idnits 2.17.1 draft-ietf-lisp-lcaf-18.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (October 14, 2016) is 2744 days in the past. Is this intentional? Checking references for intended status: Experimental ---------------------------------------------------------------------------- ** Obsolete normative reference: RFC 5226 (Obsoleted by RFC 8126) ** Obsolete normative reference: RFC 6830 (Obsoleted by RFC 9300, RFC 9301) ** Obsolete normative reference: RFC 7159 (Obsoleted by RFC 8259) == Outdated reference: A later version (-19) exists of draft-ermagan-lisp-nat-traversal-11 == Outdated reference: A later version (-12) exists of draft-farinacci-lisp-te-11 == Outdated reference: A later version (-10) exists of draft-ietf-lisp-crypto-09 == Outdated reference: A later version (-09) exists of draft-ietf-lisp-ddt-08 == Outdated reference: A later version (-02) exists of draft-portoles-lisp-eid-mobility-01 Summary: 3 errors (**), 0 flaws (~~), 6 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group D. Farinacci 3 Internet-Draft lispers.net 4 Intended status: Experimental D. Meyer 5 Expires: April 17, 2017 Brocade 6 J. Snijders 7 NTT Communications 8 October 14, 2016 10 LISP Canonical Address Format (LCAF) 11 draft-ietf-lisp-lcaf-18 13 Abstract 15 This draft defines a canonical address format encoding used in LISP 16 control messages and in the encoding of lookup keys for the LISP 17 Mapping Database System. 19 Requirements Language 21 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 22 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 23 document are to be interpreted as described in [RFC2119]. 25 Status of This Memo 27 This Internet-Draft is submitted in full conformance with the 28 provisions of BCP 78 and BCP 79. 30 Internet-Drafts are working documents of the Internet Engineering 31 Task Force (IETF). Note that other groups may also distribute 32 working documents as Internet-Drafts. The list of current Internet- 33 Drafts is at http://datatracker.ietf.org/drafts/current/. 35 Internet-Drafts are draft documents valid for a maximum of six months 36 and may be updated, replaced, or obsoleted by other documents at any 37 time. It is inappropriate to use Internet-Drafts as reference 38 material or to cite them other than as "work in progress." 40 This Internet-Draft will expire on April 17, 2017. 42 Copyright Notice 44 Copyright (c) 2016 IETF Trust and the persons identified as the 45 document authors. All rights reserved. 47 This document is subject to BCP 78 and the IETF Trust's Legal 48 Provisions Relating to IETF Documents 49 (http://trustee.ietf.org/license-info) in effect on the date of 50 publication of this document. Please review these documents 51 carefully, as they describe your rights and restrictions with respect 52 to this document. Code Components extracted from this document must 53 include Simplified BSD License text as described in Section 4.e of 54 the Trust Legal Provisions and are provided without warranty as 55 described in the Simplified BSD License. 57 Table of Contents 59 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 60 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 61 3. LISP Canonical Address Format Encodings . . . . . . . . . . . 5 62 4. LISP Canonical Address Applications . . . . . . . . . . . . . 7 63 4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 7 64 4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 9 65 4.3. Assigning Geo Coordinates to Locator Addresses . . . . . 10 66 4.4. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 12 67 4.5. Multicast Group Membership Information . . . . . . . . . 14 68 4.6. Traffic Engineering using Re-encapsulating Tunnels . . . 16 69 4.7. Storing Security Data in the Mapping Database . . . . . . 17 70 4.8. Source/Destination 2-Tuple Lookups . . . . . . . . . . . 19 71 4.9. Replication List Entries for Multicast Forwarding . . . . 21 72 4.10. Applications for AFI List Type . . . . . . . . . . . . . 22 73 4.10.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . 22 74 4.10.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 23 75 4.10.3. ASCII Names in the Mapping Database . . . . . . . . 24 76 4.10.4. Using Recursive LISP Canonical Address Encodings . . 25 77 4.10.5. Compatibility Mode Use Case . . . . . . . . . . . . 26 78 5. Experimental LISP Canonical Address Applications . . . . . . 27 79 5.1. Convey Application Specific Data . . . . . . . . . . . . 27 80 5.2. Generic Database Mapping Lookups . . . . . . . . . . . . 29 81 5.3. PETR Admission Control Functionality . . . . . . . . . . 30 82 5.4. Data Model Encoding . . . . . . . . . . . . . . . . . . . 31 83 5.5. Encoding Key/Value Address Pairs . . . . . . . . . . . . 32 84 5.6. Multiple Data-Planes . . . . . . . . . . . . . . . . . . 33 85 6. Security Considerations . . . . . . . . . . . . . . . . . . . 35 86 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 36 87 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 36 88 8.1. Normative References . . . . . . . . . . . . . . . . . . 36 89 8.2. Informative References . . . . . . . . . . . . . . . . . 38 90 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . 39 91 Appendix B. Document Change Log . . . . . . . . . . . . . . . . 40 92 B.1. Changes to draft-ietf-lisp-lcaf-18.txt . . . . . . . . . 40 93 B.2. Changes to draft-ietf-lisp-lcaf-17.txt . . . . . . . . . 40 94 B.3. Changes to draft-ietf-lisp-lcaf-16.txt . . . . . . . . . 40 95 B.4. Changes to draft-ietf-lisp-lcaf-15.txt . . . . . . . . . 40 96 B.5. Changes to draft-ietf-lisp-lcaf-14.txt . . . . . . . . . 40 97 B.6. Changes to draft-ietf-lisp-lcaf-13.txt . . . . . . . . . 41 98 B.7. Changes to draft-ietf-lisp-lcaf-12.txt . . . . . . . . . 41 99 B.8. Changes to draft-ietf-lisp-lcaf-11.txt . . . . . . . . . 41 100 B.9. Changes to draft-ietf-lisp-lcaf-10.txt . . . . . . . . . 41 101 B.10. Changes to draft-ietf-lisp-lcaf-09.txt . . . . . . . . . 41 102 B.11. Changes to draft-ietf-lisp-lcaf-08.txt . . . . . . . . . 41 103 B.12. Changes to draft-ietf-lisp-lcaf-07.txt . . . . . . . . . 42 104 B.13. Changes to draft-ietf-lisp-lcaf-06.txt . . . . . . . . . 42 105 B.14. Changes to draft-ietf-lisp-lcaf-05.txt . . . . . . . . . 42 106 B.15. Changes to draft-ietf-lisp-lcaf-04.txt . . . . . . . . . 42 107 B.16. Changes to draft-ietf-lisp-lcaf-03.txt . . . . . . . . . 42 108 B.17. Changes to draft-ietf-lisp-lcaf-02.txt . . . . . . . . . 43 109 B.18. Changes to draft-ietf-lisp-lcaf-01.txt . . . . . . . . . 43 110 B.19. Changes to draft-ietf-lisp-lcaf-00.txt . . . . . . . . . 43 111 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 43 113 1. Introduction 115 The LISP architecture and protocols [RFC6830] introduces two new 116 numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators 117 (RLOCs). To provide flexibility for current and future applications, 118 these values can be encoded in LISP control messages using a general 119 syntax that includes Address Family Identifier (AFI), length, and 120 value fields. 122 Currently defined AFIs include IPv4 and IPv6 addresses, which are 123 formatted according to code-points assigned in [AFI] as follows: 125 IPv4 Encoded Address: 127 0 1 2 3 128 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 129 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 130 | AFI = 1 | IPv4 Address ... | 131 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 132 | ... IPv4 Address | 133 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 134 IPv6 Encoded Address: 136 0 1 2 3 137 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 138 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 139 | AFI = 2 | IPv6 Address ... | 140 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 141 | ... IPv6 Address ... | 142 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 143 | ... IPv6 Address ... | 144 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 145 | ... IPv6 Address ... | 146 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 147 | ... IPv6 Address | 148 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 150 This document describes the currently-defined AFIs the LISP protocol 151 uses along with their encodings and introduces the LISP Canonical 152 Address Format (LCAF) that can be used to define the LISP-specific 153 encodings for arbitrary AFI values. 155 2. Definition of Terms 157 Address Family Identifier (AFI): a term used to describe an address 158 encoding in a packet. Address families are defined for IPv4 and 159 IPv6. See [AFI] and [RFC3232] for details. The reserved AFI 160 value of 0 is used in this specification to indicate an 161 unspecified encoded address where the length of the address is 0 162 bytes following the 16-bit AFI value of 0. 164 Unspecified Address Format: 166 0 1 2 3 167 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 168 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 169 | AFI = 0 | 170 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 172 Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value 173 used in the source and destination address fields of the first 174 (most inner) LISP header of a packet. The host obtains a 175 destination EID the same way it obtains a destination address 176 today, for example through a DNS lookup or SIP exchange. The 177 source EID is obtained via existing mechanisms used to set a 178 host's "local" IP address. An EID is allocated to a host from an 179 EID-prefix block associated with the site where the host is 180 located. An EID can be used by a host to refer to other hosts. 182 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress 183 tunnel router (ETR). It is the output of a EID-to-RLOC mapping 184 lookup. An EID maps to one or more RLOCs. Typically, RLOCs are 185 numbered from topologically aggregatable blocks that are assigned 186 to a site at each point to which it attaches to the global 187 Internet; where the topology is defined by the connectivity of 188 provider networks, RLOCs can be thought of as Provider-Assigned 189 (PA) addresses. Multiple RLOCs can be assigned to the same ETR 190 device or to multiple ETR devices at a site. 192 3. LISP Canonical Address Format Encodings 194 IANA has assigned AFI value 16387 (0x4003) to the LISP architecture 195 and protocols. This specification defines the encoding format of the 196 LISP Canonical Address (LCA). This section defines all types for 197 which an initial allocation in the LISP-LCAF registry is requested. 198 See IANA Considerations section for the complete list of such types. 200 The Address Family AFI definitions from [AFI] only allocate code- 201 points for the AFI value itself. The length of the address or entity 202 that follows is not defined and is implied based on conventional 203 experience. When the LISP protocol uses LCAF definitions from this 204 document, the AFI-based address lengths are specified in this 205 document. When new LCAF definitions are defined in other use case 206 documents, the AFI-based address lengths for any new AFI encoded 207 addresses are specified in those documents. 209 The first 6 bytes of an LISP Canonical Address are followed by a 210 variable number of fields of variable length: 212 0 1 2 3 213 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 214 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 215 | AFI = 16387 | Rsvd1 | Flags | 216 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 217 | Type | Rsvd2 | Length | 218 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 219 | . . . | 220 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 222 Rsvd1/Rsvd2: these 8-bit fields are reserved for future use and MUST 223 be transmitted as 0 and ignored on receipt. 225 Flags: this 8-bit field is for future definition and use. For now, 226 set to zero on transmission and ignored on receipt. 228 Type: this 8-bit field is specific to the LISP Canonical Address 229 formatted encodings. Currently allocated values are: 231 Type 0: Null Body Type 233 Type 1: AFI List Type 235 Type 2: Instance ID Type 237 Type 3: AS Number Type 239 Type 4: Application Data Type 241 Type 5: Geo Coordinates Type 243 Type 6: Opaque Key Type 245 Type 7: NAT-Traversal Type 247 Type 8: Nonce Locator Type 249 Type 9: Multicast Info Type 251 Type 10: Explicit Locator Path Type 253 Type 11: Security Key Type 255 Type 12: Source/Dest Key Type 257 Type 13: Replication List Entry Type 259 Type 14: JSON Data Model Type 261 Type 15: Key/Value Address Pair Type 263 Type 16: Encapsulation Format Type 265 Length: this 16-bit field is in units of bytes and covers all of the 266 LISP Canonical Address payload, starting and including the byte 267 after the Length field. When including the AFI, an LCAF encoded 268 address will have a minimum length of 8 bytes when the Length 269 field is 0. The 8 bytes include the AFI, Flags, Type, Rsvd1, 270 Rsvd2, and Length fields. When the AFI is not next to an encoded 271 address in a control message, then the encoded address will have a 272 minimum length of 6 bytes when the Length field is 0. The 6 bytes 273 include the Flags, Type, Rsvd1, Rsvd2, and Length fields. 275 [RFC6830] states RLOC records are sorted when encoded in control 276 messages so the locator-set has consistent order across all xTRs for 277 a given EID. The sort order is based on sort-key {afi, RLOC- 278 address}. When an RLOC is LCAF encoded, the sort-key is {afi, LCAF- 279 Type}. Therefore, when a locator-set has a mix of AFI records and 280 LCAF records, they are ordered from smallest to largest AFI value. 282 4. LISP Canonical Address Applications 284 4.1. Segmentation using LISP 286 When multiple organizations inside of a LISP site are using private 287 addresses [RFC1918] as EID-prefixes, their address spaces must remain 288 segregated due to possible address duplication. An Instance ID in 289 the address encoding can aid in making the entire AFI-based address 290 unique. 292 Another use for the Instance ID LISP Canonical Address Format is when 293 creating multiple segmented VPNs inside of a LISP site where keeping 294 EID-prefix based subnets is desirable. 296 Instance ID LISP Canonical Address Format: 298 0 1 2 3 299 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 300 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 301 | AFI = 16387 | Rsvd1 | Flags | 302 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 303 | Type = 2 | IID mask-len | Length | 304 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 305 | Instance ID | 306 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 307 | AFI = x | Address ... | 308 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 310 IID mask-len: if the AFI is set to 0, then this format is not 311 encoding an extended EID-prefix but rather an instance-ID range 312 where the 'IID mask-len' indicates the number of high-order bits 313 used in the Instance ID field for the range. The low-order bits 314 of the Instance ID field must be 0. 316 Length: length in bytes starting and including the byte after this 317 Length field. 319 Instance ID: the low-order 24-bits that can go into a LISP data 320 header when the I-bit is set. See [RFC6830] for details. The 321 reason for the length difference is so that the maximum number of 322 instances supported per mapping system is 2^32 while conserving 323 space in the LISP data header. This comes at the expense of 324 limiting the maximum number of instances per xTR to 2^24. If an 325 xTR is configured with multiple instance-IDs where the value in 326 the high-order 8 bits are the same, then the low-order 24 bits 327 MUST be unique. 329 AFI = x: x can be any AFI value from [AFI]. 331 This LISP Canonical Address Type can be used to encode either EID or 332 RLOC addresses. 334 Usage: When used as a lookup key, the EID is regarded as an extended- 335 EID in the mapping system. This encoding is used in EID records in 336 Map-Requests, Map-Replies, Map-Registers, and Map-Notify messages. 337 When LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system 338 mechanism, extended EIDs are used in Map-Referral messages. 340 4.2. Carrying AS Numbers in the Mapping Database 342 When an AS number is stored in the LISP Mapping Database System for 343 either policy or documentation reasons, it can be encoded in a LISP 344 Canonical Address. 346 AS Number LISP Canonical Address Format: 348 0 1 2 3 349 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 350 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 351 | AFI = 16387 | Rsvd1 | Flags | 352 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 353 | Type = 3 | Rsvd2 | Length | 354 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 355 | AS Number | 356 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 357 | AFI = x | Address ... | 358 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 360 Length: length in bytes starting and including the byte after this 361 Length field. 363 AS Number: the 32-bit AS number of the autonomous system that has 364 been assigned to either the EID or RLOC that follows. 366 AFI = x: x can be any AFI value from [AFI]. 368 The AS Number Canonical Address Type can be used to encode either EID 369 or RLOC addresses. The former is used to describe the LISP-ALT AS 370 number the EID-prefix for the site is being carried for. The latter 371 is used to describe the AS that is carrying RLOC based prefixes in 372 the underlying routing system. 374 Usage: This encoding can be used in EID or RLOC records in Map- 375 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 376 LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, 377 extended EIDs are used in Map-Referral messages. 379 4.3. Assigning Geo Coordinates to Locator Addresses 381 If an ETR desires to send a Map-Reply describing the Geo Coordinates 382 for each locator in its locator-set, it can use the Geo Coordinate 383 Type to convey physical location information. 385 Coordinates are specified using the WGS-84 (World Geodetic System) 386 reference coordinate system [WGS-84]. 388 Geo Coordinate LISP Canonical Address Format: 390 0 1 2 3 391 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 392 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 393 | AFI = 16387 | Rsvd1 | Flags | 394 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 395 | Type = 5 | Rsvd2 | Length | 396 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 397 |N| Latitude Degrees | Minutes | Seconds | 398 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 399 |E| Longitude Degrees | Minutes | Seconds | 400 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 401 | Altitude | 402 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 403 | AFI = x | Address ... | 404 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 406 Length: length in bytes starting and including the byte after this 407 Length field. 409 N: When set to 1 means North, otherwise South. 411 Latitude Degrees: Valid values range from 0 to 90 degrees above or 412 below the equator (northern or southern hemisphere, respectively). 414 Latitude Minutes: Valid values range from 0 to 59. 416 Latitude Seconds: Valid values range from 0 to 59. 418 E: When set to 1 means East, otherwise West. 420 Longitude Degrees: Valid values are from 0 to 180 degrees right or 421 left of the Prime Meridian. 423 Longitude Minutes: Valid values range from 0 to 59. 425 Longitude Seconds: Valid values range from 0 to 59. 427 Altitude: Height relative to sea level in meters. This is a two's 428 complement signed integer meaning that the altitude could be below 429 sea level. A value of 0x7fffffff indicates no Altitude value is 430 encoded. 432 AFI = x: x can be any AFI value from [AFI]. 434 The Geo Coordinates Canonical Address Type can be used to encode 435 either EID or RLOC addresses. When used for EID encodings, you can 436 determine the physical location of an EID along with the topological 437 location by observing the locator-set. 439 Usage: This encoding can be used in EID or RLOC records in Map- 440 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 441 LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, 442 extended EIDs are used in Map-Referral messages. 444 4.4. NAT Traversal Scenarios 446 When a LISP system is conveying global address and mapped port 447 information when traversing through a NAT device, the NAT-Traversal 448 LCAF Type is used. See [I-D.ermagan-lisp-nat-traversal] for details. 450 NAT-Traversal Canonical Address Format: 452 0 1 2 3 453 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 454 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 455 | AFI = 16387 | Rsvd1 | Flags | 456 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 457 | Type = 7 | Rsvd2 | Length | 458 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 459 | MS UDP Port Number | ETR UDP Port Number | 460 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 461 | AFI = x | Global ETR RLOC Address ... | 462 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 463 | AFI = x | MS RLOC Address ... | 464 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 465 | AFI = x | Private ETR RLOC Address ... | 466 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 467 | AFI = x | RTR RLOC Address 1 ... | 468 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 469 | AFI = x | RTR RLOC Address k ... | 470 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 472 Length: length in bytes starting and including the byte after this 473 Length field. 475 MS UDP Port Number: this is the UDP port number of the Map-Server 476 and is set to 4342. 478 ETR UDP Port Number: this is the port number returned to a LISP 479 system which was copied from the source port from a packet that 480 has flowed through a NAT device. 482 AFI = x: x can be any AFI value from [AFI]. 484 Global ETR RLOC Address: this is an address known to be globally 485 unique built by NAT-traversal functionality in a LISP router. 487 MS RLOC Address: this is the address of the Map-Server used in the 488 destination RLOC of a packet that has flowed through a NAT device. 490 Private ETR RLOC Address: this is an address known to be a private 491 address inserted in this LCAF by a LISP router that resides on the 492 private side of a NAT device. 494 RTR RLOC Address: this is an encapsulation address used by an ITR or 495 PITR which resides behind a NAT device. This address is known to 496 have state in a NAT device so packets can flow from it to the LISP 497 ETR behind the NAT. There can be one or more NAT Reencapsulating 498 Tunnel Router (RTR) [I-D.ermagan-lisp-nat-traversal] addresses 499 supplied in these set of fields. The number of RTRs encoded is 500 determined by parsing each field. When there are no RTRs 501 supplied, the RTR fields can be omitted and reflected by the LCAF 502 length field or an AFI of 0 can be used to indicate zero RTRs 503 encoded. 505 Usage: This encoding can be used in Info-Request and Info-Reply 506 messages. The mapping system does not store this information. The 507 information is used by an xTR and Map-Server to convey private and 508 public address information when traversing NAT and firewall devices. 510 4.5. Multicast Group Membership Information 512 Multicast group information can be published in the mapping database. 513 So a lookup on a group address EID can return a replication list of 514 RLOC group addresses or RLOC unicast addresses. The intent of this 515 type of unicast replication is to deliver packets to multiple ETRs at 516 receiver LISP multicast sites. The locator-set encoding for this EID 517 record type can be a list of ETRs when they each register with "Merge 518 Semantics". The encoding can be a typical AFI-encoded locator 519 address. When an RTR list is being registered (with multiple levels 520 according to [I-D.coras-lisp-re]), the Replication List Entry LCAF 521 type is used for locator encoding. 523 This LCAF encoding can be used to send broadcast packets to all 524 members of a subnet when an EID is away from its home subnet 525 location. 527 Multicast Info Canonical Address Format: 529 0 1 2 3 530 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 531 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 532 | AFI = 16387 | Rsvd1 | Flags | 533 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 534 | Type = 9 | Rsvd2 | Length | 535 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 536 | Instance-ID | 537 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 538 | Reserved | Source MaskLen| Group MaskLen | 539 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 540 | AFI = x | Source/Subnet Address ... | 541 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 542 | AFI = x | Group Address ... | 543 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 545 Length: length in bytes starting and including the byte after this 546 Length field. 548 Reserved: must be set to zero and ignored on receipt. 550 Instance ID: the low-order 24-bits that can go into a LISP data 551 header when the I-bit is set. See [RFC6830] for details. The use 552 of the Instance-ID in this LCAF type is to associate a multicast 553 forwarding entry for a given VPN. The instance-ID describes the 554 VPN and is registered to the mapping database system as a 3-tuple 555 of (Instance-ID, S-prefix, G-prefix). 557 Source MaskLen: the mask length of the source prefix that follows. 558 The length is the number of high-order mask bits set. 560 Group MaskLen: the mask length of the group prefix that follows. 561 The length is the number of high-order mask bits set. 563 AFI = x: x can be any AFI value from [AFI]. When a specific address 564 family has a multicast address semantic, this field must be either 565 a group address or a broadcast address. 567 Source/Subnet Address: is the source address or prefix for encoding 568 a (S,G) multicast entry. 570 Group Address: is the group address or group prefix for encoding 571 (S,G) or (*,G) multicast entries. 573 Usage: This encoding can be used in EID records in Map-Requests, Map- 574 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 575 [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended 576 EIDs are used in Map-Referral messages. 578 4.6. Traffic Engineering using Re-encapsulating Tunnels 580 For a given EID lookup into the mapping database, this LCAF can be 581 returned to provide a list of locators in an explicit re- 582 encapsulation path. See [I-D.farinacci-lisp-te] for details. 584 Explicit Locator Path (ELP) Canonical Address Format: 586 0 1 2 3 587 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 588 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 589 | AFI = 16387 | Rsvd1 | Flags | 590 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 591 | Type = 10 | Rsvd2 | Length | 592 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 593 | Rsvd3 |L|P|S| AFI = x | 594 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 595 | Reencap Hop 1 ... | 596 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 597 | Rsvd3 |L|P|S| AFI = x | 598 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 599 | Reencap Hop k ... | 600 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 602 Length: length in bytes starting and including the byte after this 603 Length field. 605 Rsvd3: this field is reserved for future use and MUST be transmitted 606 as 0 and ignored on receipt. 608 Lookup bit (L): this is the Lookup bit used to indicate to the user 609 of the ELP to not use this address for encapsulation but to look 610 it up in the mapping database system to obtain an encapsulating 611 RLOC address. 613 RLOC-Probe bit (P): this is the RLOC-probe bit which means the 614 Reencap Hop allows RLOC-probe messages to be sent to it. When the 615 R-bit is set to 0, RLOC-probes must not be sent. When a Reencap 616 Hop is an anycast address then multiple physical Reencap Hops are 617 using the same RLOC address. In this case, RLOC-probes are not 618 needed because when the closest RLOC address is not reachable 619 another RLOC address can be reachable. 621 Strict bit (S): this is the strict bit which means the associated 622 Reencap Hop is required to be used. If this bit is 0, the 623 reencapsulator can skip this Reencap Hop and go to the next one in 624 the list. 626 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 627 its own encoding of a multicast address, this field must be either 628 a group address or a broadcast address. 630 Usage: This encoding can be used in RLOC records in Map-Requests, 631 Map-Replies, Map-Registers, and Map-Notify messages. This encoding 632 does not need to be understood by the mapping system for mapping 633 database lookups since this LCAF type is not a lookup key. 635 4.7. Storing Security Data in the Mapping Database 637 When a locator in a locator-set has a security key associated with 638 it, this LCAF will be used to encode key material. See 639 [I-D.ietf-lisp-ddt] for details. 641 Security Key Canonical Address Format: 643 0 1 2 3 644 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 645 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 646 | AFI = 16387 | Rsvd1 | Flags | 647 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 648 | Type = 11 | Rsvd2 | Length | 649 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 650 | Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R| 651 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 652 | Key Length | Key Material ... | 653 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 654 | ... Key Material | 655 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 656 | AFI = x | Locator Address ... | 657 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 659 Length: length in bytes starting and including the byte after this 660 Length field. 662 Key Count: the Key Count field declares the number of Key sections 663 included in this LCAF. A key section is made up of "Key Length" 664 and "Key Material" fields. 666 Rsvd3: this field is reserved for future use and MUST be transmitted 667 as 0 and ignored on receipt. 669 Key Algorithm: the Algorithm field identifies the key's 670 cryptographic algorithm and specifies the format of the Public Key 671 field. Refer to the [I-D.ietf-lisp-ddt] and 672 [I-D.ietf-lisp-crypto] use cases for definitions of this field. 674 Rsvd4: this field is reserved for future use and MUST be transmitted 675 as 0 and ignored on receipt. 677 R bit: this is the revoke bit and, if set, it specifies that this 678 Key is being Revoked. 680 Key Length: this field determines the length in bytes of the Key 681 Material field. 683 Key Material: the Key Material field stores the key material. The 684 format of the key material stored depends on the Key Algorithm 685 field. 687 AFI = x: x can be any AFI value from [AFI]. This is the locator 688 address that owns the encoded security key. 690 Usage: This encoding can be used in EID or RLOC records in Map- 691 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 692 LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, 693 extended EIDs are used in Map-Referral messages. 695 4.8. Source/Destination 2-Tuple Lookups 697 When both a source and destination address of a flow need 698 consideration for different locator-sets, this 2-tuple key is used in 699 EID fields in LISP control messages. When the Source/Dest key is 700 registered to the mapping database, it can be encoded as a source- 701 prefix and destination-prefix. When the Source/Dest is used as a key 702 for a mapping database lookup the source and destination come from a 703 data packet. 705 Source/Dest Key Canonical Address Format: 707 0 1 2 3 708 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 709 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 710 | AFI = 16387 | Rsvd1 | Flags | 711 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 712 | Type = 12 | Rsvd2 | Length | 713 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 714 | Reserved | Source-ML | Dest-ML | 715 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 716 | AFI = x | Source-Prefix ... | 717 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 718 | AFI = y | Destination-Prefix ... | 719 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 721 Length: length in bytes starting and including the byte after this 722 Length field. 724 Reserved: must be set to zero and ignore on receipt. 726 Source-ML: the mask length of the source prefix that follows. The 727 length is the number of high-order mask bits set. 729 Dest-ML: the mask length of the destination prefix that follows. 730 The length is the number of high-order mask bits set. 732 AFI = x: x can be any AFI value from [AFI]. 734 AFI = y: y can be any AFI value from [AFI]. When a specific address 735 family has a multicast address semantic, this field must be either 736 a group address or a broadcast address. 738 Usage: This encoding can be used in EID records in Map-Requests, Map- 739 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 740 [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended 741 EIDs are used in Map-Referral messages. Refer to 742 [I-D.farinacci-lisp-te] for usage details of this LCAF type. 744 4.9. Replication List Entries for Multicast Forwarding 746 The Replication List Entry LCAF type is an encoding for a locator 747 being used for unicast replication according to the specification in 748 [I-D.coras-lisp-re]. This locator encoding is pointed to by a 749 Multicast Info LCAF Type and is registered by Re-encapsulating Tunnel 750 Routers (RTRs) that are participating in an overlay distribution 751 tree. Each RTR will register its locator address and its configured 752 level in the distribution tree. 754 Replication List Entry Address Format: 756 0 1 2 3 757 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 758 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 759 | AFI = 16387 | Rsvd1 | Flags | 760 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 761 | Type = 13 | Rsvd2 | Length | 762 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 763 | Rsvd3 | Rsvd4 | Level Value | 764 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 765 | AFI = x | RTR/ETR #1 ... | 766 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 767 | Rsvd3 | Rsvd4 | Level Value | 768 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 769 | AFI = x | RTR/ETR #n ... | 770 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 772 Length: length in bytes starting and including the byte after this 773 Length field. 775 Rsvd3/Rsvd4: must be set to zero and ignore on receipt. 777 Level Value: this value is associated with the level within the 778 overlay distribution tree hierarchy where the RTR resides. The 779 level numbers are ordered from lowest value being close to the ITR 780 (meaning that ITRs replicate to level-0 RTRs) and higher levels 781 are further downstream on the distribution tree closer to ETRs of 782 multicast receiver sites. 784 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 785 own encoding of either a unicast or multicast locator address. 786 For efficiency reasons, all RTR/ETR entries for the same level 787 should be combined together by a Map-Server to avoid searching 788 through the entire multi-level list of locator entries in a Map- 789 Reply message. 791 Usage: This encoding can be used in RLOC records in Map-Requests, 792 Map-Replies, Map-Registers, and Map-Notify messages. 794 4.10. Applications for AFI List Type 796 4.10.1. Binding IPv4 and IPv6 Addresses 798 When header translation between IPv4 and IPv6 is desirable a LISP 799 Canonical Address can use the AFI List Type to carry a variable 800 number of AFIs in one LCAF AFI. 802 Address Binding LISP Canonical Address Format: 804 0 1 2 3 805 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 806 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 807 | AFI = 16387 | Rsvd1 | Flags | 808 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 809 | Type = 1 | Rsvd2 | Length | 810 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 811 | AFI = 1 | IPv4 Address ... | 812 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 813 | ... IPv4 Address | AFI = 2 | 814 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 815 | IPv6 Address ... | 816 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 817 | ... IPv6 Address ... | 818 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 819 | ... IPv6 Address ... | 820 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 821 | ... IPv6 Address | 822 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 824 Length: length in bytes starting and including the byte after this 825 Length field. 827 This type of address format can be included in a Map-Request when the 828 address is being used as an EID, but the Mapping Database System 829 lookup destination can use only the IPv4 address. This is so a 830 Mapping Database Service Transport System, such as LISP-ALT 831 [RFC6836], can use the Map-Request destination address to route the 832 control message to the desired LISP site. 834 Usage: This encoding can be used in EID or RLOC records in Map- 835 Requests, Map-Replies, Map-Registers, and Map-Notify messages. See 836 subsections in this section for specific use cases. 838 4.10.2. Layer-2 VPNs 840 When MAC addresses are stored in the LISP Mapping Database System, 841 the AFI List Type can be used to carry AFI 6. 843 MAC Address LISP Canonical Address Format: 845 0 1 2 3 846 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 847 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 848 | AFI = 16387 | Rsvd1 | Flags | 849 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 850 | Type = 1 | Rsvd2 | Length | 851 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 852 | AFI = 6 | Layer-2 MAC Address ... | 853 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 854 | ... Layer-2 MAC Address | 855 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 857 Length: length in bytes starting and including the byte after this 858 Length field. 860 This address format can be used to connect layer-2 domains together 861 using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. 862 In this use case, a MAC address is being used as an EID, and the 863 locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or 864 even another MAC address being used as an RLOC. See 865 [I-D.portoles-lisp-eid-mobility] for how layer-2 VPNs operate when 866 doing EID mobility. Refer to the Security Considerations section for 867 privacy protection. 869 4.10.3. ASCII Names in the Mapping Database 871 If DNS names or URIs are stored in the LISP Mapping Database System, 872 the AFI List Type can be used to carry an ASCII string. 874 ASCII LISP Canonical Address Format: 876 0 1 2 3 877 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 878 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 879 | AFI = 16387 | Rsvd1 | Flags | 880 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 881 | Type = 1 | Rsvd2 | Length | 882 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 883 | AFI = 17 | DNS Name or URI ... | 884 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 886 Length: length in bytes starting and including the byte after this 887 Length field. 889 4.10.4. Using Recursive LISP Canonical Address Encodings 891 When any combination of above is desirable, the AFI List Type value 892 can be used to carry within the LCAF AFI another LCAF AFI (for 893 example, Application Specific Data see Section 5.1. 895 Recursive LISP Canonical Address Format: 897 0 1 2 3 898 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 899 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 900 | AFI = 16387 | Rsvd1 | Flags | 901 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 902 | Type = 1 | Rsvd2 | Length | 903 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 904 | AFI = 16387 | Rsvd1 | Flags | 905 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 906 | Type = 4 | Rsvd2 | Length2 | 907 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 908 | IP TOS, IPv6 TC or Flow Label | Protocol | 909 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 910 | Local Port (lower-range) | Local Port (upper-range) | 911 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 912 | Remote Port (lower-range) | Remote Port (upper-range) | 913 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 914 | AFI = 1 | IPv4 Address ... | 915 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 916 | ... IPv4 Address | 917 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 919 Length: length in bytes starting and including the byte after this 920 Length field. 922 Length2: length in bytes starting and including the byte after this 923 Length2 field. 925 This format could be used by a Mapping Database Transport System, 926 such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is used as 927 an EID and placed in the Map-Request destination address by the 928 sending LISP system. The ALT system can deliver the Map-Request to 929 the LISP destination site independent of the Application Data Type 930 AFI payload values. When this AFI is processed by the destination 931 LISP site, it can return different locator-sets based on the type of 932 application or level of service that is being requested. 934 4.10.5. Compatibility Mode Use Case 936 A LISP system should use the AFI List Type format when sending to 937 LISP systems that do not support a particular LCAF Type used to 938 encode locators. This allows the receiving system to be able to 939 parse a locator address for encapsulation purposes. The list of AFIs 940 in an AFI List LCAF Type has no semantic ordering and a receiver 941 should parse each AFI element no matter what the ordering. 943 Compatibility Mode Address Format: 945 0 1 2 3 946 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 947 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 948 | AFI = 16387 | Rsvd1 | Flags | 949 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 950 | Type = 1 | Rsvd2 | Length | 951 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 952 | AFI = 16387 | Rsvd1 | Flags | 953 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 954 | Type = 5 | Rsvd2 | Length2 | 955 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 956 |N| Latitude Degrees | Minutes | Seconds | 957 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 958 |E| Longitude Degrees | Minutes | Seconds | 959 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 960 | Altitude | 961 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 962 | AFI = 0 | AFI = 1 | 963 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 964 | IPv4 Address | 965 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 967 Length: length in bytes starting and including the byte after this 968 Length field. 970 Length2: length in bytes starting and including the byte after this 971 Length2 field. 973 If a system does not recognized the Geo Coordinate LCAF Type that is 974 accompanying a locator address, an encoder can include the Geo 975 Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI 976 in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in 977 the list is encoded with a valid AFI value to identify the locator 978 address. 980 A LISP system is required to support the AFI List LCAF Type to use 981 this procedure. It would skip over 10 bytes of the Geo Coordinate 982 LCAF Type to get to the locator address encoding (an IPv4 locator 983 address). A LISP system that does support the Geo Coordinate LCAF 984 Type can support parsing the locator address within the Geo 985 Coordinate LCAF encoding or in the locator encoding that follows in 986 the AFI List LCAF. 988 5. Experimental LISP Canonical Address Applications 990 5.1. Convey Application Specific Data 992 When a locator-set needs to be conveyed based on the type of 993 application or the Per-Hop Behavior (PHB) of a packet, the 994 Application Data Type can be used. 996 Application Data LISP Canonical Address Format: 998 0 1 2 3 999 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1000 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1001 | AFI = 16387 | Rsvd1 | Flags | 1002 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1003 | Type = 4 | Rsvd2 | Length | 1004 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1005 | IP TOS, IPv6 TC, or Flow Label | Protocol | 1006 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1007 | Local Port (lower-range) | Local Port (upper-range) | 1008 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1009 | Remote Port (lower-range) | Remote Port (upper-range) | 1010 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1011 | AFI = x | Address ... | 1012 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1014 Length: length in bytes starting and including the byte after this 1015 Length field. 1017 IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS 1018 field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow 1019 Label used in an IPv6 header. 1021 Local Port/Remote Port Ranges: these fields are from the TCP, UDP, 1022 or SCTP transport header. A range can be specified by using a 1023 lower value and an upper value. When a single port is encoded, 1024 the lower and upper value fields are the same. 1026 AFI = x: x can be any AFI value from [AFI]. 1028 The Application Data Canonical Address Type is used for an EID 1029 encoding when an ITR wants a locator-set for a specific application. 1030 When used for an RLOC encoding, the ETR is supplying a locator-set 1031 for each specific application is has been configured to advertise. 1033 Usage: This encoding can be used in EID records in Map-Requests, Map- 1034 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 1035 [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended 1036 EIDs are used in Map-Referral messages. This LCAF type is used as a 1037 lookup key to the mapping system that can return a longest-match or 1038 exact-match entry. 1040 5.2. Generic Database Mapping Lookups 1042 When the LISP Mapping Database system holds information accessed by a 1043 generic formatted key (where the key is not the usual IPv4 or IPv6 1044 address), an opaque key may be desirable. 1046 Opaque Key LISP Canonical Address Format: 1048 0 1 2 3 1049 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1050 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1051 | AFI = 16387 | Rsvd1 | Flags | 1052 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1053 | Type = 6 | Rsvd2 | Length | 1054 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1055 | Key Field Num | Key Wildcard Fields | Key . . . | 1056 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1057 | . . . Key | 1058 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1060 Length: length in bytes starting and including the byte after this 1061 Length field. 1063 Key Field Num: the value of this field is the number of "Key" sub- 1064 fields minus 1, the "Key" field can be broken up into. So if this 1065 field has a value of 0, there is 1 sub-field in the "Key". The 1066 width of the sub-fields are fixed length. So for a key size of 8 1067 bytes, with a Key Field Num of 3, allows 4 sub-fields of 2 bytes 1068 each in length. Allowing for a reasonable number of 16 sub-field 1069 separators, valid values range from 0 to 15. 1071 Key Wildcard Fields: describes which fields in the key are not used 1072 as part of the key lookup. This wildcard encoding is a bitfield. 1073 Each bit is a don't-care bit for a corresponding field in the key. 1074 Bit 0 (the low-order bit) in this bitfield corresponds the first 1075 field, the low-order field in the key, bit 1 the second field, and 1076 so on. When a bit is set in the bitfield it is a don't-care bit 1077 and should not be considered as part of the database lookup. When 1078 the entire 16-bits is set to 0, then all bits of the key are used 1079 for the database lookup. 1081 Key: the variable length key used to do a LISP Database Mapping 1082 lookup. The length of the key is the value n (as shown above). 1084 Usage: This is an experimental type where the usage has not been 1085 defined yet. 1087 5.3. PETR Admission Control Functionality 1089 When a public PETR device wants to verify who is encapsulating to it, 1090 it can check for a specific nonce value in the LISP encapsulated 1091 packet. To convey the nonce to admitted ITRs or PITRs, this LCAF is 1092 used in a Map-Register or Map-Reply locator-record. 1094 Nonce Locator Canonical Address Format: 1096 0 1 2 3 1097 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1098 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1099 | AFI = 16387 | Rsvd1 | Flags | 1100 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1101 | Type = 8 | Rsvd2 | Length | 1102 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1103 | Reserved | Nonce | 1104 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1105 | AFI = x | Address ... | 1106 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1108 Length: length in bytes starting and including the byte after this 1109 Length field. 1111 Reserved: must be set to zero and ignore on receipt. 1113 Nonce: this is a nonce value returned by an ETR in a Map-Reply 1114 locator-record to be used by an ITR or PITR when encapsulating to 1115 the locator address encoded in the AFI field of this LCAF type. 1116 This nonce value is inserted in the nonce field in the LISP header 1117 encapsulation. 1119 AFI = x: x can be any AFI value from [AFI]. 1121 Usage: This is an experimental type where the usage has not been 1122 defined yet. 1124 5.4. Data Model Encoding 1126 This type allows a JSON data model to be encoded either as an EID or 1127 RLOC. 1129 JSON Data Model Type Address Format: 1131 0 1 2 3 1132 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1133 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1134 | AFI = 16387 | Rsvd1 | Flags | 1135 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1136 | Type = 14 | Rsvd2 |B| Length | 1137 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1138 | JSON length | JSON binary/text encoding ... | 1139 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1140 | AFI = x | Optional Address ... | 1141 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1143 Length: length in bytes starting and including the byte after this 1144 Length field. 1146 B bit: indicates that the JSON field is binary encoded according to 1147 [JSON-BINARY] when the bit is set to 1. Otherwise the encoding is 1148 based on text encoding according to [RFC7159]. 1150 JSON length: length in octets of the following 'JSON binary/text 1151 encoding' field. 1153 JSON binary/text encoding field: a variable length field that 1154 contains either binary or text encodings. 1156 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 1157 own encoding of either a unicast or multicast locator address. 1158 All RTR/ETR entries for the same level should be combined together 1159 by a Map-Server to avoid searching through the entire multi-level 1160 list of locator entries in a Map-Reply message. 1162 Usage: This is an experimental type where the usage has not been 1163 defined yet. 1165 5.5. Encoding Key/Value Address Pairs 1167 The Key/Value pair is, for example, useful for attaching attributes 1168 to other elements of LISP packets, such as EIDs or RLOCs. When 1169 attaching attributes to EIDs or RLOCs, it's necessary to distinguish 1170 between the element that should be used as EID or RLOC, and hence as 1171 the key for lookups, and additional attributes. This is especially 1172 the case when the difference cannot be determined from the types of 1173 the elements, such as when two IP addresses are being used. 1175 Key/Value Pair Address Format: 1177 0 1 2 3 1178 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1179 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1180 | AFI = 16387 | Rsvd1 | Flags | 1181 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1182 | Type = 15 | Rsvd2 | Length | 1183 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1184 | AFI = x | Address as Key ... | 1185 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1186 | AFI = y | Address as Value ... | 1187 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1189 Length: length in bytes starting and including the byte after this 1190 Length field. 1192 AFI = x: x is the "Address as Key" AFI that can have any value from 1193 [AFI]. A specific AFI has its own encoding of either a unicast or 1194 multicast locator address. All RTR/ETR entries for the same level 1195 should be combined together by a Map-Server to avoid searching 1196 through the entire multi-level list of locator entries in a Map- 1197 Reply message. 1199 Address as Key: this AFI-encoded address will be attached with the 1200 attributes encoded in "Address as Value" which follows this field. 1202 AFI = y: y is the "Address of Value" AFI that can have any value 1203 from [AFI]. A specific AFI has its own encoding of either a 1204 unicast or multicast locator address. All RTR/ETR entries for the 1205 same level should be combined together by a Map-Server to avoid 1206 searching through the entire multi-level list of locator entries 1207 in a Map-Reply message. 1209 Address as Value: this AFI-encoded address will be the attribute 1210 address that goes along with "Address as Key" which precedes this 1211 field. 1213 Usage: This is an experimental type where the usage has not been 1214 defined yet. 1216 5.6. Multiple Data-Planes 1218 Overlays are becoming popular in many parts of the network which have 1219 created an explosion of data-plane encapsulation headers. Since the 1220 LISP mapping system can hold many types of address formats, it can 1221 represent the encapsulation format supported by an RLOC as well. 1222 When an encapsulator receives a Map-Reply with an Encapsulation 1223 Format LCAF Type encoded in an RLOC-record, it can select an 1224 encapsulation format, that it can support, from any of the 1225 encapsulation protocols which have the bit set to 1 in this LCAF 1226 type. 1228 Encapsulation Format Address Format: 1230 0 1 2 3 1231 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1232 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1233 | AFI = 16387 | Rsvd1 | Flags | 1234 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1235 | Type = 16 | Rsvd2 | Length | 1236 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1237 | Reserved-for-Future-Encapsulations |U|G|N|v|V|l|L| 1238 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1239 | AFI = x | Address ... | 1240 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1242 Length: length in bytes starting and including the byte after this 1243 Length field. 1245 Reserved-for-Future-Encapsulations: must be set to zero and ignored 1246 on receipt. This field will get bits allocated to future 1247 encapsulations, as they are created. 1249 L: The RLOCs listed in the AFI-encoded addresses in the next longword 1250 can accept layer 3 LISP encapsulation using destination UDP port 1251 4341 [RFC6830]. 1253 l: The RLOCs listed in the AFI-encoded addresses in the next longword 1254 can accept layer 2 LISP encapsulation using destination UDP port 1255 8472 [I-D.smith-lisp-layer2]. 1257 V: The RLOCs listed in the AFI-encoded addresses in the next longword 1258 can accept VXLAN encapsulation using destination UDP port 4789 1259 [RFC7348]. 1261 v: The RLOCs listed in the AFI-encoded addresses in the next longword 1262 can accept VXLAN-GPE encapsulation using destination UDP port 4790 1263 [I-D.quinn-vxlan-gpe]. 1265 N: The RLOCs listed in the AFI-encoded addresses in the next longword 1266 can accept NV-GRE encapsulation using IPv4/ IPv6 protocol number 1267 47 [RFC7637]. 1269 G: The RLOCs listed in the AFI-encoded addresses in the next longword 1270 can accept GENEVE encapsulation using destination UDP port 6081 1271 [I-D.gross-geneve]. 1273 U: The RLOCs listed in the AFI-encoded addresses in the next longword 1274 can accept GUE encapsulation using destination UDP port TBD 1275 [I-D.herbert-gue]. 1277 Usage: This encoding can be used in RLOC records in Map-Requests, 1278 Map-Replies, Map-Registers, and Map-Notify messages. 1280 6. Security Considerations 1282 There are no security considerations for this specification. The 1283 security considerations are documented for the protocols that use 1284 LISP Canonical Addressing. 1286 The use of the Geo-Coordinates LCAF Type may raise physical privacy 1287 issues. Care should be taken when configuring the mapping system to 1288 use specific policy parameters so geo-location information is not 1289 returned gratuitously. It is recommended to examine [RFC6280] and 1290 [BCP160] architectures for location-based privacy protection. 1292 7. IANA Considerations 1294 This document defines a canonical address format encoding used in 1295 LISP control messages and in the encoding of lookup keys for the LISP 1296 Mapping Database System. Such address format is based on a fixed AFI 1297 (16387) and a LISP LCAF Type field. 1299 The LISP LCAF Type field is an 8-bit field specific to the LISP 1300 Canonical Address formatted encodings, for which IANA is to create 1301 and maintain a new registry (as outlined in [RFC5226]) entitled "LISP 1302 LCAF Type". Initial values for the LISP LCAF Type registry are given 1303 below. Future assignments are to be made through expert review with 1304 a specification required publication. Assignments consist of a LISP 1305 LCAF Type name and its associated value: 1307 +-------+------------------------------+------------+ 1308 | Value | LISP LCAF Type Name | Definition | 1309 +-------+------------------------------+------------+ 1310 | 0 | Null Body Type | Section 3 | 1311 | 1 | AFI List Type | Section 3 | 1312 | 2 | Instance ID Type | Section 3 | 1313 | 3 | AS Number Type | Section 3 | 1314 | 5 | Geo Coordinates Type | Section 3 | 1315 | 7 | NAT-Traversal Type | Section 3 | 1316 | 9 | Multicast Info Type | Section 3 | 1317 | 10 | Explicit Locator Path Type | Section 3 | 1318 | 11 | Security Key Type | Section 3 | 1319 | 12 | Source/Dest Key Type | Section 3 | 1320 | 13 | Replication List Entry Type | Section 3 | 1321 +-------+------------------------------+------------+ 1323 Table 1: LISP LCAF Type Initial Values 1325 8. References 1327 8.1. Normative References 1329 [BCP160] "An Architecture for Location and Location Privacy in 1330 Internet Applications", Best Current Practices 1331 https://www.rfc-editor.org/bcp/bcp160.txt, July 2011. 1333 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G., 1334 and E. Lear, "Address Allocation for Private Internets", 1335 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996, 1336 . 1338 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1339 Requirement Levels", BCP 14, RFC 2119, 1340 DOI 10.17487/RFC2119, March 1997, 1341 . 1343 [RFC3232] Reynolds, J., Ed., "Assigned Numbers: RFC 1700 is Replaced 1344 by an On-line Database", RFC 3232, DOI 10.17487/RFC3232, 1345 January 2002, . 1347 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an 1348 IANA Considerations Section in RFCs", BCP 26, RFC 5226, 1349 DOI 10.17487/RFC5226, May 2008, 1350 . 1352 [RFC6280] Barnes, R., Lepinski, M., Cooper, A., Morris, J., 1353 Tschofenig, H., and H. Schulzrinne, "An Architecture for 1354 Location and Location Privacy in Internet Applications", 1355 BCP 160, RFC 6280, DOI 10.17487/RFC6280, July 2011, 1356 . 1358 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The 1359 Locator/ID Separation Protocol (LISP)", RFC 6830, 1360 DOI 10.17487/RFC6830, January 2013, 1361 . 1363 [RFC6836] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, 1364 "Locator/ID Separation Protocol Alternative Logical 1365 Topology (LISP+ALT)", RFC 6836, DOI 10.17487/RFC6836, 1366 January 2013, . 1368 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data 1369 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March 1370 2014, . 1372 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, 1373 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual 1374 eXtensible Local Area Network (VXLAN): A Framework for 1375 Overlaying Virtualized Layer 2 Networks over Layer 3 1376 Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014, 1377 . 1379 [RFC7637] Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network 1380 Virtualization Using Generic Routing Encapsulation", 1381 RFC 7637, DOI 10.17487/RFC7637, September 2015, 1382 . 1384 8.2. Informative References 1386 [AFI] IANA, , "Address Family Identifier (AFIs)", ADDRESS FAMILY 1387 NUMBERS http://www.iana.org/assignments/address-family- 1388 numbers/address-family-numbers.xhtml?, Febuary 2007. 1390 [I-D.coras-lisp-re] 1391 Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J., 1392 Maino, F., and D. Farinacci, "LISP Replication 1393 Engineering", draft-coras-lisp-re-08 (work in progress), 1394 November 2015. 1396 [I-D.ermagan-lisp-nat-traversal] 1397 Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, 1398 F., and C. White, "NAT traversal for LISP", draft-ermagan- 1399 lisp-nat-traversal-11 (work in progress), August 2016. 1401 [I-D.farinacci-lisp-te] 1402 Farinacci, D., Kowal, M., and P. Lahiri, "LISP Traffic 1403 Engineering Use-Cases", draft-farinacci-lisp-te-11 (work 1404 in progress), September 2016. 1406 [I-D.gross-geneve] 1407 Gross, J., Sridhar, T., Garg, P., Wright, C., Ganga, I., 1408 Agarwal, P., Duda, K., Dutt, D., and J. Hudson, "Geneve: 1409 Generic Network Virtualization Encapsulation", draft- 1410 gross-geneve-02 (work in progress), October 2014. 1412 [I-D.herbert-gue] 1413 Herbert, T., Yong, L., and O. Zia, "Generic UDP 1414 Encapsulation", draft-herbert-gue-03 (work in progress), 1415 March 2015. 1417 [I-D.ietf-lisp-crypto] 1418 Farinacci, D. and B. Weis, "LISP Data-Plane 1419 Confidentiality", draft-ietf-lisp-crypto-09 (work in 1420 progress), October 2016. 1422 [I-D.ietf-lisp-ddt] 1423 Fuller, V., Lewis, D., Ermagan, V., Jain, A., and A. 1424 Smirnov, "LISP Delegated Database Tree", draft-ietf-lisp- 1425 ddt-08 (work in progress), September 2016. 1427 [I-D.portoles-lisp-eid-mobility] 1428 Portoles-Comeras, M., Ashtaputre, V., Moreno, V., Maino, 1429 F., and D. Farinacci, "LISP L2/L3 EID Mobility Using a 1430 Unified Control Plane", draft-portoles-lisp-eid- 1431 mobility-01 (work in progress), October 2016. 1433 [I-D.quinn-vxlan-gpe] 1434 Quinn, P., Manur, R., Kreeger, L., Lewis, D., Maino, F., 1435 Smith, M., Agarwal, P., Yong, L., Xu, X., Elzur, U., Garg, 1436 P., and D. Melman, "Generic Protocol Extension for VXLAN", 1437 draft-quinn-vxlan-gpe-04 (work in progress), February 1438 2015. 1440 [I-D.smith-lisp-layer2] 1441 Smith, M., Dutt, D., Farinacci, D., and F. Maino, "Layer 2 1442 (L2) LISP Encapsulation Format", draft-smith-lisp- 1443 layer2-03 (work in progress), September 2013. 1445 [JSON-BINARY] 1446 "Universal Binary JSON Specification", 1447 URL http://ubjson.org. 1449 [WGS-84] Geodesy and Geophysics Department, DoD., "World Geodetic 1450 System 1984", NIMA TR8350.2, January 2000, . 1453 Appendix A. Acknowledgments 1455 The authors would like to thank Vince Fuller, Gregg Schudel, Jesper 1456 Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for 1457 their technical and editorial commentary. 1459 The authors would like to thank Victor Moreno for discussions that 1460 lead to the definition of the Multicast Info LCAF type. 1462 The authors would like to thank Parantap Lahiri and Michael Kowal for 1463 discussions that lead to the definition of the Explicit Locator Path 1464 (ELP) LCAF type. 1466 The authors would like to thank Fabio Maino and Vina Ermagan for 1467 discussions that lead to the definition of the Security Key LCAF 1468 type. 1470 The authors would like to thank Albert Cabellos-Aparicio and Florin 1471 Coras for discussions that lead to the definition of the Replication 1472 List Entry LCAF type. 1474 Thanks goes to Michiel Blokzijl and Alberto Rodriguez-Natal for 1475 suggesting new LCAF types. 1477 Thanks also goes to Terry Manderson for assistance obtaining a LISP 1478 AFI value from IANA. 1480 Appendix B. Document Change Log 1482 [RFC Editor: Please delete this section on publication as RFC.] 1484 B.1. Changes to draft-ietf-lisp-lcaf-18.txt 1486 o Submitted October 2016 after October 13th telechat. 1488 o Addressed comments from Ben Campbell, Jari Arrko, Stephen Farrel, 1489 Peter Yee, Dale Worley, Mirja Kuehlewind, and Suresh Krishnan. 1491 B.2. Changes to draft-ietf-lisp-lcaf-17.txt 1493 o Submitted October 2016. 1495 o Addressed comments from Gen-ART reviewer Peter Yee. 1497 o Addressed IESG last-call comments from Suresh Krishnan. 1499 B.3. Changes to draft-ietf-lisp-lcaf-16.txt 1501 o Submitted October 2016. 1503 o Addressed comments from Security Directorate reviewer David 1504 Mandelberg. 1506 B.4. Changes to draft-ietf-lisp-lcaf-15.txt 1508 o Submitted September 2016. 1510 o Addressed comments from Routing Directorate reviewer Stig Venass. 1512 B.5. Changes to draft-ietf-lisp-lcaf-14.txt 1514 o Submitted July 2016. 1516 o Fix IDnits errors and comments from Luigi Iannone, document 1517 shepherd. 1519 B.6. Changes to draft-ietf-lisp-lcaf-13.txt 1521 o Submitted May 2016. 1523 o Explain the Instance-ID LCAF Type is 32-bits in length and the 1524 Instance-ID field in the LISP encapsulation header is 24-bits. 1526 B.7. Changes to draft-ietf-lisp-lcaf-12.txt 1528 o Submitted March 2016. 1530 o Updated references and document timer. 1532 o Removed the R, J, and L bits from the Multicast Info Type LCAF 1533 since working group decided to not go forward with draft- 1534 farinacci-lisp-mr-signaling-03.txt in favor of draft- ietf-lisp- 1535 signal-free-00.txt. 1537 B.8. Changes to draft-ietf-lisp-lcaf-11.txt 1539 o Submitted September 2015. 1541 o Reflecting comments from Prague LISP working group. 1543 o Readying document for a LISP LCAF registry, RFC publication, and 1544 for new use cases that will be defined in the new charter. 1546 B.9. Changes to draft-ietf-lisp-lcaf-10.txt 1548 o Submitted June 2015. 1550 o Fix coauthor Job's contact information. 1552 B.10. Changes to draft-ietf-lisp-lcaf-09.txt 1554 o Submitted June 2015. 1556 o Fix IANA Considerations section to request a registry to allocate 1557 and track LCAF Type values. 1559 B.11. Changes to draft-ietf-lisp-lcaf-08.txt 1561 o Submitted April 2015. 1563 o Comment from Florin. The Application Data Type length field has a 1564 typo. The field should be labeled "12 + n" and not "8 + n". 1566 o Fix length fields in the sections titled "Using Recursive LISP 1567 Canonical Address Encodings", "Generic Database Mapping Lookups", 1568 and "Data Model Encoding". 1570 B.12. Changes to draft-ietf-lisp-lcaf-07.txt 1572 o Submitted December 2014. 1574 o Add a new LCAF Type called "Encapsulation Format" so decapsulating 1575 xTRs can inform encapsulating xTRs what data-plane encapsulations 1576 they support. 1578 B.13. Changes to draft-ietf-lisp-lcaf-06.txt 1580 o Submitted October 2014. 1582 o Make it clear how sorted RLOC records are done when LCAFs are used 1583 as the RLOC record. 1585 B.14. Changes to draft-ietf-lisp-lcaf-05.txt 1587 o Submitted May 2014. 1589 o Add a length field of the JSON payload that can be used for either 1590 binary or text encoding of JSON data. 1592 B.15. Changes to draft-ietf-lisp-lcaf-04.txt 1594 o Submitted January 2014. 1596 o Agreement among ELP implementors to have the AFI 16-bit field 1597 adjacent to the address. This will make the encoding consistent 1598 with all other LCAF type address encodings. 1600 B.16. Changes to draft-ietf-lisp-lcaf-03.txt 1602 o Submitted September 2013. 1604 o Updated references and author's affilations. 1606 o Added Instance-ID to the Multicast Info Type so there is relative 1607 ease in parsing (S,G) entries within a VPN. 1609 o Add port range encodings to the Application Data LCAF Type. 1611 o Add a new JSON LCAF Type. 1613 o Add Address Key/Value LCAF Type to allow attributes to be attached 1614 to an address. 1616 B.17. Changes to draft-ietf-lisp-lcaf-02.txt 1618 o Submitted March 2013. 1620 o Added new LCAF Type "Replication List Entry" to support LISP 1621 replication engineering use cases. 1623 o Changed references to new LISP RFCs. 1625 B.18. Changes to draft-ietf-lisp-lcaf-01.txt 1627 o Submitted January 2013. 1629 o Change longitude range from 0-90 to 0-180 in section 4.4. 1631 o Added reference to WGS-84 in section 4.4. 1633 B.19. Changes to draft-ietf-lisp-lcaf-00.txt 1635 o Posted first working group draft August 2012. 1637 o This draft was renamed from draft-farinacci-lisp-lcaf-10.txt. 1639 Authors' Addresses 1641 Dino Farinacci 1642 lispers.net 1643 San Jose, CA 1644 USA 1646 Email: farinacci@gmail.com 1648 Dave Meyer 1649 Brocade 1650 San Jose, CA 1651 USA 1653 Email: dmm@1-4-5.net 1654 Job Snijders 1655 NTT Communications 1656 Theodorus Majofskistraat 100 1657 Amsterdam 1065 SZ 1658 NL 1660 Email: job@ntt.net