idnits 2.17.1 draft-ietf-lisp-lcaf-17.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Line 570 has weird spacing: '...Address is th...' == Line 573 has weird spacing: '...Address is th...' -- The document date (October 12, 2016) is 2746 days in the past. Is this intentional? Checking references for intended status: Experimental ---------------------------------------------------------------------------- ** Obsolete normative reference: RFC 5226 (Obsoleted by RFC 8126) ** Obsolete normative reference: RFC 6830 (Obsoleted by RFC 9300, RFC 9301) ** Obsolete normative reference: RFC 7159 (Obsoleted by RFC 8259) == Outdated reference: A later version (-19) exists of draft-ermagan-lisp-nat-traversal-11 == Outdated reference: A later version (-12) exists of draft-farinacci-lisp-te-11 == Outdated reference: A later version (-10) exists of draft-ietf-lisp-crypto-08 == Outdated reference: A later version (-09) exists of draft-ietf-lisp-ddt-08 == Outdated reference: A later version (-02) exists of draft-portoles-lisp-eid-mobility-01 Summary: 3 errors (**), 0 flaws (~~), 8 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group D. Farinacci 3 Internet-Draft lispers.net 4 Intended status: Experimental D. Meyer 5 Expires: April 15, 2017 Brocade 6 J. Snijders 7 NTT Communications 8 October 12, 2016 10 LISP Canonical Address Format (LCAF) 11 draft-ietf-lisp-lcaf-17 13 Abstract 15 This draft defines a canonical address format encoding used in LISP 16 control messages and in the encoding of lookup keys for the LISP 17 Mapping Database System. 19 Requirements Language 21 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 22 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 23 document are to be interpreted as described in [RFC2119]. 25 Status of This Memo 27 This Internet-Draft is submitted in full conformance with the 28 provisions of BCP 78 and BCP 79. 30 Internet-Drafts are working documents of the Internet Engineering 31 Task Force (IETF). Note that other groups may also distribute 32 working documents as Internet-Drafts. The list of current Internet- 33 Drafts is at http://datatracker.ietf.org/drafts/current/. 35 Internet-Drafts are draft documents valid for a maximum of six months 36 and may be updated, replaced, or obsoleted by other documents at any 37 time. It is inappropriate to use Internet-Drafts as reference 38 material or to cite them other than as "work in progress." 40 This Internet-Draft will expire on April 15, 2017. 42 Copyright Notice 44 Copyright (c) 2016 IETF Trust and the persons identified as the 45 document authors. All rights reserved. 47 This document is subject to BCP 78 and the IETF Trust's Legal 48 Provisions Relating to IETF Documents 49 (http://trustee.ietf.org/license-info) in effect on the date of 50 publication of this document. Please review these documents 51 carefully, as they describe your rights and restrictions with respect 52 to this document. Code Components extracted from this document must 53 include Simplified BSD License text as described in Section 4.e of 54 the Trust Legal Provisions and are provided without warranty as 55 described in the Simplified BSD License. 57 Table of Contents 59 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 60 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 61 3. LISP Canonical Address Format Encodings . . . . . . . . . . . 5 62 4. LISP Canonical Address Applications . . . . . . . . . . . . . 7 63 4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 7 64 4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 9 65 4.3. Assigning Geo Coordinates to Locator Addresses . . . . . 10 66 4.4. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 12 67 4.5. Multicast Group Membership Information . . . . . . . . . 14 68 4.6. Traffic Engineering using Re-encapsulating Tunnels . . . 16 69 4.7. Storing Security Data in the Mapping Database . . . . . . 17 70 4.8. Source/Destination 2-Tuple Lookups . . . . . . . . . . . 19 71 4.9. Replication List Entries for Multicast Forwarding . . . . 21 72 4.10. Applications for AFI List Type . . . . . . . . . . . . . 22 73 4.10.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . 22 74 4.10.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 23 75 4.10.3. ASCII Names in the Mapping Database . . . . . . . . 24 76 4.10.4. Using Recursive LISP Canonical Address Encodings . . 25 77 4.10.5. Compatibility Mode Use Case . . . . . . . . . . . . 26 78 5. Experimental LISP Canonical Address Applications . . . . . . 27 79 5.1. Convey Application Specific Data . . . . . . . . . . . . 27 80 5.2. Generic Database Mapping Lookups . . . . . . . . . . . . 29 81 5.3. PETR Admission Control Functionality . . . . . . . . . . 30 82 5.4. Data Model Encoding . . . . . . . . . . . . . . . . . . . 31 83 5.5. Encoding Key/Value Address Pairs . . . . . . . . . . . . 32 84 5.6. Multiple Data-Planes . . . . . . . . . . . . . . . . . . 33 85 6. Security Considerations . . . . . . . . . . . . . . . . . . . 36 86 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 36 87 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 37 88 8.1. Normative References . . . . . . . . . . . . . . . . . . 37 89 8.2. Informative References . . . . . . . . . . . . . . . . . 38 90 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . 39 91 Appendix B. Document Change Log . . . . . . . . . . . . . . . . 40 92 B.1. Changes to draft-ietf-lisp-lcaf-17.txt . . . . . . . . . 40 93 B.2. Changes to draft-ietf-lisp-lcaf-16.txt . . . . . . . . . 40 94 B.3. Changes to draft-ietf-lisp-lcaf-15.txt . . . . . . . . . 40 95 B.4. Changes to draft-ietf-lisp-lcaf-14.txt . . . . . . . . . 40 96 B.5. Changes to draft-ietf-lisp-lcaf-13.txt . . . . . . . . . 40 97 B.6. Changes to draft-ietf-lisp-lcaf-12.txt . . . . . . . . . 40 98 B.7. Changes to draft-ietf-lisp-lcaf-11.txt . . . . . . . . . 41 99 B.8. Changes to draft-ietf-lisp-lcaf-10.txt . . . . . . . . . 41 100 B.9. Changes to draft-ietf-lisp-lcaf-09.txt . . . . . . . . . 41 101 B.10. Changes to draft-ietf-lisp-lcaf-08.txt . . . . . . . . . 41 102 B.11. Changes to draft-ietf-lisp-lcaf-07.txt . . . . . . . . . 41 103 B.12. Changes to draft-ietf-lisp-lcaf-06.txt . . . . . . . . . 42 104 B.13. Changes to draft-ietf-lisp-lcaf-05.txt . . . . . . . . . 42 105 B.14. Changes to draft-ietf-lisp-lcaf-04.txt . . . . . . . . . 42 106 B.15. Changes to draft-ietf-lisp-lcaf-03.txt . . . . . . . . . 42 107 B.16. Changes to draft-ietf-lisp-lcaf-02.txt . . . . . . . . . 42 108 B.17. Changes to draft-ietf-lisp-lcaf-01.txt . . . . . . . . . 43 109 B.18. Changes to draft-ietf-lisp-lcaf-00.txt . . . . . . . . . 43 110 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 43 112 1. Introduction 114 The LISP architecture and protocols [RFC6830] introduces two new 115 numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators 116 (RLOCs). To provide flexibility for current and future applications, 117 these values can be encoded in LISP control messages using a general 118 syntax that includes Address Family Identifier (AFI), length, and 119 value fields. 121 Currently defined AFIs include IPv4 and IPv6 addresses, which are 122 formatted according to code-points assigned in [AFI] as follows: 124 IPv4 Encoded Address: 126 0 1 2 3 127 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 128 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 129 | AFI = 1 | IPv4 Address ... | 130 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 131 | ... IPv4 Address | 132 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 133 IPv6 Encoded Address: 135 0 1 2 3 136 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 137 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 138 | AFI = 2 | IPv6 Address ... | 139 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 140 | ... IPv6 Address ... | 141 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 142 | ... IPv6 Address ... | 143 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 144 | ... IPv6 Address ... | 145 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 146 | ... IPv6 Address | 147 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 149 This document describes the currently-defined AFIs the LISP protocol 150 uses along with their encodings and introduces the LISP Canonical 151 Address Format (LCAF) that can be used to define the LISP-specific 152 encodings for arbitrary AFI values. 154 2. Definition of Terms 156 Address Family Identifier (AFI): a term used to describe an address 157 encoding in a packet. Address families are defined for IPv4 and 158 IPv6. See [AFI] and [RFC3232] for details. The reserved AFI 159 value of 0 is used in this specification to indicate an 160 unspecified encoded address where the length of the address is 0 161 bytes following the 16-bit AFI value of 0. 163 Unspecified Address Format: 165 0 1 2 3 166 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 167 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 168 | AFI = 0 | | 169 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 171 Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value 172 used in the source and destination address fields of the first 173 (most inner) LISP header of a packet. The host obtains a 174 destination EID the same way it obtains a destination address 175 today, for example through a DNS lookup or SIP exchange. The 176 source EID is obtained via existing mechanisms used to set a 177 host's "local" IP address. An EID is allocated to a host from an 178 EID-prefix block associated with the site where the host is 179 located. An EID can be used by a host to refer to other hosts. 181 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress 182 tunnel router (ETR). It is the output of a EID-to-RLOC mapping 183 lookup. An EID maps to one or more RLOCs. Typically, RLOCs are 184 numbered from topologically aggregatable blocks that are assigned 185 to a site at each point to which it attaches to the global 186 Internet; where the topology is defined by the connectivity of 187 provider networks, RLOCs can be thought of as Provider-Assigned 188 (PA) addresses. Multiple RLOCs can be assigned to the same ETR 189 device or to multiple ETR devices at a site. 191 3. LISP Canonical Address Format Encodings 193 IANA has assigned AFI value 16387 (0x4003) to the LISP architecture 194 and protocols. This specification defines the encoding format of the 195 LISP Canonical Address (LCA). This section defines all types for 196 which an initial allocation in the LISP-LCAF registry is requested. 197 See IANA Considerations section for the complete list of such types. 199 The Address Family AFI definitions from [AFI] only allocate code- 200 points for the AFI value itself. The length of the address or entity 201 that follows is not defined and is implied based on conventional 202 experience. When the LISP protocol uses LCAF definitions from this 203 document, the AFI-based address lengths are specified in this 204 document. When new LCAF definitions are defined in other use case 205 documents, the AFI-based address lengths for any new AFI encoded 206 addresses are specified in those documents. 208 The first 6 bytes of an LISP Canonical Address are followed by a 209 variable number of fields of variable length: 211 0 1 2 3 212 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 213 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 214 | AFI = 16387 | Rsvd1 | Flags | 215 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 216 | Type | Rsvd2 | Length | 217 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 218 | . . . | 219 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 221 Rsvd1: this 8-bit field is reserved for future use and MUST be 222 transmitted as 0 and ignored on receipt. 224 Flags: this 8-bit field is for future definition and use. For now, 225 set to zero on transmission and ignored on receipt. 227 Type: this 8-bit field is specific to the LISP Canonical Address 228 formatted encodings, currently allocated values are: 230 Type 0: Null Body Type 232 Type 1: AFI List Type 234 Type 2: Instance ID Type 236 Type 3: AS Number Type 238 Type 4: Application Data Type 240 Type 5: Geo Coordinates Type 242 Type 6: Opaque Key Type 244 Type 7: NAT-Traversal Type 246 Type 8: Nonce Locator Type 248 Type 9: Multicast Info Type 250 Type 10: Explicit Locator Path Type 252 Type 11: Security Key Type 254 Type 12: Source/Dest Key Type 256 Type 13: Replication List Entry Type 258 Type 14: JSON Data Model Type 260 Type 15: Key/Value Address Pair Type 262 Type 16: Encapsulation Format Type 264 Rsvd2: this LCAF Type-dependent 8-bit field is reserved for future 265 use and MUST be transmitted as 0 and ignored on receipt. See 266 specific LCAF Type for specific bits not reserved. 268 Length: this 16-bit field is in units of bytes and covers all of the 269 LISP Canonical Address payload, starting and including the byte 270 after the Length field. When including the AFI, an LCAF encoded 271 address will have a minimum length of 8 bytes when the Length 272 field is 0. The 8 bytes include the AFI, Flags, Type, Reserved, 273 and Length fields. When the AFI is not next to an encoded address 274 in a control message, then the encoded address will have a minimum 275 length of 6 bytes when the Length field is 0. The 6 bytes include 276 the Flags, Type, Reserved, and Length fields. 278 [RFC6830] states RLOC records are sorted when encoded in control 279 messages so the locator-set has consistent order across all xTRs for 280 a given EID. The sort order is based on sort-key {afi, RLOC- 281 address}. When an RLOC is LCAF encoded, the sort-key is {afi, LCAF- 282 Type}. Therefore, when a locator-set has a mix of AFI records and 283 LCAF records, they are ordered from smallest to largest AFI value. 285 4. LISP Canonical Address Applications 287 4.1. Segmentation using LISP 289 When multiple organizations inside of a LISP site are using private 290 addresses [RFC1918] as EID-prefixes, their address spaces must remain 291 segregated due to possible address duplication. An Instance ID in 292 the address encoding can aid in making the entire AFI-based address 293 unique. 295 Another use for the Instance ID LISP Canonical Address Format is when 296 creating multiple segmented VPNs inside of a LISP site where keeping 297 EID-prefix based subnets is desirable. 299 Instance ID LISP Canonical Address Format: 301 0 1 2 3 302 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 303 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 304 | AFI = 16387 | Rsvd1 | Flags | 305 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 306 | Type = 2 | IID mask-len | Length | 307 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 308 | Instance ID | 309 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 310 | AFI = x | Address ... | 311 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 313 IID mask-len: if the AFI is set to 0, then this format is not 314 encoding an extended EID-prefix but rather an instance-ID range 315 where the 'IID mask-len' indicates the number of high-order bits 316 used in the Instance ID field for the range. The low-order bits 317 of the Instance ID field must be 0. 319 Length: length in bytes starting and including the byte after this 320 Length field. 322 Instance ID: the low-order 24-bits that can go into a LISP data 323 header when the I-bit is set. See [RFC6830] for details. The 324 reason for the length difference is so that the maximum number of 325 instances supported per mapping system is 2^32 while conserving 326 space in the LISP data header. This comes at the expense of 327 limiting the maximum number of instances per xTR to 2^24. If an 328 xTR is configured with multiple instance-IDs where the value in 329 the high-order 8 bits are the same, then the low-order 24 bits 330 MUST be unique. 332 AFI = x: x can be any AFI value from [AFI]. 334 This LISP Canonical Address Type can be used to encode either EID or 335 RLOC addresses. 337 Usage: When used as a lookup key, the EID is regarded as a extended- 338 EID in the mapping system. This encoding is used in EID records in 339 Map-Requests, Map-Replies, Map-Registers, and Map-Notify messages. 340 When LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system 341 mechanism, extended EIDs are used in Map-Referral messages. 343 4.2. Carrying AS Numbers in the Mapping Database 345 When an AS number is stored in the LISP Mapping Database System for 346 either policy or documentation reasons, it can be encoded in a LISP 347 Canonical Address. 349 AS Number LISP Canonical Address Format: 351 0 1 2 3 352 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 353 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 354 | AFI = 16387 | Rsvd1 | Flags | 355 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 356 | Type = 3 | Rsvd2 | Length | 357 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 358 | AS Number | 359 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 360 | AFI = x | Address ... | 361 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 363 Length: length in bytes starting and including the byte after this 364 Length field. 366 AS Number: the 32-bit AS number of the autonomous system that has 367 been assigned either the EID or RLOC that follows. 369 AFI = x: x can be any AFI value from [AFI]. 371 The AS Number Canonical Address Type can be used to encode either EID 372 or RLOC addresses. The former is used to describe the LISP-ALT AS 373 number the EID-prefix for the site is being carried for. The latter 374 is used to describe the AS that is carrying RLOC based prefixes in 375 the underlying routing system. 377 Usage: This encoding can be used in EID or RLOC records in Map- 378 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 379 LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, 380 extended EIDs are used in Map-Referral messages. 382 4.3. Assigning Geo Coordinates to Locator Addresses 384 If an ETR desires to send a Map-Reply describing the Geo Coordinates 385 for each locator in its locator-set, it can use the Geo Coordinate 386 Type to convey physical location information. 388 Coordinates are specified using the WGS-84 (World Geodetic System) 389 reference coordinate system [WGS-84]. 391 Geo Coordinate LISP Canonical Address Format: 393 0 1 2 3 394 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 395 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 396 | AFI = 16387 | Rsvd1 | Flags | 397 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 398 | Type = 5 | Rsvd2 | Length | 399 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 400 |N| Latitude Degrees | Minutes | Seconds | 401 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 402 |E| Longitude Degrees | Minutes | Seconds | 403 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 404 | Altitude | 405 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 406 | AFI = x | Address ... | 407 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 409 Length: length in bytes starting and including the byte after this 410 Length field. 412 N: When set to 1 means North, otherwise South. 414 Latitude Degrees: Valid values range from 0 to 90 degrees above or 415 below the equator (northern or southern hemisphere, respectively). 417 Latitude Minutes: Valid values range from 0 to 59. 419 Latitude Seconds: Valid values range from 0 to 59. 421 E: When set to 1 means East, otherwise West. 423 Longitude Degrees: Valid values are from 0 to 180 degrees right or 424 left of the Prime Meridian. 426 Longitude Minutes: Valid values range from 0 to 59. 428 Longitude Seconds: Valid values range from 0 to 59. 430 Altitude: Height relative to sea level in meters. This is a two's 431 complement signed integer meaning that the altitude could be below 432 sea level. A value of 0x7fffffff indicates no Altitude value is 433 encoded. 435 AFI = x: x can be any AFI value from [AFI]. 437 The Geo Coordinates Canonical Address Type can be used to encode 438 either EID or RLOC addresses. When used for EID encodings, you can 439 determine the physical location of an EID along with the topological 440 location by observing the locator-set. 442 Usage: This encoding can be used in EID or RLOC records in Map- 443 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 444 LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, 445 extended EIDs are used in Map-Referral messages. 447 4.4. NAT Traversal Scenarios 449 When a LISP system is conveying global address and mapped port 450 information when traversing through a NAT device, the NAT-Traversal 451 LCAF Type is used. See [I-D.ermagan-lisp-nat-traversal] for details. 453 NAT-Traversal Canonical Address Format: 455 0 1 2 3 456 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 457 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 458 | AFI = 16387 | Rsvd1 | Flags | 459 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 460 | Type = 7 | Rsvd2 | Length | 461 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 462 | MS UDP Port Number | ETR UDP Port Number | 463 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 464 | AFI = x | Global ETR RLOC Address ... | 465 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 466 | AFI = x | MS RLOC Address ... | 467 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 468 | AFI = x | Private ETR RLOC Address ... | 469 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 470 | AFI = x | RTR RLOC Address 1 ... | 471 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 472 | AFI = x | RTR RLOC Address k ... | 473 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 475 Length: length in bytes starting and including the byte after this 476 Length field. 478 MS UDP Port Number: this is the UDP port number of the Map-Server 479 and is set to 4342. 481 ETR UDP Port Number: this is the port number returned to a LISP 482 system which was copied from the source port from a packet that 483 has flowed through a NAT device. 485 AFI = x: x can be any AFI value from [AFI]. 487 Global ETR RLOC Address: this is an address known to be globally 488 unique built by NAT-traversal functionality in a LISP router. 490 MS RLOC Address: this is the address of the Map-Server used in the 491 destination RLOC of a packet that has flowed through a NAT device. 493 Private ETR RLOC Address: this is an address known to be a private 494 address inserted in this LCAF by a LISP router that resides on the 495 private side of a NAT device. 497 RTR RLOC Address: this is an encapsulation address used by an ITR or 498 PITR which resides behind a NAT device. This address is known to 499 have state in a NAT device so packets can flow from it to the LISP 500 ETR behind the NAT. There can be one or more NAT Reencapsulating 501 Tunnel Router (RTR) [I-D.ermagan-lisp-nat-traversal] addresses 502 supplied in these set of fields. The number of RTRs encoded is 503 determined by the LCAF length field. When there are no RTRs 504 supplied, the RTR fields can be omitted and reflected by the LCAF 505 length field or an AFI of 0 can be used to indicate zero RTRs 506 encoded. 508 Usage: This encoding can be used in Info-Request and Info-Reply 509 messages. The mapping system does not store this information. The 510 information is used by an xTR and Map-Server to convey private and 511 public address information when traversing NAT and firewall devices. 513 4.5. Multicast Group Membership Information 515 Multicast group information can be published in the mapping database. 516 So a lookup on a group address EID can return a replication list of 517 RLOC group addresses or RLOC unicast addresses. The intent of this 518 type of unicast replication is to deliver packets to multiple ETRs at 519 receiver LISP multicast sites. The locator-set encoding for this EID 520 record type can be a list of ETRs when they each register with "Merge 521 Semantics". The encoding can be a typical AFI-encoded locator 522 address. When an RTR list is being registered (with multiple levels 523 according to [I-D.coras-lisp-re]), the Replication List Entry LCAF 524 type is used for locator encoding. 526 This LCAF encoding can be used to send broadcast packets to all 527 members of a subnet when an EID is away from it's home subnet 528 location. 530 Multicast Info Canonical Address Format: 532 0 1 2 3 533 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 534 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 535 | AFI = 16387 | Rsvd1 | Flags | 536 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 537 | Type = 9 | Rsvd2 | Length | 538 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 539 | Instance-ID | 540 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 541 | Reserved | Source MaskLen| Group MaskLen | 542 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 543 | AFI = x | Source/Subnet Address ... | 544 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 545 | AFI = x | Group Address ... | 546 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 548 Length: length in bytes starting and including the byte after this 549 Length field. 551 Reserved: must be set to zero and ignored on receipt. 553 Instance ID: the low-order 24-bits that can go into a LISP data 554 header when the I-bit is set. See [RFC6830] for details. The use 555 of the Instance-ID in this LCAF type is to associate a multicast 556 forwarding entry for a given VPN. The instance-ID describes the 557 VPN and is registered to the mapping database system as a 3-tuple 558 of (Instance-ID, S-prefix, G-prefix). 560 Source MaskLen: the mask length of the source prefix that follows. 561 The length is the number of high-order mask bits set. 563 Group MaskLen: the mask length of the group prefix that follows. 564 The length is the number of high-order mask bits set. 566 AFI = x: x can be any AFI value from [AFI]. When a specific address 567 family has a multicast address semantic, this field must be either 568 a group address or a broadcast address. 570 Source/Subnet Address is the source address or prefix for encoding a 571 (S,G) multicast entry. 573 Group Address is the group address or group prefix for encoding 574 (S,G) or (*,G) multicast entries. 576 Usage: This encoding can be used in EID records in Map-Requests, Map- 577 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 578 [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended 579 EIDs are used in Map-Referral messages. 581 4.6. Traffic Engineering using Re-encapsulating Tunnels 583 For a given EID lookup into the mapping database, this LCAF can be 584 returned to provide a list of locators in an explicit re- 585 encapsulation path. See [I-D.farinacci-lisp-te] for details. 587 Explicit Locator Path (ELP) Canonical Address Format: 589 0 1 2 3 590 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 591 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 592 | AFI = 16387 | Rsvd1 | Flags | 593 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 594 | Type = 10 | Rsvd2 | Length | 595 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 596 | Rsvd3 |L|P|S| AFI = x | 597 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 598 | Reencap Hop 1 ... | 599 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 600 | Rsvd3 |L|P|S| AFI = x | 601 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 602 | Reencap Hop k ... | 603 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 605 Length: length in bytes starting and including the byte after this 606 Length field. 608 Rsvd3: this field is reserved for future use and MUST be transmitted 609 as 0 and ignored on receipt. 611 Lookup bit (L): this is the Lookup bit used to indicate to the user 612 of the ELP to not use this address for encapsulation but to look 613 it up in the mapping database system to obtain an encapsulating 614 RLOC address. 616 RLOC-Probe bit (P): this is the RLOC-probe bit which means the 617 Reencap Hop allows RLOC-probe messages to be sent to it. When the 618 R-bit is set to 0, RLOC-probes must not be sent. When a Reencap 619 Hop is an anycast address then multiple physical Reencap Hops are 620 using the same RLOC address. In this case, RLOC-probes are not 621 needed because when the closest RLOC address is not reachable 622 another RLOC address can be reachable. 624 Strict bit (S): this is the strict bit which means the associated 625 Rencap Hop is required to be used. If this bit is 0, the 626 reencapsulator can skip this Reencap Hop and go to the next one in 627 the list. 629 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 630 its own encoding of a multicast address, this field must be either 631 a group address or a broadcast address. 633 Usage: This encoding can be used in RLOC records in Map-Requests, 634 Map-Replies, Map-Registers, and Map-Notify messages. This encoding 635 does not need to be understood by the mapping system for mapping 636 database lookups since this LCAF type is not a lookup key. 638 4.7. Storing Security Data in the Mapping Database 640 When a locator in a locator-set has a security key associated with 641 it, this LCAF will be used to encode key material. See 642 [I-D.ietf-lisp-ddt] for details. 644 Security Key Canonical Address Format: 646 0 1 2 3 647 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 648 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 649 | AFI = 16387 | Rsvd1 | Flags | 650 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 651 | Type = 11 | Rsvd2 | Length | 652 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 653 | Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R| 654 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 655 | Key Length | Key Material ... | 656 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 657 | ... Key Material | 658 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 659 | AFI = x | Locator Address ... | 660 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 662 Length: length in bytes starting and including the byte after this 663 Length field. 665 Key Count: the Key Count field declares the number of Key sections 666 included in this LCAF. A key section is made up the "Key Length" 667 and "Key Material" fields. 669 Rsvd3: this field is reserved for future use and MUST be transmitted 670 as 0 and ignored on receipt. 672 Key Algorithm: the Algorithm field identifies the key's 673 cryptographic algorithm and specifies the format of the Public Key 674 field. Refer to the [I-D.ietf-lisp-ddt] and 675 [I-D.ietf-lisp-crypto] use cases for definitions of this field. 677 Rsvd4: this field is reserved for future use and MUST be transmitted 678 as 0 and ignored on receipt. 680 R bit: this is the revoke bit and, if set, it specifies that this 681 Key is being Revoked. 683 Key Length: this field determines the length in bytes of the Key 684 Material field. 686 Key Material: the Key Material field stores the key material. The 687 format of the key material stored depends on the Key Algorithm 688 field. 690 AFI = x: x can be any AFI value from [AFI].This is the locator 691 address that owns the encoded security key. 693 Usage: This encoding can be used in EID or RLOC records in Map- 694 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 695 LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, 696 extended EIDs are used in Map-Referral messages. 698 4.8. Source/Destination 2-Tuple Lookups 700 When both a source and destination address of a flow need 701 consideration for different locator-sets, this 2-tuple key is used in 702 EID fields in LISP control messages. When the Source/Dest key is 703 registered to the mapping database, it can be encoded as a source- 704 prefix and destination-prefix. When the Source/Dest is used as a key 705 for a mapping database lookup the source and destination come from a 706 data packet. 708 Source/Dest Key Canonical Address Format: 710 0 1 2 3 711 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 712 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 713 | AFI = 16387 | Rsvd1 | Flags | 714 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 715 | Type = 12 | Rsvd2 | Length | 716 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 717 | Reserved | Source-ML | Dest-ML | 718 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 719 | AFI = x | Source-Prefix ... | 720 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 721 | AFI = x | Destination-Prefix ... | 722 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 724 Length: length in bytes starting and including the byte after this 725 Length field. 727 Reserved: must be set to zero and ignore on receipt. 729 Source-ML: the mask length of the source prefix that follows. The 730 length is the number of high-order mask bits set. 732 Dest-ML: the mask length of the destination prefix that follows. 733 The length is the number of high-order mask bits set. 735 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 736 its own encoding of a multicast address, this field must be either 737 a group address or a broadcast address. 739 Usage: This encoding can be used in EID records in Map-Requests, Map- 740 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 741 [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended 742 EIDs are used in Map-Referral messages. Refer to 743 [I-D.farinacci-lisp-te] for usage details of this LCAF type. 745 4.9. Replication List Entries for Multicast Forwarding 747 The Replication List Entry LCAF type is an encoding for a locator 748 being used for unicast replication according to the specification in 749 [I-D.coras-lisp-re]. This locator encoding is pointed to by a 750 Multicast Info LCAF Type and is registered by Re-encapsulating Tunnel 751 Routers (RTRs) that are participating in an overlay distribution 752 tree. Each RTR will register its locator address and its configured 753 level in the distribution tree. 755 Replication List Entry Address Format: 757 0 1 2 3 758 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 759 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 760 | AFI = 16387 | Rsvd1 | Flags | 761 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 762 | Type = 13 | Rsvd2 | Length | 763 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 764 | Rsvd3 | Rsvd4 | Level Value | 765 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 766 | AFI = x | RTR/ETR #1 ... | 767 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 768 | Rsvd3 | Rsvd4 | Level Value | 769 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 770 | AFI = x | RTR/ETR #n ... | 771 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 773 Length: length in bytes starting and including the byte after this 774 Length field. 776 Rsvd{1,2,3,4}: must be set to zero and ignore on receipt. 778 Level Value: this value is associated with the level within the 779 overlay distribution tree hierarchy where the RTR resides. The 780 level numbers are ordered from lowest value being close to the ITR 781 (meaning that ITRs replicate to level-0 RTRs) and higher levels 782 are further downstream on the distribution tree closer to ETRs of 783 multicast receiver sites. 785 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 786 own encoding of either a unicast or multicast locator address. 787 For efficiency reasons, all RTR/ETR entries for the same level 788 should be combined together by a Map-Server to avoid searching 789 through the entire multi-level list of locator entries in a Map- 790 Reply message. 792 Usage: This encoding can be used in RLOC records in Map-Requests, 793 Map-Replies, Map-Registers, and Map-Notify messages. 795 4.10. Applications for AFI List Type 797 4.10.1. Binding IPv4 and IPv6 Addresses 799 When header translation between IPv4 and IPv6 is desirable a LISP 800 Canonical Address can use the AFI List Type to carry a variable 801 number of AFIs in one LCAF AFI. 803 Address Binding LISP Canonical Address Format: 805 0 1 2 3 806 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 807 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 808 | AFI = 16387 | Rsvd1 | Flags | 809 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 810 | Type = 1 | Rsvd2 | Length | 811 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 812 | AFI = 1 | IPv4 Address ... | 813 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 814 | ... IPv4 Address | AFI = 2 | 815 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 816 | IPv6 Address ... | 817 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 818 | ... IPv6 Address ... | 819 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 820 | ... IPv6 Address ... | 821 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 822 | ... IPv6 Address | 823 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 825 Length: length in bytes starting and including the byte after this 826 Length field. 828 This type of address format can be included in a Map-Request when the 829 address is being used as an EID, but the Mapping Database System 830 lookup destination can use only the IPv4 address. This is so a 831 Mapping Database Service Transport System, such as LISP-ALT 832 [RFC6836], can use the Map-Request destination address to route the 833 control message to the desired LISP site. 835 Usage: This encoding can be used in EID or RLOC records in Map- 836 Requests, Map-Replies, Map-Registers, and Map-Notify messages. See 837 subsections in this section for specific use cases. 839 4.10.2. Layer-2 VPNs 841 When MAC addresses are stored in the LISP Mapping Database System, 842 the AFI List Type can be used to carry AFI 6. 844 MAC Address LISP Canonical Address Format: 846 0 1 2 3 847 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 848 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 849 | AFI = 16387 | Rsvd1 | Flags | 850 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 851 | Type = 1 | Rsvd2 | Length | 852 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 853 | AFI = 6 | Layer-2 MAC Address ... | 854 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 855 | ... Layer-2 MAC Address | 856 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 858 Length: length in bytes starting and including the byte after this 859 Length field. 861 This address format can be used to connect layer-2 domains together 862 using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. 863 In this use case, a MAC address is being used as an EID, and the 864 locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or 865 even another MAC address being used as an RLOC. See 866 [I-D.portoles-lisp-eid-mobility] for how layer-2 VPNs operate when 867 doing EID mobility. 869 4.10.3. ASCII Names in the Mapping Database 871 If DNS names or URIs are stored in the LISP Mapping Database System, 872 the AFI List Type can be used to carry an ASCII string where it is 873 delimited by length 'n' of the LCAF Length encoding. 875 ASCII LISP Canonical Address Format: 877 0 1 2 3 878 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 879 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 880 | AFI = 16387 | Rsvd1 | Flags | 881 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 882 | Type = 1 | Rsvd2 | Length | 883 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 884 | AFI = 17 | DNS Name or URI ... | 885 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 887 Length: length in bytes starting and including the byte after this 888 Length field. 890 4.10.4. Using Recursive LISP Canonical Address Encodings 892 When any combination of above is desirable, the AFI List Type value 893 can be used to carry within the LCAF AFI another LCAF AFI (for 894 example, Application Specific Data see Section 5.1. 896 Recursive LISP Canonical Address Format: 898 0 1 2 3 899 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 900 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 901 | AFI = 16387 | Rsvd1 | Flags | 902 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 903 | Type = 1 | Rsvd2 | Length | 904 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 905 | AFI = 16387 | Rsvd1 | Flags | 906 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 907 | Type = 4 | Rsvd2 | Length2 | 908 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 909 | IP TOS, IPv6 TC or Flow Label | Protocol | 910 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 911 | Local Port (lower-range) | Local Port (upper-range) | 912 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 913 | Remote Port (lower-range) | Remote Port (upper-range) | 914 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 915 | AFI = 1 | IPv4 Address ... | 916 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 917 | ... IPv4 Address | 918 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 920 Length: length in bytes starting and including the byte after this 921 Length field. 923 Length2: length in bytes starting and including the byte after this 924 Length2 field. 926 This format could be used by a Mapping Database Transport System, 927 such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is used as 928 an EID and placed in the Map-Request destination address by the 929 sending LISP system. The ALT system can deliver the Map-Request to 930 the LISP destination site independent of the Application Data Type 931 AFI payload values. When this AFI is processed by the destination 932 LISP site, it can return different locator-sets based on the type of 933 application or level of service that is being requested. 935 4.10.5. Compatibility Mode Use Case 937 A LISP system should use the AFI List Type format when sending to 938 LISP systems that do not support a particular LCAF Type used to 939 encode locators. This allows the receiving system to be able to 940 parse a locator address for encapsulation purposes. The list of AFIs 941 in an AFI List LCAF Type has no semantic ordering and a receiver 942 should parse each AFI element no matter what the ordering. 944 Compatibility Mode Address Format: 946 0 1 2 3 947 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 948 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 949 | AFI = 16387 | Rsvd1 | Flags | 950 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 951 | Type = 1 | Rsvd2 | Length | 952 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 953 | AFI = 16387 | Rsvd1 | Flags | 954 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 955 | Type = 5 | Rsvd2 | Length2 | 956 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 957 |N| Latitude Degrees | Minutes | Seconds | 958 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 959 |E| Longitude Degrees | Minutes | Seconds | 960 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 961 | Altitude | 962 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 963 | AFI = 0 | AFI = 1 | 964 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 965 | IPv4 Address | 966 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 968 Length: length in bytes starting and including the byte after this 969 Length field. 971 Length2: length in bytes starting and including the byte after this 972 Length2 field. 974 If a system does not recognized the Geo Coordinate LCAF Type that is 975 accompanying a locator address, an encoder can include the Geo 976 Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI 977 in the Geo Coordinate LCAF is set to 0 and the AFI-encoded next in 978 the list is encoded with a valid AFI value to identify the locator 979 address. 981 A LISP system is required to support the AFI List LCAF Type to use 982 this procedure. It would skip over 10 bytes of the Geo Coordinate 983 LCAF Type to get to the locator address encoding (an IPv4 locator 984 address). A LISP system that does support the Geo Coordinate LCAF 985 Type can support parsing the locator address within the Geo 986 Coordinate LCAF encoding or in the locator encoding that follows in 987 the AFI List LCAF. 989 5. Experimental LISP Canonical Address Applications 991 5.1. Convey Application Specific Data 993 When a locator-set needs to be conveyed based on the type of 994 application or the Per-Hop Behavior (PHB) of a packet, the 995 Application Data Type can be used. 997 Application Data LISP Canonical Address Format: 999 0 1 2 3 1000 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1001 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1002 | AFI = 16387 | Rsvd1 | Flags | 1003 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1004 | Type = 4 | Rsvd2 | Length | 1005 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1006 | IP TOS, IPv6 TC, or Flow Label | Protocol | 1007 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1008 | Local Port (lower-range) | Local Port (upper-range) | 1009 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1010 | Remote Port (lower-range) | Remote Port (upper-range) | 1011 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1012 | AFI = x | Address ... | 1013 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1015 Length: length in bytes starting and including the byte after this 1016 Length field. 1018 IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS 1019 field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow 1020 Label used in an IPv6 header. 1022 Local Port/Remote Port Ranges: these fields are from the TCP, UDP, 1023 or SCTP transport header. A range can be specified by using a 1024 lower value and an upper value. When a single port is encoded, 1025 the lower and upper value fields are the same. 1027 AFI = x: x can be any AFI value from [AFI]. 1029 The Application Data Canonical Address Type is used for an EID 1030 encoding when an ITR wants a locator-set for a specific application. 1031 When used for an RLOC encoding, the ETR is supplying a locator-set 1032 for each specific application is has been configured to advertise. 1034 Usage: This encoding can be used in EID records in Map-Requests, Map- 1035 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 1036 [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended 1037 EIDs are used in Map-Referral messages. This LCAF type is used as a 1038 lookup key to the mapping system that can return a longest-match or 1039 exact-match entry. 1041 5.2. Generic Database Mapping Lookups 1043 When the LISP Mapping Database system holds information accessed by a 1044 generic formatted key (where the key is not the usual IPv4 or IPv6 1045 address), an opaque key may be desirable. 1047 Opaque Key LISP Canonical Address Format: 1049 0 1 2 3 1050 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1051 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1052 | AFI = 16387 | Rsvd1 | Flags | 1053 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1054 | Type = 6 | Rsvd2 | Length | 1055 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1056 | Key Field Num | Key Wildcard Fields | Key . . . | 1057 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1058 | . . . Key | 1059 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1061 Length: length in bytes starting and including the byte after this 1062 Length field. 1064 Key Field Num: the value of this field is the the number of "Key" 1065 sub-fields minus 1, the "Key" field can be broken up into. So if 1066 this field has a value of 0, there is 1 sub-field in the "Key". 1067 The width of the sub-fields are fixed length. So for a key size 1068 of 8 bytes, with a Key Field Num of 3, allows 4 sub-fields of 2 1069 bytes each in length. Allowing for a reasonable number of 16 sub- 1070 field separators, valid values range from 0 to 15. 1072 Key Wildcard Fields: describes which fields in the key are not used 1073 as part of the key lookup. This wildcard encoding is a bitfield. 1074 Each bit is a don't-care bit for a corresponding field in the key. 1075 Bit 0 (the low-order bit) in this bitfield corresponds the first 1076 field, the low-order field in the key, bit 1 the second field, and 1077 so on. When a bit is set in the bitfield it is a don't-care bit 1078 and should not be considered as part of the database lookup. When 1079 the entire 16-bits is set to 0, then all bits of the key are used 1080 for the database lookup. 1082 Key: the variable length key used to do a LISP Database Mapping 1083 lookup. The length of the key is the value n (as shown above). 1085 Usage: This is an experimental type where the usage has not been 1086 defined yet. 1088 5.3. PETR Admission Control Functionality 1090 When a public PETR device wants to verify who is encapsulating to it, 1091 it can check for a specific nonce value in the LISP encapsulated 1092 packet. To convey the nonce to admitted ITRs or PITRs, this LCAF is 1093 used in a Map-Register or Map-Reply locator-record. 1095 Nonce Locator Canonical Address Format: 1097 0 1 2 3 1098 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1099 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1100 | AFI = 16387 | Rsvd1 | Flags | 1101 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1102 | Type = 8 | Rsvd2 | Length | 1103 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1104 | Reserved | Nonce | 1105 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1106 | AFI = x | Address ... | 1107 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1109 Length: length in bytes starting and including the byte after this 1110 Length field. 1112 Reserved: must be set to zero and ignore on receipt. 1114 Nonce: this is a nonce value returned by an ETR in a Map-Reply 1115 locator-record to be used by an ITR or PITR when encapsulating to 1116 the locator address encoded in the AFI field of this LCAF type. 1117 This nonce value is inserted in the nonce field in the LISP header 1118 encapsulation. 1120 AFI = x: x can be any AFI value from [AFI]. 1122 Usage: This is an experimental type where the usage has not been 1123 defined yet. 1125 5.4. Data Model Encoding 1127 This type allows a JSON data model to be encoded either as an EID or 1128 RLOC. 1130 JSON Data Model Type Address Format: 1132 0 1 2 3 1133 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1134 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1135 | AFI = 16387 | Rsvd1 | Flags | 1136 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1137 | Type = 14 | Rsvd2 |B| Length | 1138 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1139 | JSON length | JSON binary/text encoding ... | 1140 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1141 | AFI = x | Optional Address ... | 1142 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1144 Length: length in bytes starting and including the byte after this 1145 Length field. 1147 Rsvd{1,2}: must be set to zero and ignore on receipt. 1149 B bit: indicates that the JSON field is binary encoded according to 1150 [JSON-BINARY] when the bit is set to 1. Otherwise the encoding is 1151 based on text encoding according to [RFC7159]. 1153 JSON length: length in octets of the following 'JSON binary/text 1154 encoding' field. 1156 JSON binary/text encoding field: a variable length field that 1157 contains either binary or text encodings. 1159 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 1160 own encoding of either a unicast or multicast locator address. 1161 All RTR/ETR entries for the same level should be combined together 1162 by a Map-Server to avoid searching through the entire multi-level 1163 list of locator entries in a Map-Reply message. 1165 Usage: This is an experimental type where the usage has not been 1166 defined yet. 1168 5.5. Encoding Key/Value Address Pairs 1170 The Key/Value pair is, for example, useful for attaching attributes 1171 to other elements of LISP packets, such as EIDs or RLOCs. When 1172 attaching attributes to EIDs or RLOCs, it's necessary to distinguish 1173 between the element that should be used as EID or RLOC, and hence as 1174 key for lookups, and additional attributes. This is especially the 1175 case when the difference cannot be determined from the types of the 1176 elements, such as when two IP addresses are being used. 1178 Key/Value Pair Address Format: 1180 0 1 2 3 1181 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1182 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1183 | AFI = 16387 | Rsvd1 | Flags | 1184 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1185 | Type = 15 | Rsvd2 | Length | 1186 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1187 | AFI = x | Address as Key ... | 1188 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1189 | AFI = y | Address as Value ... | 1190 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1192 Length: length in bytes starting and including the byte after this 1193 Length field. 1195 Rsvd{1,2}: must be set to zero and ignore on receipt. 1197 AFI = x: x is the "Address as Key" AFI that can have any value from 1198 [AFI]. A specific AFI has its own encoding of either a unicast or 1199 multicast locator address. All RTR/ETR entries for the same level 1200 should be combined together by a Map-Server to avoid searching 1201 through the entire multi-level list of locator entries in a Map- 1202 Reply message. 1204 Address as Key: this AFI-encoded address will be attached with the 1205 attributes encoded in "Address as Value" which follows this field. 1207 AFI = y: y is the "Address of Value" AFI that can have any value 1208 from [AFI]. A specific AFI has its own encoding of either a 1209 unicast or multicast locator address. All RTR/ETR entries for the 1210 same level should be combined together by a Map-Server to avoid 1211 searching through the entire multi-level list of locator entries 1212 in a Map-Reply message. 1214 Address as Value: this AFI-encoded address will be the attribute 1215 address that goes along with "Address as Key" which precedes this 1216 field. 1218 Usage: This is an experimental type where the usage has not been 1219 defined yet. 1221 5.6. Multiple Data-Planes 1223 Overlays are becoming popular in many parts of the network which have 1224 created an explosion of data-plane encapsulation headers. Since the 1225 LISP mapping system can hold many types of address formats, it can 1226 represent the encapsulation format supported by an RLOC as well. 1227 When an encapsulator receives a Map-Reply with an Encapsulation 1228 Format LCAF Type encoded in an RLOC-record, it can select an 1229 encapsulation format, that it can support, from any of the 1230 encapsulation protocols which have the bit set to 1 in this LCAF 1231 type. 1233 Encapsulation Format Address Format: 1235 0 1 2 3 1236 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1237 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1238 | AFI = 16387 | Rsvd1 | Flags | 1239 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1240 | Type = 16 | Rsvd2 | Length | 1241 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1242 | Reserved-for-Future-Encapsulations |U|G|N|v|V|l|L| 1243 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1244 | AFI = x | Address ... | 1245 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1247 Rsvd1/Rsvd2: must be set to zero and ignored on receipt. 1249 Length: length in bytes starting and including the byte after this 1250 Length field. 1252 Reserved-for-Future-Encapsulations: must be set to zero and ignored 1253 on receipt. This field will get bits allocated to future 1254 encapsulations, as they are created. 1256 L: The RLOCs listed in the AFI-encoded addresses in the next longword 1257 can accept layer 3 LISP encapsulation using destination UDP port 1258 4341 [RFC6830]. 1260 l: The RLOCs listed in the AFI-encoded addresses in the next longword 1261 can accept layer 2 LISP encapsulation using destination UDP port 1262 8472 [I-D.smith-lisp-layer2]. 1264 V: The RLOCs listed in the AFI-encoded addresses in the next longword 1265 can accept VXLAN encapsulation using destination UDP port 4789 1266 [RFC7348]. 1268 v: The RLOCs listed in the AFI-encoded addresses in the next longword 1269 can accept VXLAN-GPE encapsulation using destination UDP port 4790 1270 [I-D.quinn-vxlan-gpe]. 1272 N: The RLOCs listed in the AFI-encoded addresses in the next longword 1273 can accept NV-GRE encapsulation using IPv4/ IPv6 protocol number 1274 47 [RFC7637]. 1276 G: The RLOCs listed in the AFI-encoded addresses in the next longword 1277 can accept GENEVE encapsulation using destination UDP port 6081 1278 [I-D.gross-geneve]. 1280 U: The RLOCs listed in the AFI-encoded addresses in the next longword 1281 can accept GUE encapsulation using destination UDP port TBD 1282 [I-D.herbert-gue]. 1284 Usage: This encoding can be used in RLOC records in Map-Requests, 1285 Map-Replies, Map-Registers, and Map-Notify messages. 1287 6. Security Considerations 1289 There are no security considerations for this specification. The 1290 security considerations are documented for the protocols that use 1291 LISP Canonical Addressing. 1293 The use of the Geo-Coordinates LCAF Type may raise physical privacy 1294 issues. Care should be taken when configuring the mapping system to 1295 use specific policy parameters so geo-location information is not 1296 returned gratuitously. 1298 7. IANA Considerations 1300 This document defines a canonical address format encoding used in 1301 LISP control messages and in the encoding of lookup keys for the LISP 1302 Mapping Database System. Such address format is based on a fixed AFI 1303 (16387) and a LISP LCAF Type field. 1305 The LISP LCAF Type field is an 8-bit field specific to the LISP 1306 Canonical Address formatted encodings, for which IANA is to create 1307 and maintain a new registry (as outlined in [RFC5226]) entitled "LISP 1308 LCAF Type". Initial values for the LISP LCAF Type registry are given 1309 below. Future assignments are to be made through expert review with 1310 a specification required publication. Assignments consist of a LISP 1311 LCAF Type name and its associated value: 1313 +-------+------------------------------+------------+ 1314 | Value | LISP LCAF Type Name | Definition | 1315 +-------+------------------------------+------------+ 1316 | 0 | Null Body Type | Section 3 | 1317 | 1 | AFI List Type | Section 3 | 1318 | 2 | Instance ID Type | Section 3 | 1319 | 3 | AS Number Type | Section 3 | 1320 | 5 | Geo Coordinates Type | Section 3 | 1321 | 7 | NAT-Traversal Type | Section 3 | 1322 | 9 | Multicast Info Type | Section 3 | 1323 | 10 | Explicit Locator Path Type | Section 3 | 1324 | 11 | Security Key Type | Section 3 | 1325 | 12 | Source/Dest Key Type | Section 3 | 1326 | 13 | Replication List Entry Type | Section 3 | 1327 +-------+------------------------------+------------+ 1329 Table 1: LISP LCAF Type Initial Values 1331 8. References 1333 8.1. Normative References 1335 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G., 1336 and E. Lear, "Address Allocation for Private Internets", 1337 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996, 1338 . 1340 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1341 Requirement Levels", BCP 14, RFC 2119, 1342 DOI 10.17487/RFC2119, March 1997, 1343 . 1345 [RFC3232] Reynolds, J., Ed., "Assigned Numbers: RFC 1700 is Replaced 1346 by an On-line Database", RFC 3232, DOI 10.17487/RFC3232, 1347 January 2002, . 1349 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an 1350 IANA Considerations Section in RFCs", BCP 26, RFC 5226, 1351 DOI 10.17487/RFC5226, May 2008, 1352 . 1354 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The 1355 Locator/ID Separation Protocol (LISP)", RFC 6830, 1356 DOI 10.17487/RFC6830, January 2013, 1357 . 1359 [RFC6836] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, 1360 "Locator/ID Separation Protocol Alternative Logical 1361 Topology (LISP+ALT)", RFC 6836, DOI 10.17487/RFC6836, 1362 January 2013, . 1364 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data 1365 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March 1366 2014, . 1368 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, 1369 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual 1370 eXtensible Local Area Network (VXLAN): A Framework for 1371 Overlaying Virtualized Layer 2 Networks over Layer 3 1372 Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014, 1373 . 1375 [RFC7637] Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network 1376 Virtualization Using Generic Routing Encapsulation", 1377 RFC 7637, DOI 10.17487/RFC7637, September 2015, 1378 . 1380 8.2. Informative References 1382 [AFI] IANA, , "Address Family Identifier (AFIs)", ADDRESS FAMILY 1383 NUMBERS http://www.iana.org/numbers.html, Febuary 2007. 1385 [I-D.coras-lisp-re] 1386 Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J., 1387 Maino, F., and D. Farinacci, "LISP Replication 1388 Engineering", draft-coras-lisp-re-08 (work in progress), 1389 November 2015. 1391 [I-D.ermagan-lisp-nat-traversal] 1392 Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, 1393 F., and C. White, "NAT traversal for LISP", draft-ermagan- 1394 lisp-nat-traversal-11 (work in progress), August 2016. 1396 [I-D.farinacci-lisp-te] 1397 Farinacci, D., Kowal, M., and P. Lahiri, "LISP Traffic 1398 Engineering Use-Cases", draft-farinacci-lisp-te-11 (work 1399 in progress), September 2016. 1401 [I-D.gross-geneve] 1402 Gross, J., Sridhar, T., Garg, P., Wright, C., Ganga, I., 1403 Agarwal, P., Duda, K., Dutt, D., and J. Hudson, "Geneve: 1404 Generic Network Virtualization Encapsulation", draft- 1405 gross-geneve-02 (work in progress), October 2014. 1407 [I-D.herbert-gue] 1408 Herbert, T., Yong, L., and O. Zia, "Generic UDP 1409 Encapsulation", draft-herbert-gue-03 (work in progress), 1410 March 2015. 1412 [I-D.ietf-lisp-crypto] 1413 Farinacci, D. and B. Weis, "LISP Data-Plane 1414 Confidentiality", draft-ietf-lisp-crypto-08 (work in 1415 progress), September 2016. 1417 [I-D.ietf-lisp-ddt] 1418 Fuller, V., Lewis, D., Ermagan, V., Jain, A., and A. 1419 Smirnov, "LISP Delegated Database Tree", draft-ietf-lisp- 1420 ddt-08 (work in progress), September 2016. 1422 [I-D.portoles-lisp-eid-mobility] 1423 Portoles-Comeras, M., Ashtaputre, V., Moreno, V., Maino, 1424 F., and D. Farinacci, "LISP L2/L3 EID Mobility Using a 1425 Unified Control Plane", draft-portoles-lisp-eid- 1426 mobility-01 (work in progress), October 2016. 1428 [I-D.quinn-vxlan-gpe] 1429 Quinn, P., Manur, R., Kreeger, L., Lewis, D., Maino, F., 1430 Smith, M., Agarwal, P., Yong, L., Xu, X., Elzur, U., Garg, 1431 P., and D. Melman, "Generic Protocol Extension for VXLAN", 1432 draft-quinn-vxlan-gpe-04 (work in progress), February 1433 2015. 1435 [I-D.smith-lisp-layer2] 1436 Smith, M., Dutt, D., Farinacci, D., and F. Maino, "Layer 2 1437 (L2) LISP Encapsulation Format", draft-smith-lisp- 1438 layer2-03 (work in progress), September 2013. 1440 [JSON-BINARY] 1441 "Universal Binary JSON Specification", 1442 URL http://ubjson.org. 1444 [WGS-84] Geodesy and Geophysics Department, DoD., "World Geodetic 1445 System 1984", NIMA TR8350.2, January 2000, . 1448 Appendix A. Acknowledgments 1450 The authors would like to thank Vince Fuller, Gregg Schudel, Jesper 1451 Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for 1452 their technical and editorial commentary. 1454 The authors would like to thank Victor Moreno for discussions that 1455 lead to the definition of the Multicast Info LCAF type. 1457 The authors would like to thank Parantap Lahiri and Michael Kowal for 1458 discussions that lead to the definition of the Explicit Locator Path 1459 (ELP) LCAF type. 1461 The authors would like to thank Fabio Maino and Vina Ermagan for 1462 discussions that lead to the definition of the Security Key LCAF 1463 type. 1465 The authors would like to thank Albert Cabellos-Aparicio and Florin 1466 Coras for discussions that lead to the definition of the Replication 1467 List Entry LCAF type. 1469 Thanks goes to Michiel Blokzijl and Alberto Rodriguez-Natal for 1470 suggesting new LCAF types. 1472 Thanks also goes to Terry Manderson for assistance obtaining a LISP 1473 AFI value from IANA. 1475 Appendix B. Document Change Log 1477 [RFC Editor: Please delete this section on publication as RFC.] 1479 B.1. Changes to draft-ietf-lisp-lcaf-17.txt 1481 o Submitted October 2016. 1483 o Addressed comments from Gen-ART reviewer Peter Yee. 1485 o Addressed IESG last-call comments from Suresh Krishnan. 1487 B.2. Changes to draft-ietf-lisp-lcaf-16.txt 1489 o Submitted October 2016. 1491 o Addressed comments from Security Directorate reviewer David 1492 Mandelberg. 1494 B.3. Changes to draft-ietf-lisp-lcaf-15.txt 1496 o Submitted September 2016. 1498 o Addressed comments from Routing Directorate reviewer Stig Venass. 1500 B.4. Changes to draft-ietf-lisp-lcaf-14.txt 1502 o Submitted July 2016. 1504 o Fix IDnits errors and comments from Luigi Iannone, document 1505 shepherd. 1507 B.5. Changes to draft-ietf-lisp-lcaf-13.txt 1509 o Submitted May 2016. 1511 o Explain the Instance-ID LCAF Type is 32-bits in length and the 1512 Instance-ID field in the LISP encapsulation header is 24-bits. 1514 B.6. Changes to draft-ietf-lisp-lcaf-12.txt 1516 o Submitted March 2016. 1518 o Updated references and document timer. 1520 o Removed the R, J, and L bits from the Multicast Info Type LCAF 1521 since working group decided to not go forward with draft- 1522 farinacci-lisp-mr-signaling-03.txt in favor of draft- ietf-lisp- 1523 signal-free-00.txt. 1525 B.7. Changes to draft-ietf-lisp-lcaf-11.txt 1527 o Submitted September 2015. 1529 o Reflecting comments from Prague LISP working group. 1531 o Readying document for a LISP LCAF registry, RFC publication, and 1532 for new use cases that will be defined in the new charter. 1534 B.8. Changes to draft-ietf-lisp-lcaf-10.txt 1536 o Submitted June 2015. 1538 o Fix coauthor Job's contact information. 1540 B.9. Changes to draft-ietf-lisp-lcaf-09.txt 1542 o Submitted June 2015. 1544 o Fix IANA Considerations section to request a registry to allocate 1545 and track LCAF Type values. 1547 B.10. Changes to draft-ietf-lisp-lcaf-08.txt 1549 o Submitted April 2015. 1551 o Comment from Florin. The Application Data Type length field has a 1552 typo. The field should be labeled "12 + n" and not "8 + n". 1554 o Fix length fields in the sections titled "Using Recursive LISP 1555 Canonical Address Encodings", "Generic Database Mapping Lookups", 1556 and "Data Model Encoding". 1558 B.11. Changes to draft-ietf-lisp-lcaf-07.txt 1560 o Submitted December 2014. 1562 o Add a new LCAF Type called "Encapsulation Format" so decapsulating 1563 xTRs can inform encapsulating xTRs what data-plane encapsulations 1564 they support. 1566 B.12. Changes to draft-ietf-lisp-lcaf-06.txt 1568 o Submitted October 2014. 1570 o Make it clear how sorted RLOC records are done when LCAFs are used 1571 as the RLOC record. 1573 B.13. Changes to draft-ietf-lisp-lcaf-05.txt 1575 o Submitted May 2014. 1577 o Add a length field of the JSON payload that can be used for either 1578 binary or text encoding of JSON data. 1580 B.14. Changes to draft-ietf-lisp-lcaf-04.txt 1582 o Submitted January 2014. 1584 o Agreement among ELP implementors to have the AFI 16-bit field 1585 adjacent to the address. This will make the encoding consistent 1586 with all other LCAF type address encodings. 1588 B.15. Changes to draft-ietf-lisp-lcaf-03.txt 1590 o Submitted September 2013. 1592 o Updated references and author's affilations. 1594 o Added Instance-ID to the Multicast Info Type so there is relative 1595 ease in parsing (S,G) entries within a VPN. 1597 o Add port range encodings to the Application Data LCAF Type. 1599 o Add a new JSON LCAF Type. 1601 o Add Address Key/Value LCAF Type to allow attributes to be attached 1602 to an address. 1604 B.16. Changes to draft-ietf-lisp-lcaf-02.txt 1606 o Submitted March 2013. 1608 o Added new LCAF Type "Replication List Entry" to support LISP 1609 replication engineering use cases. 1611 o Changed references to new LISP RFCs. 1613 B.17. Changes to draft-ietf-lisp-lcaf-01.txt 1615 o Submitted January 2013. 1617 o Change longitude range from 0-90 to 0-180 in section 4.4. 1619 o Added reference to WGS-84 in section 4.4. 1621 B.18. Changes to draft-ietf-lisp-lcaf-00.txt 1623 o Posted first working group draft August 2012. 1625 o This draft was renamed from draft-farinacci-lisp-lcaf-10.txt. 1627 Authors' Addresses 1629 Dino Farinacci 1630 lispers.net 1631 San Jose, CA 1632 USA 1634 Email: farinacci@gmail.com 1636 Dave Meyer 1637 Brocade 1638 San Jose, CA 1639 USA 1641 Email: dmm@1-4-5.net 1643 Job Snijders 1644 NTT Communications 1645 Theodorus Majofskistraat 100 1646 Amsterdam 1065 SZ 1647 NL 1649 Email: job@ntt.net