idnits 2.17.1 draft-ietf-lisp-lcaf-12.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** The document seems to lack a both a reference to RFC 2119 and the recommended RFC 2119 boilerplate, even if it appears to use RFC 2119 keywords. RFC 2119 keyword, line 209: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 251: '...is reserved for future use and MUST be...' Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (March 14, 2016) is 2957 days in the past. Is this intentional? Checking references for intended status: Experimental ---------------------------------------------------------------------------- ** Obsolete normative reference: RFC 1700 (Obsoleted by RFC 3232) ** Obsolete normative reference: RFC 4627 (Obsoleted by RFC 7158, RFC 7159) ** Obsolete normative reference: RFC 5226 (Obsoleted by RFC 8126) ** Obsolete normative reference: RFC 6830 (Obsoleted by RFC 9300, RFC 9301) == Outdated reference: A later version (-04) exists of draft-quinn-vxlan-gpe-03 == Outdated reference: A later version (-03) exists of draft-herbert-gue-02 == Outdated reference: A later version (-09) exists of draft-ietf-lisp-ddt-01 == Outdated reference: A later version (-19) exists of draft-ermagan-lisp-nat-traversal-10 == Outdated reference: A later version (-12) exists of draft-farinacci-lisp-te-10 == Outdated reference: A later version (-08) exists of draft-sridharan-virtualization-nvgre-06 Summary: 5 errors (**), 0 flaws (~~), 7 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group D. Farinacci 3 Internet-Draft lispers.net 4 Intended status: Experimental D. Meyer 5 Expires: September 15, 2016 Brocade 6 J. Snijders 7 NTT Communications 8 March 14, 2016 10 LISP Canonical Address Format (LCAF) 11 draft-ietf-lisp-lcaf-12 13 Abstract 15 This draft defines a canonical address format encoding used in LISP 16 control messages and in the encoding of lookup keys for the LISP 17 Mapping Database System. 19 Status of This Memo 21 This Internet-Draft is submitted in full conformance with the 22 provisions of BCP 78 and BCP 79. 24 Internet-Drafts are working documents of the Internet Engineering 25 Task Force (IETF). Note that other groups may also distribute 26 working documents as Internet-Drafts. The list of current Internet- 27 Drafts is at http://datatracker.ietf.org/drafts/current/. 29 Internet-Drafts are draft documents valid for a maximum of six months 30 and may be updated, replaced, or obsoleted by other documents at any 31 time. It is inappropriate to use Internet-Drafts as reference 32 material or to cite them other than as "work in progress." 34 This Internet-Draft will expire on September 15, 2016. 36 Copyright Notice 38 Copyright (c) 2016 IETF Trust and the persons identified as the 39 document authors. All rights reserved. 41 This document is subject to BCP 78 and the IETF Trust's Legal 42 Provisions Relating to IETF Documents 43 (http://trustee.ietf.org/license-info) in effect on the date of 44 publication of this document. Please review these documents 45 carefully, as they describe your rights and restrictions with respect 46 to this document. Code Components extracted from this document must 47 include Simplified BSD License text as described in Section 4.e of 48 the Trust Legal Provisions and are provided without warranty as 49 described in the Simplified BSD License. 51 Table of Contents 53 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 54 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 55 3. LISP Canonical Address Format Encodings . . . . . . . . . . . 4 56 4. LISP Canonical Address Applications . . . . . . . . . . . . . 7 57 4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 7 58 4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 8 59 4.3. Assigning Geo Coordinates to Locator Addresses . . . . . 9 60 4.4. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 12 61 4.5. Multicast Group Membership Information . . . . . . . . . 14 62 4.6. Traffic Engineering using Re-encapsulating Tunnels . . . 15 63 4.7. Storing Security Data in the Mapping Database . . . . . . 17 64 4.8. Source/Destination 2-Tuple Lookups . . . . . . . . . . . 18 65 4.9. Replication List Entries for Multicast Forwarding . . . . 20 66 4.10. Applications for AFI List Type . . . . . . . . . . . . . 21 67 4.10.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . 21 68 4.10.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 22 69 4.10.3. ASCII Names in the Mapping Database . . . . . . . . 23 70 4.10.4. Using Recursive LISP Canonical Address Encodings . . 24 71 4.10.5. Compatibility Mode Use Case . . . . . . . . . . . . 25 72 5. Experimental LISP Canonical Address Applications . . . . . . 26 73 5.1. Convey Application Specific Data . . . . . . . . . . . . 26 74 5.2. Generic Database Mapping Lookups . . . . . . . . . . . . 27 75 5.3. PETR Admission Control Functionality . . . . . . . . . . 29 76 5.4. Data Model Encoding . . . . . . . . . . . . . . . . . . . 30 77 5.5. Encoding Key/Value Address Pairs . . . . . . . . . . . . 31 78 5.6. Multiple Data-Planes . . . . . . . . . . . . . . . . . . 32 79 6. Security Considerations . . . . . . . . . . . . . . . . . . . 34 80 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 34 81 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 35 82 8.1. Normative References . . . . . . . . . . . . . . . . . . 35 83 8.2. Informative References . . . . . . . . . . . . . . . . . 36 84 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . 37 85 Appendix B. Document Change Log . . . . . . . . . . . . . . . . 38 86 B.1. Changes to draft-ietf-lisp-lcaf-12.txt . . . . . . . . . 38 87 B.2. Changes to draft-ietf-lisp-lcaf-11.txt . . . . . . . . . 38 88 B.3. Changes to draft-ietf-lisp-lcaf-10.txt . . . . . . . . . 38 89 B.4. Changes to draft-ietf-lisp-lcaf-09.txt . . . . . . . . . 38 90 B.5. Changes to draft-ietf-lisp-lcaf-08.txt . . . . . . . . . 39 91 B.6. Changes to draft-ietf-lisp-lcaf-07.txt . . . . . . . . . 39 92 B.7. Changes to draft-ietf-lisp-lcaf-06.txt . . . . . . . . . 39 93 B.8. Changes to draft-ietf-lisp-lcaf-05.txt . . . . . . . . . 39 94 B.9. Changes to draft-ietf-lisp-lcaf-04.txt . . . . . . . . . 39 95 B.10. Changes to draft-ietf-lisp-lcaf-03.txt . . . . . . . . . 39 96 B.11. Changes to draft-ietf-lisp-lcaf-02.txt . . . . . . . . . 40 97 B.12. Changes to draft-ietf-lisp-lcaf-01.txt . . . . . . . . . 40 98 B.13. Changes to draft-ietf-lisp-lcaf-00.txt . . . . . . . . . 40 99 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 40 101 1. Introduction 103 The LISP architecture and protocols [RFC6830] introduces two new 104 numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators 105 (RLOCs) which are intended to replace most use of IP addresses on the 106 Internet. To provide flexibility for current and future 107 applications, these values can be encoded in LISP control messages 108 using a general syntax that includes Address Family Identifier (AFI), 109 length, and value fields. 111 Currently defined AFIs include IPv4 and IPv6 addresses, which are 112 formatted according to code-points assigned in [AFI] as follows: 114 IPv4 Encoded Address: 116 0 1 2 3 117 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 118 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 119 | AFI = 1 | IPv4 Address ... | 120 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 121 | ... IPv4 Address | 122 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 124 IPv6 Encoded Address: 126 0 1 2 3 127 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 128 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 129 | AFI = 2 | IPv6 Address ... | 130 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 131 | ... IPv6 Address ... | 132 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 133 | ... IPv6 Address ... | 134 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 135 | ... IPv6 Address ... | 136 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 137 | ... IPv6 Address | 138 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 140 This document describes the currently-defined AFIs the LISP protocol 141 uses along with their encodings and introduces the LISP Canonical 142 Address Format (LCAF) that can be used to define the LISP-specific 143 encodings for arbitrary AFI values. 145 2. Definition of Terms 147 Address Family Identifier (AFI): a term used to describe an address 148 encoding in a packet. An address family currently defined for 149 IPv4 or IPv6 addresses. See [AFI] and [RFC1700] for details. The 150 reserved AFI value of 0 is used in this specification to indicate 151 an unspecified encoded address where the the length of the address 152 is 0 bytes following the 16-bit AFI value of 0. 154 Unspecified Address Format: 156 0 1 2 3 157 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 158 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 159 | AFI = 0 | | 160 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 162 Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value 163 used in the source and destination address fields of the first 164 (most inner) LISP header of a packet. The host obtains a 165 destination EID the same way it obtains a destination address 166 today, for example through a DNS lookup or SIP exchange. The 167 source EID is obtained via existing mechanisms used to set a 168 host's "local" IP address. An EID is allocated to a host from an 169 EID-prefix block associated with the site where the host is 170 located. An EID can be used by a host to refer to other hosts. 172 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress 173 tunnel router (ETR). It is the output of a EID-to-RLOC mapping 174 lookup. An EID maps to one or more RLOCs. Typically, RLOCs are 175 numbered from topologically aggregatable blocks that are assigned 176 to a site at each point to which it attaches to the global 177 Internet; where the topology is defined by the connectivity of 178 provider networks, RLOCs can be thought of as PA addresses. 179 Multiple RLOCs can be assigned to the same ETR device or to 180 multiple ETR devices at a site. 182 3. LISP Canonical Address Format Encodings 184 IANA has assigned AFI value 16387 (0x4003) to the LISP architecture 185 and protocols. This specification defines the encoding format of the 186 LISP Canonical Address (LCA). This section defines both experimental 187 types as well as types that reside in the registry that have 188 corresponding working group drafts. See IANA Considerations section 189 for a list of types that will reside in the LISP-LCAF Registry. 191 The Address Family AFI definitions from [AFI] only allocate code- 192 points for the AFI value itself. The length of the address or entity 193 that follows is not defined and is implied based on conventional 194 experience. Where the LISP protocol uses LISP Canonical Addresses 195 specifically, the address length definitions will be in this 196 specification and take precedent over any other specification. 198 The first 6 bytes of an LISP Canonical Address are followed by a 199 variable length of fields: 201 0 1 2 3 202 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 203 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 204 | AFI = 16387 | Rsvd1 | Flags | 205 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 206 | Type | Rsvd2 | Length | 207 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 209 Rsvd1: this 8-bit field is reserved for future use and MUST be 210 transmitted as 0 and ignored on receipt. 212 Flags: this 8-bit field is for future definition and use. For now, 213 set to zero on transmission and ignored on receipt. 215 Type: this 8-bit field is specific to the LISP Canonical Address 216 formatted encodings, values are: 218 Type 0: Null Body Type 220 Type 1: AFI List Type 222 Type 2: Instance ID Type 224 Type 3: AS Number Type 226 Type 4: Application Data Type 228 Type 5: Geo Coordinates Type 230 Type 6: Opaque Key Type 232 Type 7: NAT-Traversal Type 234 Type 8: Nonce Locator Type 236 Type 9: Multicast Info Type 238 Type 10: Explicit Locator Path Type 240 Type 11: Security Key Type 241 Type 12: Source/Dest Key Type 243 Type 13: Replication List Entry Type 245 Type 14: JSON Data Model Type 247 Type 15: Key/Value Address Pair Type 249 Type 16: Encapsulation Format Type 251 Rsvd2: this 8-bit field is reserved for future use and MUST be 252 transmitted as 0 and ignored on receipt. 254 Length: this 16-bit field is in units of bytes and covers all of the 255 LISP Canonical Address payload, starting and including the byte 256 after the Length field. So any LCAF encoded address will have a 257 minimum length of 8 bytes when the Length field is 0. The 8 bytes 258 include the AFI, Flags, Type, Reserved, and Length fields. When 259 the AFI is not next to encoded address in a control message, then 260 the encoded address will have a minimum length of 6 bytes when the 261 Length field is 0. The 6 bytes include the Flags, Type, Reserved, 262 and Length fields. 264 [RFC6830] states RLOC records are sorted when encoded in control 265 messages so the locator-set has consistent order across all xTRs for 266 a given EID. The sort order is based on sort-key {afi, RLOC- 267 address}. When an RLOC is LCAF encoded, the sort-key is {afi, LCAF- 268 Type, payload}. Therefore, when a locator-set has a mix of AFI 269 records and LCAF records, all LCAF records will appear after all the 270 AFI records. 272 4. LISP Canonical Address Applications 274 4.1. Segmentation using LISP 276 When multiple organizations inside of a LISP site are using private 277 addresses [RFC1918] as EID-prefixes, their address spaces must remain 278 segregated due to possible address duplication. An Instance ID in 279 the address encoding can aid in making the entire AFI based address 280 unique. 282 Another use for the Instance ID LISP Canonical Address Format is when 283 creating multiple segmented VPNs inside of a LISP site where keeping 284 EID-prefix based subnets is desirable. 286 Instance ID LISP Canonical Address Format: 288 0 1 2 3 289 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 290 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 291 | AFI = 16387 | Rsvd1 | Flags | 292 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 293 | Type = 2 | IID mask-len | 4 + n | 294 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 295 | Instance ID | 296 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 297 | AFI = x | Address ... | 298 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 300 IID mask-len: if the AFI is set to 0, then this format is not 301 encoding an extended EID-prefix but rather an instance-ID range 302 where the 'IID mask-len' indicates the number of high-order bits 303 used in the Instance ID field for the range. 305 Length value n: length in bytes of the AFI address that follows the 306 Instance ID field including the AFI field itself. 308 Instance ID: the low-order 24-bits that can go into a LISP data 309 header when the I-bit is set. See [RFC6830] for details. 311 AFI = x: x can be any AFI value from [AFI]. 313 This LISP Canonical Address Type can be used to encode either EID or 314 RLOC addresses. 316 Usage: When used as a lookup key, the EID is regarded as a extended- 317 EID in the mapping system. And this encoding is used in EID records 318 in Map-Requests, Map-Replies, Map-Registers, and Map-Notify messages. 320 When LISP-DDT [LISP-DDT] is used as the mapping system mechanism, 321 extended EIDs are used in Map-Referral messages. 323 4.2. Carrying AS Numbers in the Mapping Database 325 When an AS number is stored in the LISP Mapping Database System for 326 either policy or documentation reasons, it can be encoded in a LISP 327 Canonical Address. 329 AS Number LISP Canonical Address Format: 331 0 1 2 3 332 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 333 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 334 | AFI = 16387 | Rsvd1 | Flags | 335 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 336 | Type = 3 | Rsvd2 | 4 + n | 337 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 338 | AS Number | 339 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 340 | AFI = x | Address ... | 341 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 343 Length value n: length in bytes of the AFI address that follows the 344 AS Number field including the AFI field itself. 346 AS Number: the 32-bit AS number of the autonomous system that has 347 been assigned either the EID or RLOC that follows. 349 AFI = x: x can be any AFI value from [AFI]. 351 The AS Number Canonical Address Type can be used to encode either EID 352 or RLOC addresses. The former is used to describe the LISP-ALT AS 353 number the EID-prefix for the site is being carried for. The latter 354 is used to describe the AS that is carrying RLOC based prefixes in 355 the underlying routing system. 357 Usage: This encoding can be used in EID or RLOC records in Map- 358 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 359 LISP-DDT [LISP-DDT] is used as the mapping system mechanism, extended 360 EIDs are used in Map-Referral messages. 362 4.3. Assigning Geo Coordinates to Locator Addresses 364 If an ETR desires to send a Map-Reply describing the Geo Coordinates 365 for each locator in its locator-set, it can use the Geo Coordinate 366 Type to convey physical location information. 368 Coordinates are specified using the WGS-84 (World Geodetic System) 369 reference coordinate system [WGS-84]. 371 Geo Coordinate LISP Canonical Address Format: 373 0 1 2 3 374 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 375 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 376 | AFI = 16387 | Rsvd1 | Flags | 377 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 378 | Type = 5 | Rsvd2 | 12 + n | 379 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 380 |N| Latitude Degrees | Minutes | Seconds | 381 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 382 |E| Longitude Degrees | Minutes | Seconds | 383 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 384 | Altitude | 385 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 386 | AFI = x | Address ... | 387 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 389 Length value n: length in bytes of the AFI address that follows the 390 8-byte Longitude and Latitude fields including the AFI field 391 itself. 393 N: When set to 1 means North, otherwise South. 395 Latitude Degrees: Valid values range from 0 to 90 degrees above or 396 below the equator (northern or southern hemisphere, respectively). 398 Latitude Minutes: Valid values range from 0 to 59. 400 Latitude Seconds: Valid values range from 0 to 59. 402 E: When set to 1 means East, otherwise West. 404 Longitude Degrees: Value values are from 0 to 180 degrees right or 405 left of the Prime Meridian. 407 Longitude Minutes: Valid values range from 0 to 59. 409 Longitude Seconds: Valid values range from 0 to 59. 411 Altitude: Height relative to sea level in meters. This is a signed 412 integer meaning that the altitude could be below sea level. A 413 value of 0x7fffffff indicates no Altitude value is encoded. 415 AFI = x: x can be any AFI value from [AFI]. 417 The Geo Coordinates Canonical Address Type can be used to encode 418 either EID or RLOC addresses. When used for EID encodings, you can 419 determine the physical location of an EID along with the topological 420 location by observing the locator-set. 422 Usage: This encoding can be used in EID or RLOC records in Map- 423 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 424 LISP-DDT [LISP-DDT] is used as the mapping system mechanism, extended 425 EIDs are used in Map-Referral messages. 427 4.4. NAT Traversal Scenarios 429 When a LISP system is conveying global address and mapped port 430 information when traversing through a NAT device, the NAT-Traversal 431 LCAF Type is used. See [LISP-NATT] for details. 433 NAT-Traversal Canonical Address Format: 435 0 1 2 3 436 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 437 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 438 | AFI = 16387 | Rsvd1 | Flags | 439 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 440 | Type = 7 | Rsvd2 | 4 + n | 441 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 442 | MS UDP Port Number | ETR UDP Port Number | 443 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 444 | AFI = x | Global ETR RLOC Address ... | 445 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 446 | AFI = x | MS RLOC Address ... | 447 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 448 | AFI = x | Private ETR RLOC Address ... | 449 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 450 | AFI = x | RTR RLOC Address 1 ... | 451 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 452 | AFI = x | RTR RLOC Address k ... | 453 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 455 Length value n: length in bytes of the AFI addresses that follows 456 the UDP Port Number field including the AFI fields themselves. 458 MS UDP Port Number: this is the UDP port number of the Map-Server 459 and is set to 4342. 461 ETR UDP Port Number: this is the port number returned to a LISP 462 system which was copied from the source port from a packet that 463 has flowed through a NAT device. 465 AFI = x: x can be any AFI value from [AFI]. 467 Global ETR RLOC Address: this is an address known to be globally 468 unique built by NAT-traversal functionality in a LISP router. 470 MS RLOC Address: this is the address of the Map-Server used in the 471 destination RLOC of a packet that has flowed through a NAT device. 473 Private ETR RLOC Address: this is an address known to be a private 474 address inserted in this LCAF format by a LISP router that resides 475 on the private side of a NAT device. 477 RTR RLOC Address: this is an encapsulation address used by an ITR or 478 PITR which resides behind a NAT device. This address is known to 479 have state in a NAT device so packets can flow from it to the LISP 480 ETR behind the NAT. There can be one or more NTR addresses 481 supplied in these set of fields. The number of NTRs encoded is 482 determined by the LCAF length field. When there are no NTRs 483 supplied, the NTR fields can be omitted and reflected by the LCAF 484 length field or an AFI of 0 can be used to indicate zero NTRs 485 encoded. 487 Usage: This encoding can be used in Info-Request and Info-Reply 488 messages. The mapping system does not store this information. The 489 information is used by an xTR and Map-Server to convey private and 490 public address information when traversing NAT and firewall devices. 492 4.5. Multicast Group Membership Information 494 Multicast group information can be published in the mapping database 495 so a lookup on an EID based group address can return a replication 496 list of group addresses or a unicast addresses for single replication 497 or multiple head-end replications. The intent of this type of 498 unicast replication is to deliver packets to multiple ETRs at 499 receiver LISP multicast sites. The locator-set encoding for this EID 500 record type can be a list of ETRs when they each register with "Merge 501 Semantics". The encoding can be a typical AFI encoded locator 502 address. When an RTR list is being registered (with multiple levels 503 according to [LISP-RE]), the Replication List Entry LCAF type is used 504 for locator encoding. 506 This LCAF encoding can be used to send broadcast packets to all 507 members of a subnet when each EIDs are away from their home subnet 508 location. 510 Multicast Info Canonical Address Format: 512 0 1 2 3 513 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 514 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 515 | AFI = 16387 | Rsvd1 | Flags | 516 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 517 | Type = 9 | Rsvd2 | 8 + n | 518 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 519 | Instance-ID | 520 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 521 | Reserved | Source MaskLen| Group MaskLen | 522 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 523 | AFI = x | Source/Subnet Address ... | 524 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 525 | AFI = x | Group Address ... | 526 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 528 Length value n: length in bytes of fields that follow. 530 Reserved: must be set to zero and ignore on receipt. 532 Instance ID: the low-order 24-bits that can go into a LISP data 533 header when the I-bit is set. See [RFC6830] for details. The use 534 of the Instance-ID in this LCAF type is to associate a multicast 535 forwarding entry for a given VPN. The instance-ID describes the 536 VPN and is registered to the mapping database system as a 3-tuple 537 of (Instance-ID, S-prefix, G-prefix). 539 Source MaskLen: the mask length of the source prefix that follows. 541 Group MaskLen: the mask length of the group prefix that follows. 543 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 544 its own encoding of a multicast address, this field must be either 545 a group address or a broadcast address. 547 Usage: This encoding can be used in EID records in Map-Requests, Map- 548 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 549 [LISP-DDT] is used as the mapping system mechanism, extended EIDs are 550 used in Map-Referral messages. 552 4.6. Traffic Engineering using Re-encapsulating Tunnels 554 For a given EID lookup into the mapping database, this LCAF format 555 can be returned to provide a list of locators in an explicit re- 556 encapsulation path. See [LISP-TE] for details. 558 Explicit Locator Path (ELP) Canonical Address Format: 560 0 1 2 3 561 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 562 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 563 | AFI = 16387 | Rsvd1 | Flags | 564 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 565 | Type = 10 | Rsvd2 | n | 566 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 567 | Rsvd3 |L|P|S| AFI = x | 568 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 569 | Reencap Hop 1 ... | 570 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 571 | Rsvd3 |L|P|S| AFI = x | 572 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 573 | Reencap Hop k ... | 574 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 576 Length value n: length in bytes of fields that follow. 578 Lookup bit (L): this is the Lookup bit used to indicate to the user 579 of the ELP to not use this address for encapsulation but to look 580 it up in the mapping database system to obtain an encapsulating 581 RLOC address. 583 RLOC-Probe bit (P): this is the RLOC-probe bit which means the 584 Reencap Hop allows RLOC-probe messages to be sent to it. When the 585 R-bit is set to 0, RLOC-probes must not be sent. When a Reencap 586 Hop is an anycast address then multiple physical Reencap Hops are 587 using the same RLOC address. In this case, RLOC-probes are not 588 needed because when the closest RLOC address is not reachable 589 another RLOC address can reachable. 591 Strict bit (S): this the strict bit which means the associated 592 Rencap Hop is required to be used. If this bit is 0, the 593 reencapsulator can skip this Reencap Hop and go to the next one in 594 the list. 596 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 597 its own encoding of a multicast address, this field must be either 598 a group address or a broadcast address. 600 Usage: This encoding can be used in RLOC records in Map-Requests, 601 Map-Replies, Map-Registers, and Map-Notify messages. This encoding 602 not need to be understood by the mapping system for mapping database 603 lookups since this LCAF type is not a lookup key. 605 4.7. Storing Security Data in the Mapping Database 607 When a locator in a locator-set has a security key associated with 608 it, this LCAF format will be used to encode key material. See 609 [LISP-DDT] for details. 611 Security Key Canonical Address Format: 613 0 1 2 3 614 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 615 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 616 | AFI = 16387 | Rsvd1 | Flags | 617 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 618 | Type = 11 | Rsvd2 | 6 + n | 619 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 620 | Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R| 621 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 622 | Key Length | Key Material ... | 623 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 624 | ... Key Material | 625 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 626 | AFI = x | Locator Address ... | 627 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 629 Length value n: length in bytes of fields that start with the Key 630 Material field. 632 Key Count: the Key Count field declares the number of Key sections 633 included in this LCAF. 635 Key Algorithm: the Algorithm field identifies the key's 636 cryptographic algorithm and specifies the format of the Public Key 637 field. 639 R bit: this is the revoke bit and, if set, it specifies that this 640 Key is being Revoked. 642 Key Length: this field determines the length in bytes of the Key 643 Material field. 645 Key Material: the Key Material field stores the key material. The 646 format of the key material stored depends on the Key Algorithm 647 field. 649 AFI = x: x can be any AFI value from [AFI].This is the locator 650 address that owns the encoded security key. 652 Usage: This encoding can be used in EID or RLOC records in Map- 653 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 654 LISP-DDT [LISP-DDT] is used as the mapping system mechanism, extended 655 EIDs are used in Map-Referral messages. 657 4.8. Source/Destination 2-Tuple Lookups 659 When both a source and destination address of a flow needs 660 consideration for different locator-sets, this 2-tuple key is used in 661 EID fields in LISP control messages. When the Source/Dest key is 662 registered to the mapping database, it can be encoded as a source- 663 prefix and destination-prefix. When the Source/Dest is used as a key 664 for a mapping database lookup the source and destination come from a 665 data packet. 667 Source/Dest Key Canonical Address Format: 669 0 1 2 3 670 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 671 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 672 | AFI = 16387 | Rsvd1 | Flags | 673 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 674 | Type = 12 | Rsvd2 | 4 + n | 675 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 676 | Reserved | Source-ML | Dest-ML | 677 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 678 | AFI = x | Source-Prefix ... | 679 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 680 | AFI = x | Destination-Prefix ... | 681 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 683 Length value n: length in bytes of fields that follow. 685 Reserved: must be set to zero and ignore on receipt. 687 Source-ML: the mask length of the source prefix that follows. 689 Dest-ML: the mask length of the destination prefix that follows. 691 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 692 its own encoding of a multicast address, this field must be either 693 a group address or a broadcast address. 695 Refer to [LISP-TE] for usage details. 697 Usage: This encoding can be used in EID records in Map-Requests, Map- 698 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 699 [LISP-DDT] is used as the mapping system mechanism, extended EIDs are 700 used in Map-Referral messages. 702 4.9. Replication List Entries for Multicast Forwarding 704 The Replication List Entry LCAF type is an encoding for a locator 705 being used for unicast replication according to the specification in 706 [LISP-RE]. This locator encoding is pointed to by a Multicast Info 707 LCAF Type and is registered by Re-encapsulating Tunnel Routers (RTRs) 708 that are participating in an overlay distribution tree. Each RTR 709 will register its locator address and its configured level in the 710 distribution tree. 712 Replication List Entry Address Format: 714 0 1 2 3 715 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 716 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 717 | AFI = 16387 | Rsvd1 | Flags | 718 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 719 | Type = 13 | Rsvd2 | 4 + n | 720 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 721 | Rsvd3 | Rsvd4 | Level Value | 722 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 723 | AFI = x | RTR/ETR #1 ... | 724 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 725 | Rsvd3 | Rsvd4 | Level Value | 726 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 727 | AFI = x | RTR/ETR #n ... | 728 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 730 Length value n: length in bytes of fields that follow. 732 Rsvd{1,2,3,4}: must be set to zero and ignore on receipt. 734 Level Value: this value is associated with the level within the 735 overlay distribution tree hierarchy where the RTR resides. The 736 level numbers are ordered from lowest value being close to the ITR 737 (meaning that ITRs replicate to level-0 RTRs) and higher levels 738 are further downstream on the distribution tree closer to ETRs of 739 multicast receiver sites. 741 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 742 own encoding of either a unicast or multicast locator address. 743 All RTR/ETR entries for the same level should be combined together 744 by a Map-Server to avoid searching through the entire multi-level 745 list of locator entries in a Map-Reply message. 747 Usage: This encoding can be used in RLOC records in Map-Requests, 748 Map-Replies, Map-Registers, and Map-Notify messages. 750 4.10. Applications for AFI List Type 752 4.10.1. Binding IPv4 and IPv6 Addresses 754 When header translation between IPv4 and IPv6 is desirable a LISP 755 Canonical Address can use the AFI List Type to carry multiple AFIs in 756 one LCAF AFI. 758 Address Binding LISP Canonical Address Format: 760 0 1 2 3 761 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 762 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 763 | AFI = 16387 | Rsvd1 | Flags | 764 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 765 | Type = 1 | Rsvd2 | 2 + 4 + 2 + 16 | 766 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 767 | AFI = 1 | IPv4 Address ... | 768 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 769 | ... IPv4 Address | AFI = 2 | 770 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 771 | IPv6 Address ... | 772 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 773 | ... IPv6 Address ... | 774 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 775 | ... IPv6 Address ... | 776 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 777 | ... IPv6 Address | 778 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 780 Length: length in bytes is fixed at 24 when IPv4 and IPv6 AFI 781 encoded addresses are used. 783 This type of address format can be included in a Map-Request when the 784 address is being used as an EID, but the Mapping Database System 785 lookup destination can use only the IPv4 address. This is so a 786 Mapping Database Service Transport System, such as LISP-ALT 787 [RFC6836], can use the Map-Request destination address to route the 788 control message to the desired LISP site. 790 Usage: This encoding can be used in EID or RLOC records in Map- 791 Requests, Map-Replies, Map-Registers, and Map-Notify messages. See 792 subsections in this section for specific use cases. 794 4.10.2. Layer-2 VPNs 796 When MAC addresses are stored in the LISP Mapping Database System, 797 the AFI List Type can be used to carry AFI 6. 799 MAC Address LISP Canonical Address Format: 801 0 1 2 3 802 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 803 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 804 | AFI = 16387 | Rsvd1 | Flags | 805 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 806 | Type = 1 | Rsvd2 | 2 + 6 | 807 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 808 | AFI = 6 | Layer-2 MAC Address ... | 809 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 810 | ... Layer-2 MAC Address | 811 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 813 Length: length in bytes is fixed at 8 when MAC address AFI encoded 814 addresses are used. 816 This address format can be used to connect layer-2 domains together 817 using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. 818 In this use-case, a MAC address is being used as an EID, and the 819 locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or 820 even another MAC address being used as an RLOC. 822 4.10.3. ASCII Names in the Mapping Database 824 If DNS names or URIs are stored in the LISP Mapping Database System, 825 the AFI List Type can be used to carry an ASCII string where it is 826 delimited by length 'n' of the LCAF Length encoding. 828 ASCII LISP Canonical Address Format: 830 0 1 2 3 831 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 832 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 833 | AFI = 16387 | Rsvd1 | Flags | 834 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 835 | Type = 1 | Rsvd2 | 2 + n | 836 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 837 | AFI = 17 | DNS Name or URI ... | 838 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 840 Length value n: length in bytes AFI=17 field and the null-terminated 841 ASCII string (the last byte of 0 is included). 843 4.10.4. Using Recursive LISP Canonical Address Encodings 845 When any combination of above is desirable, the AFI List Type value 846 can be used to carry within the LCAF AFI another LCAF AFI. 848 Recursive LISP Canonical Address Format: 850 0 1 2 3 851 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 852 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 853 | AFI = 16387 | Rsvd1 | Flags | 854 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 855 | Type = 1 | Rsvd2 | 8 + 18 | 856 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 857 | AFI = 16387 | Rsvd1 | Flags | 858 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 859 | Type = 4 | Rsvd2 | 12 + 6 | 860 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 861 | IP TOS, IPv6 QQS or Flow Label | Protocol | 862 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 863 | Local Port (lower-range) | Local Port (upper-range) | 864 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 865 | Remote Port (lower-range) | Remote Port (upper-range) | 866 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 867 | AFI = 1 | IPv4 Address ... | 868 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 869 | ... IPv4 Address | 870 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 872 Length: length in bytes is fixed at 18 when an AFI=1 IPv4 address is 873 included. 875 This format could be used by a Mapping Database Transport System, 876 such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is used as 877 an EID and placed in the Map-Request destination address by the 878 sending LISP system. The ALT system can deliver the Map-Request to 879 the LISP destination site independent of the Application Data Type 880 AFI payload values. When this AFI is processed by the destination 881 LISP site, it can return different locator-sets based on the type of 882 application or level of service that is being requested. 884 4.10.5. Compatibility Mode Use Case 886 A LISP system should use the AFI List Type format when sending to 887 LISP systems that do not support a particular LCAF Type used to 888 encode locators. This allows the receiving system to be able to 889 parse a locator address for encapsulation purposes. The list of AFIs 890 in an AFI List LCAF Type has no semantic ordering and a receiver 891 should parse each AFI element no matter what the ordering. 893 Compatibility Mode Address Format: 895 0 1 2 3 896 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 897 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 898 | AFI = 16387 | Rsvd1 | Flags | 899 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 900 | Type = 1 | Rsvd2 | 8 + 14 + 6 | 901 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 902 | AFI = 16387 | Rsvd1 | Flags | 903 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 904 | Type = 5 | Rsvd2 | 12 + 2 | 905 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 906 |N| Latitude Degrees | Minutes | Seconds | 907 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 908 |E| Longitude Degrees | Minutes | Seconds | 909 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 910 | Altitude | 911 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 912 | AFI = 0 | AFI = 1 | 913 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 914 | IPv4 Address | 915 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 917 If a system does not recognized the Geo Coordinate LCAF Type that is 918 accompanying a locator address, an encoder can include the Geo 919 Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI 920 in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in 921 the list is encoded with a valid AFI value to identify the locator 922 address. 924 A LISP system is required to support the AFI List LCAF Type to use 925 this procedure. It would skip over 10 bytes of the Geo Coordinate 926 LCAF Type to get to the locator address encoding (an IPv4 locator 927 address). A LISP system that does support the Geo Coordinate LCAF 928 Type can support parsing the locator address within the Geo 929 Coordinate LCAF encoding or in the locator encoding that follows in 930 the AFI List LCAF. 932 5. Experimental LISP Canonical Address Applications 934 5.1. Convey Application Specific Data 936 When a locator-set needs to be conveyed based on the type of 937 application or the Per-Hop Behavior (PHB) of a packet, the 938 Application Data Type can be used. 940 Application Data LISP Canonical Address Format: 942 0 1 2 3 943 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 944 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 945 | AFI = 16387 | Rsvd1 | Flags | 946 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 947 | Type = 4 | Rsvd2 | 12 + n | 948 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 949 | IP TOS, IPv6 TC, or Flow Label | Protocol | 950 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 951 | Local Port (lower-range) | Local Port (upper-range) | 952 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 953 | Remote Port (lower-range) | Remote Port (upper-range) | 954 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 955 | AFI = x | Address ... | 956 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 958 Length value n: length in bytes of the AFI address that follows the 959 8-byte Application Data fields including the AFI field itself. 961 IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS 962 field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow 963 Label used in an IPv6 header. 965 Local Port/Remote Port Ranges: these fields are from the TCP, UDP, 966 or SCTP transport header. A range can be specified by using a 967 lower value and an upper value. When a single port is encoded, 968 the lower and upper value fields are the same. 970 AFI = x: x can be any AFI value from [AFI]. 972 The Application Data Canonical Address Type is used for an EID 973 encoding when an ITR wants a locator-set for a specific application. 974 When used for an RLOC encoding, the ETR is supplying a locator-set 975 for each specific application is has been configured to advertise. 977 Usage: This encoding can be used in EID records in Map-Requests, Map- 978 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 979 [LISP-DDT] is used as the mapping system mechanism, extended EIDs are 980 used in Map-Referral messages. This LCAF type is used as a lookup 981 key to the mapping system that can return a longest-match or exact- 982 match entry. 984 5.2. Generic Database Mapping Lookups 986 When the LISP Mapping Database system holds information accessed by a 987 generic formatted key (where the key is not the usual IPv4 or IPv6 988 address), an opaque key may be desirable. 990 Opaque Key LISP Canonical Address Format: 992 0 1 2 3 993 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 994 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 995 | AFI = 16387 | Rsvd1 | Flags | 996 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 997 | Type = 6 | Rsvd2 | 3 + n | 998 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 999 | Key Field Num | Key Wildcard Fields | Key . . . | 1000 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1001 | . . . Key | 1002 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1004 Length value n: length in bytes of the type's payload. The value n 1005 is the number of bytes that follow this Length field. 1007 Key Field Num: the number of fields (minus 1) the key can be broken 1008 up into. The width of the fields are fixed length. So for a key 1009 size of 8 bytes, with a Key Field Num of 4 allows 4 fields of 2 1010 bytes in length. Valid values for this field range from 0 to 15 1011 supporting a maximum of 16 field separations. 1013 Key Wildcard Fields: describes which fields in the key are not used 1014 as part of the key lookup. This wildcard encoding is a bitfield. 1015 Each bit is a don't-care bit for a corresponding field in the key. 1016 Bit 0 (the low-order bit) in this bitfield corresponds the first 1017 field, right-justified in the key, bit 1 the second field, and so 1018 on. When a bit is set in the bitfield it is a don't-care bit and 1019 should not be considered as part of the database lookup. When the 1020 entire 16-bits is set to 0, then all bits of the key are used for 1021 the database lookup. 1023 Key: the variable length key used to do a LISP Database Mapping 1024 lookup. The length of the key is the value n (shown above) minus 1025 3. 1027 Usage: This is an experimental type where the usage has not been 1028 defined yet. 1030 5.3. PETR Admission Control Functionality 1032 When a public PETR device wants to verify who is encapsulating to it, 1033 it can check for a specific nonce value in the LISP encapsulated 1034 packet. To convey the nonce to admitted ITRs or PITRs, this LCAF 1035 format is used in a Map-Register or Map-Reply locator-record. 1037 Nonce Locator Canonical Address Format: 1039 0 1 2 3 1040 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1041 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1042 | AFI = 16387 | Rsvd1 | Flags | 1043 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1044 | Type = 8 | Rsvd2 | 4 + n | 1045 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1046 | Reserved | Nonce | 1047 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1048 | AFI = x | Address ... | 1049 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1051 Length value n: length in bytes of the AFI address that follows the 1052 Nonce field including the AFI field itself. 1054 Reserved: must be set to zero and ignore on receipt. 1056 Nonce: this is a nonce value returned by an ETR in a Map-Reply 1057 locator-record to be used by an ITR or PITR when encapsulating to 1058 the locator address encoded in the AFI field of this LCAF type. 1060 AFI = x: x can be any AFI value from [AFI]. 1062 Usage: This is an experimental type where the usage has not been 1063 defined yet. 1065 5.4. Data Model Encoding 1067 This type allows a JSON data model to be encoded either as an EID or 1068 RLOC. 1070 JSON Data Model Type Address Format: 1072 0 1 2 3 1073 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1074 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1075 | AFI = 16387 | Rsvd1 | Flags | 1076 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1077 | Type = 14 | Rsvd2 |B| 2 + n | 1078 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1079 | JSON length | JSON binary/text encoding ... | 1080 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1081 | AFI = x | Optional Address ... | 1082 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1084 Length value n: length in bytes of fields that follow. 1086 Rsvd{1,2}: must be set to zero and ignore on receipt. 1088 B bit: indicates that the JSON field is binary encoded according to 1089 [JSON-BINARY] when the bit is set to 1. Otherwise the encoding is 1090 based on text encoding according to [RFC4627]. 1092 JSON length: length in octets of the following 'JSON binary/text 1093 encoding' field. 1095 JSON binary/text encoding field: a variable length field that 1096 contains either binary or text encodings. 1098 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 1099 own encoding of either a unicast or multicast locator address. 1100 All RTR/ETR entries for the same level should be combined together 1101 by a Map-Server to avoid searching through the entire multi-level 1102 list of locator entries in a Map-Reply message. 1104 Usage: This is an experimental type where the usage has not been 1105 defined yet. 1107 5.5. Encoding Key/Value Address Pairs 1109 The Key/Value pair is for example useful for attaching attributes to 1110 other elements of LISP packets, such as EIDs or RLOCs. When 1111 attaching attributes to EIDs or RLOCs, it's necessary to distinguish 1112 between the element that should be used as EID or RLOC, and hence as 1113 key for lookups, and additional attributes. This is especially the 1114 case when the difference cannot be determined from the types of the 1115 elements, such as when two IP addresses are being used. 1117 Key/Value Pair Address Format: 1119 0 1 2 3 1120 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1121 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1122 | AFI = 16387 | Rsvd1 | Flags | 1123 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1124 | Type = 15 | Rsvd2 | n | 1125 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1126 | AFI = x | Address as Key ... | 1127 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1128 | AFI = x | Address as Value ... | 1129 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1131 Length value n: length in bytes of fields that follow. 1133 Rsvd{1,2}: must be set to zero and ignore on receipt. 1135 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 1136 own encoding of either a unicast or multicast locator address. 1137 All RTR/ETR entries for the same level should be combined together 1138 by a Map-Server to avoid searching through the entire multi-level 1139 list of locator entries in a Map-Reply message. 1141 Address as Key: this AFI encoded address will be attached with the 1142 attributes encoded in "Address as Value" which follows this field. 1144 Address as Value: this AFI encoded address will be the attribute 1145 address that goes along with "Address as Key" which precedes this 1146 field. 1148 Usage: This is an experimental type where the usage has not been 1149 defined yet. 1151 5.6. Multiple Data-Planes 1153 Overlays are becoming popular in many parts of the network which have 1154 created an explosion of data-plane encapsulation headers. Since the 1155 LISP mapping system can hold many types of address formats, it can 1156 represent the encapsulation format supported by an RLOC as well. 1157 When an encapsulator receives a Map-Reply with an Encapsulation 1158 Format LCAF Type encoded in an RLOC-record, it can select an 1159 encapsulation format, that it can support, from any of the 1160 encapsulation protocols which have the bit set to 1 in this LCAF 1161 type. 1163 Encapsulation Format Address Format: 1165 0 1 2 3 1166 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1167 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1168 | AFI = 16387 | Rsvd1 | Flags | 1169 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1170 | Type = 16 | Rsvd2 | 4 + n | 1171 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1172 | Reserved-for-Future-Encapsulations |U|G|N|v|V|l|L| 1173 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1174 | AFI = x | Address ... | 1175 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1177 Rsvd1/Rsvd2: must be set to zero and ignored on receipt. 1179 Length value n: length in bytes of the AFI address that follows the 1180 next 32-bits including the AFI field itself. 1182 Reserved-for-Future-Encapsulations: must be set to zero and ignored 1183 on receipt. This field will get bits allocated to future 1184 encapsulations, as they are created. 1186 L: The RLOCs listed in the AFI encoded addresses in the next longword 1187 can accept layer3 LISP encapsulation using destination UDP port 1188 4341 [RFC6830]. 1190 l: The RLOCs listed in the AFI encoded addresses in the next longword 1191 can accept layer2 LISP encapsulation using destination UDP port 1192 8472 [L2-LISP]. 1194 V: The RLOCs listed in the AFI encoded addresses in the next longword 1195 can accept VXLAN encapsulation using destination UDP port 4789 1196 [RFC7348]. 1198 v: The RLOCs listed in the AFI encoded addresses in the next longword 1199 can accept VXLAN-GPE encapsulation using destination UDP port 4790 1200 [GPE]. 1202 N: The RLOCs listed in the AFI encoded addresses in the next longword 1203 can accept NV-GRE encapsulation using IPv4/ IPv6 protocol number 1204 47 [NVGRE]. 1206 G: The RLOCs listed in the AFI encoded addresses in the next longword 1207 can accept GENEVE encapsulation using destination UDP port 6081 1208 [GENEVE]. 1210 U: The RLOCs listed in the AFI encoded addresses in the next longword 1211 can accept GUE encapsulation using destination UDP port TBD [GUE]. 1213 Usage: This encoding can be used in RLOC records in Map-Requests, 1214 Map-Replies, Map-Registers, and Map-Notify messages. 1216 6. Security Considerations 1218 There are no security considerations for this specification. The 1219 security considerations are documented for the protocols that use 1220 LISP Canonical Addressing. Refer to the those relevant 1221 specifications. 1223 The use of the Geo-Coordinates LCAF Type may raise physical privacy 1224 issues. It can be up to the mapping system, based on policy 1225 parameters, when this LCAF type is returned to a Map-Requester. 1227 7. IANA Considerations 1229 This document defines a canonical address format encoding used in 1230 LISP control messages and in the encoding of lookup keys for the LISP 1231 Mapping Database System. Such address format is based on a fixed AFI 1232 (16387) and a LISP LCAF Type field. 1234 The LISP LCAF Type field is an 8-bit field specific to the LISP 1235 Canonical Address formatted encodings, for which IANA is to create 1236 and maintain a new registry (as outlined in [RFC5226]) entitled "LISP 1237 LCAF Type". Initial values for the LISP LCAF Type registry are given 1238 below. Future assignments are to be made through expert review with 1239 a specification required publication. Assignments consist of a LISP 1240 LCAF Type name and its associated value: 1242 +-------+------------------------------+------------+ 1243 | Value | LISP LCAF Type Name | Definition | 1244 +-------+------------------------------+------------+ 1245 | 0 | Null Body Type | Section 3 | 1246 | | | | 1247 | 1 | AFI List Type | Section 3 | 1248 | | | | 1249 | 2 | Instance ID Type | Section 3 | 1250 | | | | 1251 | 3 | AS Number Type | Section 3 | 1252 | | | | 1253 | 5 | Geo Coordinates Type | Section 3 | 1254 | | | | 1255 | 7 | NAT-Traversal Type | Section 3 | 1256 | | | | 1257 | 9 | Multicast Info Type | Section 3 | 1258 | | | | 1259 | 10 | Explicit Locator Path Type | Section 3 | 1260 | | | | 1261 | 11 | Security Key Type | Section 3 | 1262 | | | | 1263 | 12 | Source/Dest Key Type | Section 3 | 1264 | | | | 1265 | 13 | Replication List Entry Type | Section 3 | 1266 +-------+------------------------------+------------+ 1268 Table 1: LISP LCAF Type Initial Values 1270 8. References 1272 8.1. Normative References 1274 [RFC1700] Reynolds, J. and J. Postel, "Assigned Numbers", RFC 1700, 1275 DOI 10.17487/RFC1700, October 1994, 1276 . 1278 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G., 1279 and E. Lear, "Address Allocation for Private Internets", 1280 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996, 1281 . 1283 [RFC4627] Crockford, D., "The application/json Media Type for 1284 JavaScript Object Notation (JSON)", RFC 4627, 1285 DOI 10.17487/RFC4627, July 2006, 1286 . 1288 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an 1289 IANA Considerations Section in RFCs", BCP 26, RFC 5226, 1290 DOI 10.17487/RFC5226, May 2008, 1291 . 1293 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The 1294 Locator/ID Separation Protocol (LISP)", RFC 6830, 1295 DOI 10.17487/RFC6830, January 2013, 1296 . 1298 [RFC6836] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, 1299 "Locator/ID Separation Protocol Alternative Logical 1300 Topology (LISP+ALT)", RFC 6836, DOI 10.17487/RFC6836, 1301 January 2013, . 1303 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, 1304 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual 1305 eXtensible Local Area Network (VXLAN): A Framework for 1306 Overlaying Virtualized Layer 2 Networks over Layer 3 1307 Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014, 1308 . 1310 8.2. Informative References 1312 [AFI] IANA, , "Address Family Identifier (AFIs)", ADDRESS FAMILY 1313 NUMBERS http://www.iana.org/numbers.html, Febuary 2007. 1315 [GENEVE] Gross, J., Sridhar, T., Garg, P., Wright, C., Ganga, I., 1316 Agarwal, P., Duda, K., Dutt, D., and J. Hudson, "Geneve: 1317 Generic Network Virtualization Encapsulation", draft- 1318 gross-geneve-02 (work in progress). 1320 [GPE] Quinn, P., Agarwal, P., Fernando, R., Kreeger, L., 1321 Kreeger, L., Lewis, D., Maino, F., Smith, M., Yadav, N., 1322 Yong, L., Xu, X., Elzur, U., and P. Garg, "Generic 1323 Protocol Extension for VXLAN", draft-quinn-vxlan-gpe- 1324 03.txt (work in progress). 1326 [GUE] Herbert, T. and L. Yong, "Generic UDP Encapsulation", 1327 draft-herbert-gue-02.txt (work in progress). 1329 [JSON-BINARY] 1330 "Universal Binary JSON Specification", 1331 URL http://ubjson.org. 1333 [L2-LISP] Smith, M., Dutt, D., Farinacci, D., and F. Maino, "Layer 2 1334 (L2) LISP Encapsulation Format", draft-smith-lisp- 1335 layer2-03.txt (work in progress). 1337 [LISP-DDT] 1338 Fuller, V., Lewis, D., and V. Ermagan, "LISP Delegated 1339 Database Tree", draft-ietf-lisp-ddt-01.txt (work in 1340 progress). 1342 [LISP-NATT] 1343 Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, 1344 F., and C. White, "NAT traversal for LISP", draft-ermagan- 1345 lisp-nat-traversal-10.txt (work in progress). 1347 [LISP-RE] Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J., 1348 Maino, F., and D. Farinacci, "LISP Replication 1349 Engineering", draft-coras-lisp-re-08.txt (work in 1350 progress). 1352 [LISP-TE] Farinacci, D., Lahiri, P., and M. Kowal, "LISP Traffic 1353 Engineering Use-Cases", draft-farinacci-lisp-te-10.txt 1354 (work in progress). 1356 [NVGRE] Sridharan, M., Greenberg, A., Wang, Y., Garg, P., 1357 Venkataramiah, N., Duda, K., Ganga, I., Lin, G., Pearson, 1358 M., Thaler, P., and C. Tumuluri, "NVGRE: Network 1359 Virtualization using Generic Routing Encapsulation", 1360 draft-sridharan-virtualization-nvgre-06.txt (work in 1361 progress). 1363 [WGS-84] Geodesy and Geophysics Department, DoD., "World Geodetic 1364 System 1984", NIMA TR8350.2, January 2000, . 1367 Appendix A. Acknowledgments 1369 The authors would like to thank Vince Fuller, Gregg Schudel, Jesper 1370 Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for 1371 their technical and editorial commentary. 1373 The authors would like to thank Victor Moreno for discussions that 1374 lead to the definition of the Multicast Info LCAF type. 1376 The authors would like to thank Parantap Lahiri and Michael Kowal for 1377 discussions that lead to the definition of the Explicit Locator Path 1378 (ELP) LCAF type. 1380 The authors would like to thank Fabio Maino and Vina Ermagan for 1381 discussions that lead to the definition of the Security Key LCAF 1382 type. 1384 The authors would like to thank Albert Cabellos-Aparicio and Florin 1385 Coras for discussions that lead to the definition of the Replication 1386 List Entry LCAF type. 1388 Thanks goes to Michiel Blokzijl and Alberto Rodriguez-Natal for 1389 suggesting new LCAF types. 1391 Thanks also goes to Terry Manderson for assistance obtaining a LISP 1392 AFI value from IANA. 1394 Appendix B. Document Change Log 1396 B.1. Changes to draft-ietf-lisp-lcaf-12.txt 1398 o Submitted March 2016. 1400 o Updated references and document timer. 1402 o Removed the R, J, and L bits from the Multicast Info Type LCAF 1403 since working group decided to not go forward with draft- 1404 farinacci-lisp-mr-signaling-03.txt in favor of draft- ietf-lisp- 1405 signal-free-00.txt. 1407 B.2. Changes to draft-ietf-lisp-lcaf-11.txt 1409 o Submitted September 2015. 1411 o Reflecting comments from Prague LISP working group. 1413 o Readying document for a LISP LCAF registry, RFC publication, and 1414 for new use-cases that will be defined in the new charter. 1416 B.3. Changes to draft-ietf-lisp-lcaf-10.txt 1418 o Submitted June 2015. 1420 o Fix coauthor Job's contact information. 1422 B.4. Changes to draft-ietf-lisp-lcaf-09.txt 1424 o Submitted June 2015. 1426 o Fix IANA Considerations section to request a registry to allocate 1427 and track LCAF Type values. 1429 B.5. Changes to draft-ietf-lisp-lcaf-08.txt 1431 o Submitted April 2015. 1433 o Comment from Florin. The Application Data Type length field has a 1434 typo. The field should be labeled "12 + n" and not "8 + n". 1436 o Fix length fields in the sections titled "Using Recursive LISP 1437 Canonical Address Encodings", "Generic Database Mapping Lookups", 1438 and "Data Model Encoding". 1440 B.6. Changes to draft-ietf-lisp-lcaf-07.txt 1442 o Submitted December 2014. 1444 o Add a new LCAF Type called "Encapsulation Format" so decapsulating 1445 xTRs can inform encapsulating xTRs what data-plane encapsulations 1446 they support. 1448 B.7. Changes to draft-ietf-lisp-lcaf-06.txt 1450 o Submitted October 2014. 1452 o Make it clear how sorted RLOC records are done when LCAFs are used 1453 as the RLOC record. 1455 B.8. Changes to draft-ietf-lisp-lcaf-05.txt 1457 o Submitted May 2014. 1459 o Add a length field of the JSON payload that can be used for either 1460 binary or text encoding of JSON data. 1462 B.9. Changes to draft-ietf-lisp-lcaf-04.txt 1464 o Submitted January 2014. 1466 o Agreement among ELP implementors to have the AFI 16-bit field 1467 adjacent to the address. This will make the encoding consistent 1468 with all other LCAF type address encodings. 1470 B.10. Changes to draft-ietf-lisp-lcaf-03.txt 1472 o Submitted September 2013. 1474 o Updated references and author's affilations. 1476 o Added Instance-ID to the Multicast Info Type so there is relative 1477 ease in parsing (S,G) entries within a VPN. 1479 o Add port range encodings to the Application Data LCAF Type. 1481 o Add a new JSON LCAF Type. 1483 o Add Address Key/Value LCAF Type to allow attributes to be attached 1484 to an address. 1486 B.11. Changes to draft-ietf-lisp-lcaf-02.txt 1488 o Submitted March 2013. 1490 o Added new LCAF Type "Replication List Entry" to support LISP 1491 replication engineering use-cases. 1493 o Changed references to new LISP RFCs. 1495 B.12. Changes to draft-ietf-lisp-lcaf-01.txt 1497 o Submitted January 2013. 1499 o Change longitude range from 0-90 to 0-180 in section 4.4. 1501 o Added reference to WGS-84 in section 4.4. 1503 B.13. Changes to draft-ietf-lisp-lcaf-00.txt 1505 o Posted first working group draft August 2012. 1507 o This draft was renamed from draft-farinacci-lisp-lcaf-10.txt. 1509 Authors' Addresses 1511 Dino Farinacci 1512 lispers.net 1513 San Jose, CA 1514 USA 1516 Email: farinacci@gmail.com 1517 Dave Meyer 1518 Brocade 1519 San Jose, CA 1520 USA 1522 Email: dmm@1-4-5.net 1524 Job Snijders 1525 NTT Communications 1526 Theodorus Majofskistraat 100 1527 Amsterdam 1065 SZ 1528 NL 1530 Email: job@ntt.net