When any combination of above is desirable, the AFI List Type value 1067 can be used to carry within the LCAF AFI another LCAF AFI. 1069 Recursive LISP Canonical Address Format: 1071 0 1 2 3 1072 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1073 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1074 | AFI = 16387 | Rsvd1 | Flags | 1075 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1076 | Type = 1 | Rsvd2 | 8 + 18 | 1077 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1078 | AFI = 16387 | Rsvd1 | Flags | 1079 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1080 | Type = 4 | Rsvd2 | 12 + 6 | 1081 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1082 | IP TOS, IPv6 QQS or Flow Label | Protocol | 1083 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1084 | Local Port (lower-range) | Local Port (upper-range) | 1085 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1086 | Remote Port (lower-range) | Remote Port (upper-range) | 1087 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1088 | AFI = 1 | IPv4 Address ... | 1089 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1090 | ... IPv4 Address | 1091 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1093 Length: length in bytes is fixed at 18 when an AFI=1 IPv4 address is 1094 included. 1096 This format could be used by a Mapping Database Transport System, 1097 such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is used as 1098 an EID and placed in the Map-Request destination address by the 1099 sending LISP system. The ALT system can deliver the Map-Request to 1100 the LISP destination site independent of the Application Data Type 1101 AFI payload values. When this AFI is processed by the destination 1102 LISP site, it can return different locator-sets based on the type of 1103 application or level of service that is being requested. 1105 4.16.5. Compatibility Mode Use Case 1107 A LISP system should use the AFI List Type format when sending to 1108 LISP systems that do not support a particular LCAF Type used to 1109 encode locators. This allows the receiving system to be able to 1110 parse a locator address for encapsulation purposes. The list of AFIs 1111 in an AFI List LCAF Type has no semantic ordering and a receiver 1112 should parse each AFI element no matter what the ordering. 1114 Compatibility Mode Address Format: 1116 0 1 2 3 1117 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1118 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1119 | AFI = 16387 | Rsvd1 | Flags | 1120 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1121 | Type = 1 | Rsvd2 | 8 + 14 + 6 | 1122 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1123 | AFI = 16387 | Rsvd1 | Flags | 1124 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1125 | Type = 5 | Rsvd2 | 12 + 2 | 1126 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1127 |N| Latitude Degrees | Minutes | Seconds | 1128 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1129 |E| Longitude Degrees | Minutes | Seconds | 1130 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1131 | Altitude | 1132 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1133 | AFI = 0 | AFI = 1 | 1134 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1135 | IPv4 Address | 1136 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1138 If a system does not recognized the Geo Coordinate LCAF Type that is 1139 accompanying a locator address, an encoder can include the Geo 1140 Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI 1141 in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in 1142 the list is encoded with a valid AFI value to identify the locator 1143 address. 1145 A LISP system is required to support the AFI List LCAF Type to use 1146 this procedure. It would skip over 10 bytes of the Geo Coordinate 1147 LCAF Type to get to the locator address encoding (an IPv4 locator 1148 address). A LISP system that does support the Geo Coordinate LCAF 1149 Type can support parsing the locator address within the Geo 1150 Coordinate LCAF encoding or in the locator encoding that follows in 1151 the AFI List LCAF. 1153 5. Security Considerations 1155 There are no security considerations for this specification. The 1156 security considerations are documented for the protocols that use 1157 LISP Canonical Addressing. Refer to the those relevant 1158 specifications. 1160 6. IANA Considerations 1162 This document defines a canonical address format encoding used in 1163 LISP control messages and in the encoding of lookup keys for the LISP 1164 Mapping Database System. Such address format is based on a fixed AFI 1165 (16387) and a LISP LCAF Type field. 1167 The LISP LCAF Type field is an 8-bit field specific to the LISP 1168 Canonical Address formatted encodings, for which IANA is to create 1169 and maintain a new registry (as outlined in [RFC5226]) entitled "LISP 1170 LCAF Type". Initial values for the LISP LCAF Type registry are given 1171 below. Future assignments are to be made through RFC Publication. 1172 Assignments consist of a LISP LCAF Type name and its associated 1173 value: 1175 +-------+------------------------------+------------+ 1176 | Value | LISP LCAF Type Name | Definition | 1177 +-------+------------------------------+------------+ 1178 | 0 | Null Body Type | Section 3 | 1179 | | | | 1180 | 1 | AFI List Type | Section 3 | 1181 | | | | 1182 | 2 | Instance ID Type | Section 3 | 1183 | | | | 1184 | 3 | AS Number Type | Section 3 | 1185 | | | | 1186 | 4 | Application Data Type | Section 3 | 1187 | | | | 1188 | 5 | Geo Coordinates Type | Section 3 | 1189 | | | | 1190 | 6 | Opaque Key Type | Section 3 | 1191 | | | | 1192 | 7 | NAT-Traversal Type | Section 3 | 1193 | | | | 1194 | 8 | Nonce Locator Type | Section 3 | 1195 | | | | 1196 | 9 | Multicast Info Type | Section 3 | 1197 | | | | 1198 | 10 | Explicit Locator Path Type | Section 3 | 1199 | | | | 1200 | 11 | Security Key Type | Section 3 | 1201 | | | | 1202 | 12 | Source/Dest Key Type | Section 3 | 1203 | | | | 1204 | 13 | Replication List Entry Type | Section 3 | 1205 | | | | 1206 | 14 | JSON Data Model Type | Section 3 | 1207 | | | | 1208 | 15 | Key/Value Address Pair Type | Section 3 | 1209 | | | | 1210 | 16 | Encapsulation Format Type | Section 3 | 1211 +-------+------------------------------+------------+ 1213 Table 1: LISP LCAF Type Initial Values 1215 7. References 1217 7.1. Normative References 1219 [RFC1700] Reynolds, J. and J. Postel, "Assigned Numbers", RFC 1700, 1220 October 1994. 1222 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and 1223 E. Lear, "Address Allocation for Private Internets", BCP 1224 5, RFC 1918, February 1996. 1226 [RFC4627] Crockford, D., "The application/json Media Type for 1227 JavaScript Object Notation (JSON)", RFC 4627, July 2006. 1229 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an 1230 IANA Considerations Section in RFCs", BCP 26, RFC 5226, 1231 May 2008. 1233 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The 1234 Locator/ID Separation Protocol (LISP)", RFC 6830, January 1235 2013. 1237 [RFC6836] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, 1238 "Locator/ID Separation Protocol Alternative Logical 1239 Topology (LISP+ALT)", RFC 6836, January 2013. 1241 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, 1242 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual 1243 eXtensible Local Area Network (VXLAN): A Framework for 1244 Overlaying Virtualized Layer 2 Networks over Layer 3 1245 Networks", RFC 7348, August 2014. 1247 7.2. Informative References 1249 [AFI] IANA, , "Address Family Identifier (AFIs)", ADDRESS FAMILY 1250 NUMBERS http://www.iana.org/numbers.html, Febuary 2007. 1252 [GENEVE] Gross, J., Sridhar, T., Garg, P., Wright, C., Ganga, I., 1253 Agarwal, P., Duda, K., Dutt, D., and J. Hudson, "Geneve: 1254 Generic Network Virtualization Encapsulation", draft- 1255 gross-geneve-02 (work in progress). 1257 [GPE] Quinn, P., Agarwal, P., Fernando, R., Kreeger, L., 1258 Kreeger, L., Lewis, D., Maino, F., Smith, M., Yadav, N., 1259 Yong, L., Xu, X., Elzur, U., and P. Garg, "Generic 1260 Protocol Extension for VXLAN", draft-quinn-vxlan-gpe- 1261 03.txt (work in progress). 1263 [GUE] Herbert, T. and L. Yong, "Generic UDP Encapsulation", 1264 draft-herbert-gue-02.txt (work in progress). 1266 [JSON-BINARY] 1267 "Universal Binary JSON Specification", URL 1268 http://ubjson.org. 1270 [L2-LISP] Smith, M., Dutt, D., Farinacci, D., and F. Maino, "Layer 2 1271 (L2) LISP Encapsulation Format", draft-smith-lisp- 1272 layer2-03.txt (work in progress). 1274 [LISP-DDT] 1275 Fuller, V., Lewis, D., and V. Ermagan, "LISP Delegated 1276 Database Tree", draft-ietf-lisp-ddt-01.txt (work in 1277 progress). 1279 [LISP-MRSIG] 1280 Farinacci, D. and M. Napierala, "LISP Control-Plane 1281 Multicast Signaling", draft-farinacci-lisp-mr-signaling- 1282 03.txt (work in progress). 1284 [LISP-NATT] 1285 Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, 1286 F., and C. White, "NAT traversal for LISP", draft-ermagan- 1287 lisp-nat-traversal-03.txt (work in progress). 1289 [LISP-RE] Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J., 1290 Maino, F., and D. Farinacci, "LISP Replication 1291 Engineering", draft-coras-lisp-re-03.txt (work in 1292 progress). 1294 [LISP-TE] Farinacci, D., Lahiri, P., and M. Kowal, "LISP Traffic 1295 Engineering Use-Cases", draft-farinacci-lisp-te-03.txt 1296 (work in progress). 1298 [NVGRE] Sridharan, M., Greenberg, A., Wang, Y., Garg, P., 1299 Venkataramiah, N., Duda, K., Ganga, I., Lin, G., Pearson, 1300 M., Thaler, P., and C. Tumuluri, "NVGRE: Network 1301 Virtualization using Generic Routing Encapsulation", 1302 draft-sridharan-virtualization-nvgre-06.txt (work in 1303 progress). 1305 [WGS-84] Geodesy and Geophysics Department, DoD., "World Geodetic 1306 System 1984", NIMA TR8350.2, January 2000, . 1309 Appendix A. Acknowledgments 1311 The authors would like to thank Vince Fuller, Gregg Schudel, Jesper 1312 Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for 1313 their technical and editorial commentary. 1315 The authors would like to thank Victor Moreno for discussions that 1316 lead to the definition of the Multicast Info LCAF type. 1318 The authors would like to thank Parantap Lahiri and Michael Kowal for 1319 discussions that lead to the definition of the Explicit Locator Path 1320 (ELP) LCAF type. 1322 The authors would like to thank Fabio Maino and Vina Ermagan for 1323 discussions that lead to the definition of the Security Key LCAF 1324 type. 1326 The authors would like to thank Albert Cabellos-Aparicio and Florin 1327 Coras for discussions that lead to the definition of the Replication 1328 List Entry LCAF type. 1330 Thanks goes to Michiel Blokzijl and Alberto Rodriguez-Natal for 1331 suggesting new LCAF types. 1333 Thanks also goes to Terry Manderson for assistance obtaining a LISP 1334 AFI value from IANA. 1336 Appendix B. Document Change Log 1338 B.1. Changes to draft-ietf-lisp-lcaf-10.txt 1340 o Submitted June 2015. 1342 o Fix coauthor Job's contact information. 1344 B.2. Changes to draft-ietf-lisp-lcaf-09.txt 1346 o Submitted June 2015. 1348 o Fix IANA Considerations section to request a registry to allocate 1349 and track LCAF Type values. 1351 B.3. Changes to draft-ietf-lisp-lcaf-08.txt 1353 o Submitted April 2015. 1355 o Comment from Florin. The Application Data Type length field has a 1356 typo. The field should be labeled "12 + n" and not "8 + n". 1358 o Fix length fields in the sections titled "Using Recursive LISP 1359 Canonical Address Encodings", "Generic Database Mapping Lookups", 1360 and "Data Model Encoding". 1362 B.4. Changes to draft-ietf-lisp-lcaf-07.txt 1364 o Submitted December 2014. 1366 o Add a new LCAF Type called "Encapsulation Format" so decapsulating 1367 xTRs can inform encapsulating xTRs what data-plane encapsulations 1368 they support. 1370 B.5. Changes to draft-ietf-lisp-lcaf-06.txt 1372 o Submitted October 2014. 1374 o Make it clear how sorted RLOC records are done when LCAFs are used 1375 as the RLOC record. 1377 B.6. Changes to draft-ietf-lisp-lcaf-05.txt 1379 o Submitted May 2014. 1381 o Add a length field of the JSON payload that can be used for either 1382 binary or text encoding of JSON data. 1384 B.7. Changes to draft-ietf-lisp-lcaf-04.txt 1386 o Submitted January 2014. 1388 o Agreement among ELP implementors to have the AFI 16-bit field 1389 adjacent to the address. This will make the encoding consistent 1390 with all other LCAF type address encodings. 1392 B.8. Changes to draft-ietf-lisp-lcaf-03.txt 1394 o Submitted September 2013. 1396 o Updated references and author's affilations. 1398 o Added Instance-ID to the Multicast Info Type so there is relative 1399 ease in parsing (S,G) entries within a VPN. 1401 o Add port range encodings to the Application Data LCAF Type. 1403 o Add a new JSON LCAF Type. 1405 o Add Address Key/Value LCAF Type to allow attributes to be attached 1406 to an address. 1408 B.9. Changes to draft-ietf-lisp-lcaf-02.txt 1410 o Submitted March 2013. 1412 o Added new LCAF Type "Replication List Entry" to support LISP 1413 replication engineering use-cases. 1415 o Changed references to new LISP RFCs. 1417 B.10. Changes to draft-ietf-lisp-lcaf-01.txt 1419 o Submitted January 2013. 1421 o Change longitude range from 0-90 to 0-180 in section 4.4. 1423 o Added reference to WGS-84 in section 4.4. 1425 B.11. Changes to draft-ietf-lisp-lcaf-00.txt 1427 o Posted first working group draft August 2012. 1429 o This draft was renamed from draft-farinacci-lisp-lcaf-10.txt. 1431 Authors' Addresses 1433 Dino Farinacci 1434 lispers.net 1435 San Jose, CA 1436 USA 1438 Email: farinacci@gmail.com 1440 Dave Meyer 1441 Brocade 1442 San Jose, CA 1443 USA 1445 Email: dmm@1-4-5.net 1447 Job Snijders 1448 NTT Communications 1449 Theodorus Majofskistraat 100 1450 Amsterdam 1065 SZ 1451 NL 1453 Email: job@ntt.net