idnits 2.17.1 draft-ietf-lisp-lcaf-13.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** The document seems to lack a both a reference to RFC 2119 and the recommended RFC 2119 boilerplate, even if it appears to use RFC 2119 keywords. RFC 2119 keyword, line 210: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 252: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 317: '... MUST be unique....' Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (May 3, 2016) is 2915 days in the past. Is this intentional? Checking references for intended status: Experimental ---------------------------------------------------------------------------- ** Obsolete normative reference: RFC 1700 (Obsoleted by RFC 3232) ** Obsolete normative reference: RFC 4627 (Obsoleted by RFC 7158, RFC 7159) ** Obsolete normative reference: RFC 5226 (Obsoleted by RFC 8126) ** Obsolete normative reference: RFC 6830 (Obsoleted by RFC 9300, RFC 9301) == Outdated reference: A later version (-04) exists of draft-quinn-vxlan-gpe-03 == Outdated reference: A later version (-03) exists of draft-herbert-gue-02 == Outdated reference: A later version (-09) exists of draft-ietf-lisp-ddt-01 == Outdated reference: A later version (-19) exists of draft-ermagan-lisp-nat-traversal-10 == Outdated reference: A later version (-12) exists of draft-farinacci-lisp-te-10 == Outdated reference: A later version (-08) exists of draft-sridharan-virtualization-nvgre-06 Summary: 5 errors (**), 0 flaws (~~), 7 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group D. Farinacci 3 Internet-Draft lispers.net 4 Intended status: Experimental D. Meyer 5 Expires: November 4, 2016 Brocade 6 J. Snijders 7 NTT Communications 8 May 3, 2016 10 LISP Canonical Address Format (LCAF) 11 draft-ietf-lisp-lcaf-13 13 Abstract 15 This draft defines a canonical address format encoding used in LISP 16 control messages and in the encoding of lookup keys for the LISP 17 Mapping Database System. 19 Status of This Memo 21 This Internet-Draft is submitted in full conformance with the 22 provisions of BCP 78 and BCP 79. 24 Internet-Drafts are working documents of the Internet Engineering 25 Task Force (IETF). Note that other groups may also distribute 26 working documents as Internet-Drafts. The list of current Internet- 27 Drafts is at http://datatracker.ietf.org/drafts/current/. 29 Internet-Drafts are draft documents valid for a maximum of six months 30 and may be updated, replaced, or obsoleted by other documents at any 31 time. It is inappropriate to use Internet-Drafts as reference 32 material or to cite them other than as "work in progress." 34 This Internet-Draft will expire on November 4, 2016. 36 Copyright Notice 38 Copyright (c) 2016 IETF Trust and the persons identified as the 39 document authors. All rights reserved. 41 This document is subject to BCP 78 and the IETF Trust's Legal 42 Provisions Relating to IETF Documents 43 (http://trustee.ietf.org/license-info) in effect on the date of 44 publication of this document. Please review these documents 45 carefully, as they describe your rights and restrictions with respect 46 to this document. Code Components extracted from this document must 47 include Simplified BSD License text as described in Section 4.e of 48 the Trust Legal Provisions and are provided without warranty as 49 described in the Simplified BSD License. 51 Table of Contents 53 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 54 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 55 3. LISP Canonical Address Format Encodings . . . . . . . . . . . 4 56 4. LISP Canonical Address Applications . . . . . . . . . . . . . 7 57 4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 7 58 4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 8 59 4.3. Assigning Geo Coordinates to Locator Addresses . . . . . 9 60 4.4. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 12 61 4.5. Multicast Group Membership Information . . . . . . . . . 14 62 4.6. Traffic Engineering using Re-encapsulating Tunnels . . . 15 63 4.7. Storing Security Data in the Mapping Database . . . . . . 17 64 4.8. Source/Destination 2-Tuple Lookups . . . . . . . . . . . 18 65 4.9. Replication List Entries for Multicast Forwarding . . . . 20 66 4.10. Applications for AFI List Type . . . . . . . . . . . . . 21 67 4.10.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . 21 68 4.10.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 22 69 4.10.3. ASCII Names in the Mapping Database . . . . . . . . 23 70 4.10.4. Using Recursive LISP Canonical Address Encodings . . 24 71 4.10.5. Compatibility Mode Use Case . . . . . . . . . . . . 25 72 5. Experimental LISP Canonical Address Applications . . . . . . 26 73 5.1. Convey Application Specific Data . . . . . . . . . . . . 26 74 5.2. Generic Database Mapping Lookups . . . . . . . . . . . . 27 75 5.3. PETR Admission Control Functionality . . . . . . . . . . 29 76 5.4. Data Model Encoding . . . . . . . . . . . . . . . . . . . 30 77 5.5. Encoding Key/Value Address Pairs . . . . . . . . . . . . 31 78 5.6. Multiple Data-Planes . . . . . . . . . . . . . . . . . . 32 79 6. Security Considerations . . . . . . . . . . . . . . . . . . . 34 80 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 34 81 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 35 82 8.1. Normative References . . . . . . . . . . . . . . . . . . 35 83 8.2. Informative References . . . . . . . . . . . . . . . . . 36 84 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . 37 85 Appendix B. Document Change Log . . . . . . . . . . . . . . . . 38 86 B.1. Changes to draft-ietf-lisp-lcaf-13.txt . . . . . . . . . 38 87 B.2. Changes to draft-ietf-lisp-lcaf-12.txt . . . . . . . . . 38 88 B.3. Changes to draft-ietf-lisp-lcaf-11.txt . . . . . . . . . 38 89 B.4. Changes to draft-ietf-lisp-lcaf-10.txt . . . . . . . . . 38 90 B.5. Changes to draft-ietf-lisp-lcaf-09.txt . . . . . . . . . 39 91 B.6. Changes to draft-ietf-lisp-lcaf-08.txt . . . . . . . . . 39 92 B.7. Changes to draft-ietf-lisp-lcaf-07.txt . . . . . . . . . 39 93 B.8. Changes to draft-ietf-lisp-lcaf-06.txt . . . . . . . . . 39 94 B.9. Changes to draft-ietf-lisp-lcaf-05.txt . . . . . . . . . 39 95 B.10. Changes to draft-ietf-lisp-lcaf-04.txt . . . . . . . . . 39 96 B.11. Changes to draft-ietf-lisp-lcaf-03.txt . . . . . . . . . 40 97 B.12. Changes to draft-ietf-lisp-lcaf-02.txt . . . . . . . . . 40 98 B.13. Changes to draft-ietf-lisp-lcaf-01.txt . . . . . . . . . 40 99 B.14. Changes to draft-ietf-lisp-lcaf-00.txt . . . . . . . . . 40 100 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 40 102 1. Introduction 104 The LISP architecture and protocols [RFC6830] introduces two new 105 numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators 106 (RLOCs) which are intended to replace most use of IP addresses on the 107 Internet. To provide flexibility for current and future 108 applications, these values can be encoded in LISP control messages 109 using a general syntax that includes Address Family Identifier (AFI), 110 length, and value fields. 112 Currently defined AFIs include IPv4 and IPv6 addresses, which are 113 formatted according to code-points assigned in [AFI] as follows: 115 IPv4 Encoded Address: 117 0 1 2 3 118 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 119 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 120 | AFI = 1 | IPv4 Address ... | 121 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 122 | ... IPv4 Address | 123 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 125 IPv6 Encoded Address: 127 0 1 2 3 128 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 129 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 130 | AFI = 2 | IPv6 Address ... | 131 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 132 | ... IPv6 Address ... | 133 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 134 | ... IPv6 Address ... | 135 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 136 | ... IPv6 Address ... | 137 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 138 | ... IPv6 Address | 139 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 141 This document describes the currently-defined AFIs the LISP protocol 142 uses along with their encodings and introduces the LISP Canonical 143 Address Format (LCAF) that can be used to define the LISP-specific 144 encodings for arbitrary AFI values. 146 2. Definition of Terms 148 Address Family Identifier (AFI): a term used to describe an address 149 encoding in a packet. An address family currently defined for 150 IPv4 or IPv6 addresses. See [AFI] and [RFC1700] for details. The 151 reserved AFI value of 0 is used in this specification to indicate 152 an unspecified encoded address where the the length of the address 153 is 0 bytes following the 16-bit AFI value of 0. 155 Unspecified Address Format: 157 0 1 2 3 158 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 159 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 160 | AFI = 0 | | 161 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 163 Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value 164 used in the source and destination address fields of the first 165 (most inner) LISP header of a packet. The host obtains a 166 destination EID the same way it obtains a destination address 167 today, for example through a DNS lookup or SIP exchange. The 168 source EID is obtained via existing mechanisms used to set a 169 host's "local" IP address. An EID is allocated to a host from an 170 EID-prefix block associated with the site where the host is 171 located. An EID can be used by a host to refer to other hosts. 173 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress 174 tunnel router (ETR). It is the output of a EID-to-RLOC mapping 175 lookup. An EID maps to one or more RLOCs. Typically, RLOCs are 176 numbered from topologically aggregatable blocks that are assigned 177 to a site at each point to which it attaches to the global 178 Internet; where the topology is defined by the connectivity of 179 provider networks, RLOCs can be thought of as PA addresses. 180 Multiple RLOCs can be assigned to the same ETR device or to 181 multiple ETR devices at a site. 183 3. LISP Canonical Address Format Encodings 185 IANA has assigned AFI value 16387 (0x4003) to the LISP architecture 186 and protocols. This specification defines the encoding format of the 187 LISP Canonical Address (LCA). This section defines both experimental 188 types as well as types that reside in the registry that have 189 corresponding working group drafts. See IANA Considerations section 190 for a list of types that will reside in the LISP-LCAF Registry. 192 The Address Family AFI definitions from [AFI] only allocate code- 193 points for the AFI value itself. The length of the address or entity 194 that follows is not defined and is implied based on conventional 195 experience. Where the LISP protocol uses LISP Canonical Addresses 196 specifically, the address length definitions will be in this 197 specification and take precedent over any other specification. 199 The first 6 bytes of an LISP Canonical Address are followed by a 200 variable length of fields: 202 0 1 2 3 203 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 204 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 205 | AFI = 16387 | Rsvd1 | Flags | 206 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 207 | Type | Rsvd2 | Length | 208 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 210 Rsvd1: this 8-bit field is reserved for future use and MUST be 211 transmitted as 0 and ignored on receipt. 213 Flags: this 8-bit field is for future definition and use. For now, 214 set to zero on transmission and ignored on receipt. 216 Type: this 8-bit field is specific to the LISP Canonical Address 217 formatted encodings, values are: 219 Type 0: Null Body Type 221 Type 1: AFI List Type 223 Type 2: Instance ID Type 225 Type 3: AS Number Type 227 Type 4: Application Data Type 229 Type 5: Geo Coordinates Type 231 Type 6: Opaque Key Type 233 Type 7: NAT-Traversal Type 235 Type 8: Nonce Locator Type 237 Type 9: Multicast Info Type 239 Type 10: Explicit Locator Path Type 240 Type 11: Security Key Type 242 Type 12: Source/Dest Key Type 244 Type 13: Replication List Entry Type 246 Type 14: JSON Data Model Type 248 Type 15: Key/Value Address Pair Type 250 Type 16: Encapsulation Format Type 252 Rsvd2: this 8-bit field is reserved for future use and MUST be 253 transmitted as 0 and ignored on receipt. 255 Length: this 16-bit field is in units of bytes and covers all of the 256 LISP Canonical Address payload, starting and including the byte 257 after the Length field. So any LCAF encoded address will have a 258 minimum length of 8 bytes when the Length field is 0. The 8 bytes 259 include the AFI, Flags, Type, Reserved, and Length fields. When 260 the AFI is not next to encoded address in a control message, then 261 the encoded address will have a minimum length of 6 bytes when the 262 Length field is 0. The 6 bytes include the Flags, Type, Reserved, 263 and Length fields. 265 [RFC6830] states RLOC records are sorted when encoded in control 266 messages so the locator-set has consistent order across all xTRs for 267 a given EID. The sort order is based on sort-key {afi, RLOC- 268 address}. When an RLOC is LCAF encoded, the sort-key is {afi, LCAF- 269 Type, payload}. Therefore, when a locator-set has a mix of AFI 270 records and LCAF records, all LCAF records will appear after all the 271 AFI records. 273 4. LISP Canonical Address Applications 275 4.1. Segmentation using LISP 277 When multiple organizations inside of a LISP site are using private 278 addresses [RFC1918] as EID-prefixes, their address spaces must remain 279 segregated due to possible address duplication. An Instance ID in 280 the address encoding can aid in making the entire AFI based address 281 unique. 283 Another use for the Instance ID LISP Canonical Address Format is when 284 creating multiple segmented VPNs inside of a LISP site where keeping 285 EID-prefix based subnets is desirable. 287 Instance ID LISP Canonical Address Format: 289 0 1 2 3 290 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 291 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 292 | AFI = 16387 | Rsvd1 | Flags | 293 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 294 | Type = 2 | IID mask-len | 4 + n | 295 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 296 | Instance ID | 297 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 298 | AFI = x | Address ... | 299 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 301 IID mask-len: if the AFI is set to 0, then this format is not 302 encoding an extended EID-prefix but rather an instance-ID range 303 where the 'IID mask-len' indicates the number of high-order bits 304 used in the Instance ID field for the range. 306 Length value n: length in bytes of the AFI address that follows the 307 Instance ID field including the AFI field itself. 309 Instance ID: the low-order 24-bits that can go into a LISP data 310 header when the I-bit is set. See [RFC6830] for details. The 311 reason for the length difference is so the maximum number of 312 instances supported per mapping system is 2^32 while conserving 313 space in the LISP data header. This comes at the expense of 314 limiting the maximum number of instances per xTR to 2^24. If an 315 xTR is configured with multiple instance-IDs where the value in 316 the high-order 8 bits are the same, then the low-order 24 bits 317 MUST be unique. 319 AFI = x: x can be any AFI value from [AFI]. 321 This LISP Canonical Address Type can be used to encode either EID or 322 RLOC addresses. 324 Usage: When used as a lookup key, the EID is regarded as a extended- 325 EID in the mapping system. And this encoding is used in EID records 326 in Map-Requests, Map-Replies, Map-Registers, and Map-Notify messages. 327 When LISP-DDT [LISP-DDT] is used as the mapping system mechanism, 328 extended EIDs are used in Map-Referral messages. 330 4.2. Carrying AS Numbers in the Mapping Database 332 When an AS number is stored in the LISP Mapping Database System for 333 either policy or documentation reasons, it can be encoded in a LISP 334 Canonical Address. 336 AS Number LISP Canonical Address Format: 338 0 1 2 3 339 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 340 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 341 | AFI = 16387 | Rsvd1 | Flags | 342 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 343 | Type = 3 | Rsvd2 | 4 + n | 344 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 345 | AS Number | 346 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 347 | AFI = x | Address ... | 348 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 350 Length value n: length in bytes of the AFI address that follows the 351 AS Number field including the AFI field itself. 353 AS Number: the 32-bit AS number of the autonomous system that has 354 been assigned either the EID or RLOC that follows. 356 AFI = x: x can be any AFI value from [AFI]. 358 The AS Number Canonical Address Type can be used to encode either EID 359 or RLOC addresses. The former is used to describe the LISP-ALT AS 360 number the EID-prefix for the site is being carried for. The latter 361 is used to describe the AS that is carrying RLOC based prefixes in 362 the underlying routing system. 364 Usage: This encoding can be used in EID or RLOC records in Map- 365 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 366 LISP-DDT [LISP-DDT] is used as the mapping system mechanism, extended 367 EIDs are used in Map-Referral messages. 369 4.3. Assigning Geo Coordinates to Locator Addresses 371 If an ETR desires to send a Map-Reply describing the Geo Coordinates 372 for each locator in its locator-set, it can use the Geo Coordinate 373 Type to convey physical location information. 375 Coordinates are specified using the WGS-84 (World Geodetic System) 376 reference coordinate system [WGS-84]. 378 Geo Coordinate LISP Canonical Address Format: 380 0 1 2 3 381 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 382 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 383 | AFI = 16387 | Rsvd1 | Flags | 384 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 385 | Type = 5 | Rsvd2 | 12 + n | 386 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 387 |N| Latitude Degrees | Minutes | Seconds | 388 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 389 |E| Longitude Degrees | Minutes | Seconds | 390 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 391 | Altitude | 392 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 393 | AFI = x | Address ... | 394 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 396 Length value n: length in bytes of the AFI address that follows the 397 8-byte Longitude and Latitude fields including the AFI field 398 itself. 400 N: When set to 1 means North, otherwise South. 402 Latitude Degrees: Valid values range from 0 to 90 degrees above or 403 below the equator (northern or southern hemisphere, respectively). 405 Latitude Minutes: Valid values range from 0 to 59. 407 Latitude Seconds: Valid values range from 0 to 59. 409 E: When set to 1 means East, otherwise West. 411 Longitude Degrees: Value values are from 0 to 180 degrees right or 412 left of the Prime Meridian. 414 Longitude Minutes: Valid values range from 0 to 59. 416 Longitude Seconds: Valid values range from 0 to 59. 418 Altitude: Height relative to sea level in meters. This is a signed 419 integer meaning that the altitude could be below sea level. A 420 value of 0x7fffffff indicates no Altitude value is encoded. 422 AFI = x: x can be any AFI value from [AFI]. 424 The Geo Coordinates Canonical Address Type can be used to encode 425 either EID or RLOC addresses. When used for EID encodings, you can 426 determine the physical location of an EID along with the topological 427 location by observing the locator-set. 429 Usage: This encoding can be used in EID or RLOC records in Map- 430 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 431 LISP-DDT [LISP-DDT] is used as the mapping system mechanism, extended 432 EIDs are used in Map-Referral messages. 434 4.4. NAT Traversal Scenarios 436 When a LISP system is conveying global address and mapped port 437 information when traversing through a NAT device, the NAT-Traversal 438 LCAF Type is used. See [LISP-NATT] for details. 440 NAT-Traversal Canonical Address Format: 442 0 1 2 3 443 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 444 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 445 | AFI = 16387 | Rsvd1 | Flags | 446 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 447 | Type = 7 | Rsvd2 | 4 + n | 448 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 449 | MS UDP Port Number | ETR UDP Port Number | 450 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 451 | AFI = x | Global ETR RLOC Address ... | 452 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 453 | AFI = x | MS RLOC Address ... | 454 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 455 | AFI = x | Private ETR RLOC Address ... | 456 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 457 | AFI = x | RTR RLOC Address 1 ... | 458 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 459 | AFI = x | RTR RLOC Address k ... | 460 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 462 Length value n: length in bytes of the AFI addresses that follows 463 the UDP Port Number field including the AFI fields themselves. 465 MS UDP Port Number: this is the UDP port number of the Map-Server 466 and is set to 4342. 468 ETR UDP Port Number: this is the port number returned to a LISP 469 system which was copied from the source port from a packet that 470 has flowed through a NAT device. 472 AFI = x: x can be any AFI value from [AFI]. 474 Global ETR RLOC Address: this is an address known to be globally 475 unique built by NAT-traversal functionality in a LISP router. 477 MS RLOC Address: this is the address of the Map-Server used in the 478 destination RLOC of a packet that has flowed through a NAT device. 480 Private ETR RLOC Address: this is an address known to be a private 481 address inserted in this LCAF format by a LISP router that resides 482 on the private side of a NAT device. 484 RTR RLOC Address: this is an encapsulation address used by an ITR or 485 PITR which resides behind a NAT device. This address is known to 486 have state in a NAT device so packets can flow from it to the LISP 487 ETR behind the NAT. There can be one or more NTR addresses 488 supplied in these set of fields. The number of NTRs encoded is 489 determined by the LCAF length field. When there are no NTRs 490 supplied, the NTR fields can be omitted and reflected by the LCAF 491 length field or an AFI of 0 can be used to indicate zero NTRs 492 encoded. 494 Usage: This encoding can be used in Info-Request and Info-Reply 495 messages. The mapping system does not store this information. The 496 information is used by an xTR and Map-Server to convey private and 497 public address information when traversing NAT and firewall devices. 499 4.5. Multicast Group Membership Information 501 Multicast group information can be published in the mapping database 502 so a lookup on an EID based group address can return a replication 503 list of group addresses or a unicast addresses for single replication 504 or multiple head-end replications. The intent of this type of 505 unicast replication is to deliver packets to multiple ETRs at 506 receiver LISP multicast sites. The locator-set encoding for this EID 507 record type can be a list of ETRs when they each register with "Merge 508 Semantics". The encoding can be a typical AFI encoded locator 509 address. When an RTR list is being registered (with multiple levels 510 according to [LISP-RE]), the Replication List Entry LCAF type is used 511 for locator encoding. 513 This LCAF encoding can be used to send broadcast packets to all 514 members of a subnet when each EIDs are away from their home subnet 515 location. 517 Multicast Info Canonical Address Format: 519 0 1 2 3 520 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 521 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 522 | AFI = 16387 | Rsvd1 | Flags | 523 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 524 | Type = 9 | Rsvd2 | 8 + n | 525 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 526 | Instance-ID | 527 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 528 | Reserved | Source MaskLen| Group MaskLen | 529 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 530 | AFI = x | Source/Subnet Address ... | 531 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 532 | AFI = x | Group Address ... | 533 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 535 Length value n: length in bytes of fields that follow. 537 Reserved: must be set to zero and ignore on receipt. 539 Instance ID: the low-order 24-bits that can go into a LISP data 540 header when the I-bit is set. See [RFC6830] for details. The use 541 of the Instance-ID in this LCAF type is to associate a multicast 542 forwarding entry for a given VPN. The instance-ID describes the 543 VPN and is registered to the mapping database system as a 3-tuple 544 of (Instance-ID, S-prefix, G-prefix). 546 Source MaskLen: the mask length of the source prefix that follows. 548 Group MaskLen: the mask length of the group prefix that follows. 550 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 551 its own encoding of a multicast address, this field must be either 552 a group address or a broadcast address. 554 Usage: This encoding can be used in EID records in Map-Requests, Map- 555 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 556 [LISP-DDT] is used as the mapping system mechanism, extended EIDs are 557 used in Map-Referral messages. 559 4.6. Traffic Engineering using Re-encapsulating Tunnels 561 For a given EID lookup into the mapping database, this LCAF format 562 can be returned to provide a list of locators in an explicit re- 563 encapsulation path. See [LISP-TE] for details. 565 Explicit Locator Path (ELP) Canonical Address Format: 567 0 1 2 3 568 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 569 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 570 | AFI = 16387 | Rsvd1 | Flags | 571 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 572 | Type = 10 | Rsvd2 | n | 573 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 574 | Rsvd3 |L|P|S| AFI = x | 575 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 576 | Reencap Hop 1 ... | 577 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 578 | Rsvd3 |L|P|S| AFI = x | 579 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 580 | Reencap Hop k ... | 581 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 583 Length value n: length in bytes of fields that follow. 585 Lookup bit (L): this is the Lookup bit used to indicate to the user 586 of the ELP to not use this address for encapsulation but to look 587 it up in the mapping database system to obtain an encapsulating 588 RLOC address. 590 RLOC-Probe bit (P): this is the RLOC-probe bit which means the 591 Reencap Hop allows RLOC-probe messages to be sent to it. When the 592 R-bit is set to 0, RLOC-probes must not be sent. When a Reencap 593 Hop is an anycast address then multiple physical Reencap Hops are 594 using the same RLOC address. In this case, RLOC-probes are not 595 needed because when the closest RLOC address is not reachable 596 another RLOC address can reachable. 598 Strict bit (S): this the strict bit which means the associated 599 Rencap Hop is required to be used. If this bit is 0, the 600 reencapsulator can skip this Reencap Hop and go to the next one in 601 the list. 603 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 604 its own encoding of a multicast address, this field must be either 605 a group address or a broadcast address. 607 Usage: This encoding can be used in RLOC records in Map-Requests, 608 Map-Replies, Map-Registers, and Map-Notify messages. This encoding 609 not need to be understood by the mapping system for mapping database 610 lookups since this LCAF type is not a lookup key. 612 4.7. Storing Security Data in the Mapping Database 614 When a locator in a locator-set has a security key associated with 615 it, this LCAF format will be used to encode key material. See 616 [LISP-DDT] for details. 618 Security Key Canonical Address Format: 620 0 1 2 3 621 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 622 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 623 | AFI = 16387 | Rsvd1 | Flags | 624 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 625 | Type = 11 | Rsvd2 | 6 + n | 626 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 627 | Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R| 628 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 629 | Key Length | Key Material ... | 630 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 631 | ... Key Material | 632 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 633 | AFI = x | Locator Address ... | 634 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 636 Length value n: length in bytes of fields that start with the Key 637 Material field. 639 Key Count: the Key Count field declares the number of Key sections 640 included in this LCAF. 642 Key Algorithm: the Algorithm field identifies the key's 643 cryptographic algorithm and specifies the format of the Public Key 644 field. 646 R bit: this is the revoke bit and, if set, it specifies that this 647 Key is being Revoked. 649 Key Length: this field determines the length in bytes of the Key 650 Material field. 652 Key Material: the Key Material field stores the key material. The 653 format of the key material stored depends on the Key Algorithm 654 field. 656 AFI = x: x can be any AFI value from [AFI].This is the locator 657 address that owns the encoded security key. 659 Usage: This encoding can be used in EID or RLOC records in Map- 660 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 661 LISP-DDT [LISP-DDT] is used as the mapping system mechanism, extended 662 EIDs are used in Map-Referral messages. 664 4.8. Source/Destination 2-Tuple Lookups 666 When both a source and destination address of a flow needs 667 consideration for different locator-sets, this 2-tuple key is used in 668 EID fields in LISP control messages. When the Source/Dest key is 669 registered to the mapping database, it can be encoded as a source- 670 prefix and destination-prefix. When the Source/Dest is used as a key 671 for a mapping database lookup the source and destination come from a 672 data packet. 674 Source/Dest Key Canonical Address Format: 676 0 1 2 3 677 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 678 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 679 | AFI = 16387 | Rsvd1 | Flags | 680 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 681 | Type = 12 | Rsvd2 | 4 + n | 682 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 683 | Reserved | Source-ML | Dest-ML | 684 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 685 | AFI = x | Source-Prefix ... | 686 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 687 | AFI = x | Destination-Prefix ... | 688 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 690 Length value n: length in bytes of fields that follow. 692 Reserved: must be set to zero and ignore on receipt. 694 Source-ML: the mask length of the source prefix that follows. 696 Dest-ML: the mask length of the destination prefix that follows. 698 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 699 its own encoding of a multicast address, this field must be either 700 a group address or a broadcast address. 702 Refer to [LISP-TE] for usage details. 704 Usage: This encoding can be used in EID records in Map-Requests, Map- 705 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 706 [LISP-DDT] is used as the mapping system mechanism, extended EIDs are 707 used in Map-Referral messages. 709 4.9. Replication List Entries for Multicast Forwarding 711 The Replication List Entry LCAF type is an encoding for a locator 712 being used for unicast replication according to the specification in 713 [LISP-RE]. This locator encoding is pointed to by a Multicast Info 714 LCAF Type and is registered by Re-encapsulating Tunnel Routers (RTRs) 715 that are participating in an overlay distribution tree. Each RTR 716 will register its locator address and its configured level in the 717 distribution tree. 719 Replication List Entry Address Format: 721 0 1 2 3 722 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 723 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 724 | AFI = 16387 | Rsvd1 | Flags | 725 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 726 | Type = 13 | Rsvd2 | 4 + n | 727 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 728 | Rsvd3 | Rsvd4 | Level Value | 729 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 730 | AFI = x | RTR/ETR #1 ... | 731 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 732 | Rsvd3 | Rsvd4 | Level Value | 733 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 734 | AFI = x | RTR/ETR #n ... | 735 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 737 Length value n: length in bytes of fields that follow. 739 Rsvd{1,2,3,4}: must be set to zero and ignore on receipt. 741 Level Value: this value is associated with the level within the 742 overlay distribution tree hierarchy where the RTR resides. The 743 level numbers are ordered from lowest value being close to the ITR 744 (meaning that ITRs replicate to level-0 RTRs) and higher levels 745 are further downstream on the distribution tree closer to ETRs of 746 multicast receiver sites. 748 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 749 own encoding of either a unicast or multicast locator address. 750 All RTR/ETR entries for the same level should be combined together 751 by a Map-Server to avoid searching through the entire multi-level 752 list of locator entries in a Map-Reply message. 754 Usage: This encoding can be used in RLOC records in Map-Requests, 755 Map-Replies, Map-Registers, and Map-Notify messages. 757 4.10. Applications for AFI List Type 759 4.10.1. Binding IPv4 and IPv6 Addresses 761 When header translation between IPv4 and IPv6 is desirable a LISP 762 Canonical Address can use the AFI List Type to carry multiple AFIs in 763 one LCAF AFI. 765 Address Binding LISP Canonical Address Format: 767 0 1 2 3 768 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 769 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 770 | AFI = 16387 | Rsvd1 | Flags | 771 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 772 | Type = 1 | Rsvd2 | 2 + 4 + 2 + 16 | 773 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 774 | AFI = 1 | IPv4 Address ... | 775 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 776 | ... IPv4 Address | AFI = 2 | 777 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 778 | IPv6 Address ... | 779 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 780 | ... IPv6 Address ... | 781 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 782 | ... IPv6 Address ... | 783 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 784 | ... IPv6 Address | 785 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 787 Length: length in bytes is fixed at 24 when IPv4 and IPv6 AFI 788 encoded addresses are used. 790 This type of address format can be included in a Map-Request when the 791 address is being used as an EID, but the Mapping Database System 792 lookup destination can use only the IPv4 address. This is so a 793 Mapping Database Service Transport System, such as LISP-ALT 794 [RFC6836], can use the Map-Request destination address to route the 795 control message to the desired LISP site. 797 Usage: This encoding can be used in EID or RLOC records in Map- 798 Requests, Map-Replies, Map-Registers, and Map-Notify messages. See 799 subsections in this section for specific use cases. 801 4.10.2. Layer-2 VPNs 803 When MAC addresses are stored in the LISP Mapping Database System, 804 the AFI List Type can be used to carry AFI 6. 806 MAC Address LISP Canonical Address Format: 808 0 1 2 3 809 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 810 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 811 | AFI = 16387 | Rsvd1 | Flags | 812 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 813 | Type = 1 | Rsvd2 | 2 + 6 | 814 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 815 | AFI = 6 | Layer-2 MAC Address ... | 816 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 817 | ... Layer-2 MAC Address | 818 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 820 Length: length in bytes is fixed at 8 when MAC address AFI encoded 821 addresses are used. 823 This address format can be used to connect layer-2 domains together 824 using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. 825 In this use-case, a MAC address is being used as an EID, and the 826 locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or 827 even another MAC address being used as an RLOC. 829 4.10.3. ASCII Names in the Mapping Database 831 If DNS names or URIs are stored in the LISP Mapping Database System, 832 the AFI List Type can be used to carry an ASCII string where it is 833 delimited by length 'n' of the LCAF Length encoding. 835 ASCII LISP Canonical Address Format: 837 0 1 2 3 838 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 839 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 840 | AFI = 16387 | Rsvd1 | Flags | 841 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 842 | Type = 1 | Rsvd2 | 2 + n | 843 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 844 | AFI = 17 | DNS Name or URI ... | 845 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 847 Length value n: length in bytes AFI=17 field and the null-terminated 848 ASCII string (the last byte of 0 is included). 850 4.10.4. Using Recursive LISP Canonical Address Encodings 852 When any combination of above is desirable, the AFI List Type value 853 can be used to carry within the LCAF AFI another LCAF AFI. 855 Recursive LISP Canonical Address Format: 857 0 1 2 3 858 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 859 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 860 | AFI = 16387 | Rsvd1 | Flags | 861 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 862 | Type = 1 | Rsvd2 | 8 + 18 | 863 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 864 | AFI = 16387 | Rsvd1 | Flags | 865 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 866 | Type = 4 | Rsvd2 | 12 + 6 | 867 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 868 | IP TOS, IPv6 QQS or Flow Label | Protocol | 869 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 870 | Local Port (lower-range) | Local Port (upper-range) | 871 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 872 | Remote Port (lower-range) | Remote Port (upper-range) | 873 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 874 | AFI = 1 | IPv4 Address ... | 875 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 876 | ... IPv4 Address | 877 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 879 Length: length in bytes is fixed at 18 when an AFI=1 IPv4 address is 880 included. 882 This format could be used by a Mapping Database Transport System, 883 such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is used as 884 an EID and placed in the Map-Request destination address by the 885 sending LISP system. The ALT system can deliver the Map-Request to 886 the LISP destination site independent of the Application Data Type 887 AFI payload values. When this AFI is processed by the destination 888 LISP site, it can return different locator-sets based on the type of 889 application or level of service that is being requested. 891 4.10.5. Compatibility Mode Use Case 893 A LISP system should use the AFI List Type format when sending to 894 LISP systems that do not support a particular LCAF Type used to 895 encode locators. This allows the receiving system to be able to 896 parse a locator address for encapsulation purposes. The list of AFIs 897 in an AFI List LCAF Type has no semantic ordering and a receiver 898 should parse each AFI element no matter what the ordering. 900 Compatibility Mode Address Format: 902 0 1 2 3 903 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 904 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 905 | AFI = 16387 | Rsvd1 | Flags | 906 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 907 | Type = 1 | Rsvd2 | 8 + 14 + 6 | 908 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 909 | AFI = 16387 | Rsvd1 | Flags | 910 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 911 | Type = 5 | Rsvd2 | 12 + 2 | 912 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 913 |N| Latitude Degrees | Minutes | Seconds | 914 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 915 |E| Longitude Degrees | Minutes | Seconds | 916 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 917 | Altitude | 918 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 919 | AFI = 0 | AFI = 1 | 920 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 921 | IPv4 Address | 922 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 924 If a system does not recognized the Geo Coordinate LCAF Type that is 925 accompanying a locator address, an encoder can include the Geo 926 Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI 927 in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in 928 the list is encoded with a valid AFI value to identify the locator 929 address. 931 A LISP system is required to support the AFI List LCAF Type to use 932 this procedure. It would skip over 10 bytes of the Geo Coordinate 933 LCAF Type to get to the locator address encoding (an IPv4 locator 934 address). A LISP system that does support the Geo Coordinate LCAF 935 Type can support parsing the locator address within the Geo 936 Coordinate LCAF encoding or in the locator encoding that follows in 937 the AFI List LCAF. 939 5. Experimental LISP Canonical Address Applications 941 5.1. Convey Application Specific Data 943 When a locator-set needs to be conveyed based on the type of 944 application or the Per-Hop Behavior (PHB) of a packet, the 945 Application Data Type can be used. 947 Application Data LISP Canonical Address Format: 949 0 1 2 3 950 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 951 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 952 | AFI = 16387 | Rsvd1 | Flags | 953 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 954 | Type = 4 | Rsvd2 | 12 + n | 955 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 956 | IP TOS, IPv6 TC, or Flow Label | Protocol | 957 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 958 | Local Port (lower-range) | Local Port (upper-range) | 959 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 960 | Remote Port (lower-range) | Remote Port (upper-range) | 961 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 962 | AFI = x | Address ... | 963 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 965 Length value n: length in bytes of the AFI address that follows the 966 8-byte Application Data fields including the AFI field itself. 968 IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS 969 field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow 970 Label used in an IPv6 header. 972 Local Port/Remote Port Ranges: these fields are from the TCP, UDP, 973 or SCTP transport header. A range can be specified by using a 974 lower value and an upper value. When a single port is encoded, 975 the lower and upper value fields are the same. 977 AFI = x: x can be any AFI value from [AFI]. 979 The Application Data Canonical Address Type is used for an EID 980 encoding when an ITR wants a locator-set for a specific application. 981 When used for an RLOC encoding, the ETR is supplying a locator-set 982 for each specific application is has been configured to advertise. 984 Usage: This encoding can be used in EID records in Map-Requests, Map- 985 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 986 [LISP-DDT] is used as the mapping system mechanism, extended EIDs are 987 used in Map-Referral messages. This LCAF type is used as a lookup 988 key to the mapping system that can return a longest-match or exact- 989 match entry. 991 5.2. Generic Database Mapping Lookups 993 When the LISP Mapping Database system holds information accessed by a 994 generic formatted key (where the key is not the usual IPv4 or IPv6 995 address), an opaque key may be desirable. 997 Opaque Key LISP Canonical Address Format: 999 0 1 2 3 1000 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1001 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1002 | AFI = 16387 | Rsvd1 | Flags | 1003 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1004 | Type = 6 | Rsvd2 | 3 + n | 1005 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1006 | Key Field Num | Key Wildcard Fields | Key . . . | 1007 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1008 | . . . Key | 1009 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1011 Length value n: length in bytes of the type's payload. The value n 1012 is the number of bytes that follow this Length field. 1014 Key Field Num: the number of fields (minus 1) the key can be broken 1015 up into. The width of the fields are fixed length. So for a key 1016 size of 8 bytes, with a Key Field Num of 4 allows 4 fields of 2 1017 bytes in length. Valid values for this field range from 0 to 15 1018 supporting a maximum of 16 field separations. 1020 Key Wildcard Fields: describes which fields in the key are not used 1021 as part of the key lookup. This wildcard encoding is a bitfield. 1022 Each bit is a don't-care bit for a corresponding field in the key. 1023 Bit 0 (the low-order bit) in this bitfield corresponds the first 1024 field, right-justified in the key, bit 1 the second field, and so 1025 on. When a bit is set in the bitfield it is a don't-care bit and 1026 should not be considered as part of the database lookup. When the 1027 entire 16-bits is set to 0, then all bits of the key are used for 1028 the database lookup. 1030 Key: the variable length key used to do a LISP Database Mapping 1031 lookup. The length of the key is the value n (shown above) minus 1032 3. 1034 Usage: This is an experimental type where the usage has not been 1035 defined yet. 1037 5.3. PETR Admission Control Functionality 1039 When a public PETR device wants to verify who is encapsulating to it, 1040 it can check for a specific nonce value in the LISP encapsulated 1041 packet. To convey the nonce to admitted ITRs or PITRs, this LCAF 1042 format is used in a Map-Register or Map-Reply locator-record. 1044 Nonce Locator Canonical Address Format: 1046 0 1 2 3 1047 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1048 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1049 | AFI = 16387 | Rsvd1 | Flags | 1050 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1051 | Type = 8 | Rsvd2 | 4 + n | 1052 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1053 | Reserved | Nonce | 1054 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1055 | AFI = x | Address ... | 1056 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1058 Length value n: length in bytes of the AFI address that follows the 1059 Nonce field including the AFI field itself. 1061 Reserved: must be set to zero and ignore on receipt. 1063 Nonce: this is a nonce value returned by an ETR in a Map-Reply 1064 locator-record to be used by an ITR or PITR when encapsulating to 1065 the locator address encoded in the AFI field of this LCAF type. 1067 AFI = x: x can be any AFI value from [AFI]. 1069 Usage: This is an experimental type where the usage has not been 1070 defined yet. 1072 5.4. Data Model Encoding 1074 This type allows a JSON data model to be encoded either as an EID or 1075 RLOC. 1077 JSON Data Model Type Address Format: 1079 0 1 2 3 1080 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1081 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1082 | AFI = 16387 | Rsvd1 | Flags | 1083 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1084 | Type = 14 | Rsvd2 |B| 2 + n | 1085 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1086 | JSON length | JSON binary/text encoding ... | 1087 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1088 | AFI = x | Optional Address ... | 1089 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1091 Length value n: length in bytes of fields that follow. 1093 Rsvd{1,2}: must be set to zero and ignore on receipt. 1095 B bit: indicates that the JSON field is binary encoded according to 1096 [JSON-BINARY] when the bit is set to 1. Otherwise the encoding is 1097 based on text encoding according to [RFC4627]. 1099 JSON length: length in octets of the following 'JSON binary/text 1100 encoding' field. 1102 JSON binary/text encoding field: a variable length field that 1103 contains either binary or text encodings. 1105 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 1106 own encoding of either a unicast or multicast locator address. 1107 All RTR/ETR entries for the same level should be combined together 1108 by a Map-Server to avoid searching through the entire multi-level 1109 list of locator entries in a Map-Reply message. 1111 Usage: This is an experimental type where the usage has not been 1112 defined yet. 1114 5.5. Encoding Key/Value Address Pairs 1116 The Key/Value pair is for example useful for attaching attributes to 1117 other elements of LISP packets, such as EIDs or RLOCs. When 1118 attaching attributes to EIDs or RLOCs, it's necessary to distinguish 1119 between the element that should be used as EID or RLOC, and hence as 1120 key for lookups, and additional attributes. This is especially the 1121 case when the difference cannot be determined from the types of the 1122 elements, such as when two IP addresses are being used. 1124 Key/Value Pair Address Format: 1126 0 1 2 3 1127 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1128 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1129 | AFI = 16387 | Rsvd1 | Flags | 1130 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1131 | Type = 15 | Rsvd2 | n | 1132 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1133 | AFI = x | Address as Key ... | 1134 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1135 | AFI = x | Address as Value ... | 1136 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1138 Length value n: length in bytes of fields that follow. 1140 Rsvd{1,2}: must be set to zero and ignore on receipt. 1142 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 1143 own encoding of either a unicast or multicast locator address. 1144 All RTR/ETR entries for the same level should be combined together 1145 by a Map-Server to avoid searching through the entire multi-level 1146 list of locator entries in a Map-Reply message. 1148 Address as Key: this AFI encoded address will be attached with the 1149 attributes encoded in "Address as Value" which follows this field. 1151 Address as Value: this AFI encoded address will be the attribute 1152 address that goes along with "Address as Key" which precedes this 1153 field. 1155 Usage: This is an experimental type where the usage has not been 1156 defined yet. 1158 5.6. Multiple Data-Planes 1160 Overlays are becoming popular in many parts of the network which have 1161 created an explosion of data-plane encapsulation headers. Since the 1162 LISP mapping system can hold many types of address formats, it can 1163 represent the encapsulation format supported by an RLOC as well. 1164 When an encapsulator receives a Map-Reply with an Encapsulation 1165 Format LCAF Type encoded in an RLOC-record, it can select an 1166 encapsulation format, that it can support, from any of the 1167 encapsulation protocols which have the bit set to 1 in this LCAF 1168 type. 1170 Encapsulation Format Address Format: 1172 0 1 2 3 1173 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1174 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1175 | AFI = 16387 | Rsvd1 | Flags | 1176 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1177 | Type = 16 | Rsvd2 | 4 + n | 1178 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1179 | Reserved-for-Future-Encapsulations |U|G|N|v|V|l|L| 1180 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1181 | AFI = x | Address ... | 1182 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1184 Rsvd1/Rsvd2: must be set to zero and ignored on receipt. 1186 Length value n: length in bytes of the AFI address that follows the 1187 next 32-bits including the AFI field itself. 1189 Reserved-for-Future-Encapsulations: must be set to zero and ignored 1190 on receipt. This field will get bits allocated to future 1191 encapsulations, as they are created. 1193 L: The RLOCs listed in the AFI encoded addresses in the next longword 1194 can accept layer3 LISP encapsulation using destination UDP port 1195 4341 [RFC6830]. 1197 l: The RLOCs listed in the AFI encoded addresses in the next longword 1198 can accept layer2 LISP encapsulation using destination UDP port 1199 8472 [L2-LISP]. 1201 V: The RLOCs listed in the AFI encoded addresses in the next longword 1202 can accept VXLAN encapsulation using destination UDP port 4789 1203 [RFC7348]. 1205 v: The RLOCs listed in the AFI encoded addresses in the next longword 1206 can accept VXLAN-GPE encapsulation using destination UDP port 4790 1207 [GPE]. 1209 N: The RLOCs listed in the AFI encoded addresses in the next longword 1210 can accept NV-GRE encapsulation using IPv4/ IPv6 protocol number 1211 47 [NVGRE]. 1213 G: The RLOCs listed in the AFI encoded addresses in the next longword 1214 can accept GENEVE encapsulation using destination UDP port 6081 1215 [GENEVE]. 1217 U: The RLOCs listed in the AFI encoded addresses in the next longword 1218 can accept GUE encapsulation using destination UDP port TBD [GUE]. 1220 Usage: This encoding can be used in RLOC records in Map-Requests, 1221 Map-Replies, Map-Registers, and Map-Notify messages. 1223 6. Security Considerations 1225 There are no security considerations for this specification. The 1226 security considerations are documented for the protocols that use 1227 LISP Canonical Addressing. Refer to the those relevant 1228 specifications. 1230 The use of the Geo-Coordinates LCAF Type may raise physical privacy 1231 issues. It can be up to the mapping system, based on policy 1232 parameters, when this LCAF type is returned to a Map-Requester. 1234 7. IANA Considerations 1236 This document defines a canonical address format encoding used in 1237 LISP control messages and in the encoding of lookup keys for the LISP 1238 Mapping Database System. Such address format is based on a fixed AFI 1239 (16387) and a LISP LCAF Type field. 1241 The LISP LCAF Type field is an 8-bit field specific to the LISP 1242 Canonical Address formatted encodings, for which IANA is to create 1243 and maintain a new registry (as outlined in [RFC5226]) entitled "LISP 1244 LCAF Type". Initial values for the LISP LCAF Type registry are given 1245 below. Future assignments are to be made through expert review with 1246 a specification required publication. Assignments consist of a LISP 1247 LCAF Type name and its associated value: 1249 +-------+------------------------------+------------+ 1250 | Value | LISP LCAF Type Name | Definition | 1251 +-------+------------------------------+------------+ 1252 | 0 | Null Body Type | Section 3 | 1253 | | | | 1254 | 1 | AFI List Type | Section 3 | 1255 | | | | 1256 | 2 | Instance ID Type | Section 3 | 1257 | | | | 1258 | 3 | AS Number Type | Section 3 | 1259 | | | | 1260 | 5 | Geo Coordinates Type | Section 3 | 1261 | | | | 1262 | 7 | NAT-Traversal Type | Section 3 | 1263 | | | | 1264 | 9 | Multicast Info Type | Section 3 | 1265 | | | | 1266 | 10 | Explicit Locator Path Type | Section 3 | 1267 | | | | 1268 | 11 | Security Key Type | Section 3 | 1269 | | | | 1270 | 12 | Source/Dest Key Type | Section 3 | 1271 | | | | 1272 | 13 | Replication List Entry Type | Section 3 | 1273 +-------+------------------------------+------------+ 1275 Table 1: LISP LCAF Type Initial Values 1277 8. References 1279 8.1. Normative References 1281 [RFC1700] Reynolds, J. and J. Postel, "Assigned Numbers", RFC 1700, 1282 DOI 10.17487/RFC1700, October 1994, 1283 . 1285 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G., 1286 and E. Lear, "Address Allocation for Private Internets", 1287 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996, 1288 . 1290 [RFC4627] Crockford, D., "The application/json Media Type for 1291 JavaScript Object Notation (JSON)", RFC 4627, 1292 DOI 10.17487/RFC4627, July 2006, 1293 . 1295 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an 1296 IANA Considerations Section in RFCs", BCP 26, RFC 5226, 1297 DOI 10.17487/RFC5226, May 2008, 1298 . 1300 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The 1301 Locator/ID Separation Protocol (LISP)", RFC 6830, 1302 DOI 10.17487/RFC6830, January 2013, 1303 . 1305 [RFC6836] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, 1306 "Locator/ID Separation Protocol Alternative Logical 1307 Topology (LISP+ALT)", RFC 6836, DOI 10.17487/RFC6836, 1308 January 2013, . 1310 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, 1311 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual 1312 eXtensible Local Area Network (VXLAN): A Framework for 1313 Overlaying Virtualized Layer 2 Networks over Layer 3 1314 Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014, 1315 . 1317 8.2. Informative References 1319 [AFI] IANA, , "Address Family Identifier (AFIs)", ADDRESS FAMILY 1320 NUMBERS http://www.iana.org/numbers.html, Febuary 2007. 1322 [GENEVE] Gross, J., Sridhar, T., Garg, P., Wright, C., Ganga, I., 1323 Agarwal, P., Duda, K., Dutt, D., and J. Hudson, "Geneve: 1324 Generic Network Virtualization Encapsulation", draft- 1325 gross-geneve-02 (work in progress). 1327 [GPE] Quinn, P., Agarwal, P., Fernando, R., Kreeger, L., 1328 Kreeger, L., Lewis, D., Maino, F., Smith, M., Yadav, N., 1329 Yong, L., Xu, X., Elzur, U., and P. Garg, "Generic 1330 Protocol Extension for VXLAN", draft-quinn-vxlan-gpe- 1331 03.txt (work in progress). 1333 [GUE] Herbert, T. and L. Yong, "Generic UDP Encapsulation", 1334 draft-herbert-gue-02.txt (work in progress). 1336 [JSON-BINARY] 1337 "Universal Binary JSON Specification", 1338 URL http://ubjson.org. 1340 [L2-LISP] Smith, M., Dutt, D., Farinacci, D., and F. Maino, "Layer 2 1341 (L2) LISP Encapsulation Format", draft-smith-lisp- 1342 layer2-03.txt (work in progress). 1344 [LISP-DDT] 1345 Fuller, V., Lewis, D., and V. Ermagan, "LISP Delegated 1346 Database Tree", draft-ietf-lisp-ddt-01.txt (work in 1347 progress). 1349 [LISP-NATT] 1350 Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, 1351 F., and C. White, "NAT traversal for LISP", draft-ermagan- 1352 lisp-nat-traversal-10.txt (work in progress). 1354 [LISP-RE] Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J., 1355 Maino, F., and D. Farinacci, "LISP Replication 1356 Engineering", draft-coras-lisp-re-08.txt (work in 1357 progress). 1359 [LISP-TE] Farinacci, D., Lahiri, P., and M. Kowal, "LISP Traffic 1360 Engineering Use-Cases", draft-farinacci-lisp-te-10.txt 1361 (work in progress). 1363 [NVGRE] Sridharan, M., Greenberg, A., Wang, Y., Garg, P., 1364 Venkataramiah, N., Duda, K., Ganga, I., Lin, G., Pearson, 1365 M., Thaler, P., and C. Tumuluri, "NVGRE: Network 1366 Virtualization using Generic Routing Encapsulation", 1367 draft-sridharan-virtualization-nvgre-06.txt (work in 1368 progress). 1370 [WGS-84] Geodesy and Geophysics Department, DoD., "World Geodetic 1371 System 1984", NIMA TR8350.2, January 2000, . 1374 Appendix A. Acknowledgments 1376 The authors would like to thank Vince Fuller, Gregg Schudel, Jesper 1377 Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for 1378 their technical and editorial commentary. 1380 The authors would like to thank Victor Moreno for discussions that 1381 lead to the definition of the Multicast Info LCAF type. 1383 The authors would like to thank Parantap Lahiri and Michael Kowal for 1384 discussions that lead to the definition of the Explicit Locator Path 1385 (ELP) LCAF type. 1387 The authors would like to thank Fabio Maino and Vina Ermagan for 1388 discussions that lead to the definition of the Security Key LCAF 1389 type. 1391 The authors would like to thank Albert Cabellos-Aparicio and Florin 1392 Coras for discussions that lead to the definition of the Replication 1393 List Entry LCAF type. 1395 Thanks goes to Michiel Blokzijl and Alberto Rodriguez-Natal for 1396 suggesting new LCAF types. 1398 Thanks also goes to Terry Manderson for assistance obtaining a LISP 1399 AFI value from IANA. 1401 Appendix B. Document Change Log 1403 B.1. Changes to draft-ietf-lisp-lcaf-13.txt 1405 o Submitted May 2016. 1407 o Explain the Instance-ID LCAF Type is 32-bits in length and the 1408 Instance-ID field in the LISP encapsulation header is 24-bits. 1410 B.2. Changes to draft-ietf-lisp-lcaf-12.txt 1412 o Submitted March 2016. 1414 o Updated references and document timer. 1416 o Removed the R, J, and L bits from the Multicast Info Type LCAF 1417 since working group decided to not go forward with draft- 1418 farinacci-lisp-mr-signaling-03.txt in favor of draft- ietf-lisp- 1419 signal-free-00.txt. 1421 B.3. Changes to draft-ietf-lisp-lcaf-11.txt 1423 o Submitted September 2015. 1425 o Reflecting comments from Prague LISP working group. 1427 o Readying document for a LISP LCAF registry, RFC publication, and 1428 for new use-cases that will be defined in the new charter. 1430 B.4. Changes to draft-ietf-lisp-lcaf-10.txt 1432 o Submitted June 2015. 1434 o Fix coauthor Job's contact information. 1436 B.5. Changes to draft-ietf-lisp-lcaf-09.txt 1438 o Submitted June 2015. 1440 o Fix IANA Considerations section to request a registry to allocate 1441 and track LCAF Type values. 1443 B.6. Changes to draft-ietf-lisp-lcaf-08.txt 1445 o Submitted April 2015. 1447 o Comment from Florin. The Application Data Type length field has a 1448 typo. The field should be labeled "12 + n" and not "8 + n". 1450 o Fix length fields in the sections titled "Using Recursive LISP 1451 Canonical Address Encodings", "Generic Database Mapping Lookups", 1452 and "Data Model Encoding". 1454 B.7. Changes to draft-ietf-lisp-lcaf-07.txt 1456 o Submitted December 2014. 1458 o Add a new LCAF Type called "Encapsulation Format" so decapsulating 1459 xTRs can inform encapsulating xTRs what data-plane encapsulations 1460 they support. 1462 B.8. Changes to draft-ietf-lisp-lcaf-06.txt 1464 o Submitted October 2014. 1466 o Make it clear how sorted RLOC records are done when LCAFs are used 1467 as the RLOC record. 1469 B.9. Changes to draft-ietf-lisp-lcaf-05.txt 1471 o Submitted May 2014. 1473 o Add a length field of the JSON payload that can be used for either 1474 binary or text encoding of JSON data. 1476 B.10. Changes to draft-ietf-lisp-lcaf-04.txt 1478 o Submitted January 2014. 1480 o Agreement among ELP implementors to have the AFI 16-bit field 1481 adjacent to the address. This will make the encoding consistent 1482 with all other LCAF type address encodings. 1484 B.11. Changes to draft-ietf-lisp-lcaf-03.txt 1486 o Submitted September 2013. 1488 o Updated references and author's affilations. 1490 o Added Instance-ID to the Multicast Info Type so there is relative 1491 ease in parsing (S,G) entries within a VPN. 1493 o Add port range encodings to the Application Data LCAF Type. 1495 o Add a new JSON LCAF Type. 1497 o Add Address Key/Value LCAF Type to allow attributes to be attached 1498 to an address. 1500 B.12. Changes to draft-ietf-lisp-lcaf-02.txt 1502 o Submitted March 2013. 1504 o Added new LCAF Type "Replication List Entry" to support LISP 1505 replication engineering use-cases. 1507 o Changed references to new LISP RFCs. 1509 B.13. Changes to draft-ietf-lisp-lcaf-01.txt 1511 o Submitted January 2013. 1513 o Change longitude range from 0-90 to 0-180 in section 4.4. 1515 o Added reference to WGS-84 in section 4.4. 1517 B.14. Changes to draft-ietf-lisp-lcaf-00.txt 1519 o Posted first working group draft August 2012. 1521 o This draft was renamed from draft-farinacci-lisp-lcaf-10.txt. 1523 Authors' Addresses 1525 Dino Farinacci 1526 lispers.net 1527 San Jose, CA 1528 USA 1530 Email: farinacci@gmail.com 1531 Dave Meyer 1532 Brocade 1533 San Jose, CA 1534 USA 1536 Email: dmm@1-4-5.net 1538 Job Snijders 1539 NTT Communications 1540 Theodorus Majofskistraat 100 1541 Amsterdam 1065 SZ 1542 NL 1544 Email: job@ntt.net