idnits 2.17.1 draft-ietf-lisp-lcaf-16.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Line 564 has weird spacing: '...Address is th...' == Line 567 has weird spacing: '...Address is th...' -- The document date (October 1, 2016) is 2763 days in the past. Is this intentional? Checking references for intended status: Experimental ---------------------------------------------------------------------------- ** Obsolete normative reference: RFC 5226 (Obsoleted by RFC 8126) ** Obsolete normative reference: RFC 6830 (Obsoleted by RFC 9300, RFC 9301) ** Obsolete normative reference: RFC 7159 (Obsoleted by RFC 8259) == Outdated reference: A later version (-19) exists of draft-ermagan-lisp-nat-traversal-11 == Outdated reference: A later version (-12) exists of draft-farinacci-lisp-te-11 == Outdated reference: A later version (-10) exists of draft-ietf-lisp-crypto-08 == Outdated reference: A later version (-09) exists of draft-ietf-lisp-ddt-08 == Outdated reference: A later version (-02) exists of draft-portoles-lisp-eid-mobility-00 Summary: 3 errors (**), 0 flaws (~~), 8 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group D. Farinacci 3 Internet-Draft lispers.net 4 Intended status: Experimental D. Meyer 5 Expires: April 4, 2017 Brocade 6 J. Snijders 7 NTT Communications 8 October 1, 2016 10 LISP Canonical Address Format (LCAF) 11 draft-ietf-lisp-lcaf-16 13 Abstract 15 This draft defines a canonical address format encoding used in LISP 16 control messages and in the encoding of lookup keys for the LISP 17 Mapping Database System. 19 Requirements Language 21 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 22 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 23 document are to be interpreted as described in [RFC2119]. 25 Status of This Memo 27 This Internet-Draft is submitted in full conformance with the 28 provisions of BCP 78 and BCP 79. 30 Internet-Drafts are working documents of the Internet Engineering 31 Task Force (IETF). Note that other groups may also distribute 32 working documents as Internet-Drafts. The list of current Internet- 33 Drafts is at http://datatracker.ietf.org/drafts/current/. 35 Internet-Drafts are draft documents valid for a maximum of six months 36 and may be updated, replaced, or obsoleted by other documents at any 37 time. It is inappropriate to use Internet-Drafts as reference 38 material or to cite them other than as "work in progress." 40 This Internet-Draft will expire on April 4, 2017. 42 Copyright Notice 44 Copyright (c) 2016 IETF Trust and the persons identified as the 45 document authors. All rights reserved. 47 This document is subject to BCP 78 and the IETF Trust's Legal 48 Provisions Relating to IETF Documents 49 (http://trustee.ietf.org/license-info) in effect on the date of 50 publication of this document. Please review these documents 51 carefully, as they describe your rights and restrictions with respect 52 to this document. Code Components extracted from this document must 53 include Simplified BSD License text as described in Section 4.e of 54 the Trust Legal Provisions and are provided without warranty as 55 described in the Simplified BSD License. 57 Table of Contents 59 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 60 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 61 3. LISP Canonical Address Format Encodings . . . . . . . . . . . 5 62 4. LISP Canonical Address Applications . . . . . . . . . . . . . 7 63 4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 7 64 4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 9 65 4.3. Assigning Geo Coordinates to Locator Addresses . . . . . 10 66 4.4. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 12 67 4.5. Multicast Group Membership Information . . . . . . . . . 14 68 4.6. Traffic Engineering using Re-encapsulating Tunnels . . . 16 69 4.7. Storing Security Data in the Mapping Database . . . . . . 17 70 4.8. Source/Destination 2-Tuple Lookups . . . . . . . . . . . 19 71 4.9. Replication List Entries for Multicast Forwarding . . . . 21 72 4.10. Applications for AFI List Type . . . . . . . . . . . . . 22 73 4.10.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . 22 74 4.10.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 23 75 4.10.3. ASCII Names in the Mapping Database . . . . . . . . 24 76 4.10.4. Using Recursive LISP Canonical Address Encodings . . 25 77 4.10.5. Compatibility Mode Use Case . . . . . . . . . . . . 26 78 5. Experimental LISP Canonical Address Applications . . . . . . 27 79 5.1. Convey Application Specific Data . . . . . . . . . . . . 27 80 5.2. Generic Database Mapping Lookups . . . . . . . . . . . . 28 81 5.3. PETR Admission Control Functionality . . . . . . . . . . 30 82 5.4. Data Model Encoding . . . . . . . . . . . . . . . . . . . 31 83 5.5. Encoding Key/Value Address Pairs . . . . . . . . . . . . 32 84 5.6. Multiple Data-Planes . . . . . . . . . . . . . . . . . . 33 85 6. Security Considerations . . . . . . . . . . . . . . . . . . . 36 86 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 36 87 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 37 88 8.1. Normative References . . . . . . . . . . . . . . . . . . 37 89 8.2. Informative References . . . . . . . . . . . . . . . . . 38 90 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . 39 91 Appendix B. Document Change Log . . . . . . . . . . . . . . . . 40 92 B.1. Changes to draft-ietf-lisp-lcaf-16.txt . . . . . . . . . 40 93 B.2. Changes to draft-ietf-lisp-lcaf-15.txt . . . . . . . . . 40 94 B.3. Changes to draft-ietf-lisp-lcaf-14.txt . . . . . . . . . 40 95 B.4. Changes to draft-ietf-lisp-lcaf-13.txt . . . . . . . . . 40 96 B.5. Changes to draft-ietf-lisp-lcaf-12.txt . . . . . . . . . 40 97 B.6. Changes to draft-ietf-lisp-lcaf-11.txt . . . . . . . . . 40 98 B.7. Changes to draft-ietf-lisp-lcaf-10.txt . . . . . . . . . 41 99 B.8. Changes to draft-ietf-lisp-lcaf-09.txt . . . . . . . . . 41 100 B.9. Changes to draft-ietf-lisp-lcaf-08.txt . . . . . . . . . 41 101 B.10. Changes to draft-ietf-lisp-lcaf-07.txt . . . . . . . . . 41 102 B.11. Changes to draft-ietf-lisp-lcaf-06.txt . . . . . . . . . 41 103 B.12. Changes to draft-ietf-lisp-lcaf-05.txt . . . . . . . . . 41 104 B.13. Changes to draft-ietf-lisp-lcaf-04.txt . . . . . . . . . 42 105 B.14. Changes to draft-ietf-lisp-lcaf-03.txt . . . . . . . . . 42 106 B.15. Changes to draft-ietf-lisp-lcaf-02.txt . . . . . . . . . 42 107 B.16. Changes to draft-ietf-lisp-lcaf-01.txt . . . . . . . . . 42 108 B.17. Changes to draft-ietf-lisp-lcaf-00.txt . . . . . . . . . 42 109 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 43 111 1. Introduction 113 The LISP architecture and protocols [RFC6830] introduces two new 114 numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators 115 (RLOCs). To provide flexibility for current and future applications, 116 these values can be encoded in LISP control messages using a general 117 syntax that includes Address Family Identifier (AFI), length, and 118 value fields. 120 Currently defined AFIs include IPv4 and IPv6 addresses, which are 121 formatted according to code-points assigned in [AFI] as follows: 123 IPv4 Encoded Address: 125 0 1 2 3 126 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 127 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 128 | AFI = 1 | IPv4 Address ... | 129 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 130 | ... IPv4 Address | 131 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 132 IPv6 Encoded Address: 134 0 1 2 3 135 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 136 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 137 | AFI = 2 | IPv6 Address ... | 138 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 139 | ... IPv6 Address ... | 140 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 141 | ... IPv6 Address ... | 142 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 143 | ... IPv6 Address ... | 144 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 145 | ... IPv6 Address | 146 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 148 This document describes the currently-defined AFIs the LISP protocol 149 uses along with their encodings and introduces the LISP Canonical 150 Address Format (LCAF) that can be used to define the LISP-specific 151 encodings for arbitrary AFI values. 153 2. Definition of Terms 155 Address Family Identifier (AFI): a term used to describe an address 156 encoding in a packet. Address families are defined for IPv4 and 157 IPv6. See [AFI] and [RFC3232] for details. The reserved AFI 158 value of 0 is used in this specification to indicate an 159 unspecified encoded address where the length of the address is 0 160 bytes following the 16-bit AFI value of 0. 162 Unspecified Address Format: 164 0 1 2 3 165 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 166 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 167 | AFI = 0 | | 168 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 170 Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value 171 used in the source and destination address fields of the first 172 (most inner) LISP header of a packet. The host obtains a 173 destination EID the same way it obtains a destination address 174 today, for example through a DNS lookup or SIP exchange. The 175 source EID is obtained via existing mechanisms used to set a 176 host's "local" IP address. An EID is allocated to a host from an 177 EID-prefix block associated with the site where the host is 178 located. An EID can be used by a host to refer to other hosts. 180 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress 181 tunnel router (ETR). It is the output of a EID-to-RLOC mapping 182 lookup. An EID maps to one or more RLOCs. Typically, RLOCs are 183 numbered from topologically aggregatable blocks that are assigned 184 to a site at each point to which it attaches to the global 185 Internet; where the topology is defined by the connectivity of 186 provider networks, RLOCs can be thought of as PA addresses. 187 Multiple RLOCs can be assigned to the same ETR device or to 188 multiple ETR devices at a site. 190 3. LISP Canonical Address Format Encodings 192 IANA has assigned AFI value 16387 (0x4003) to the LISP architecture 193 and protocols. This specification defines the encoding format of the 194 LISP Canonical Address (LCA). This section defines all types for 195 which an initial allocation in the LISP-LCAF registry is requested. 196 See IANA Considerations section for the complete list of such types. 198 The Address Family AFI definitions from [AFI] only allocate code- 199 points for the AFI value itself. The length of the address or entity 200 that follows is not defined and is implied based on conventional 201 experience. When the LISP protocol uses LCAF definitions from this 202 document, the AFI-based address lengths are specified in this 203 document. When new LCAF definitions are defined in other use-case 204 documents, the AFI-based address lengths for any new AFI encoded 205 addresses are specified in those documents. 207 The first 6 bytes of an LISP Canonical Address are followed by a 208 variable number of fields of variable length: 210 0 1 2 3 211 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 212 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 213 | AFI = 16387 | Rsvd1 | Flags | 214 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 215 | Type | Rsvd2 | Length | 216 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 218 Rsvd1: this 8-bit field is reserved for future use and MUST be 219 transmitted as 0 and ignored on receipt. 221 Flags: this 8-bit field is for future definition and use. For now, 222 set to zero on transmission and ignored on receipt. 224 Type: this 8-bit field is specific to the LISP Canonical Address 225 formatted encodings, currently allocated values are: 227 Type 0: Null Body Type 228 Type 1: AFI List Type 230 Type 2: Instance ID Type 232 Type 3: AS Number Type 234 Type 4: Application Data Type 236 Type 5: Geo Coordinates Type 238 Type 6: Opaque Key Type 240 Type 7: NAT-Traversal Type 242 Type 8: Nonce Locator Type 244 Type 9: Multicast Info Type 246 Type 10: Explicit Locator Path Type 248 Type 11: Security Key Type 250 Type 12: Source/Dest Key Type 252 Type 13: Replication List Entry Type 254 Type 14: JSON Data Model Type 256 Type 15: Key/Value Address Pair Type 258 Type 16: Encapsulation Format Type 260 Rsvd2: this LCAF Type dependent 8-bit field is reserved for future 261 use and MUST be transmitted as 0 and ignored on receipt. See 262 specific LCAF Type for specific bits not reserved. 264 Length: this 16-bit field is in units of bytes and covers all of the 265 LISP Canonical Address payload, starting and including the byte 266 after the Length field. When including the AFI, an LCAF encoded 267 address will have a minimum length of 8 bytes when the Length 268 field is 0. The 8 bytes include the AFI, Flags, Type, Reserved, 269 and Length fields. When the AFI is not next to encoded address in 270 a control message, then the encoded address will have a minimum 271 length of 6 bytes when the Length field is 0. The 6 bytes include 272 the Flags, Type, Reserved, and Length fields. 274 [RFC6830] states RLOC records are sorted when encoded in control 275 messages so the locator-set has consistent order across all xTRs for 276 a given EID. The sort order is based on sort-key {afi, RLOC- 277 address}. When an RLOC is LCAF encoded, the sort-key is {afi, LCAF- 278 Type}. Therefore, when a locator-set has a mix of AFI records and 279 LCAF records, they are ordered from smallest to largest AFI value. 281 4. LISP Canonical Address Applications 283 4.1. Segmentation using LISP 285 When multiple organizations inside of a LISP site are using private 286 addresses [RFC1918] as EID-prefixes, their address spaces must remain 287 segregated due to possible address duplication. An Instance ID in 288 the address encoding can aid in making the entire AFI based address 289 unique. 291 Another use for the Instance ID LISP Canonical Address Format is when 292 creating multiple segmented VPNs inside of a LISP site where keeping 293 EID-prefix based subnets is desirable. 295 Instance ID LISP Canonical Address Format: 297 0 1 2 3 298 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 299 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 300 | AFI = 16387 | Rsvd1 | Flags | 301 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 302 | Type = 2 | IID mask-len | 4 + n | 303 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 304 | Instance ID | 305 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 306 | AFI = x | Address ... | 307 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 309 IID mask-len: if the AFI is set to 0, then this format is not 310 encoding an extended EID-prefix but rather an instance-ID range 311 where the 'IID mask-len' indicates the number of high-order bits 312 used in the Instance ID field for the range. The low-order bits 313 of the Instance ID field must be 0. 315 Length value n: length in bytes of the AFI address that follows the 316 Instance ID field including the AFI field itself. 318 Instance ID: the low-order 24-bits that can go into a LISP data 319 header when the I-bit is set. See [RFC6830] for details. The 320 reason for the length difference is so that the maximum number of 321 instances supported per mapping system is 2^32 while conserving 322 space in the LISP data header. This comes at the expense of 323 limiting the maximum number of instances per xTR to 2^24. If an 324 xTR is configured with multiple instance-IDs where the value in 325 the high-order 8 bits are the same, then the low-order 24 bits 326 MUST be unique. 328 AFI = x: x can be any AFI value from [AFI]. 330 This LISP Canonical Address Type can be used to encode either EID or 331 RLOC addresses. 333 Usage: When used as a lookup key, the EID is regarded as a extended- 334 EID in the mapping system. This encoding is used in EID records in 335 Map-Requests, Map-Replies, Map-Registers, and Map-Notify messages. 336 When LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system 337 mechanism, extended EIDs are used in Map-Referral messages. 339 4.2. Carrying AS Numbers in the Mapping Database 341 When an AS number is stored in the LISP Mapping Database System for 342 either policy or documentation reasons, it can be encoded in a LISP 343 Canonical Address. 345 AS Number LISP Canonical Address Format: 347 0 1 2 3 348 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 349 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 350 | AFI = 16387 | Rsvd1 | Flags | 351 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 352 | Type = 3 | Rsvd2 | 4 + n | 353 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 354 | AS Number | 355 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 356 | AFI = x | Address ... | 357 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 359 Length value n: length in bytes of the AFI address that follows the 360 AS Number field including the AFI field itself. 362 AS Number: the 32-bit AS number of the autonomous system that has 363 been assigned either the EID or RLOC that follows. 365 AFI = x: x can be any AFI value from [AFI]. 367 The AS Number Canonical Address Type can be used to encode either EID 368 or RLOC addresses. The former is used to describe the LISP-ALT AS 369 number the EID-prefix for the site is being carried for. The latter 370 is used to describe the AS that is carrying RLOC based prefixes in 371 the underlying routing system. 373 Usage: This encoding can be used in EID or RLOC records in Map- 374 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 375 LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, 376 extended EIDs are used in Map-Referral messages. 378 4.3. Assigning Geo Coordinates to Locator Addresses 380 If an ETR desires to send a Map-Reply describing the Geo Coordinates 381 for each locator in its locator-set, it can use the Geo Coordinate 382 Type to convey physical location information. 384 Coordinates are specified using the WGS-84 (World Geodetic System) 385 reference coordinate system [WGS-84]. 387 Geo Coordinate LISP Canonical Address Format: 389 0 1 2 3 390 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 391 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 392 | AFI = 16387 | Rsvd1 | Flags | 393 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 394 | Type = 5 | Rsvd2 | 12 + n | 395 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 396 |N| Latitude Degrees | Minutes | Seconds | 397 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 398 |E| Longitude Degrees | Minutes | Seconds | 399 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 400 | Altitude | 401 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 402 | AFI = x | Address ... | 403 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 405 Length value n: length in bytes of the AFI address that follows the 406 8-byte Longitude and Latitude fields including the AFI field 407 itself. 409 N: When set to 1 means North, otherwise South. 411 Latitude Degrees: Valid values range from 0 to 90 degrees above or 412 below the equator (northern or southern hemisphere, respectively). 414 Latitude Minutes: Valid values range from 0 to 59. 416 Latitude Seconds: Valid values range from 0 to 59. 418 E: When set to 1 means East, otherwise West. 420 Longitude Degrees: Value values are from 0 to 180 degrees right or 421 left of the Prime Meridian. 423 Longitude Minutes: Valid values range from 0 to 59. 425 Longitude Seconds: Valid values range from 0 to 59. 427 Altitude: Height relative to sea level in meters. This is a two's 428 complement signed integer meaning that the altitude could be below 429 sea level. A value of 0x7fffffff indicates no Altitude value is 430 encoded. 432 AFI = x: x can be any AFI value from [AFI]. 434 The Geo Coordinates Canonical Address Type can be used to encode 435 either EID or RLOC addresses. When used for EID encodings, you can 436 determine the physical location of an EID along with the topological 437 location by observing the locator-set. 439 Usage: This encoding can be used in EID or RLOC records in Map- 440 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 441 LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, 442 extended EIDs are used in Map-Referral messages. 444 4.4. NAT Traversal Scenarios 446 When a LISP system is conveying global address and mapped port 447 information when traversing through a NAT device, the NAT-Traversal 448 LCAF Type is used. See [I-D.ermagan-lisp-nat-traversal] for details. 450 NAT-Traversal Canonical Address Format: 452 0 1 2 3 453 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 454 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 455 | AFI = 16387 | Rsvd1 | Flags | 456 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 457 | Type = 7 | Rsvd2 | 4 + n | 458 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 459 | MS UDP Port Number | ETR UDP Port Number | 460 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 461 | AFI = x | Global ETR RLOC Address ... | 462 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 463 | AFI = x | MS RLOC Address ... | 464 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 465 | AFI = x | Private ETR RLOC Address ... | 466 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 467 | AFI = x | RTR RLOC Address 1 ... | 468 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 469 | AFI = x | RTR RLOC Address k ... | 470 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 472 Length value n: length in bytes of the AFI addresses that follows 473 the UDP Port Number field including the AFI fields themselves. 475 MS UDP Port Number: this is the UDP port number of the Map-Server 476 and is set to 4342. 478 ETR UDP Port Number: this is the port number returned to a LISP 479 system which was copied from the source port from a packet that 480 has flowed through a NAT device. 482 AFI = x: x can be any AFI value from [AFI]. 484 Global ETR RLOC Address: this is an address known to be globally 485 unique built by NAT-traversal functionality in a LISP router. 487 MS RLOC Address: this is the address of the Map-Server used in the 488 destination RLOC of a packet that has flowed through a NAT device. 490 Private ETR RLOC Address: this is an address known to be a private 491 address inserted in this LCAF format by a LISP router that resides 492 on the private side of a NAT device. 494 RTR RLOC Address: this is an encapsulation address used by an ITR or 495 PITR which resides behind a NAT device. This address is known to 496 have state in a NAT device so packets can flow from it to the LISP 497 ETR behind the NAT. There can be one or more NAT Reencapsulating 498 Tunnel Router (RTR) [I-D.ermagan-lisp-nat-traversal] addresses 499 supplied in these set of fields. The number of RTRs encoded is 500 determined by the LCAF length field. When there are no RTRs 501 supplied, the RTR fields can be omitted and reflected by the LCAF 502 length field or an AFI of 0 can be used to indicate zero RTRs 503 encoded. 505 Usage: This encoding can be used in Info-Request and Info-Reply 506 messages. The mapping system does not store this information. The 507 information is used by an xTR and Map-Server to convey private and 508 public address information when traversing NAT and firewall devices. 510 4.5. Multicast Group Membership Information 512 Multicast group information can be published in the mapping database. 513 So a lookup on an group address EID can return a replication list of 514 RLOC group addresses or RLOC unicast addresses. The intent of this 515 type of unicast replication is to deliver packets to multiple ETRs at 516 receiver LISP multicast sites. The locator-set encoding for this EID 517 record type can be a list of ETRs when they each register with "Merge 518 Semantics". The encoding can be a typical AFI encoded locator 519 address. When an RTR list is being registered (with multiple levels 520 according to [I-D.coras-lisp-re]), the Replication List Entry LCAF 521 type is used for locator encoding. 523 This LCAF encoding can be used to send broadcast packets to all 524 members of a subnet when each EIDs are away from their home subnet 525 location. 527 Multicast Info Canonical Address Format: 529 0 1 2 3 530 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 531 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 532 | AFI = 16387 | Rsvd1 | Flags | 533 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 534 | Type = 9 | Rsvd2 | 8 + n | 535 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 536 | Instance-ID | 537 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 538 | Reserved | Source MaskLen| Group MaskLen | 539 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 540 | AFI = x | Source/Subnet Address ... | 541 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 542 | AFI = x | Group Address ... | 543 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 545 Length value n: length in bytes of fields that follow. 547 Reserved: must be set to zero and ignore on receipt. 549 Instance ID: the low-order 24-bits that can go into a LISP data 550 header when the I-bit is set. See [RFC6830] for details. The use 551 of the Instance-ID in this LCAF type is to associate a multicast 552 forwarding entry for a given VPN. The instance-ID describes the 553 VPN and is registered to the mapping database system as a 3-tuple 554 of (Instance-ID, S-prefix, G-prefix). 556 Source MaskLen: the mask length of the source prefix that follows. 558 Group MaskLen: the mask length of the group prefix that follows. 560 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 561 its own encoding of a multicast address, this field must be either 562 a group address or a broadcast address. 564 Source/Subnet Address is the source address or prefix for encoding a 565 (S,G) multicast entry. 567 Group Address is the group address or group prefix for encoding 568 (S,G) or (*,G) multicast entries. 570 Usage: This encoding can be used in EID records in Map-Requests, Map- 571 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 572 [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended 573 EIDs are used in Map-Referral messages. 575 4.6. Traffic Engineering using Re-encapsulating Tunnels 577 For a given EID lookup into the mapping database, this LCAF format 578 can be returned to provide a list of locators in an explicit re- 579 encapsulation path. See [I-D.farinacci-lisp-te] for details. 581 Explicit Locator Path (ELP) Canonical Address Format: 583 0 1 2 3 584 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 585 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 586 | AFI = 16387 | Rsvd1 | Flags | 587 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 588 | Type = 10 | Rsvd2 | n | 589 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 590 | Rsvd3 |L|P|S| AFI = x | 591 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 592 | Reencap Hop 1 ... | 593 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 594 | Rsvd3 |L|P|S| AFI = x | 595 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 596 | Reencap Hop k ... | 597 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 599 Length value n: length in bytes of fields that follow. 601 Rsvd3: this field is reserved for future use and MUST be transmitted 602 as 0 and ignored on receipt. 604 Lookup bit (L): this is the Lookup bit used to indicate to the user 605 of the ELP to not use this address for encapsulation but to look 606 it up in the mapping database system to obtain an encapsulating 607 RLOC address. 609 RLOC-Probe bit (P): this is the RLOC-probe bit which means the 610 Reencap Hop allows RLOC-probe messages to be sent to it. When the 611 R-bit is set to 0, RLOC-probes must not be sent. When a Reencap 612 Hop is an anycast address then multiple physical Reencap Hops are 613 using the same RLOC address. In this case, RLOC-probes are not 614 needed because when the closest RLOC address is not reachable 615 another RLOC address can be reachable. 617 Strict bit (S): this is the strict bit which means the associated 618 Rencap Hop is required to be used. If this bit is 0, the 619 reencapsulator can skip this Reencap Hop and go to the next one in 620 the list. 622 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 623 its own encoding of a multicast address, this field must be either 624 a group address or a broadcast address. 626 Usage: This encoding can be used in RLOC records in Map-Requests, 627 Map-Replies, Map-Registers, and Map-Notify messages. This encoding 628 does not need to be understood by the mapping system for mapping 629 database lookups since this LCAF type is not a lookup key. 631 4.7. Storing Security Data in the Mapping Database 633 When a locator in a locator-set has a security key associated with 634 it, this LCAF format will be used to encode key material. See 635 [I-D.ietf-lisp-ddt] for details. 637 Security Key Canonical Address Format: 639 0 1 2 3 640 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 641 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 642 | AFI = 16387 | Rsvd1 | Flags | 643 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 644 | Type = 11 | Rsvd2 | 6 + n | 645 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 646 | Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R| 647 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 648 | Key Length | Key Material ... | 649 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 650 | ... Key Material | 651 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 652 | AFI = x | Locator Address ... | 653 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 655 Length value n: length in bytes of fields that start with the Key 656 Material field. 658 Key Count: the Key Count field declares the number of Key sections 659 included in this LCAF. A key section is made up the "Key Length" 660 and "Key Material" fields. 662 Rsvd3: this field is reserved for future use and MUST be transmitted 663 as 0 and ignored on receipt. 665 Key Algorithm: the Algorithm field identifies the key's 666 cryptographic algorithm and specifies the format of the Public Key 667 field. Refer to the [I-D.ietf-lisp-ddt] and 668 [I-D.ietf-lisp-crypto] use-cases for definitions of this field. 670 Rsvd4: this field is reserved for future use and MUST be transmitted 671 as 0 and ignored on receipt. 673 R bit: this is the revoke bit and, if set, it specifies that this 674 Key is being Revoked. 676 Key Length: this field determines the length in bytes of the Key 677 Material field. 679 Key Material: the Key Material field stores the key material. The 680 format of the key material stored depends on the Key Algorithm 681 field. 683 AFI = x: x can be any AFI value from [AFI].This is the locator 684 address that owns the encoded security key. 686 Usage: This encoding can be used in EID or RLOC records in Map- 687 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 688 LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, 689 extended EIDs are used in Map-Referral messages. 691 4.8. Source/Destination 2-Tuple Lookups 693 When both a source and destination address of a flow needs 694 consideration for different locator-sets, this 2-tuple key is used in 695 EID fields in LISP control messages. When the Source/Dest key is 696 registered to the mapping database, it can be encoded as a source- 697 prefix and destination-prefix. When the Source/Dest is used as a key 698 for a mapping database lookup the source and destination come from a 699 data packet. 701 Source/Dest Key Canonical Address Format: 703 0 1 2 3 704 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 705 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 706 | AFI = 16387 | Rsvd1 | Flags | 707 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 708 | Type = 12 | Rsvd2 | 4 + n | 709 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 710 | Reserved | Source-ML | Dest-ML | 711 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 712 | AFI = x | Source-Prefix ... | 713 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 714 | AFI = x | Destination-Prefix ... | 715 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 717 Length value n: length in bytes of fields that follow. 719 Reserved: must be set to zero and ignore on receipt. 721 Source-ML: the mask length of the source prefix that follows. 723 Dest-ML: the mask length of the destination prefix that follows. 725 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 726 its own encoding of a multicast address, this field must be either 727 a group address or a broadcast address. 729 Usage: This encoding can be used in EID records in Map-Requests, Map- 730 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 731 [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended 732 EIDs are used in Map-Referral messages. Refer to 733 [I-D.farinacci-lisp-te] for usage details of this LCAF type. 735 4.9. Replication List Entries for Multicast Forwarding 737 The Replication List Entry LCAF type is an encoding for a locator 738 being used for unicast replication according to the specification in 739 [I-D.coras-lisp-re]. This locator encoding is pointed to by a 740 Multicast Info LCAF Type and is registered by Re-encapsulating Tunnel 741 Routers (RTRs) that are participating in an overlay distribution 742 tree. Each RTR will register its locator address and its configured 743 level in the distribution tree. 745 Replication List Entry Address Format: 747 0 1 2 3 748 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 749 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 750 | AFI = 16387 | Rsvd1 | Flags | 751 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 752 | Type = 13 | Rsvd2 | 4 + n | 753 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 754 | Rsvd3 | Rsvd4 | Level Value | 755 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 756 | AFI = x | RTR/ETR #1 ... | 757 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 758 | Rsvd3 | Rsvd4 | Level Value | 759 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 760 | AFI = x | RTR/ETR #n ... | 761 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 763 Length value n: length in bytes of fields that follow. 765 Rsvd{1,2,3,4}: must be set to zero and ignore on receipt. 767 Level Value: this value is associated with the level within the 768 overlay distribution tree hierarchy where the RTR resides. The 769 level numbers are ordered from lowest value being close to the ITR 770 (meaning that ITRs replicate to level-0 RTRs) and higher levels 771 are further downstream on the distribution tree closer to ETRs of 772 multicast receiver sites. 774 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 775 own encoding of either a unicast or multicast locator address. 776 For efficiency reasons, all RTR/ETR entries for the same level 777 should be combined together by a Map-Server to avoid searching 778 through the entire multi-level list of locator entries in a Map- 779 Reply message. 781 Usage: This encoding can be used in RLOC records in Map-Requests, 782 Map-Replies, Map-Registers, and Map-Notify messages. 784 4.10. Applications for AFI List Type 786 4.10.1. Binding IPv4 and IPv6 Addresses 788 When header translation between IPv4 and IPv6 is desirable a LISP 789 Canonical Address can use the AFI List Type to carry a variable 790 number of AFIs in one LCAF AFI. 792 Address Binding LISP Canonical Address Format: 794 0 1 2 3 795 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 796 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 797 | AFI = 16387 | Rsvd1 | Flags | 798 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 799 | Type = 1 | Rsvd2 | 2 + 4 + 2 + 16 | 800 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 801 | AFI = 1 | IPv4 Address ... | 802 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 803 | ... IPv4 Address | AFI = 2 | 804 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 805 | IPv6 Address ... | 806 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 807 | ... IPv6 Address ... | 808 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 809 | ... IPv6 Address ... | 810 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 811 | ... IPv6 Address | 812 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 814 Length: length in bytes is fixed at 24 when IPv4 and IPv6 AFI 815 encoded addresses are used. 817 This type of address format can be included in a Map-Request when the 818 address is being used as an EID, but the Mapping Database System 819 lookup destination can use only the IPv4 address. This is so a 820 Mapping Database Service Transport System, such as LISP-ALT 821 [RFC6836], can use the Map-Request destination address to route the 822 control message to the desired LISP site. 824 Usage: This encoding can be used in EID or RLOC records in Map- 825 Requests, Map-Replies, Map-Registers, and Map-Notify messages. See 826 subsections in this section for specific use cases. 828 4.10.2. Layer-2 VPNs 830 When MAC addresses are stored in the LISP Mapping Database System, 831 the AFI List Type can be used to carry AFI 6. 833 MAC Address LISP Canonical Address Format: 835 0 1 2 3 836 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 837 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 838 | AFI = 16387 | Rsvd1 | Flags | 839 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 840 | Type = 1 | Rsvd2 | 2 + 6 | 841 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 842 | AFI = 6 | Layer-2 MAC Address ... | 843 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 844 | ... Layer-2 MAC Address | 845 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 847 Length: length in bytes is fixed at 8 when MAC address AFI encoded 848 addresses are used. 850 This address format can be used to connect layer-2 domains together 851 using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. 852 In this use-case, a MAC address is being used as an EID, and the 853 locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or 854 even another MAC address being used as an RLOC. See 855 [I-D.portoles-lisp-eid-mobility] for how layer-2 VPNs operate when 856 doing EID mobility. 858 4.10.3. ASCII Names in the Mapping Database 860 If DNS names or URIs are stored in the LISP Mapping Database System, 861 the AFI List Type can be used to carry an ASCII string where it is 862 delimited by length 'n' of the LCAF Length encoding. 864 ASCII LISP Canonical Address Format: 866 0 1 2 3 867 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 868 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 869 | AFI = 16387 | Rsvd1 | Flags | 870 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 871 | Type = 1 | Rsvd2 | 2 + n | 872 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 873 | AFI = 17 | DNS Name or URI ... | 874 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 876 Length value n: length in bytes AFI=17 field and the null-terminated 877 ASCII string (the last byte of 0 is included). 879 4.10.4. Using Recursive LISP Canonical Address Encodings 881 When any combination of above is desirable, the AFI List Type value 882 can be used to carry within the LCAF AFI another LCAF AFI (for 883 example, Application Specific Data see Section 5.1. 885 Recursive LISP Canonical Address Format: 887 0 1 2 3 888 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 889 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 890 | AFI = 16387 | Rsvd1 | Flags | 891 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 892 | Type = 1 | Rsvd2 | 8 + 18 | 893 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 894 | AFI = 16387 | Rsvd1 | Flags | 895 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 896 | Type = 4 | Rsvd2 | 12 + 6 | 897 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 898 | IP TOS, IPv6 QQS or Flow Label | Protocol | 899 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 900 | Local Port (lower-range) | Local Port (upper-range) | 901 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 902 | Remote Port (lower-range) | Remote Port (upper-range) | 903 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 904 | AFI = 1 | IPv4 Address ... | 905 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 906 | ... IPv4 Address | 907 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 909 Length: length in bytes is fixed at 18 when an AFI=1 IPv4 address is 910 included. 912 This format could be used by a Mapping Database Transport System, 913 such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is used as 914 an EID and placed in the Map-Request destination address by the 915 sending LISP system. The ALT system can deliver the Map-Request to 916 the LISP destination site independent of the Application Data Type 917 AFI payload values. When this AFI is processed by the destination 918 LISP site, it can return different locator-sets based on the type of 919 application or level of service that is being requested. 921 4.10.5. Compatibility Mode Use Case 923 A LISP system should use the AFI List Type format when sending to 924 LISP systems that do not support a particular LCAF Type used to 925 encode locators. This allows the receiving system to be able to 926 parse a locator address for encapsulation purposes. The list of AFIs 927 in an AFI List LCAF Type has no semantic ordering and a receiver 928 should parse each AFI element no matter what the ordering. 930 Compatibility Mode Address Format: 932 0 1 2 3 933 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 934 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 935 | AFI = 16387 | Rsvd1 | Flags | 936 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 937 | Type = 1 | Rsvd2 | 8 + 14 + 6 | 938 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 939 | AFI = 16387 | Rsvd1 | Flags | 940 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 941 | Type = 5 | Rsvd2 | 12 + 2 | 942 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 943 |N| Latitude Degrees | Minutes | Seconds | 944 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 945 |E| Longitude Degrees | Minutes | Seconds | 946 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 947 | Altitude | 948 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 949 | AFI = 0 | AFI = 1 | 950 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 951 | IPv4 Address | 952 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 954 If a system does not recognized the Geo Coordinate LCAF Type that is 955 accompanying a locator address, an encoder can include the Geo 956 Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI 957 in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in 958 the list is encoded with a valid AFI value to identify the locator 959 address. 961 A LISP system is required to support the AFI List LCAF Type to use 962 this procedure. It would skip over 10 bytes of the Geo Coordinate 963 LCAF Type to get to the locator address encoding (an IPv4 locator 964 address). A LISP system that does support the Geo Coordinate LCAF 965 Type can support parsing the locator address within the Geo 966 Coordinate LCAF encoding or in the locator encoding that follows in 967 the AFI List LCAF. 969 5. Experimental LISP Canonical Address Applications 971 5.1. Convey Application Specific Data 973 When a locator-set needs to be conveyed based on the type of 974 application or the Per-Hop Behavior (PHB) of a packet, the 975 Application Data Type can be used. 977 Application Data LISP Canonical Address Format: 979 0 1 2 3 980 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 981 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 982 | AFI = 16387 | Rsvd1 | Flags | 983 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 984 | Type = 4 | Rsvd2 | 12 + n | 985 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 986 | IP TOS, IPv6 TC, or Flow Label | Protocol | 987 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 988 | Local Port (lower-range) | Local Port (upper-range) | 989 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 990 | Remote Port (lower-range) | Remote Port (upper-range) | 991 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 992 | AFI = x | Address ... | 993 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 995 Length value n: length in bytes of the AFI address that follows the 996 8-byte Application Data fields including the AFI field itself. 998 IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS 999 field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow 1000 Label used in an IPv6 header. 1002 Local Port/Remote Port Ranges: these fields are from the TCP, UDP, 1003 or SCTP transport header. A range can be specified by using a 1004 lower value and an upper value. When a single port is encoded, 1005 the lower and upper value fields are the same. 1007 AFI = x: x can be any AFI value from [AFI]. 1009 The Application Data Canonical Address Type is used for an EID 1010 encoding when an ITR wants a locator-set for a specific application. 1011 When used for an RLOC encoding, the ETR is supplying a locator-set 1012 for each specific application is has been configured to advertise. 1014 Usage: This encoding can be used in EID records in Map-Requests, Map- 1015 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 1016 [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended 1017 EIDs are used in Map-Referral messages. This LCAF type is used as a 1018 lookup key to the mapping system that can return a longest-match or 1019 exact-match entry. 1021 5.2. Generic Database Mapping Lookups 1023 When the LISP Mapping Database system holds information accessed by a 1024 generic formatted key (where the key is not the usual IPv4 or IPv6 1025 address), an opaque key may be desirable. 1027 Opaque Key LISP Canonical Address Format: 1029 0 1 2 3 1030 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1031 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1032 | AFI = 16387 | Rsvd1 | Flags | 1033 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1034 | Type = 6 | Rsvd2 | 3 + n | 1035 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1036 | Key Field Num | Key Wildcard Fields | Key . . . | 1037 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1038 | . . . Key | 1039 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1041 Length value n: length in bytes of the type's payload. The value n 1042 is the number of bytes that follow this Length field. 1044 Key Field Num: the value of this field is the the number of "Key" 1045 sub-fields minus 1, the "Key" field can be broken up into. So if 1046 this field has a value of 0, there is 1 sub-field in the "Key". 1047 The width of the sub-fields are fixed length. So for a key size 1048 of 8 bytes, with a Key Field Num of 3, allows 4 sub-fields of 2 1049 bytes each in length. Allowing for a reasonable number of 16 sub- 1050 field separators, valid values range from 0 to 15. 1052 Key Wildcard Fields: describes which fields in the key are not used 1053 as part of the key lookup. This wildcard encoding is a bitfield. 1054 Each bit is a don't-care bit for a corresponding field in the key. 1055 Bit 0 (the low-order bit) in this bitfield corresponds the first 1056 field, the low-order field in the key, bit 1 the second field, and 1057 so on. When a bit is set in the bitfield it is a don't-care bit 1058 and should not be considered as part of the database lookup. When 1059 the entire 16-bits is set to 0, then all bits of the key are used 1060 for the database lookup. 1062 Key: the variable length key used to do a LISP Database Mapping 1063 lookup. The length of the key is the value n (as shown above). 1065 Usage: This is an experimental type where the usage has not been 1066 defined yet. 1068 5.3. PETR Admission Control Functionality 1070 When a public PETR device wants to verify who is encapsulating to it, 1071 it can check for a specific nonce value in the LISP encapsulated 1072 packet. To convey the nonce to admitted ITRs or PITRs, this LCAF 1073 format is used in a Map-Register or Map-Reply locator-record. 1075 Nonce Locator Canonical Address Format: 1077 0 1 2 3 1078 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1079 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1080 | AFI = 16387 | Rsvd1 | Flags | 1081 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1082 | Type = 8 | Rsvd2 | 4 + n | 1083 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1084 | Reserved | Nonce | 1085 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1086 | AFI = x | Address ... | 1087 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1089 Length value n: length in bytes of the AFI address that follows the 1090 Nonce field including the AFI field itself. 1092 Reserved: must be set to zero and ignore on receipt. 1094 Nonce: this is a nonce value returned by an ETR in a Map-Reply 1095 locator-record to be used by an ITR or PITR when encapsulating to 1096 the locator address encoded in the AFI field of this LCAF type. 1097 This nonce value is inserted in the nonce field in the LISP header 1098 encapsulation. 1100 AFI = x: x can be any AFI value from [AFI]. 1102 Usage: This is an experimental type where the usage has not been 1103 defined yet. 1105 5.4. Data Model Encoding 1107 This type allows a JSON data model to be encoded either as an EID or 1108 RLOC. 1110 JSON Data Model Type Address Format: 1112 0 1 2 3 1113 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1114 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1115 | AFI = 16387 | Rsvd1 | Flags | 1116 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1117 | Type = 14 | Rsvd2 |B| 2 + n | 1118 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1119 | JSON length | JSON binary/text encoding ... | 1120 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1121 | AFI = x | Optional Address ... | 1122 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1124 Length value n: length in bytes of the fields that follow the "JSON 1125 length" field. 1127 Rsvd{1,2}: must be set to zero and ignore on receipt. 1129 B bit: indicates that the JSON field is binary encoded according to 1130 [JSON-BINARY] when the bit is set to 1. Otherwise the encoding is 1131 based on text encoding according to [RFC7159]. 1133 JSON length: length in octets of the following 'JSON binary/text 1134 encoding' field. 1136 JSON binary/text encoding field: a variable length field that 1137 contains either binary or text encodings. 1139 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 1140 own encoding of either a unicast or multicast locator address. 1141 All RTR/ETR entries for the same level should be combined together 1142 by a Map-Server to avoid searching through the entire multi-level 1143 list of locator entries in a Map-Reply message. 1145 Usage: This is an experimental type where the usage has not been 1146 defined yet. 1148 5.5. Encoding Key/Value Address Pairs 1150 The Key/Value pair is for example useful for attaching attributes to 1151 other elements of LISP packets, such as EIDs or RLOCs. When 1152 attaching attributes to EIDs or RLOCs, it's necessary to distinguish 1153 between the element that should be used as EID or RLOC, and hence as 1154 key for lookups, and additional attributes. This is especially the 1155 case when the difference cannot be determined from the types of the 1156 elements, such as when two IP addresses are being used. 1158 Key/Value Pair Address Format: 1160 0 1 2 3 1161 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1162 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1163 | AFI = 16387 | Rsvd1 | Flags | 1164 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1165 | Type = 15 | Rsvd2 | n | 1166 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1167 | AFI = x | Address as Key ... | 1168 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1169 | AFI = y | Address as Value ... | 1170 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1172 Length value n: length in bytes of fields that follow. 1174 Rsvd{1,2}: must be set to zero and ignore on receipt. 1176 AFI = x: x is the "Address as Key" AFI that can have any value from 1177 [AFI]. A specific AFI has its own encoding of either a unicast or 1178 multicast locator address. All RTR/ETR entries for the same level 1179 should be combined together by a Map-Server to avoid searching 1180 through the entire multi-level list of locator entries in a Map- 1181 Reply message. 1183 Address as Key: this AFI encoded address will be attached with the 1184 attributes encoded in "Address as Value" which follows this field. 1186 AFI = y: y is the "Address of Value" AFI that can have any value 1187 from [AFI]. A specific AFI has its own encoding of either a 1188 unicast or multicast locator address. All RTR/ETR entries for the 1189 same level should be combined together by a Map-Server to avoid 1190 searching through the entire multi-level list of locator entries 1191 in a Map-Reply message. 1193 Address as Value: this AFI encoded address will be the attribute 1194 address that goes along with "Address as Key" which precedes this 1195 field. 1197 Usage: This is an experimental type where the usage has not been 1198 defined yet. 1200 5.6. Multiple Data-Planes 1202 Overlays are becoming popular in many parts of the network which have 1203 created an explosion of data-plane encapsulation headers. Since the 1204 LISP mapping system can hold many types of address formats, it can 1205 represent the encapsulation format supported by an RLOC as well. 1206 When an encapsulator receives a Map-Reply with an Encapsulation 1207 Format LCAF Type encoded in an RLOC-record, it can select an 1208 encapsulation format, that it can support, from any of the 1209 encapsulation protocols which have the bit set to 1 in this LCAF 1210 type. 1212 Encapsulation Format Address Format: 1214 0 1 2 3 1215 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1216 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1217 | AFI = 16387 | Rsvd1 | Flags | 1218 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1219 | Type = 16 | Rsvd2 | 4 + n | 1220 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1221 | Reserved-for-Future-Encapsulations |U|G|N|v|V|l|L| 1222 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1223 | AFI = x | Address ... | 1224 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1226 Rsvd1/Rsvd2: must be set to zero and ignored on receipt. 1228 Length value n: length in bytes of the AFI address that follows the 1229 next 32-bits including the AFI field itself. 1231 Reserved-for-Future-Encapsulations: must be set to zero and ignored 1232 on receipt. This field will get bits allocated to future 1233 encapsulations, as they are created. 1235 L: The RLOCs listed in the AFI encoded addresses in the next longword 1236 can accept layer3 LISP encapsulation using destination UDP port 1237 4341 [RFC6830]. 1239 l: The RLOCs listed in the AFI encoded addresses in the next longword 1240 can accept layer2 LISP encapsulation using destination UDP port 1241 8472 [I-D.smith-lisp-layer2]. 1243 V: The RLOCs listed in the AFI encoded addresses in the next longword 1244 can accept VXLAN encapsulation using destination UDP port 4789 1245 [RFC7348]. 1247 v: The RLOCs listed in the AFI encoded addresses in the next longword 1248 can accept VXLAN-GPE encapsulation using destination UDP port 4790 1249 [I-D.quinn-vxlan-gpe]. 1251 N: The RLOCs listed in the AFI encoded addresses in the next longword 1252 can accept NV-GRE encapsulation using IPv4/ IPv6 protocol number 1253 47 [RFC7637]. 1255 G: The RLOCs listed in the AFI encoded addresses in the next longword 1256 can accept GENEVE encapsulation using destination UDP port 6081 1257 [I-D.gross-geneve]. 1259 U: The RLOCs listed in the AFI encoded addresses in the next longword 1260 can accept GUE encapsulation using destination UDP port TBD 1261 [I-D.herbert-gue]. 1263 Usage: This encoding can be used in RLOC records in Map-Requests, 1264 Map-Replies, Map-Registers, and Map-Notify messages. 1266 6. Security Considerations 1268 There are no security considerations for this specification. The 1269 security considerations are documented for the protocols that use 1270 LISP Canonical Addressing. 1272 The use of the Geo-Coordinates LCAF Type may raise physical privacy 1273 issues. Care should be taken when configuring the mapping system to 1274 use specific policy parameters so geo-location information is not 1275 returned gratuitously. 1277 7. IANA Considerations 1279 This document defines a canonical address format encoding used in 1280 LISP control messages and in the encoding of lookup keys for the LISP 1281 Mapping Database System. Such address format is based on a fixed AFI 1282 (16387) and a LISP LCAF Type field. 1284 The LISP LCAF Type field is an 8-bit field specific to the LISP 1285 Canonical Address formatted encodings, for which IANA is to create 1286 and maintain a new registry (as outlined in [RFC5226]) entitled "LISP 1287 LCAF Type". Initial values for the LISP LCAF Type registry are given 1288 below. Future assignments are to be made through expert review with 1289 a specification required publication. Assignments consist of a LISP 1290 LCAF Type name and its associated value: 1292 +-------+------------------------------+------------+ 1293 | Value | LISP LCAF Type Name | Definition | 1294 +-------+------------------------------+------------+ 1295 | 0 | Null Body Type | Section 3 | 1296 | 1 | AFI List Type | Section 3 | 1297 | 2 | Instance ID Type | Section 3 | 1298 | 3 | AS Number Type | Section 3 | 1299 | 5 | Geo Coordinates Type | Section 3 | 1300 | 7 | NAT-Traversal Type | Section 3 | 1301 | 9 | Multicast Info Type | Section 3 | 1302 | 10 | Explicit Locator Path Type | Section 3 | 1303 | 11 | Security Key Type | Section 3 | 1304 | 12 | Source/Dest Key Type | Section 3 | 1305 | 13 | Replication List Entry Type | Section 3 | 1306 +-------+------------------------------+------------+ 1308 Table 1: LISP LCAF Type Initial Values 1310 8. References 1312 8.1. Normative References 1314 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G., 1315 and E. Lear, "Address Allocation for Private Internets", 1316 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996, 1317 . 1319 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1320 Requirement Levels", BCP 14, RFC 2119, 1321 DOI 10.17487/RFC2119, March 1997, 1322 . 1324 [RFC3232] Reynolds, J., Ed., "Assigned Numbers: RFC 1700 is Replaced 1325 by an On-line Database", RFC 3232, DOI 10.17487/RFC3232, 1326 January 2002, . 1328 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an 1329 IANA Considerations Section in RFCs", BCP 26, RFC 5226, 1330 DOI 10.17487/RFC5226, May 2008, 1331 . 1333 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The 1334 Locator/ID Separation Protocol (LISP)", RFC 6830, 1335 DOI 10.17487/RFC6830, January 2013, 1336 . 1338 [RFC6836] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, 1339 "Locator/ID Separation Protocol Alternative Logical 1340 Topology (LISP+ALT)", RFC 6836, DOI 10.17487/RFC6836, 1341 January 2013, . 1343 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data 1344 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March 1345 2014, . 1347 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, 1348 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual 1349 eXtensible Local Area Network (VXLAN): A Framework for 1350 Overlaying Virtualized Layer 2 Networks over Layer 3 1351 Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014, 1352 . 1354 [RFC7637] Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network 1355 Virtualization Using Generic Routing Encapsulation", 1356 RFC 7637, DOI 10.17487/RFC7637, September 2015, 1357 . 1359 8.2. Informative References 1361 [AFI] IANA, , "Address Family Identifier (AFIs)", ADDRESS FAMILY 1362 NUMBERS http://www.iana.org/numbers.html, Febuary 2007. 1364 [I-D.coras-lisp-re] 1365 Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J., 1366 Maino, F., and D. Farinacci, "LISP Replication 1367 Engineering", draft-coras-lisp-re-08 (work in progress), 1368 November 2015. 1370 [I-D.ermagan-lisp-nat-traversal] 1371 Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, 1372 F., and C. White, "NAT traversal for LISP", draft-ermagan- 1373 lisp-nat-traversal-11 (work in progress), August 2016. 1375 [I-D.farinacci-lisp-te] 1376 Farinacci, D., Kowal, M., and P. Lahiri, "LISP Traffic 1377 Engineering Use-Cases", draft-farinacci-lisp-te-11 (work 1378 in progress), September 2016. 1380 [I-D.gross-geneve] 1381 Gross, J., Sridhar, T., Garg, P., Wright, C., Ganga, I., 1382 Agarwal, P., Duda, K., Dutt, D., and J. Hudson, "Geneve: 1383 Generic Network Virtualization Encapsulation", draft- 1384 gross-geneve-02 (work in progress), October 2014. 1386 [I-D.herbert-gue] 1387 Herbert, T., Yong, L., and O. Zia, "Generic UDP 1388 Encapsulation", draft-herbert-gue-03 (work in progress), 1389 March 2015. 1391 [I-D.ietf-lisp-crypto] 1392 Farinacci, D. and B. Weis, "LISP Data-Plane 1393 Confidentiality", draft-ietf-lisp-crypto-08 (work in 1394 progress), September 2016. 1396 [I-D.ietf-lisp-ddt] 1397 Fuller, V., Lewis, D., Ermagan, V., Jain, A., and A. 1398 Smirnov, "LISP Delegated Database Tree", draft-ietf-lisp- 1399 ddt-08 (work in progress), September 2016. 1401 [I-D.portoles-lisp-eid-mobility] 1402 Portoles-Comeras, M., Ashtaputre, V., Moreno, V., Maino, 1403 F., and D. Farinacci, "LISP L2/L3 EID Mobility Using a 1404 Unified Control Plane", draft-portoles-lisp-eid- 1405 mobility-00 (work in progress), April 2016. 1407 [I-D.quinn-vxlan-gpe] 1408 Quinn, P., Manur, R., Kreeger, L., Lewis, D., Maino, F., 1409 Smith, M., Agarwal, P., Yong, L., Xu, X., Elzur, U., Garg, 1410 P., and D. Melman, "Generic Protocol Extension for VXLAN", 1411 draft-quinn-vxlan-gpe-04 (work in progress), February 1412 2015. 1414 [I-D.smith-lisp-layer2] 1415 Smith, M., Dutt, D., Farinacci, D., and F. Maino, "Layer 2 1416 (L2) LISP Encapsulation Format", draft-smith-lisp- 1417 layer2-03 (work in progress), September 2013. 1419 [JSON-BINARY] 1420 "Universal Binary JSON Specification", 1421 URL http://ubjson.org. 1423 [WGS-84] Geodesy and Geophysics Department, DoD., "World Geodetic 1424 System 1984", NIMA TR8350.2, January 2000, . 1427 Appendix A. Acknowledgments 1429 The authors would like to thank Vince Fuller, Gregg Schudel, Jesper 1430 Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for 1431 their technical and editorial commentary. 1433 The authors would like to thank Victor Moreno for discussions that 1434 lead to the definition of the Multicast Info LCAF type. 1436 The authors would like to thank Parantap Lahiri and Michael Kowal for 1437 discussions that lead to the definition of the Explicit Locator Path 1438 (ELP) LCAF type. 1440 The authors would like to thank Fabio Maino and Vina Ermagan for 1441 discussions that lead to the definition of the Security Key LCAF 1442 type. 1444 The authors would like to thank Albert Cabellos-Aparicio and Florin 1445 Coras for discussions that lead to the definition of the Replication 1446 List Entry LCAF type. 1448 Thanks goes to Michiel Blokzijl and Alberto Rodriguez-Natal for 1449 suggesting new LCAF types. 1451 Thanks also goes to Terry Manderson for assistance obtaining a LISP 1452 AFI value from IANA. 1454 Appendix B. Document Change Log 1456 [RFC Editor: Please delete this section on publication as RFC.] 1458 B.1. Changes to draft-ietf-lisp-lcaf-16.txt 1460 o Submitted October 2016. 1462 o Addressed comments from Security Directorate reviewer David 1463 Mandelberg. 1465 B.2. Changes to draft-ietf-lisp-lcaf-15.txt 1467 o Submitted September 2016. 1469 o Addressed comments from Routing Directorate reviewer Stig Venass. 1471 B.3. Changes to draft-ietf-lisp-lcaf-14.txt 1473 o Submitted July 2016. 1475 o Fix IDnits errors and comments from Luigi Iannone, document 1476 shepherd. 1478 B.4. Changes to draft-ietf-lisp-lcaf-13.txt 1480 o Submitted May 2016. 1482 o Explain the Instance-ID LCAF Type is 32-bits in length and the 1483 Instance-ID field in the LISP encapsulation header is 24-bits. 1485 B.5. Changes to draft-ietf-lisp-lcaf-12.txt 1487 o Submitted March 2016. 1489 o Updated references and document timer. 1491 o Removed the R, J, and L bits from the Multicast Info Type LCAF 1492 since working group decided to not go forward with draft- 1493 farinacci-lisp-mr-signaling-03.txt in favor of draft- ietf-lisp- 1494 signal-free-00.txt. 1496 B.6. Changes to draft-ietf-lisp-lcaf-11.txt 1498 o Submitted September 2015. 1500 o Reflecting comments from Prague LISP working group. 1502 o Readying document for a LISP LCAF registry, RFC publication, and 1503 for new use-cases that will be defined in the new charter. 1505 B.7. Changes to draft-ietf-lisp-lcaf-10.txt 1507 o Submitted June 2015. 1509 o Fix coauthor Job's contact information. 1511 B.8. Changes to draft-ietf-lisp-lcaf-09.txt 1513 o Submitted June 2015. 1515 o Fix IANA Considerations section to request a registry to allocate 1516 and track LCAF Type values. 1518 B.9. Changes to draft-ietf-lisp-lcaf-08.txt 1520 o Submitted April 2015. 1522 o Comment from Florin. The Application Data Type length field has a 1523 typo. The field should be labeled "12 + n" and not "8 + n". 1525 o Fix length fields in the sections titled "Using Recursive LISP 1526 Canonical Address Encodings", "Generic Database Mapping Lookups", 1527 and "Data Model Encoding". 1529 B.10. Changes to draft-ietf-lisp-lcaf-07.txt 1531 o Submitted December 2014. 1533 o Add a new LCAF Type called "Encapsulation Format" so decapsulating 1534 xTRs can inform encapsulating xTRs what data-plane encapsulations 1535 they support. 1537 B.11. Changes to draft-ietf-lisp-lcaf-06.txt 1539 o Submitted October 2014. 1541 o Make it clear how sorted RLOC records are done when LCAFs are used 1542 as the RLOC record. 1544 B.12. Changes to draft-ietf-lisp-lcaf-05.txt 1546 o Submitted May 2014. 1548 o Add a length field of the JSON payload that can be used for either 1549 binary or text encoding of JSON data. 1551 B.13. Changes to draft-ietf-lisp-lcaf-04.txt 1553 o Submitted January 2014. 1555 o Agreement among ELP implementors to have the AFI 16-bit field 1556 adjacent to the address. This will make the encoding consistent 1557 with all other LCAF type address encodings. 1559 B.14. Changes to draft-ietf-lisp-lcaf-03.txt 1561 o Submitted September 2013. 1563 o Updated references and author's affilations. 1565 o Added Instance-ID to the Multicast Info Type so there is relative 1566 ease in parsing (S,G) entries within a VPN. 1568 o Add port range encodings to the Application Data LCAF Type. 1570 o Add a new JSON LCAF Type. 1572 o Add Address Key/Value LCAF Type to allow attributes to be attached 1573 to an address. 1575 B.15. Changes to draft-ietf-lisp-lcaf-02.txt 1577 o Submitted March 2013. 1579 o Added new LCAF Type "Replication List Entry" to support LISP 1580 replication engineering use-cases. 1582 o Changed references to new LISP RFCs. 1584 B.16. Changes to draft-ietf-lisp-lcaf-01.txt 1586 o Submitted January 2013. 1588 o Change longitude range from 0-90 to 0-180 in section 4.4. 1590 o Added reference to WGS-84 in section 4.4. 1592 B.17. Changes to draft-ietf-lisp-lcaf-00.txt 1594 o Posted first working group draft August 2012. 1596 o This draft was renamed from draft-farinacci-lisp-lcaf-10.txt. 1598 Authors' Addresses 1600 Dino Farinacci 1601 lispers.net 1602 San Jose, CA 1603 USA 1605 Email: farinacci@gmail.com 1607 Dave Meyer 1608 Brocade 1609 San Jose, CA 1610 USA 1612 Email: dmm@1-4-5.net 1614 Job Snijders 1615 NTT Communications 1616 Theodorus Majofskistraat 100 1617 Amsterdam 1065 SZ 1618 NL 1620 Email: job@ntt.net