idnits 2.17.1 draft-ietf-lisp-lcaf-14.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (July 19, 2016) is 2838 days in the past. Is this intentional? Checking references for intended status: Experimental ---------------------------------------------------------------------------- ** Obsolete normative reference: RFC 5226 (Obsoleted by RFC 8126) ** Obsolete normative reference: RFC 6830 (Obsoleted by RFC 9300, RFC 9301) ** Obsolete normative reference: RFC 7159 (Obsoleted by RFC 8259) == Outdated reference: A later version (-19) exists of draft-ermagan-lisp-nat-traversal-10 == Outdated reference: A later version (-12) exists of draft-farinacci-lisp-te-10 == Outdated reference: A later version (-09) exists of draft-ietf-lisp-ddt-07 == Outdated reference: A later version (-02) exists of draft-portoles-lisp-eid-mobility-00 Summary: 3 errors (**), 0 flaws (~~), 5 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group D. Farinacci 3 Internet-Draft lispers.net 4 Intended status: Experimental D. Meyer 5 Expires: January 20, 2017 Brocade 6 J. Snijders 7 NTT Communications 8 July 19, 2016 10 LISP Canonical Address Format (LCAF) 11 draft-ietf-lisp-lcaf-14 13 Abstract 15 This draft defines a canonical address format encoding used in LISP 16 control messages and in the encoding of lookup keys for the LISP 17 Mapping Database System. 19 Requirements Language 21 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 22 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 23 document are to be interpreted as described in [RFC2119]. 25 Status of This Memo 27 This Internet-Draft is submitted in full conformance with the 28 provisions of BCP 78 and BCP 79. 30 Internet-Drafts are working documents of the Internet Engineering 31 Task Force (IETF). Note that other groups may also distribute 32 working documents as Internet-Drafts. The list of current Internet- 33 Drafts is at http://datatracker.ietf.org/drafts/current/. 35 Internet-Drafts are draft documents valid for a maximum of six months 36 and may be updated, replaced, or obsoleted by other documents at any 37 time. It is inappropriate to use Internet-Drafts as reference 38 material or to cite them other than as "work in progress." 40 This Internet-Draft will expire on January 20, 2017. 42 Copyright Notice 44 Copyright (c) 2016 IETF Trust and the persons identified as the 45 document authors. All rights reserved. 47 This document is subject to BCP 78 and the IETF Trust's Legal 48 Provisions Relating to IETF Documents 49 (http://trustee.ietf.org/license-info) in effect on the date of 50 publication of this document. Please review these documents 51 carefully, as they describe your rights and restrictions with respect 52 to this document. Code Components extracted from this document must 53 include Simplified BSD License text as described in Section 4.e of 54 the Trust Legal Provisions and are provided without warranty as 55 described in the Simplified BSD License. 57 Table of Contents 59 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 60 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 61 3. LISP Canonical Address Format Encodings . . . . . . . . . . . 5 62 4. LISP Canonical Address Applications . . . . . . . . . . . . . 7 63 4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 7 64 4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 9 65 4.3. Assigning Geo Coordinates to Locator Addresses . . . . . 10 66 4.4. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 12 67 4.5. Multicast Group Membership Information . . . . . . . . . 14 68 4.6. Traffic Engineering using Re-encapsulating Tunnels . . . 15 69 4.7. Storing Security Data in the Mapping Database . . . . . . 17 70 4.8. Source/Destination 2-Tuple Lookups . . . . . . . . . . . 18 71 4.9. Replication List Entries for Multicast Forwarding . . . . 20 72 4.10. Applications for AFI List Type . . . . . . . . . . . . . 21 73 4.10.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . 21 74 4.10.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 22 75 4.10.3. ASCII Names in the Mapping Database . . . . . . . . 23 76 4.10.4. Using Recursive LISP Canonical Address Encodings . . 24 77 4.10.5. Compatibility Mode Use Case . . . . . . . . . . . . 25 78 5. Experimental LISP Canonical Address Applications . . . . . . 26 79 5.1. Convey Application Specific Data . . . . . . . . . . . . 26 80 5.2. Generic Database Mapping Lookups . . . . . . . . . . . . 27 81 5.3. PETR Admission Control Functionality . . . . . . . . . . 29 82 5.4. Data Model Encoding . . . . . . . . . . . . . . . . . . . 30 83 5.5. Encoding Key/Value Address Pairs . . . . . . . . . . . . 31 84 5.6. Multiple Data-Planes . . . . . . . . . . . . . . . . . . 32 85 6. Security Considerations . . . . . . . . . . . . . . . . . . . 34 86 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 34 87 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 35 88 8.1. Normative References . . . . . . . . . . . . . . . . . . 35 89 8.2. Informative References . . . . . . . . . . . . . . . . . 36 90 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . 37 91 Appendix B. Document Change Log . . . . . . . . . . . . . . . . 38 92 B.1. Changes to draft-ietf-lisp-lcaf-14.txt . . . . . . . . . 38 93 B.2. Changes to draft-ietf-lisp-lcaf-13.txt . . . . . . . . . 38 94 B.3. Changes to draft-ietf-lisp-lcaf-12.txt . . . . . . . . . 38 95 B.4. Changes to draft-ietf-lisp-lcaf-11.txt . . . . . . . . . 38 96 B.5. Changes to draft-ietf-lisp-lcaf-10.txt . . . . . . . . . 38 97 B.6. Changes to draft-ietf-lisp-lcaf-09.txt . . . . . . . . . 39 98 B.7. Changes to draft-ietf-lisp-lcaf-08.txt . . . . . . . . . 39 99 B.8. Changes to draft-ietf-lisp-lcaf-07.txt . . . . . . . . . 39 100 B.9. Changes to draft-ietf-lisp-lcaf-06.txt . . . . . . . . . 39 101 B.10. Changes to draft-ietf-lisp-lcaf-05.txt . . . . . . . . . 39 102 B.11. Changes to draft-ietf-lisp-lcaf-04.txt . . . . . . . . . 39 103 B.12. Changes to draft-ietf-lisp-lcaf-03.txt . . . . . . . . . 40 104 B.13. Changes to draft-ietf-lisp-lcaf-02.txt . . . . . . . . . 40 105 B.14. Changes to draft-ietf-lisp-lcaf-01.txt . . . . . . . . . 40 106 B.15. Changes to draft-ietf-lisp-lcaf-00.txt . . . . . . . . . 40 107 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 40 109 1. Introduction 111 The LISP architecture and protocols [RFC6830] introduces two new 112 numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators 113 (RLOCs). To provide flexibility for current and future applications, 114 these values can be encoded in LISP control messages using a general 115 syntax that includes Address Family Identifier (AFI), length, and 116 value fields. 118 Currently defined AFIs include IPv4 and IPv6 addresses, which are 119 formatted according to code-points assigned in [AFI] as follows: 121 IPv4 Encoded Address: 123 0 1 2 3 124 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 125 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 126 | AFI = 1 | IPv4 Address ... | 127 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 128 | ... IPv4 Address | 129 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 130 IPv6 Encoded Address: 132 0 1 2 3 133 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 134 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 135 | AFI = 2 | IPv6 Address ... | 136 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 137 | ... IPv6 Address ... | 138 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 139 | ... IPv6 Address ... | 140 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 141 | ... IPv6 Address ... | 142 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 143 | ... IPv6 Address | 144 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 146 This document describes the currently-defined AFIs the LISP protocol 147 uses along with their encodings and introduces the LISP Canonical 148 Address Format (LCAF) that can be used to define the LISP-specific 149 encodings for arbitrary AFI values. 151 2. Definition of Terms 153 Address Family Identifier (AFI): a term used to describe an address 154 encoding in a packet. There is an address family currently 155 defined for IPv4 or IPv6 addresses. See [AFI] and [RFC3232] for 156 details. The reserved AFI value of 0 is used in this 157 specification to indicate an unspecified encoded address where the 158 length of the address is 0 bytes following the 16-bit AFI value of 159 0. 161 Unspecified Address Format: 163 0 1 2 3 164 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 165 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 166 | AFI = 0 | | 167 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 169 Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value 170 used in the source and destination address fields of the first 171 (most inner) LISP header of a packet. The host obtains a 172 destination EID the same way it obtains a destination address 173 today, for example through a DNS lookup or SIP exchange. The 174 source EID is obtained via existing mechanisms used to set a 175 host's "local" IP address. An EID is allocated to a host from an 176 EID-prefix block associated with the site where the host is 177 located. An EID can be used by a host to refer to other hosts. 179 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress 180 tunnel router (ETR). It is the output of a EID-to-RLOC mapping 181 lookup. An EID maps to one or more RLOCs. Typically, RLOCs are 182 numbered from topologically aggregatable blocks that are assigned 183 to a site at each point to which it attaches to the global 184 Internet; where the topology is defined by the connectivity of 185 provider networks, RLOCs can be thought of as PA addresses. 186 Multiple RLOCs can be assigned to the same ETR device or to 187 multiple ETR devices at a site. 189 3. LISP Canonical Address Format Encodings 191 IANA has assigned AFI value 16387 (0x4003) to the LISP architecture 192 and protocols. This specification defines the encoding format of the 193 LISP Canonical Address (LCA). This section defines all types for 194 which an initial allocation in the LISP-LCAF registry is requested. 195 See IANA Considerations section for the complete list of such types. 197 The Address Family AFI definitions from [AFI] only allocate code- 198 points for the AFI value itself. The length of the address or entity 199 that follows is not defined and is implied based on conventional 200 experience. Where the LISP protocol uses LISP Canonical Addresses 201 specifically, the address length definitions will be in this 202 specification and take precedent over any other specification. 204 The first 6 bytes of an LISP Canonical Address are followed by a 205 variable number of fields of variable length: 207 0 1 2 3 208 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 209 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 210 | AFI = 16387 | Rsvd1 | Flags | 211 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 212 | Type | Rsvd2 | Length | 213 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 215 Rsvd1: this 8-bit field is reserved for future use and MUST be 216 transmitted as 0 and ignored on receipt. 218 Flags: this 8-bit field is for future definition and use. For now, 219 set to zero on transmission and ignored on receipt. 221 Type: this 8-bit field is specific to the LISP Canonical Address 222 formatted encodings, currently allocated values are: 224 Type 0: Null Body Type 226 Type 1: AFI List Type 227 Type 2: Instance ID Type 229 Type 3: AS Number Type 231 Type 4: Application Data Type 233 Type 5: Geo Coordinates Type 235 Type 6: Opaque Key Type 237 Type 7: NAT-Traversal Type 239 Type 8: Nonce Locator Type 241 Type 9: Multicast Info Type 243 Type 10: Explicit Locator Path Type 245 Type 11: Security Key Type 247 Type 12: Source/Dest Key Type 249 Type 13: Replication List Entry Type 251 Type 14: JSON Data Model Type 253 Type 15: Key/Value Address Pair Type 255 Type 16: Encapsulation Format Type 257 Rsvd2: this 8-bit field is reserved for future use and MUST be 258 transmitted as 0 and ignored on receipt. 260 Length: this 16-bit field is in units of bytes and covers all of the 261 LISP Canonical Address payload, starting and including the byte 262 after the Length field. So any LCAF encoded address will have a 263 minimum length of 8 bytes when the Length field is 0. The 8 bytes 264 include the AFI, Flags, Type, Reserved, and Length fields. When 265 the AFI is not next to encoded address in a control message, then 266 the encoded address will have a minimum length of 6 bytes when the 267 Length field is 0. The 6 bytes include the Flags, Type, Reserved, 268 and Length fields. 270 [RFC6830] states RLOC records are sorted when encoded in control 271 messages so the locator-set has consistent order across all xTRs for 272 a given EID. The sort order is based on sort-key {afi, RLOC- 273 address}. When an RLOC is LCAF encoded, the sort-key is {afi, LCAF- 274 Type}. Therefore, when a locator-set has a mix of AFI records and 275 LCAF records, all LCAF records will appear after all the AFI records. 277 4. LISP Canonical Address Applications 279 4.1. Segmentation using LISP 281 When multiple organizations inside of a LISP site are using private 282 addresses [RFC1918] as EID-prefixes, their address spaces must remain 283 segregated due to possible address duplication. An Instance ID in 284 the address encoding can aid in making the entire AFI based address 285 unique. 287 Another use for the Instance ID LISP Canonical Address Format is when 288 creating multiple segmented VPNs inside of a LISP site where keeping 289 EID-prefix based subnets is desirable. 291 Instance ID LISP Canonical Address Format: 293 0 1 2 3 294 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 295 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 296 | AFI = 16387 | Rsvd1 | Flags | 297 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 298 | Type = 2 | IID mask-len | 4 + n | 299 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 300 | Instance ID | 301 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 302 | AFI = x | Address ... | 303 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 305 IID mask-len: if the AFI is set to 0, then this format is not 306 encoding an extended EID-prefix but rather an instance-ID range 307 where the 'IID mask-len' indicates the number of high-order bits 308 used in the Instance ID field for the range. 310 Length value n: length in bytes of the AFI address that follows the 311 Instance ID field including the AFI field itself. 313 Instance ID: the low-order 24-bits that can go into a LISP data 314 header when the I-bit is set. See [RFC6830] for details. The 315 reason for the length difference is so that the maximum number of 316 instances supported per mapping system is 2^32 while conserving 317 space in the LISP data header. This comes at the expense of 318 limiting the maximum number of instances per xTR to 2^24. If an 319 xTR is configured with multiple instance-IDs where the value in 320 the high-order 8 bits are the same, then the low-order 24 bits 321 MUST be unique. 323 AFI = x: x can be any AFI value from [AFI]. 325 This LISP Canonical Address Type can be used to encode either EID or 326 RLOC addresses. 328 Usage: When used as a lookup key, the EID is regarded as a extended- 329 EID in the mapping system. This encoding is used in EID records in 330 Map-Requests, Map-Replies, Map-Registers, and Map-Notify messages. 331 When LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system 332 mechanism, extended EIDs are used in Map-Referral messages. 334 4.2. Carrying AS Numbers in the Mapping Database 336 When an AS number is stored in the LISP Mapping Database System for 337 either policy or documentation reasons, it can be encoded in a LISP 338 Canonical Address. 340 AS Number LISP Canonical Address Format: 342 0 1 2 3 343 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 344 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 345 | AFI = 16387 | Rsvd1 | Flags | 346 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 347 | Type = 3 | Rsvd2 | 4 + n | 348 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 349 | AS Number | 350 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 351 | AFI = x | Address ... | 352 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 354 Length value n: length in bytes of the AFI address that follows the 355 AS Number field including the AFI field itself. 357 AS Number: the 32-bit AS number of the autonomous system that has 358 been assigned either the EID or RLOC that follows. 360 AFI = x: x can be any AFI value from [AFI]. 362 The AS Number Canonical Address Type can be used to encode either EID 363 or RLOC addresses. The former is used to describe the LISP-ALT AS 364 number the EID-prefix for the site is being carried for. The latter 365 is used to describe the AS that is carrying RLOC based prefixes in 366 the underlying routing system. 368 Usage: This encoding can be used in EID or RLOC records in Map- 369 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 370 LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, 371 extended EIDs are used in Map-Referral messages. 373 4.3. Assigning Geo Coordinates to Locator Addresses 375 If an ETR desires to send a Map-Reply describing the Geo Coordinates 376 for each locator in its locator-set, it can use the Geo Coordinate 377 Type to convey physical location information. 379 Coordinates are specified using the WGS-84 (World Geodetic System) 380 reference coordinate system [WGS-84]. 382 Geo Coordinate LISP Canonical Address Format: 384 0 1 2 3 385 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 386 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 387 | AFI = 16387 | Rsvd1 | Flags | 388 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 389 | Type = 5 | Rsvd2 | 12 + n | 390 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 391 |N| Latitude Degrees | Minutes | Seconds | 392 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 393 |E| Longitude Degrees | Minutes | Seconds | 394 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 395 | Altitude | 396 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 397 | AFI = x | Address ... | 398 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 400 Length value n: length in bytes of the AFI address that follows the 401 8-byte Longitude and Latitude fields including the AFI field 402 itself. 404 N: When set to 1 means North, otherwise South. 406 Latitude Degrees: Valid values range from 0 to 90 degrees above or 407 below the equator (northern or southern hemisphere, respectively). 409 Latitude Minutes: Valid values range from 0 to 59. 411 Latitude Seconds: Valid values range from 0 to 59. 413 E: When set to 1 means East, otherwise West. 415 Longitude Degrees: Value values are from 0 to 180 degrees right or 416 left of the Prime Meridian. 418 Longitude Minutes: Valid values range from 0 to 59. 420 Longitude Seconds: Valid values range from 0 to 59. 422 Altitude: Height relative to sea level in meters. This is a signed 423 integer meaning that the altitude could be below sea level. A 424 value of 0x7fffffff indicates no Altitude value is encoded. 426 AFI = x: x can be any AFI value from [AFI]. 428 The Geo Coordinates Canonical Address Type can be used to encode 429 either EID or RLOC addresses. When used for EID encodings, you can 430 determine the physical location of an EID along with the topological 431 location by observing the locator-set. 433 Usage: This encoding can be used in EID or RLOC records in Map- 434 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 435 LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, 436 extended EIDs are used in Map-Referral messages. 438 4.4. NAT Traversal Scenarios 440 When a LISP system is conveying global address and mapped port 441 information when traversing through a NAT device, the NAT-Traversal 442 LCAF Type is used. See [I-D.ermagan-lisp-nat-traversal] for details. 444 NAT-Traversal Canonical Address Format: 446 0 1 2 3 447 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 448 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 449 | AFI = 16387 | Rsvd1 | Flags | 450 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 451 | Type = 7 | Rsvd2 | 4 + n | 452 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 453 | MS UDP Port Number | ETR UDP Port Number | 454 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 455 | AFI = x | Global ETR RLOC Address ... | 456 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 457 | AFI = x | MS RLOC Address ... | 458 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 459 | AFI = x | Private ETR RLOC Address ... | 460 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 461 | AFI = x | RTR RLOC Address 1 ... | 462 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 463 | AFI = x | RTR RLOC Address k ... | 464 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 466 Length value n: length in bytes of the AFI addresses that follows 467 the UDP Port Number field including the AFI fields themselves. 469 MS UDP Port Number: this is the UDP port number of the Map-Server 470 and is set to 4342. 472 ETR UDP Port Number: this is the port number returned to a LISP 473 system which was copied from the source port from a packet that 474 has flowed through a NAT device. 476 AFI = x: x can be any AFI value from [AFI]. 478 Global ETR RLOC Address: this is an address known to be globally 479 unique built by NAT-traversal functionality in a LISP router. 481 MS RLOC Address: this is the address of the Map-Server used in the 482 destination RLOC of a packet that has flowed through a NAT device. 484 Private ETR RLOC Address: this is an address known to be a private 485 address inserted in this LCAF format by a LISP router that resides 486 on the private side of a NAT device. 488 RTR RLOC Address: this is an encapsulation address used by an ITR or 489 PITR which resides behind a NAT device. This address is known to 490 have state in a NAT device so packets can flow from it to the LISP 491 ETR behind the NAT. There can be one or more NAT Tunnel Router 492 (NTR) [I-D.ermagan-lisp-nat-traversal] addresses supplied in these 493 set of fields. The number of NTRs encoded is determined by the 494 LCAF length field. When there are no NTRs supplied, the NTR 495 fields can be omitted and reflected by the LCAF length field or an 496 AFI of 0 can be used to indicate zero NTRs encoded. 498 Usage: This encoding can be used in Info-Request and Info-Reply 499 messages. The mapping system does not store this information. The 500 information is used by an xTR and Map-Server to convey private and 501 public address information when traversing NAT and firewall devices. 503 4.5. Multicast Group Membership Information 505 Multicast group information can be published in the mapping database. 506 So a lookup on an group address EID can return a replication list of 507 RLOC group addresses or RLOC unicast addresses. The intent of this 508 type of unicast replication is to deliver packets to multiple ETRs at 509 receiver LISP multicast sites. The locator-set encoding for this EID 510 record type can be a list of ETRs when they each register with "Merge 511 Semantics". The encoding can be a typical AFI encoded locator 512 address. When an RTR list is being registered (with multiple levels 513 according to [I-D.coras-lisp-re]), the Replication List Entry LCAF 514 type is used for locator encoding. 516 This LCAF encoding can be used to send broadcast packets to all 517 members of a subnet when each EIDs are away from their home subnet 518 location. 520 Multicast Info Canonical Address Format: 522 0 1 2 3 523 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 524 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 525 | AFI = 16387 | Rsvd1 | Flags | 526 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 527 | Type = 9 | Rsvd2 | 8 + n | 528 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 529 | Instance-ID | 530 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 531 | Reserved | Source MaskLen| Group MaskLen | 532 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 533 | AFI = x | Source/Subnet Address ... | 534 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 535 | AFI = x | Group Address ... | 536 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 538 Length value n: length in bytes of fields that follow. 540 Reserved: must be set to zero and ignore on receipt. 542 Instance ID: the low-order 24-bits that can go into a LISP data 543 header when the I-bit is set. See [RFC6830] for details. The use 544 of the Instance-ID in this LCAF type is to associate a multicast 545 forwarding entry for a given VPN. The instance-ID describes the 546 VPN and is registered to the mapping database system as a 3-tuple 547 of (Instance-ID, S-prefix, G-prefix). 549 Source MaskLen: the mask length of the source prefix that follows. 551 Group MaskLen: the mask length of the group prefix that follows. 553 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 554 its own encoding of a multicast address, this field must be either 555 a group address or a broadcast address. 557 Usage: This encoding can be used in EID records in Map-Requests, Map- 558 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 559 [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended 560 EIDs are used in Map-Referral messages. 562 4.6. Traffic Engineering using Re-encapsulating Tunnels 564 For a given EID lookup into the mapping database, this LCAF format 565 can be returned to provide a list of locators in an explicit re- 566 encapsulation path. See [I-D.farinacci-lisp-te] for details. 568 Explicit Locator Path (ELP) Canonical Address Format: 570 0 1 2 3 571 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 572 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 573 | AFI = 16387 | Rsvd1 | Flags | 574 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 575 | Type = 10 | Rsvd2 | n | 576 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 577 | Rsvd3 |L|P|S| AFI = x | 578 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 579 | Reencap Hop 1 ... | 580 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 581 | Rsvd3 |L|P|S| AFI = x | 582 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 583 | Reencap Hop k ... | 584 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 586 Length value n: length in bytes of fields that follow. 588 Lookup bit (L): this is the Lookup bit used to indicate to the user 589 of the ELP to not use this address for encapsulation but to look 590 it up in the mapping database system to obtain an encapsulating 591 RLOC address. 593 RLOC-Probe bit (P): this is the RLOC-probe bit which means the 594 Reencap Hop allows RLOC-probe messages to be sent to it. When the 595 R-bit is set to 0, RLOC-probes must not be sent. When a Reencap 596 Hop is an anycast address then multiple physical Reencap Hops are 597 using the same RLOC address. In this case, RLOC-probes are not 598 needed because when the closest RLOC address is not reachable 599 another RLOC address can be reachable. 601 Strict bit (S): this is the strict bit which means the associated 602 Rencap Hop is required to be used. If this bit is 0, the 603 reencapsulator can skip this Reencap Hop and go to the next one in 604 the list. 606 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 607 its own encoding of a multicast address, this field must be either 608 a group address or a broadcast address. 610 Usage: This encoding can be used in RLOC records in Map-Requests, 611 Map-Replies, Map-Registers, and Map-Notify messages. This encoding 612 does not need to be understood by the mapping system for mapping 613 database lookups since this LCAF type is not a lookup key. 615 4.7. Storing Security Data in the Mapping Database 617 When a locator in a locator-set has a security key associated with 618 it, this LCAF format will be used to encode key material. See 619 [I-D.ietf-lisp-ddt] for details. 621 Security Key Canonical Address Format: 623 0 1 2 3 624 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 625 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 626 | AFI = 16387 | Rsvd1 | Flags | 627 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 628 | Type = 11 | Rsvd2 | 6 + n | 629 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 630 | Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R| 631 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 632 | Key Length | Key Material ... | 633 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 634 | ... Key Material | 635 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 636 | AFI = x | Locator Address ... | 637 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 639 Length value n: length in bytes of fields that start with the Key 640 Material field. 642 Key Count: the Key Count field declares the number of Key sections 643 included in this LCAF. 645 Key Algorithm: the Algorithm field identifies the key's 646 cryptographic algorithm and specifies the format of the Public Key 647 field. 649 R bit: this is the revoke bit and, if set, it specifies that this 650 Key is being Revoked. 652 Key Length: this field determines the length in bytes of the Key 653 Material field. 655 Key Material: the Key Material field stores the key material. The 656 format of the key material stored depends on the Key Algorithm 657 field. 659 AFI = x: x can be any AFI value from [AFI].This is the locator 660 address that owns the encoded security key. 662 Usage: This encoding can be used in EID or RLOC records in Map- 663 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 664 LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, 665 extended EIDs are used in Map-Referral messages. 667 4.8. Source/Destination 2-Tuple Lookups 669 When both a source and destination address of a flow needs 670 consideration for different locator-sets, this 2-tuple key is used in 671 EID fields in LISP control messages. When the Source/Dest key is 672 registered to the mapping database, it can be encoded as a source- 673 prefix and destination-prefix. When the Source/Dest is used as a key 674 for a mapping database lookup the source and destination come from a 675 data packet. 677 Source/Dest Key Canonical Address Format: 679 0 1 2 3 680 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 681 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 682 | AFI = 16387 | Rsvd1 | Flags | 683 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 684 | Type = 12 | Rsvd2 | 4 + n | 685 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 686 | Reserved | Source-ML | Dest-ML | 687 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 688 | AFI = x | Source-Prefix ... | 689 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 690 | AFI = x | Destination-Prefix ... | 691 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 693 Length value n: length in bytes of fields that follow. 695 Reserved: must be set to zero and ignore on receipt. 697 Source-ML: the mask length of the source prefix that follows. 699 Dest-ML: the mask length of the destination prefix that follows. 701 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 702 its own encoding of a multicast address, this field must be either 703 a group address or a broadcast address. 705 Usage: This encoding can be used in EID records in Map-Requests, Map- 706 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 707 [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended 708 EIDs are used in Map-Referral messages. Refer to 709 [I-D.farinacci-lisp-te] for usage details of this LCAF type. 711 4.9. Replication List Entries for Multicast Forwarding 713 The Replication List Entry LCAF type is an encoding for a locator 714 being used for unicast replication according to the specification in 715 [I-D.coras-lisp-re]. This locator encoding is pointed to by a 716 Multicast Info LCAF Type and is registered by Re-encapsulating Tunnel 717 Routers (RTRs) that are participating in an overlay distribution 718 tree. Each RTR will register its locator address and its configured 719 level in the distribution tree. 721 Replication List Entry Address Format: 723 0 1 2 3 724 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 725 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 726 | AFI = 16387 | Rsvd1 | Flags | 727 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 728 | Type = 13 | Rsvd2 | 4 + n | 729 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 730 | Rsvd3 | Rsvd4 | Level Value | 731 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 732 | AFI = x | RTR/ETR #1 ... | 733 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 734 | Rsvd3 | Rsvd4 | Level Value | 735 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 736 | AFI = x | RTR/ETR #n ... | 737 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 739 Length value n: length in bytes of fields that follow. 741 Rsvd{1,2,3,4}: must be set to zero and ignore on receipt. 743 Level Value: this value is associated with the level within the 744 overlay distribution tree hierarchy where the RTR resides. The 745 level numbers are ordered from lowest value being close to the ITR 746 (meaning that ITRs replicate to level-0 RTRs) and higher levels 747 are further downstream on the distribution tree closer to ETRs of 748 multicast receiver sites. 750 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 751 own encoding of either a unicast or multicast locator address. 752 For efficiency reasons, all RTR/ETR entries for the same level 753 should be combined together by a Map-Server to avoid searching 754 through the entire multi-level list of locator entries in a Map- 755 Reply message. 757 Usage: This encoding can be used in RLOC records in Map-Requests, 758 Map-Replies, Map-Registers, and Map-Notify messages. 760 4.10. Applications for AFI List Type 762 4.10.1. Binding IPv4 and IPv6 Addresses 764 When header translation between IPv4 and IPv6 is desirable a LISP 765 Canonical Address can use the AFI List Type to carry multiple AFIs in 766 one LCAF AFI. 768 Address Binding LISP Canonical Address Format: 770 0 1 2 3 771 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 772 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 773 | AFI = 16387 | Rsvd1 | Flags | 774 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 775 | Type = 1 | Rsvd2 | 2 + 4 + 2 + 16 | 776 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 777 | AFI = 1 | IPv4 Address ... | 778 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 779 | ... IPv4 Address | AFI = 2 | 780 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 781 | IPv6 Address ... | 782 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 783 | ... IPv6 Address ... | 784 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 785 | ... IPv6 Address ... | 786 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 787 | ... IPv6 Address | 788 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 790 Length: length in bytes is fixed at 24 when IPv4 and IPv6 AFI 791 encoded addresses are used. 793 This type of address format can be included in a Map-Request when the 794 address is being used as an EID, but the Mapping Database System 795 lookup destination can use only the IPv4 address. This is so a 796 Mapping Database Service Transport System, such as LISP-ALT 797 [RFC6836], can use the Map-Request destination address to route the 798 control message to the desired LISP site. 800 Usage: This encoding can be used in EID or RLOC records in Map- 801 Requests, Map-Replies, Map-Registers, and Map-Notify messages. See 802 subsections in this section for specific use cases. 804 4.10.2. Layer-2 VPNs 806 When MAC addresses are stored in the LISP Mapping Database System, 807 the AFI List Type can be used to carry AFI 6. 809 MAC Address LISP Canonical Address Format: 811 0 1 2 3 812 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 813 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 814 | AFI = 16387 | Rsvd1 | Flags | 815 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 816 | Type = 1 | Rsvd2 | 2 + 6 | 817 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 818 | AFI = 6 | Layer-2 MAC Address ... | 819 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 820 | ... Layer-2 MAC Address | 821 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 823 Length: length in bytes is fixed at 8 when MAC address AFI encoded 824 addresses are used. 826 This address format can be used to connect layer-2 domains together 827 using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. 828 In this use-case, a MAC address is being used as an EID, and the 829 locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or 830 even another MAC address being used as an RLOC. See 831 [I-D.portoles-lisp-eid-mobility] for how layer-2 VPNs operate when 832 doing EID mobility. 834 4.10.3. ASCII Names in the Mapping Database 836 If DNS names or URIs are stored in the LISP Mapping Database System, 837 the AFI List Type can be used to carry an ASCII string where it is 838 delimited by length 'n' of the LCAF Length encoding. 840 ASCII LISP Canonical Address Format: 842 0 1 2 3 843 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 844 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 845 | AFI = 16387 | Rsvd1 | Flags | 846 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 847 | Type = 1 | Rsvd2 | 2 + n | 848 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 849 | AFI = 17 | DNS Name or URI ... | 850 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 852 Length value n: length in bytes AFI=17 field and the null-terminated 853 ASCII string (the last byte of 0 is included). 855 4.10.4. Using Recursive LISP Canonical Address Encodings 857 When any combination of above is desirable, the AFI List Type value 858 can be used to carry within the LCAF AFI another LCAF AFI (for 859 example, Application Specific Data see Section 5.1. 861 Recursive LISP Canonical Address Format: 863 0 1 2 3 864 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 865 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 866 | AFI = 16387 | Rsvd1 | Flags | 867 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 868 | Type = 1 | Rsvd2 | 8 + 18 | 869 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 870 | AFI = 16387 | Rsvd1 | Flags | 871 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 872 | Type = 4 | Rsvd2 | 12 + 6 | 873 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 874 | IP TOS, IPv6 QQS or Flow Label | Protocol | 875 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 876 | Local Port (lower-range) | Local Port (upper-range) | 877 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 878 | Remote Port (lower-range) | Remote Port (upper-range) | 879 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 880 | AFI = 1 | IPv4 Address ... | 881 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 882 | ... IPv4 Address | 883 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 885 Length: length in bytes is fixed at 18 when an AFI=1 IPv4 address is 886 included. 888 This format could be used by a Mapping Database Transport System, 889 such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is used as 890 an EID and placed in the Map-Request destination address by the 891 sending LISP system. The ALT system can deliver the Map-Request to 892 the LISP destination site independent of the Application Data Type 893 AFI payload values. When this AFI is processed by the destination 894 LISP site, it can return different locator-sets based on the type of 895 application or level of service that is being requested. 897 4.10.5. Compatibility Mode Use Case 899 A LISP system should use the AFI List Type format when sending to 900 LISP systems that do not support a particular LCAF Type used to 901 encode locators. This allows the receiving system to be able to 902 parse a locator address for encapsulation purposes. The list of AFIs 903 in an AFI List LCAF Type has no semantic ordering and a receiver 904 should parse each AFI element no matter what the ordering. 906 Compatibility Mode Address Format: 908 0 1 2 3 909 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 910 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 911 | AFI = 16387 | Rsvd1 | Flags | 912 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 913 | Type = 1 | Rsvd2 | 8 + 14 + 6 | 914 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 915 | AFI = 16387 | Rsvd1 | Flags | 916 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 917 | Type = 5 | Rsvd2 | 12 + 2 | 918 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 919 |N| Latitude Degrees | Minutes | Seconds | 920 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 921 |E| Longitude Degrees | Minutes | Seconds | 922 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 923 | Altitude | 924 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 925 | AFI = 0 | AFI = 1 | 926 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 927 | IPv4 Address | 928 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 930 If a system does not recognized the Geo Coordinate LCAF Type that is 931 accompanying a locator address, an encoder can include the Geo 932 Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI 933 in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in 934 the list is encoded with a valid AFI value to identify the locator 935 address. 937 A LISP system is required to support the AFI List LCAF Type to use 938 this procedure. It would skip over 10 bytes of the Geo Coordinate 939 LCAF Type to get to the locator address encoding (an IPv4 locator 940 address). A LISP system that does support the Geo Coordinate LCAF 941 Type can support parsing the locator address within the Geo 942 Coordinate LCAF encoding or in the locator encoding that follows in 943 the AFI List LCAF. 945 5. Experimental LISP Canonical Address Applications 947 5.1. Convey Application Specific Data 949 When a locator-set needs to be conveyed based on the type of 950 application or the Per-Hop Behavior (PHB) of a packet, the 951 Application Data Type can be used. 953 Application Data LISP Canonical Address Format: 955 0 1 2 3 956 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 957 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 958 | AFI = 16387 | Rsvd1 | Flags | 959 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 960 | Type = 4 | Rsvd2 | 12 + n | 961 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 962 | IP TOS, IPv6 TC, or Flow Label | Protocol | 963 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 964 | Local Port (lower-range) | Local Port (upper-range) | 965 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 966 | Remote Port (lower-range) | Remote Port (upper-range) | 967 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 968 | AFI = x | Address ... | 969 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 971 Length value n: length in bytes of the AFI address that follows the 972 8-byte Application Data fields including the AFI field itself. 974 IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS 975 field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow 976 Label used in an IPv6 header. 978 Local Port/Remote Port Ranges: these fields are from the TCP, UDP, 979 or SCTP transport header. A range can be specified by using a 980 lower value and an upper value. When a single port is encoded, 981 the lower and upper value fields are the same. 983 AFI = x: x can be any AFI value from [AFI]. 985 The Application Data Canonical Address Type is used for an EID 986 encoding when an ITR wants a locator-set for a specific application. 987 When used for an RLOC encoding, the ETR is supplying a locator-set 988 for each specific application is has been configured to advertise. 990 Usage: This encoding can be used in EID records in Map-Requests, Map- 991 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 992 [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended 993 EIDs are used in Map-Referral messages. This LCAF type is used as a 994 lookup key to the mapping system that can return a longest-match or 995 exact-match entry. 997 5.2. Generic Database Mapping Lookups 999 When the LISP Mapping Database system holds information accessed by a 1000 generic formatted key (where the key is not the usual IPv4 or IPv6 1001 address), an opaque key may be desirable. 1003 Opaque Key LISP Canonical Address Format: 1005 0 1 2 3 1006 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1007 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1008 | AFI = 16387 | Rsvd1 | Flags | 1009 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1010 | Type = 6 | Rsvd2 | 3 + n | 1011 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1012 | Key Field Num | Key Wildcard Fields | Key . . . | 1013 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1014 | . . . Key | 1015 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1017 Length value n: length in bytes of the type's payload. The value n 1018 is the number of bytes that follow this Length field. 1020 Key Field Num: the number of fields (minus 1) the key can be broken 1021 up into. The width of the fields are fixed length. So for a key 1022 size of 8 bytes, with a Key Field Num of 4 allows 4 fields of 2 1023 bytes in length. Allowing for a reasonable number of 16 field 1024 separators, valid values range from 0 to 15. 1026 Key Wildcard Fields: describes which fields in the key are not used 1027 as part of the key lookup. This wildcard encoding is a bitfield. 1028 Each bit is a don't-care bit for a corresponding field in the key. 1029 Bit 0 (the low-order bit) in this bitfield corresponds the first 1030 field, right-justified in the key, bit 1 the second field, and so 1031 on. When a bit is set in the bitfield it is a don't-care bit and 1032 should not be considered as part of the database lookup. When the 1033 entire 16-bits is set to 0, then all bits of the key are used for 1034 the database lookup. 1036 Key: the variable length key used to do a LISP Database Mapping 1037 lookup. The length of the key is the value n (shown above) minus 1038 3. 1040 Usage: This is an experimental type where the usage has not been 1041 defined yet. 1043 5.3. PETR Admission Control Functionality 1045 When a public PETR device wants to verify who is encapsulating to it, 1046 it can check for a specific nonce value in the LISP encapsulated 1047 packet. To convey the nonce to admitted ITRs or PITRs, this LCAF 1048 format is used in a Map-Register or Map-Reply locator-record. 1050 Nonce Locator Canonical Address Format: 1052 0 1 2 3 1053 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1054 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1055 | AFI = 16387 | Rsvd1 | Flags | 1056 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1057 | Type = 8 | Rsvd2 | 4 + n | 1058 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1059 | Reserved | Nonce | 1060 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1061 | AFI = x | Address ... | 1062 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1064 Length value n: length in bytes of the AFI address that follows the 1065 Nonce field including the AFI field itself. 1067 Reserved: must be set to zero and ignore on receipt. 1069 Nonce: this is a nonce value returned by an ETR in a Map-Reply 1070 locator-record to be used by an ITR or PITR when encapsulating to 1071 the locator address encoded in the AFI field of this LCAF type. 1072 This nonce value is inserted in the nonce field in the LISP header 1073 encapsulation. 1075 AFI = x: x can be any AFI value from [AFI]. 1077 Usage: This is an experimental type where the usage has not been 1078 defined yet. 1080 5.4. Data Model Encoding 1082 This type allows a JSON data model to be encoded either as an EID or 1083 RLOC. 1085 JSON Data Model Type Address Format: 1087 0 1 2 3 1088 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1089 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1090 | AFI = 16387 | Rsvd1 | Flags | 1091 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1092 | Type = 14 | Rsvd2 |B| 2 + n | 1093 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1094 | JSON length | JSON binary/text encoding ... | 1095 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1096 | AFI = x | Optional Address ... | 1097 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1099 Length value n: length in bytes of fields that follow. 1101 Rsvd{1,2}: must be set to zero and ignore on receipt. 1103 B bit: indicates that the JSON field is binary encoded according to 1104 [JSON-BINARY] when the bit is set to 1. Otherwise the encoding is 1105 based on text encoding according to [RFC7159]. 1107 JSON length: length in octets of the following 'JSON binary/text 1108 encoding' field. 1110 JSON binary/text encoding field: a variable length field that 1111 contains either binary or text encodings. 1113 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 1114 own encoding of either a unicast or multicast locator address. 1115 All RTR/ETR entries for the same level should be combined together 1116 by a Map-Server to avoid searching through the entire multi-level 1117 list of locator entries in a Map-Reply message. 1119 Usage: This is an experimental type where the usage has not been 1120 defined yet. 1122 5.5. Encoding Key/Value Address Pairs 1124 The Key/Value pair is for example useful for attaching attributes to 1125 other elements of LISP packets, such as EIDs or RLOCs. When 1126 attaching attributes to EIDs or RLOCs, it's necessary to distinguish 1127 between the element that should be used as EID or RLOC, and hence as 1128 key for lookups, and additional attributes. This is especially the 1129 case when the difference cannot be determined from the types of the 1130 elements, such as when two IP addresses are being used. 1132 Key/Value Pair Address Format: 1134 0 1 2 3 1135 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1136 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1137 | AFI = 16387 | Rsvd1 | Flags | 1138 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1139 | Type = 15 | Rsvd2 | n | 1140 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1141 | AFI = x | Address as Key ... | 1142 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1143 | AFI = x | Address as Value ... | 1144 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1146 Length value n: length in bytes of fields that follow. 1148 Rsvd{1,2}: must be set to zero and ignore on receipt. 1150 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 1151 own encoding of either a unicast or multicast locator address. 1152 All RTR/ETR entries for the same level should be combined together 1153 by a Map-Server to avoid searching through the entire multi-level 1154 list of locator entries in a Map-Reply message. 1156 Address as Key: this AFI encoded address will be attached with the 1157 attributes encoded in "Address as Value" which follows this field. 1159 Address as Value: this AFI encoded address will be the attribute 1160 address that goes along with "Address as Key" which precedes this 1161 field. 1163 Usage: This is an experimental type where the usage has not been 1164 defined yet. 1166 5.6. Multiple Data-Planes 1168 Overlays are becoming popular in many parts of the network which have 1169 created an explosion of data-plane encapsulation headers. Since the 1170 LISP mapping system can hold many types of address formats, it can 1171 represent the encapsulation format supported by an RLOC as well. 1172 When an encapsulator receives a Map-Reply with an Encapsulation 1173 Format LCAF Type encoded in an RLOC-record, it can select an 1174 encapsulation format, that it can support, from any of the 1175 encapsulation protocols which have the bit set to 1 in this LCAF 1176 type. 1178 Encapsulation Format Address Format: 1180 0 1 2 3 1181 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1182 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1183 | AFI = 16387 | Rsvd1 | Flags | 1184 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1185 | Type = 16 | Rsvd2 | 4 + n | 1186 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1187 | Reserved-for-Future-Encapsulations |U|G|N|v|V|l|L| 1188 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1189 | AFI = x | Address ... | 1190 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1192 Rsvd1/Rsvd2: must be set to zero and ignored on receipt. 1194 Length value n: length in bytes of the AFI address that follows the 1195 next 32-bits including the AFI field itself. 1197 Reserved-for-Future-Encapsulations: must be set to zero and ignored 1198 on receipt. This field will get bits allocated to future 1199 encapsulations, as they are created. 1201 L: The RLOCs listed in the AFI encoded addresses in the next longword 1202 can accept layer3 LISP encapsulation using destination UDP port 1203 4341 [RFC6830]. 1205 l: The RLOCs listed in the AFI encoded addresses in the next longword 1206 can accept layer2 LISP encapsulation using destination UDP port 1207 8472 [I-D.smith-lisp-layer2]. 1209 V: The RLOCs listed in the AFI encoded addresses in the next longword 1210 can accept VXLAN encapsulation using destination UDP port 4789 1211 [RFC7348]. 1213 v: The RLOCs listed in the AFI encoded addresses in the next longword 1214 can accept VXLAN-GPE encapsulation using destination UDP port 4790 1215 [I-D.quinn-vxlan-gpe]. 1217 N: The RLOCs listed in the AFI encoded addresses in the next longword 1218 can accept NV-GRE encapsulation using IPv4/ IPv6 protocol number 1219 47 [RFC7637]. 1221 G: The RLOCs listed in the AFI encoded addresses in the next longword 1222 can accept GENEVE encapsulation using destination UDP port 6081 1223 [I-D.gross-geneve]. 1225 U: The RLOCs listed in the AFI encoded addresses in the next longword 1226 can accept GUE encapsulation using destination UDP port TBD 1227 [I-D.herbert-gue]. 1229 Usage: This encoding can be used in RLOC records in Map-Requests, 1230 Map-Replies, Map-Registers, and Map-Notify messages. 1232 6. Security Considerations 1234 There are no security considerations for this specification. The 1235 security considerations are documented for the protocols that use 1236 LISP Canonical Addressing. 1238 The use of the Geo-Coordinates LCAF Type may raise physical privacy 1239 issues. Care should be taken when configuring the mapping system to 1240 use specific policy parameters so geo-location information is not 1241 returned gratutiosly. 1243 7. IANA Considerations 1245 This document defines a canonical address format encoding used in 1246 LISP control messages and in the encoding of lookup keys for the LISP 1247 Mapping Database System. Such address format is based on a fixed AFI 1248 (16387) and a LISP LCAF Type field. 1250 The LISP LCAF Type field is an 8-bit field specific to the LISP 1251 Canonical Address formatted encodings, for which IANA is to create 1252 and maintain a new registry (as outlined in [RFC5226]) entitled "LISP 1253 LCAF Type". Initial values for the LISP LCAF Type registry are given 1254 below. Future assignments are to be made through expert review with 1255 a specification required publication. Assignments consist of a LISP 1256 LCAF Type name and its associated value: 1258 +-------+------------------------------+------------+ 1259 | Value | LISP LCAF Type Name | Definition | 1260 +-------+------------------------------+------------+ 1261 | 0 | Null Body Type | Section 3 | 1262 | 1 | AFI List Type | Section 3 | 1263 | 2 | Instance ID Type | Section 3 | 1264 | 3 | AS Number Type | Section 3 | 1265 | 5 | Geo Coordinates Type | Section 3 | 1266 | 7 | NAT-Traversal Type | Section 3 | 1267 | 9 | Multicast Info Type | Section 3 | 1268 | 10 | Explicit Locator Path Type | Section 3 | 1269 | 11 | Security Key Type | Section 3 | 1270 | 12 | Source/Dest Key Type | Section 3 | 1271 | 13 | Replication List Entry Type | Section 3 | 1272 +-------+------------------------------+------------+ 1274 Table 1: LISP LCAF Type Initial Values 1276 8. References 1278 8.1. Normative References 1280 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G., 1281 and E. Lear, "Address Allocation for Private Internets", 1282 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996, 1283 . 1285 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1286 Requirement Levels", BCP 14, RFC 2119, 1287 DOI 10.17487/RFC2119, March 1997, 1288 . 1290 [RFC3232] Reynolds, J., Ed., "Assigned Numbers: RFC 1700 is Replaced 1291 by an On-line Database", RFC 3232, DOI 10.17487/RFC3232, 1292 January 2002, . 1294 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an 1295 IANA Considerations Section in RFCs", BCP 26, RFC 5226, 1296 DOI 10.17487/RFC5226, May 2008, 1297 . 1299 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The 1300 Locator/ID Separation Protocol (LISP)", RFC 6830, 1301 DOI 10.17487/RFC6830, January 2013, 1302 . 1304 [RFC6836] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, 1305 "Locator/ID Separation Protocol Alternative Logical 1306 Topology (LISP+ALT)", RFC 6836, DOI 10.17487/RFC6836, 1307 January 2013, . 1309 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data 1310 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March 1311 2014, . 1313 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, 1314 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual 1315 eXtensible Local Area Network (VXLAN): A Framework for 1316 Overlaying Virtualized Layer 2 Networks over Layer 3 1317 Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014, 1318 . 1320 [RFC7637] Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network 1321 Virtualization Using Generic Routing Encapsulation", 1322 RFC 7637, DOI 10.17487/RFC7637, September 2015, 1323 . 1325 8.2. Informative References 1327 [AFI] IANA, , "Address Family Identifier (AFIs)", ADDRESS FAMILY 1328 NUMBERS http://www.iana.org/numbers.html, Febuary 2007. 1330 [I-D.coras-lisp-re] 1331 Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J., 1332 Maino, F., and D. Farinacci, "LISP Replication 1333 Engineering", draft-coras-lisp-re-08 (work in progress), 1334 November 2015. 1336 [I-D.ermagan-lisp-nat-traversal] 1337 Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, 1338 F., and C. White, "NAT traversal for LISP", draft-ermagan- 1339 lisp-nat-traversal-10 (work in progress), February 2016. 1341 [I-D.farinacci-lisp-te] 1342 Farinacci, D., Kowal, M., and P. Lahiri, "LISP Traffic 1343 Engineering Use-Cases", draft-farinacci-lisp-te-10 (work 1344 in progress), March 2016. 1346 [I-D.gross-geneve] 1347 Gross, J., Sridhar, T., Garg, P., Wright, C., Ganga, I., 1348 Agarwal, P., Duda, K., Dutt, D., and J. Hudson, "Geneve: 1349 Generic Network Virtualization Encapsulation", draft- 1350 gross-geneve-02 (work in progress), October 2014. 1352 [I-D.herbert-gue] 1353 Herbert, T., Yong, L., and O. Zia, "Generic UDP 1354 Encapsulation", draft-herbert-gue-03 (work in progress), 1355 March 2015. 1357 [I-D.ietf-lisp-ddt] 1358 Fuller, V., Lewis, D., Ermagan, V., Jain, A., and A. 1359 Smirnov, "LISP Delegated Database Tree", draft-ietf-lisp- 1360 ddt-07 (work in progress), May 2016. 1362 [I-D.portoles-lisp-eid-mobility] 1363 Portoles-Comeras, M., Ashtaputre, V., Moreno, V., Maino, 1364 F., and D. Farinacci, "LISP L2/L3 EID Mobility Using a 1365 Unified Control Plane", draft-portoles-lisp-eid- 1366 mobility-00 (work in progress), April 2016. 1368 [I-D.quinn-vxlan-gpe] 1369 Quinn, P., Manur, R., Kreeger, L., Lewis, D., Maino, F., 1370 Smith, M., Agarwal, P., Yong, L., Xu, X., Elzur, U., Garg, 1371 P., and D. Melman, "Generic Protocol Extension for VXLAN", 1372 draft-quinn-vxlan-gpe-04 (work in progress), February 1373 2015. 1375 [I-D.smith-lisp-layer2] 1376 Smith, M., Dutt, D., Farinacci, D., and F. Maino, "Layer 2 1377 (L2) LISP Encapsulation Format", draft-smith-lisp- 1378 layer2-03 (work in progress), September 2013. 1380 [JSON-BINARY] 1381 "Universal Binary JSON Specification", 1382 URL http://ubjson.org. 1384 [WGS-84] Geodesy and Geophysics Department, DoD., "World Geodetic 1385 System 1984", NIMA TR8350.2, January 2000, . 1388 Appendix A. Acknowledgments 1390 The authors would like to thank Vince Fuller, Gregg Schudel, Jesper 1391 Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for 1392 their technical and editorial commentary. 1394 The authors would like to thank Victor Moreno for discussions that 1395 lead to the definition of the Multicast Info LCAF type. 1397 The authors would like to thank Parantap Lahiri and Michael Kowal for 1398 discussions that lead to the definition of the Explicit Locator Path 1399 (ELP) LCAF type. 1401 The authors would like to thank Fabio Maino and Vina Ermagan for 1402 discussions that lead to the definition of the Security Key LCAF 1403 type. 1405 The authors would like to thank Albert Cabellos-Aparicio and Florin 1406 Coras for discussions that lead to the definition of the Replication 1407 List Entry LCAF type. 1409 Thanks goes to Michiel Blokzijl and Alberto Rodriguez-Natal for 1410 suggesting new LCAF types. 1412 Thanks also goes to Terry Manderson for assistance obtaining a LISP 1413 AFI value from IANA. 1415 Appendix B. Document Change Log 1417 [RFC Editor: Please delete this section on publication as RFC.] 1419 B.1. Changes to draft-ietf-lisp-lcaf-14.txt 1421 o Submitted July 2016. 1423 o Fix IDnits errors and comments from Luigi Iannone, document 1424 shepherd. 1426 B.2. Changes to draft-ietf-lisp-lcaf-13.txt 1428 o Submitted May 2016. 1430 o Explain the Instance-ID LCAF Type is 32-bits in length and the 1431 Instance-ID field in the LISP encapsulation header is 24-bits. 1433 B.3. Changes to draft-ietf-lisp-lcaf-12.txt 1435 o Submitted March 2016. 1437 o Updated references and document timer. 1439 o Removed the R, J, and L bits from the Multicast Info Type LCAF 1440 since working group decided to not go forward with draft- 1441 farinacci-lisp-mr-signaling-03.txt in favor of draft- ietf-lisp- 1442 signal-free-00.txt. 1444 B.4. Changes to draft-ietf-lisp-lcaf-11.txt 1446 o Submitted September 2015. 1448 o Reflecting comments from Prague LISP working group. 1450 o Readying document for a LISP LCAF registry, RFC publication, and 1451 for new use-cases that will be defined in the new charter. 1453 B.5. Changes to draft-ietf-lisp-lcaf-10.txt 1455 o Submitted June 2015. 1457 o Fix coauthor Job's contact information. 1459 B.6. Changes to draft-ietf-lisp-lcaf-09.txt 1461 o Submitted June 2015. 1463 o Fix IANA Considerations section to request a registry to allocate 1464 and track LCAF Type values. 1466 B.7. Changes to draft-ietf-lisp-lcaf-08.txt 1468 o Submitted April 2015. 1470 o Comment from Florin. The Application Data Type length field has a 1471 typo. The field should be labeled "12 + n" and not "8 + n". 1473 o Fix length fields in the sections titled "Using Recursive LISP 1474 Canonical Address Encodings", "Generic Database Mapping Lookups", 1475 and "Data Model Encoding". 1477 B.8. Changes to draft-ietf-lisp-lcaf-07.txt 1479 o Submitted December 2014. 1481 o Add a new LCAF Type called "Encapsulation Format" so decapsulating 1482 xTRs can inform encapsulating xTRs what data-plane encapsulations 1483 they support. 1485 B.9. Changes to draft-ietf-lisp-lcaf-06.txt 1487 o Submitted October 2014. 1489 o Make it clear how sorted RLOC records are done when LCAFs are used 1490 as the RLOC record. 1492 B.10. Changes to draft-ietf-lisp-lcaf-05.txt 1494 o Submitted May 2014. 1496 o Add a length field of the JSON payload that can be used for either 1497 binary or text encoding of JSON data. 1499 B.11. Changes to draft-ietf-lisp-lcaf-04.txt 1501 o Submitted January 2014. 1503 o Agreement among ELP implementors to have the AFI 16-bit field 1504 adjacent to the address. This will make the encoding consistent 1505 with all other LCAF type address encodings. 1507 B.12. Changes to draft-ietf-lisp-lcaf-03.txt 1509 o Submitted September 2013. 1511 o Updated references and author's affilations. 1513 o Added Instance-ID to the Multicast Info Type so there is relative 1514 ease in parsing (S,G) entries within a VPN. 1516 o Add port range encodings to the Application Data LCAF Type. 1518 o Add a new JSON LCAF Type. 1520 o Add Address Key/Value LCAF Type to allow attributes to be attached 1521 to an address. 1523 B.13. Changes to draft-ietf-lisp-lcaf-02.txt 1525 o Submitted March 2013. 1527 o Added new LCAF Type "Replication List Entry" to support LISP 1528 replication engineering use-cases. 1530 o Changed references to new LISP RFCs. 1532 B.14. Changes to draft-ietf-lisp-lcaf-01.txt 1534 o Submitted January 2013. 1536 o Change longitude range from 0-90 to 0-180 in section 4.4. 1538 o Added reference to WGS-84 in section 4.4. 1540 B.15. Changes to draft-ietf-lisp-lcaf-00.txt 1542 o Posted first working group draft August 2012. 1544 o This draft was renamed from draft-farinacci-lisp-lcaf-10.txt. 1546 Authors' Addresses 1548 Dino Farinacci 1549 lispers.net 1550 San Jose, CA 1551 USA 1553 Email: farinacci@gmail.com 1554 Dave Meyer 1555 Brocade 1556 San Jose, CA 1557 USA 1559 Email: dmm@1-4-5.net 1561 Job Snijders 1562 NTT Communications 1563 Theodorus Majofskistraat 100 1564 Amsterdam 1065 SZ 1565 NL 1567 Email: job@ntt.net