idnits 2.17.1 draft-ietf-lisp-lcaf-19.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (October 18, 2016) is 2718 days in the past. Is this intentional? Checking references for intended status: Experimental ---------------------------------------------------------------------------- == Unused Reference: 'BCP160' is defined on line 1332, but no explicit reference was found in the text ** Obsolete normative reference: RFC 5226 (Obsoleted by RFC 8126) ** Obsolete normative reference: RFC 6830 (Obsoleted by RFC 9300, RFC 9301) ** Obsolete normative reference: RFC 7159 (Obsoleted by RFC 8259) == Outdated reference: A later version (-19) exists of draft-ermagan-lisp-nat-traversal-11 == Outdated reference: A later version (-12) exists of draft-farinacci-lisp-te-11 == Outdated reference: A later version (-09) exists of draft-ietf-lisp-ddt-08 == Outdated reference: A later version (-02) exists of draft-portoles-lisp-eid-mobility-01 Summary: 3 errors (**), 0 flaws (~~), 6 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group D. Farinacci 3 Internet-Draft lispers.net 4 Intended status: Experimental D. Meyer 5 Expires: April 21, 2017 Brocade 6 J. Snijders 7 NTT Communications 8 October 18, 2016 10 LISP Canonical Address Format (LCAF) 11 draft-ietf-lisp-lcaf-19 13 Abstract 15 This draft defines a canonical address format encoding used in LISP 16 control messages and in the encoding of lookup keys for the LISP 17 Mapping Database System. 19 Requirements Language 21 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 22 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 23 document are to be interpreted as described in [RFC2119]. 25 Status of This Memo 27 This Internet-Draft is submitted in full conformance with the 28 provisions of BCP 78 and BCP 79. 30 Internet-Drafts are working documents of the Internet Engineering 31 Task Force (IETF). Note that other groups may also distribute 32 working documents as Internet-Drafts. The list of current Internet- 33 Drafts is at http://datatracker.ietf.org/drafts/current/. 35 Internet-Drafts are draft documents valid for a maximum of six months 36 and may be updated, replaced, or obsoleted by other documents at any 37 time. It is inappropriate to use Internet-Drafts as reference 38 material or to cite them other than as "work in progress." 40 This Internet-Draft will expire on April 21, 2017. 42 Copyright Notice 44 Copyright (c) 2016 IETF Trust and the persons identified as the 45 document authors. All rights reserved. 47 This document is subject to BCP 78 and the IETF Trust's Legal 48 Provisions Relating to IETF Documents 49 (http://trustee.ietf.org/license-info) in effect on the date of 50 publication of this document. Please review these documents 51 carefully, as they describe your rights and restrictions with respect 52 to this document. Code Components extracted from this document must 53 include Simplified BSD License text as described in Section 4.e of 54 the Trust Legal Provisions and are provided without warranty as 55 described in the Simplified BSD License. 57 Table of Contents 59 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 60 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 61 3. LISP Canonical Address Format Encodings . . . . . . . . . . . 5 62 4. LISP Canonical Address Applications . . . . . . . . . . . . . 7 63 4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 7 64 4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 9 65 4.3. Assigning Geo Coordinates to Locator Addresses . . . . . 10 66 4.4. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 12 67 4.5. Multicast Group Membership Information . . . . . . . . . 14 68 4.6. Traffic Engineering using Re-encapsulating Tunnels . . . 16 69 4.7. Storing Security Data in the Mapping Database . . . . . . 17 70 4.8. Source/Destination 2-Tuple Lookups . . . . . . . . . . . 19 71 4.9. Replication List Entries for Multicast Forwarding . . . . 21 72 4.10. Applications for AFI List Type . . . . . . . . . . . . . 22 73 4.10.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . 22 74 4.10.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 23 75 4.10.3. ASCII Names in the Mapping Database . . . . . . . . 24 76 4.10.4. Using Recursive LISP Canonical Address Encodings . . 25 77 4.10.5. Compatibility Mode Use Case . . . . . . . . . . . . 26 78 5. Experimental LISP Canonical Address Applications . . . . . . 27 79 5.1. Convey Application Specific Data . . . . . . . . . . . . 27 80 5.2. Generic Database Mapping Lookups . . . . . . . . . . . . 29 81 5.3. PETR Admission Control Functionality . . . . . . . . . . 30 82 5.4. Data Model Encoding . . . . . . . . . . . . . . . . . . . 31 83 5.5. Encoding Key/Value Address Pairs . . . . . . . . . . . . 32 84 5.6. Multiple Data-Planes . . . . . . . . . . . . . . . . . . 33 85 6. Security Considerations . . . . . . . . . . . . . . . . . . . 35 86 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 36 87 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 36 88 8.1. Normative References . . . . . . . . . . . . . . . . . . 36 89 8.2. Informative References . . . . . . . . . . . . . . . . . 38 90 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . 39 91 Appendix B. Document Change Log . . . . . . . . . . . . . . . . 40 92 B.1. Changes to draft-ietf-lisp-lcaf-19.txt . . . . . . . . . 40 93 B.2. Changes to draft-ietf-lisp-lcaf-18.txt . . . . . . . . . 40 94 B.3. Changes to draft-ietf-lisp-lcaf-17.txt . . . . . . . . . 40 95 B.4. Changes to draft-ietf-lisp-lcaf-16.txt . . . . . . . . . 40 96 B.5. Changes to draft-ietf-lisp-lcaf-15.txt . . . . . . . . . 40 97 B.6. Changes to draft-ietf-lisp-lcaf-14.txt . . . . . . . . . 41 98 B.7. Changes to draft-ietf-lisp-lcaf-13.txt . . . . . . . . . 41 99 B.8. Changes to draft-ietf-lisp-lcaf-12.txt . . . . . . . . . 41 100 B.9. Changes to draft-ietf-lisp-lcaf-11.txt . . . . . . . . . 41 101 B.10. Changes to draft-ietf-lisp-lcaf-10.txt . . . . . . . . . 41 102 B.11. Changes to draft-ietf-lisp-lcaf-09.txt . . . . . . . . . 41 103 B.12. Changes to draft-ietf-lisp-lcaf-08.txt . . . . . . . . . 42 104 B.13. Changes to draft-ietf-lisp-lcaf-07.txt . . . . . . . . . 42 105 B.14. Changes to draft-ietf-lisp-lcaf-06.txt . . . . . . . . . 42 106 B.15. Changes to draft-ietf-lisp-lcaf-05.txt . . . . . . . . . 42 107 B.16. Changes to draft-ietf-lisp-lcaf-04.txt . . . . . . . . . 42 108 B.17. Changes to draft-ietf-lisp-lcaf-03.txt . . . . . . . . . 42 109 B.18. Changes to draft-ietf-lisp-lcaf-02.txt . . . . . . . . . 43 110 B.19. Changes to draft-ietf-lisp-lcaf-01.txt . . . . . . . . . 43 111 B.20. Changes to draft-ietf-lisp-lcaf-00.txt . . . . . . . . . 43 112 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 43 114 1. Introduction 116 The LISP architecture and protocols [RFC6830] introduces two new 117 numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators 118 (RLOCs). To provide flexibility for current and future applications, 119 these values can be encoded in LISP control messages using a general 120 syntax that includes Address Family Identifier (AFI), length, and 121 value fields. 123 Currently defined AFIs include IPv4 and IPv6 addresses, which are 124 formatted according to code-points assigned in [AFI] as follows: 126 IPv4 Encoded Address: 128 0 1 2 3 129 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 130 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 131 | AFI = 1 | IPv4 Address ... | 132 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 133 | ... IPv4 Address | 134 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 135 IPv6 Encoded Address: 137 0 1 2 3 138 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 139 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 140 | AFI = 2 | IPv6 Address ... | 141 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 142 | ... IPv6 Address ... | 143 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 144 | ... IPv6 Address ... | 145 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 146 | ... IPv6 Address ... | 147 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 148 | ... IPv6 Address | 149 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 151 This document describes the currently-defined AFIs the LISP protocol 152 uses along with their encodings and introduces the LISP Canonical 153 Address Format (LCAF) that can be used to define the LISP-specific 154 encodings for arbitrary AFI values. 156 2. Definition of Terms 158 Address Family Identifier (AFI): a term used to describe an address 159 encoding in a packet. Address families are defined for IPv4 and 160 IPv6. See [AFI] and [RFC3232] for details. The reserved AFI 161 value of 0 is used in this specification to indicate an 162 unspecified encoded address where the length of the address is 0 163 bytes following the 16-bit AFI value of 0. 165 Unspecified Address Format: 167 0 1 2 3 168 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 169 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 170 | AFI = 0 | 171 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 173 Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value 174 used in the source and destination address fields of the first 175 (most inner) LISP header of a packet. The host obtains a 176 destination EID the same way it obtains a destination address 177 today, for example through a DNS lookup or SIP exchange. The 178 source EID is obtained via existing mechanisms used to set a 179 host's "local" IP address. An EID is allocated to a host from an 180 EID-prefix block associated with the site where the host is 181 located. An EID can be used by a host to refer to other hosts. 183 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress 184 tunnel router (ETR). It is the output of a EID-to-RLOC mapping 185 lookup. An EID maps to one or more RLOCs. Typically, RLOCs are 186 numbered from topologically aggregatable blocks that are assigned 187 to a site at each point to which it attaches to the global 188 Internet; where the topology is defined by the connectivity of 189 provider networks, RLOCs can be thought of as Provider-Assigned 190 (PA) addresses. Multiple RLOCs can be assigned to the same ETR 191 device or to multiple ETR devices at a site. 193 3. LISP Canonical Address Format Encodings 195 IANA has assigned AFI value 16387 (0x4003) to the LISP architecture 196 and protocols. This specification defines the encoding format of the 197 LISP Canonical Address (LCA). This section defines all types for 198 which an initial allocation in the LISP-LCAF registry is requested. 199 See IANA Considerations section for the complete list of such types. 201 The Address Family AFI definitions from [AFI] only allocate code- 202 points for the AFI value itself. The length of the address or entity 203 that follows is not defined and is implied based on conventional 204 experience. When the LISP protocol uses LCAF definitions from this 205 document, the AFI-based address lengths are specified in this 206 document. When new LCAF definitions are defined in other use case 207 documents, the AFI-based address lengths for any new AFI encoded 208 addresses are specified in those documents. 210 The first 6 bytes of an LISP Canonical Address are followed by a 211 variable number of fields of variable length: 213 0 1 2 3 214 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 215 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 216 | AFI = 16387 | Rsvd1 | Flags | 217 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 218 | Type | Rsvd2 | Length | 219 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 220 | . . . | 221 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 223 Rsvd1/Rsvd2: these 8-bit fields are reserved for future use and MUST 224 be transmitted as 0 and ignored on receipt. 226 Flags: this 8-bit field is for future definition and use. For now, 227 set to zero on transmission and ignored on receipt. 229 Type: this 8-bit field is specific to the LISP Canonical Address 230 formatted encodings. Currently allocated values are: 232 Type 0: Null Body Type 234 Type 1: AFI List Type 236 Type 2: Instance ID Type 238 Type 3: AS Number Type 240 Type 4: Application Data Type 242 Type 5: Geo Coordinates Type 244 Type 6: Opaque Key Type 246 Type 7: NAT-Traversal Type 248 Type 8: Nonce Locator Type 250 Type 9: Multicast Info Type 252 Type 10: Explicit Locator Path Type 254 Type 11: Security Key Type 256 Type 12: Source/Dest Key Type 258 Type 13: Replication List Entry Type 260 Type 14: JSON Data Model Type 262 Type 15: Key/Value Address Pair Type 264 Type 16: Encapsulation Format Type 266 Length: this 16-bit field is in units of bytes and covers all of the 267 LISP Canonical Address payload, starting and including the byte 268 after the Length field. When including the AFI, an LCAF encoded 269 address will have a minimum length of 8 bytes when the Length 270 field is 0. The 8 bytes include the AFI, Flags, Type, Rsvd1, 271 Rsvd2, and Length fields. When the AFI is not next to an encoded 272 address in a control message, then the encoded address will have a 273 minimum length of 6 bytes when the Length field is 0. The 6 bytes 274 include the Flags, Type, Rsvd1, Rsvd2, and Length fields. 276 [RFC6830] states RLOC records are sorted when encoded in control 277 messages so the locator-set has consistent order across all xTRs for 278 a given EID. The sort order is based on sort-key {afi, RLOC- 279 address}. When an RLOC is LCAF encoded, the sort-key is {afi, LCAF- 280 Type}. Therefore, when a locator-set has a mix of AFI records and 281 LCAF records, they are ordered from smallest to largest AFI value. 283 4. LISP Canonical Address Applications 285 4.1. Segmentation using LISP 287 When multiple organizations inside of a LISP site are using private 288 addresses [RFC1918] as EID-prefixes, their address spaces must remain 289 segregated due to possible address duplication. An Instance ID in 290 the address encoding can aid in making the entire AFI-based address 291 unique. 293 Another use for the Instance ID LISP Canonical Address Format is when 294 creating multiple segmented VPNs inside of a LISP site where keeping 295 EID-prefix based subnets is desirable. 297 Instance ID LISP Canonical Address Format: 299 0 1 2 3 300 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 301 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 302 | AFI = 16387 | Rsvd1 | Flags | 303 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 304 | Type = 2 | IID mask-len | Length | 305 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 306 | Instance ID | 307 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 308 | AFI = x | Address ... | 309 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 311 IID mask-len: if the AFI is set to 0, then this format is not 312 encoding an extended EID-prefix but rather an instance-ID range 313 where the 'IID mask-len' indicates the number of high-order bits 314 used in the Instance ID field for the range. The low-order bits 315 of the Instance ID field must be 0. 317 Length: length in bytes starting and including the byte after this 318 Length field. 320 Instance ID: the low-order 24-bits that can go into a LISP data 321 header when the I-bit is set. See [RFC6830] for details. The 322 reason for the length difference is so that the maximum number of 323 instances supported per mapping system is 2^32 while conserving 324 space in the LISP data header. This comes at the expense of 325 limiting the maximum number of instances per xTR to 2^24. If an 326 xTR is configured with multiple instance-IDs where the value in 327 the high-order 8 bits are the same, then the low-order 24 bits 328 MUST be unique. 330 AFI = x: x can be any AFI value from [AFI]. 332 This LISP Canonical Address Type can be used to encode either EID or 333 RLOC addresses. 335 Usage: When used as a lookup key, the EID is regarded as an extended- 336 EID in the mapping system. This encoding is used in EID records in 337 Map-Requests, Map-Replies, Map-Registers, and Map-Notify messages. 338 When LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system 339 mechanism, extended EIDs are used in Map-Referral messages. 341 4.2. Carrying AS Numbers in the Mapping Database 343 When an AS number is stored in the LISP Mapping Database System for 344 either policy or documentation reasons, it can be encoded in a LISP 345 Canonical Address. 347 AS Number LISP Canonical Address Format: 349 0 1 2 3 350 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 351 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 352 | AFI = 16387 | Rsvd1 | Flags | 353 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 354 | Type = 3 | Rsvd2 | Length | 355 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 356 | AS Number | 357 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 358 | AFI = x | Address ... | 359 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 361 Length: length in bytes starting and including the byte after this 362 Length field. 364 AS Number: the 32-bit AS number of the autonomous system that has 365 been assigned to either the EID or RLOC that follows. 367 AFI = x: x can be any AFI value from [AFI]. 369 The AS Number Canonical Address Type can be used to encode either EID 370 or RLOC addresses. The former is used to describe the LISP-ALT AS 371 number the EID-prefix for the site is being carried for. The latter 372 is used to describe the AS that is carrying RLOC based prefixes in 373 the underlying routing system. 375 Usage: This encoding can be used in EID or RLOC records in Map- 376 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 377 LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, 378 extended EIDs are used in Map-Referral messages. 380 4.3. Assigning Geo Coordinates to Locator Addresses 382 If an ETR desires to send a Map-Reply describing the Geo Coordinates 383 for each locator in its locator-set, it can use the Geo Coordinate 384 Type to convey physical location information. 386 Coordinates are specified using the WGS-84 (World Geodetic System) 387 reference coordinate system [WGS-84]. 389 Geo Coordinate LISP Canonical Address Format: 391 0 1 2 3 392 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 393 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 394 | AFI = 16387 | Rsvd1 | Flags | 395 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 396 | Type = 5 | Rsvd2 | Length | 397 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 398 |N| Latitude Degrees | Minutes | Seconds | 399 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 400 |E| Longitude Degrees | Minutes | Seconds | 401 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 402 | Altitude | 403 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 404 | AFI = x | Address ... | 405 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 407 Length: length in bytes starting and including the byte after this 408 Length field. 410 N: When set to 1 means North, otherwise South. 412 Latitude Degrees: Valid values range from 0 to 90 degrees above or 413 below the equator (northern or southern hemisphere, respectively). 415 Latitude Minutes: Valid values range from 0 to 59. 417 Latitude Seconds: Valid values range from 0 to 59. 419 E: When set to 1 means East, otherwise West. 421 Longitude Degrees: Valid values are from 0 to 180 degrees right or 422 left of the Prime Meridian. 424 Longitude Minutes: Valid values range from 0 to 59. 426 Longitude Seconds: Valid values range from 0 to 59. 428 Altitude: Height relative to sea level in meters. This is a two's 429 complement signed integer meaning that the altitude could be below 430 sea level. A value of 0x7fffffff indicates no Altitude value is 431 encoded. 433 AFI = x: x can be any AFI value from [AFI]. 435 The Geo Coordinates Canonical Address Type can be used to encode 436 either EID or RLOC addresses. When used for EID encodings, you can 437 determine the physical location of an EID along with the topological 438 location by observing the locator-set. 440 Usage: This encoding can be used in EID or RLOC records in Map- 441 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 442 LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, 443 extended EIDs are used in Map-Referral messages. 445 4.4. NAT Traversal Scenarios 447 When a LISP system is conveying global address and mapped port 448 information when traversing through a NAT device, the NAT-Traversal 449 LCAF Type is used. See [I-D.ermagan-lisp-nat-traversal] for details. 451 NAT-Traversal Canonical Address Format: 453 0 1 2 3 454 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 455 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 456 | AFI = 16387 | Rsvd1 | Flags | 457 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 458 | Type = 7 | Rsvd2 | Length | 459 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 460 | MS UDP Port Number | ETR UDP Port Number | 461 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 462 | AFI = x | Global ETR RLOC Address ... | 463 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 464 | AFI = x | MS RLOC Address ... | 465 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 466 | AFI = x | Private ETR RLOC Address ... | 467 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 468 | AFI = x | RTR RLOC Address 1 ... | 469 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 470 | AFI = x | RTR RLOC Address k ... | 471 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 473 Length: length in bytes starting and including the byte after this 474 Length field. 476 MS UDP Port Number: this is the UDP port number of the Map-Server 477 and is set to 4342. 479 ETR UDP Port Number: this is the port number returned to a LISP 480 system which was copied from the source port from a packet that 481 has flowed through a NAT device. 483 AFI = x: x can be any AFI value from [AFI]. 485 Global ETR RLOC Address: this is an address known to be globally 486 unique built by NAT-traversal functionality in a LISP router. 488 MS RLOC Address: this is the address of the Map-Server used in the 489 destination RLOC of a packet that has flowed through a NAT device. 491 Private ETR RLOC Address: this is an address known to be a private 492 address inserted in this LCAF by a LISP router that resides on the 493 private side of a NAT device. 495 RTR RLOC Address: this is an encapsulation address used by an ITR or 496 PITR which resides behind a NAT device. This address is known to 497 have state in a NAT device so packets can flow from it to the LISP 498 ETR behind the NAT. There can be one or more NAT Reencapsulating 499 Tunnel Router (RTR) [I-D.ermagan-lisp-nat-traversal] addresses 500 supplied in these set of fields. The number of RTRs encoded is 501 determined by parsing each field. When there are no RTRs 502 supplied, the RTR fields can be omitted and reflected by the LCAF 503 length field or an AFI of 0 can be used to indicate zero RTRs 504 encoded. 506 Usage: This encoding can be used in Info-Request and Info-Reply 507 messages. The mapping system does not store this information. The 508 information is used by an xTR and Map-Server to convey private and 509 public address information when traversing NAT and firewall devices. 511 4.5. Multicast Group Membership Information 513 Multicast group information can be published in the mapping database. 514 So a lookup on a group address EID can return a replication list of 515 RLOC group addresses or RLOC unicast addresses. The intent of this 516 type of unicast replication is to deliver packets to multiple ETRs at 517 receiver LISP multicast sites. The locator-set encoding for this EID 518 record type can be a list of ETRs when they each register with "Merge 519 Semantics". The encoding can be a typical AFI-encoded locator 520 address. When an RTR list is being registered (with multiple levels 521 according to [I-D.coras-lisp-re]), the Replication List Entry LCAF 522 type is used for locator encoding. 524 This LCAF encoding can be used to send broadcast packets to all 525 members of a subnet when an EID is away from its home subnet 526 location. 528 Multicast Info Canonical Address Format: 530 0 1 2 3 531 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 532 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 533 | AFI = 16387 | Rsvd1 | Flags | 534 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 535 | Type = 9 | Rsvd2 | Length | 536 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 537 | Instance-ID | 538 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 539 | Reserved | Source MaskLen| Group MaskLen | 540 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 541 | AFI = x | Source/Subnet Address ... | 542 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 543 | AFI = x | Group Address ... | 544 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 546 Length: length in bytes starting and including the byte after this 547 Length field. 549 Reserved: must be set to zero and ignored on receipt. 551 Instance ID: the low-order 24-bits that can go into a LISP data 552 header when the I-bit is set. See [RFC6830] for details. The use 553 of the Instance-ID in this LCAF type is to associate a multicast 554 forwarding entry for a given VPN. The instance-ID describes the 555 VPN and is registered to the mapping database system as a 3-tuple 556 of (Instance-ID, S-prefix, G-prefix). 558 Source MaskLen: the mask length of the source prefix that follows. 559 The length is the number of high-order mask bits set. 561 Group MaskLen: the mask length of the group prefix that follows. 562 The length is the number of high-order mask bits set. 564 AFI = x: x can be any AFI value from [AFI]. When a specific address 565 family has a multicast address semantic, this field must be either 566 a group address or a broadcast address. 568 Source/Subnet Address: is the source address or prefix for encoding 569 a (S,G) multicast entry. 571 Group Address: is the group address or group prefix for encoding 572 (S,G) or (*,G) multicast entries. 574 Usage: This encoding can be used in EID records in Map-Requests, Map- 575 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 576 [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended 577 EIDs are used in Map-Referral messages. 579 4.6. Traffic Engineering using Re-encapsulating Tunnels 581 For a given EID lookup into the mapping database, this LCAF can be 582 returned to provide a list of locators in an explicit re- 583 encapsulation path. See [I-D.farinacci-lisp-te] for details. 585 Explicit Locator Path (ELP) Canonical Address Format: 587 0 1 2 3 588 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 589 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 590 | AFI = 16387 | Rsvd1 | Flags | 591 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 592 | Type = 10 | Rsvd2 | Length | 593 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 594 | Rsvd3 |L|P|S| AFI = x | 595 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 596 | Reencap Hop 1 ... | 597 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 598 | Rsvd3 |L|P|S| AFI = x | 599 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 600 | Reencap Hop k ... | 601 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 603 Length: length in bytes starting and including the byte after this 604 Length field. 606 Rsvd3: this field is reserved for future use and MUST be transmitted 607 as 0 and ignored on receipt. 609 Lookup bit (L): this is the Lookup bit used to indicate to the user 610 of the ELP to not use this address for encapsulation but to look 611 it up in the mapping database system to obtain an encapsulating 612 RLOC address. 614 RLOC-Probe bit (P): this is the RLOC-probe bit which means the 615 Reencap Hop allows RLOC-probe messages to be sent to it. When the 616 R-bit is set to 0, RLOC-probes must not be sent. When a Reencap 617 Hop is an anycast address then multiple physical Reencap Hops are 618 using the same RLOC address. In this case, RLOC-probes are not 619 needed because when the closest RLOC address is not reachable 620 another RLOC address can be reachable. 622 Strict bit (S): this is the strict bit which means the associated 623 Reencap Hop is required to be used. If this bit is 0, the 624 reencapsulator can skip this Reencap Hop and go to the next one in 625 the list. 627 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 628 its own encoding of a multicast address, this field must be either 629 a group address or a broadcast address. 631 Usage: This encoding can be used in RLOC records in Map-Requests, 632 Map-Replies, Map-Registers, and Map-Notify messages. This encoding 633 does not need to be understood by the mapping system for mapping 634 database lookups since this LCAF type is not a lookup key. 636 4.7. Storing Security Data in the Mapping Database 638 When a locator in a locator-set has a security key associated with 639 it, this LCAF will be used to encode key material. See 640 [I-D.ietf-lisp-ddt] for details. 642 Security Key Canonical Address Format: 644 0 1 2 3 645 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 646 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 647 | AFI = 16387 | Rsvd1 | Flags | 648 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 649 | Type = 11 | Rsvd2 | Length | 650 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 651 | Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R| 652 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 653 | Key Length | Key Material ... | 654 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 655 | ... Key Material | 656 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 657 | AFI = x | Locator Address ... | 658 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 660 Length: length in bytes starting and including the byte after this 661 Length field. 663 Key Count: the Key Count field declares the number of Key sections 664 included in this LCAF. A key section is made up of "Key Length" 665 and "Key Material" fields. 667 Rsvd3: this field is reserved for future use and MUST be transmitted 668 as 0 and ignored on receipt. 670 Key Algorithm: the Algorithm field identifies the key's 671 cryptographic algorithm and specifies the format of the Public Key 672 field. Refer to the [I-D.ietf-lisp-ddt] and 673 [I-D.ietf-lisp-crypto] use cases for definitions of this field. 675 Rsvd4: this field is reserved for future use and MUST be transmitted 676 as 0 and ignored on receipt. 678 R bit: this is the revoke bit and, if set, it specifies that this 679 Key is being Revoked. 681 Key Length: this field determines the length in bytes of the Key 682 Material field. 684 Key Material: the Key Material field stores the key material. The 685 format of the key material stored depends on the Key Algorithm 686 field. 688 AFI = x: x can be any AFI value from [AFI]. This is the locator 689 address that owns the encoded security key. 691 Usage: This encoding can be used in EID or RLOC records in Map- 692 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 693 LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, 694 extended EIDs are used in Map-Referral messages. 696 4.8. Source/Destination 2-Tuple Lookups 698 When both a source and destination address of a flow need 699 consideration for different locator-sets, this 2-tuple key is used in 700 EID fields in LISP control messages. When the Source/Dest key is 701 registered to the mapping database, it can be encoded as a source- 702 prefix and destination-prefix. When the Source/Dest is used as a key 703 for a mapping database lookup the source and destination come from a 704 data packet. 706 Source/Dest Key Canonical Address Format: 708 0 1 2 3 709 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 710 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 711 | AFI = 16387 | Rsvd1 | Flags | 712 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 713 | Type = 12 | Rsvd2 | Length | 714 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 715 | Reserved | Source-ML | Dest-ML | 716 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 717 | AFI = x | Source-Prefix ... | 718 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 719 | AFI = y | Destination-Prefix ... | 720 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 722 Length: length in bytes starting and including the byte after this 723 Length field. 725 Reserved: must be set to zero and ignore on receipt. 727 Source-ML: the mask length of the source prefix that follows. The 728 length is the number of high-order mask bits set. 730 Dest-ML: the mask length of the destination prefix that follows. 731 The length is the number of high-order mask bits set. 733 AFI = x: x can be any AFI value from [AFI]. 735 AFI = y: y can be any AFI value from [AFI]. When a specific address 736 family has a multicast address semantic, this field must be either 737 a group address or a broadcast address. 739 Usage: This encoding can be used in EID records in Map-Requests, Map- 740 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 741 [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended 742 EIDs are used in Map-Referral messages. Refer to 743 [I-D.farinacci-lisp-te] for usage details of this LCAF type. 745 4.9. Replication List Entries for Multicast Forwarding 747 The Replication List Entry LCAF type is an encoding for a locator 748 being used for unicast replication according to the specification in 749 [I-D.coras-lisp-re]. This locator encoding is pointed to by a 750 Multicast Info LCAF Type and is registered by Re-encapsulating Tunnel 751 Routers (RTRs) that are participating in an overlay distribution 752 tree. Each RTR will register its locator address and its configured 753 level in the distribution tree. 755 Replication List Entry Address Format: 757 0 1 2 3 758 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 759 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 760 | AFI = 16387 | Rsvd1 | Flags | 761 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 762 | Type = 13 | Rsvd2 | Length | 763 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 764 | Rsvd3 | Rsvd4 | Level Value | 765 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 766 | AFI = x | RTR/ETR #1 ... | 767 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 768 | Rsvd3 | Rsvd4 | Level Value | 769 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 770 | AFI = x | RTR/ETR #n ... | 771 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 773 Length: length in bytes starting and including the byte after this 774 Length field. 776 Rsvd3/Rsvd4: must be set to zero and ignore on receipt. 778 Level Value: this value is associated with the level within the 779 overlay distribution tree hierarchy where the RTR resides. The 780 level numbers are ordered from lowest value being close to the ITR 781 (meaning that ITRs replicate to level-0 RTRs) and higher levels 782 are further downstream on the distribution tree closer to ETRs of 783 multicast receiver sites. 785 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 786 own encoding of either a unicast or multicast locator address. 787 For efficiency reasons, all RTR/ETR entries for the same level 788 should be combined together by a Map-Server to avoid searching 789 through the entire multi-level list of locator entries in a Map- 790 Reply message. 792 Usage: This encoding can be used in RLOC records in Map-Requests, 793 Map-Replies, Map-Registers, and Map-Notify messages. 795 4.10. Applications for AFI List Type 797 4.10.1. Binding IPv4 and IPv6 Addresses 799 When header translation between IPv4 and IPv6 is desirable a LISP 800 Canonical Address can use the AFI List Type to carry a variable 801 number of AFIs in one LCAF AFI. 803 Address Binding LISP Canonical Address Format: 805 0 1 2 3 806 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 807 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 808 | AFI = 16387 | Rsvd1 | Flags | 809 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 810 | Type = 1 | Rsvd2 | Length | 811 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 812 | AFI = 1 | IPv4 Address ... | 813 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 814 | ... IPv4 Address | AFI = 2 | 815 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 816 | IPv6 Address ... | 817 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 818 | ... IPv6 Address ... | 819 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 820 | ... IPv6 Address ... | 821 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 822 | ... IPv6 Address | 823 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 825 Length: length in bytes starting and including the byte after this 826 Length field. 828 This type of address format can be included in a Map-Request when the 829 address is being used as an EID, but the Mapping Database System 830 lookup destination can use only the IPv4 address. This is so a 831 Mapping Database Service Transport System, such as LISP-ALT 832 [RFC6836], can use the Map-Request destination address to route the 833 control message to the desired LISP site. 835 Usage: This encoding can be used in EID or RLOC records in Map- 836 Requests, Map-Replies, Map-Registers, and Map-Notify messages. See 837 subsections in this section for specific use cases. 839 4.10.2. Layer-2 VPNs 841 When MAC addresses are stored in the LISP Mapping Database System, 842 the AFI List Type can be used to carry AFI 6. 844 MAC Address LISP Canonical Address Format: 846 0 1 2 3 847 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 848 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 849 | AFI = 16387 | Rsvd1 | Flags | 850 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 851 | Type = 1 | Rsvd2 | Length | 852 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 853 | AFI = 6 | Layer-2 MAC Address ... | 854 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 855 | ... Layer-2 MAC Address | 856 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 858 Length: length in bytes starting and including the byte after this 859 Length field. 861 This address format can be used to connect layer-2 domains together 862 using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. 863 In this use case, a MAC address is being used as an EID, and the 864 locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or 865 even another MAC address being used as an RLOC. See 866 [I-D.portoles-lisp-eid-mobility] for how layer-2 VPNs operate when 867 doing EID mobility. Refer to the Security Considerations section for 868 privacy protection. 870 4.10.3. ASCII Names in the Mapping Database 872 If DNS names or URIs are stored in the LISP Mapping Database System, 873 the AFI List Type can be used to carry an ASCII string. 875 ASCII LISP Canonical Address Format: 877 0 1 2 3 878 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 879 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 880 | AFI = 16387 | Rsvd1 | Flags | 881 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 882 | Type = 1 | Rsvd2 | Length | 883 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 884 | AFI = 17 | DNS Name or URI ... | 885 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 887 Length: length in bytes starting and including the byte after this 888 Length field. 890 4.10.4. Using Recursive LISP Canonical Address Encodings 892 When any combination of above is desirable, the AFI List Type value 893 can be used to carry within the LCAF AFI another LCAF AFI (for 894 example, Application Specific Data see Section 5.1. 896 Recursive LISP Canonical Address Format: 898 0 1 2 3 899 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 900 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 901 | AFI = 16387 | Rsvd1 | Flags | 902 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 903 | Type = 1 | Rsvd2 | Length | 904 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 905 | AFI = 16387 | Rsvd1 | Flags | 906 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 907 | Type = 4 | Rsvd2 | Length2 | 908 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 909 | IP TOS, IPv6 TC or Flow Label | Protocol | 910 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 911 | Local Port (lower-range) | Local Port (upper-range) | 912 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 913 | Remote Port (lower-range) | Remote Port (upper-range) | 914 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 915 | AFI = 1 | IPv4 Address ... | 916 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 917 | ... IPv4 Address | 918 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 920 Length: length in bytes starting and including the byte after this 921 Length field. 923 Length2: length in bytes starting and including the byte after this 924 Length2 field. 926 This format could be used by a Mapping Database Transport System, 927 such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is used as 928 an EID and placed in the Map-Request destination address by the 929 sending LISP system. The ALT system can deliver the Map-Request to 930 the LISP destination site independent of the Application Data Type 931 AFI payload values. When this AFI is processed by the destination 932 LISP site, it can return different locator-sets based on the type of 933 application or level of service that is being requested. 935 4.10.5. Compatibility Mode Use Case 937 A LISP system should use the AFI List Type format when sending to 938 LISP systems that do not support a particular LCAF Type used to 939 encode locators. This allows the receiving system to be able to 940 parse a locator address for encapsulation purposes. The list of AFIs 941 in an AFI List LCAF Type has no semantic ordering and a receiver 942 should parse each AFI element no matter what the ordering. 944 Compatibility Mode Address Format: 946 0 1 2 3 947 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 948 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 949 | AFI = 16387 | Rsvd1 | Flags | 950 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 951 | Type = 1 | Rsvd2 | Length | 952 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 953 | AFI = 16387 | Rsvd1 | Flags | 954 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 955 | Type = 5 | Rsvd2 | Length2 | 956 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 957 |N| Latitude Degrees | Minutes | Seconds | 958 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 959 |E| Longitude Degrees | Minutes | Seconds | 960 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 961 | Altitude | 962 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 963 | AFI = 0 | AFI = 1 | 964 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 965 | IPv4 Address | 966 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 968 Length: length in bytes starting and including the byte after this 969 Length field. 971 Length2: length in bytes starting and including the byte after this 972 Length2 field. 974 If a system does not recognized the Geo Coordinate LCAF Type that is 975 accompanying a locator address, an encoder can include the Geo 976 Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI 977 in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in 978 the list is encoded with a valid AFI value to identify the locator 979 address. 981 A LISP system is required to support the AFI List LCAF Type to use 982 this procedure. It would skip over 10 bytes of the Geo Coordinate 983 LCAF Type to get to the locator address encoding (an IPv4 locator 984 address). A LISP system that does support the Geo Coordinate LCAF 985 Type can support parsing the locator address within the Geo 986 Coordinate LCAF encoding or in the locator encoding that follows in 987 the AFI List LCAF. 989 5. Experimental LISP Canonical Address Applications 991 5.1. Convey Application Specific Data 993 When a locator-set needs to be conveyed based on the type of 994 application or the Per-Hop Behavior (PHB) of a packet, the 995 Application Data Type can be used. 997 Application Data LISP Canonical Address Format: 999 0 1 2 3 1000 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1001 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1002 | AFI = 16387 | Rsvd1 | Flags | 1003 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1004 | Type = 4 | Rsvd2 | Length | 1005 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1006 | IP TOS, IPv6 TC, or Flow Label | Protocol | 1007 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1008 | Local Port (lower-range) | Local Port (upper-range) | 1009 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1010 | Remote Port (lower-range) | Remote Port (upper-range) | 1011 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1012 | AFI = x | Address ... | 1013 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1015 Length: length in bytes starting and including the byte after this 1016 Length field. 1018 IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS 1019 field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow 1020 Label used in an IPv6 header. 1022 Local Port/Remote Port Ranges: these fields are from the TCP, UDP, 1023 or SCTP transport header. A range can be specified by using a 1024 lower value and an upper value. When a single port is encoded, 1025 the lower and upper value fields are the same. 1027 AFI = x: x can be any AFI value from [AFI]. 1029 The Application Data Canonical Address Type is used for an EID 1030 encoding when an ITR wants a locator-set for a specific application. 1031 When used for an RLOC encoding, the ETR is supplying a locator-set 1032 for each specific application is has been configured to advertise. 1034 Usage: This encoding can be used in EID records in Map-Requests, Map- 1035 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 1036 [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended 1037 EIDs are used in Map-Referral messages. This LCAF type is used as a 1038 lookup key to the mapping system that can return a longest-match or 1039 exact-match entry. 1041 5.2. Generic Database Mapping Lookups 1043 When the LISP Mapping Database system holds information accessed by a 1044 generic formatted key (where the key is not the usual IPv4 or IPv6 1045 address), an opaque key may be desirable. 1047 Opaque Key LISP Canonical Address Format: 1049 0 1 2 3 1050 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1051 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1052 | AFI = 16387 | Rsvd1 | Flags | 1053 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1054 | Type = 6 | Rsvd2 | Length | 1055 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1056 | Key Field Num | Key Wildcard Fields | Key . . . | 1057 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1058 | . . . Key | 1059 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1061 Length: length in bytes starting and including the byte after this 1062 Length field. 1064 Key Field Num: the value of this field is the number of "Key" sub- 1065 fields minus 1, the "Key" field can be broken up into. So if this 1066 field has a value of 0, there is 1 sub-field in the "Key". The 1067 width of the sub-fields are fixed length. So for a key size of 8 1068 bytes, with a Key Field Num of 3, allows 4 sub-fields of 2 bytes 1069 each in length. Allowing for a reasonable number of 16 sub-field 1070 separators, valid values range from 0 to 15. 1072 Key Wildcard Fields: describes which fields in the key are not used 1073 as part of the key lookup. This wildcard encoding is a bitfield. 1074 Each bit is a don't-care bit for a corresponding field in the key. 1075 Bit 0 (the low-order bit) in this bitfield corresponds the first 1076 field, the low-order field in the key, bit 1 the second field, and 1077 so on. When a bit is set in the bitfield it is a don't-care bit 1078 and should not be considered as part of the database lookup. When 1079 the entire 16-bits is set to 0, then all bits of the key are used 1080 for the database lookup. 1082 Key: the variable length key used to do a LISP Database Mapping 1083 lookup. The length of the key is the value n (as shown above). 1085 Usage: This is an experimental type where the usage has not been 1086 defined yet. 1088 5.3. PETR Admission Control Functionality 1090 When a public PETR device wants to verify who is encapsulating to it, 1091 it can check for a specific nonce value in the LISP encapsulated 1092 packet. To convey the nonce to admitted ITRs or PITRs, this LCAF is 1093 used in a Map-Register or Map-Reply locator-record. 1095 Nonce Locator Canonical Address Format: 1097 0 1 2 3 1098 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1099 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1100 | AFI = 16387 | Rsvd1 | Flags | 1101 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1102 | Type = 8 | Rsvd2 | Length | 1103 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1104 | Reserved | Nonce | 1105 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1106 | AFI = x | Address ... | 1107 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1109 Length: length in bytes starting and including the byte after this 1110 Length field. 1112 Reserved: must be set to zero and ignore on receipt. 1114 Nonce: this is a nonce value returned by an ETR in a Map-Reply 1115 locator-record to be used by an ITR or PITR when encapsulating to 1116 the locator address encoded in the AFI field of this LCAF type. 1117 This nonce value is inserted in the nonce field in the LISP header 1118 encapsulation. 1120 AFI = x: x can be any AFI value from [AFI]. 1122 Usage: This is an experimental type where the usage has not been 1123 defined yet. 1125 5.4. Data Model Encoding 1127 This type allows a JSON data model to be encoded either as an EID or 1128 RLOC. 1130 JSON Data Model Type Address Format: 1132 0 1 2 3 1133 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1134 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1135 | AFI = 16387 | Rsvd1 | Flags | 1136 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1137 | Type = 14 | Rsvd2 |B| Length | 1138 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1139 | JSON length | JSON binary/text encoding ... | 1140 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1141 | AFI = x | Optional Address ... | 1142 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1144 Length: length in bytes starting and including the byte after this 1145 Length field. 1147 B bit: indicates that the JSON field is binary encoded according to 1148 [JSON-BINARY] when the bit is set to 1. Otherwise the encoding is 1149 based on text encoding according to [RFC7159]. 1151 JSON length: length in octets of the following 'JSON binary/text 1152 encoding' field. 1154 JSON binary/text encoding field: a variable length field that 1155 contains either binary or text encodings. 1157 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 1158 own encoding of either a unicast or multicast locator address. 1159 All RTR/ETR entries for the same level should be combined together 1160 by a Map-Server to avoid searching through the entire multi-level 1161 list of locator entries in a Map-Reply message. 1163 Usage: This is an experimental type where the usage has not been 1164 defined yet. 1166 5.5. Encoding Key/Value Address Pairs 1168 The Key/Value pair is, for example, useful for attaching attributes 1169 to other elements of LISP packets, such as EIDs or RLOCs. When 1170 attaching attributes to EIDs or RLOCs, it's necessary to distinguish 1171 between the element that should be used as EID or RLOC, and hence as 1172 the key for lookups, and additional attributes. This is especially 1173 the case when the difference cannot be determined from the types of 1174 the elements, such as when two IP addresses are being used. 1176 Key/Value Pair Address Format: 1178 0 1 2 3 1179 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1180 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1181 | AFI = 16387 | Rsvd1 | Flags | 1182 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1183 | Type = 15 | Rsvd2 | Length | 1184 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1185 | AFI = x | Address as Key ... | 1186 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1187 | AFI = y | Address as Value ... | 1188 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1190 Length: length in bytes starting and including the byte after this 1191 Length field. 1193 AFI = x: x is the "Address as Key" AFI that can have any value from 1194 [AFI]. A specific AFI has its own encoding of either a unicast or 1195 multicast locator address. All RTR/ETR entries for the same level 1196 should be combined together by a Map-Server to avoid searching 1197 through the entire multi-level list of locator entries in a Map- 1198 Reply message. 1200 Address as Key: this AFI-encoded address will be attached with the 1201 attributes encoded in "Address as Value" which follows this field. 1203 AFI = y: y is the "Address of Value" AFI that can have any value 1204 from [AFI]. A specific AFI has its own encoding of either a 1205 unicast or multicast locator address. All RTR/ETR entries for the 1206 same level should be combined together by a Map-Server to avoid 1207 searching through the entire multi-level list of locator entries 1208 in a Map-Reply message. 1210 Address as Value: this AFI-encoded address will be the attribute 1211 address that goes along with "Address as Key" which precedes this 1212 field. 1214 Usage: This is an experimental type where the usage has not been 1215 defined yet. 1217 5.6. Multiple Data-Planes 1219 Overlays are becoming popular in many parts of the network which have 1220 created an explosion of data-plane encapsulation headers. Since the 1221 LISP mapping system can hold many types of address formats, it can 1222 represent the encapsulation format supported by an RLOC as well. 1223 When an encapsulator receives a Map-Reply with an Encapsulation 1224 Format LCAF Type encoded in an RLOC-record, it can select an 1225 encapsulation format, that it can support, from any of the 1226 encapsulation protocols which have the bit set to 1 in this LCAF 1227 type. 1229 Encapsulation Format Address Format: 1231 0 1 2 3 1232 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1233 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1234 | AFI = 16387 | Rsvd1 | Flags | 1235 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1236 | Type = 16 | Rsvd2 | Length | 1237 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1238 | Reserved-for-Future-Encapsulations |U|G|N|v|V|l|L| 1239 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1240 | AFI = x | Address ... | 1241 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1243 Length: length in bytes starting and including the byte after this 1244 Length field. 1246 Reserved-for-Future-Encapsulations: must be set to zero and ignored 1247 on receipt. This field will get bits allocated to future 1248 encapsulations, as they are created. 1250 L: The RLOCs listed in the AFI-encoded addresses in the next longword 1251 can accept layer 3 LISP encapsulation using destination UDP port 1252 4341 [RFC6830]. 1254 l: The RLOCs listed in the AFI-encoded addresses in the next longword 1255 can accept layer 2 LISP encapsulation using destination UDP port 1256 8472 [I-D.smith-lisp-layer2]. 1258 V: The RLOCs listed in the AFI-encoded addresses in the next longword 1259 can accept VXLAN encapsulation using destination UDP port 4789 1260 [RFC7348]. 1262 v: The RLOCs listed in the AFI-encoded addresses in the next longword 1263 can accept VXLAN-GPE encapsulation using destination UDP port 4790 1264 [I-D.quinn-vxlan-gpe]. 1266 N: The RLOCs listed in the AFI-encoded addresses in the next longword 1267 can accept NV-GRE encapsulation using IPv4/ IPv6 protocol number 1268 47 [RFC7637]. 1270 G: The RLOCs listed in the AFI-encoded addresses in the next longword 1271 can accept GENEVE encapsulation using destination UDP port 6081 1272 [I-D.gross-geneve]. 1274 U: The RLOCs listed in the AFI-encoded addresses in the next longword 1275 can accept GUE encapsulation using destination UDP port TBD 1276 [I-D.herbert-gue]. 1278 Usage: This encoding can be used in RLOC records in Map-Requests, 1279 Map-Replies, Map-Registers, and Map-Notify messages. 1281 6. Security Considerations 1283 There are no security considerations for this specification. The 1284 security considerations are documented for the protocols that use 1285 LISP Canonical Addressing. 1287 The use of the Geo-Coordinates LCAF Type may raise physical privacy 1288 issues. Care should be taken when configuring the mapping system to 1289 use specific policy parameters so geo-location information is not 1290 returned gratuitously. It is recommended that any documents that 1291 specify the use of the Geo-Coordinates LCAF Type should consider the 1292 applicability of the BCP160 [RFC6280] for location-based privacy 1293 protection. 1295 7. IANA Considerations 1297 This document defines a canonical address format encoding used in 1298 LISP control messages and in the encoding of lookup keys for the LISP 1299 Mapping Database System. Such address format is based on a fixed AFI 1300 (16387) and a LISP LCAF Type field. 1302 The LISP LCAF Type field is an 8-bit field specific to the LISP 1303 Canonical Address formatted encodings, for which IANA is to create 1304 and maintain a new registry (as outlined in [RFC5226]) entitled "LISP 1305 LCAF Type". Initial values for the LISP LCAF Type registry are given 1306 below. Future assignments are to be made through expert review with 1307 a specification required publication. Assignments consist of a LISP 1308 LCAF Type name and its associated value: 1310 +-------+------------------------------+------------+ 1311 | Value | LISP LCAF Type Name | Definition | 1312 +-------+------------------------------+------------+ 1313 | 0 | Null Body Type | Section 3 | 1314 | 1 | AFI List Type | Section 3 | 1315 | 2 | Instance ID Type | Section 3 | 1316 | 3 | AS Number Type | Section 3 | 1317 | 5 | Geo Coordinates Type | Section 3 | 1318 | 7 | NAT-Traversal Type | Section 3 | 1319 | 9 | Multicast Info Type | Section 3 | 1320 | 10 | Explicit Locator Path Type | Section 3 | 1321 | 11 | Security Key Type | Section 3 | 1322 | 12 | Source/Dest Key Type | Section 3 | 1323 | 13 | Replication List Entry Type | Section 3 | 1324 +-------+------------------------------+------------+ 1326 Table 1: LISP LCAF Type Initial Values 1328 8. References 1330 8.1. Normative References 1332 [BCP160] "An Architecture for Location and Location Privacy in 1333 Internet Applications", Best Current Practices 1334 https://www.rfc-editor.org/bcp/bcp160.txt, July 2011. 1336 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G., 1337 and E. Lear, "Address Allocation for Private Internets", 1338 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996, 1339 . 1341 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1342 Requirement Levels", BCP 14, RFC 2119, 1343 DOI 10.17487/RFC2119, March 1997, 1344 . 1346 [RFC3232] Reynolds, J., Ed., "Assigned Numbers: RFC 1700 is Replaced 1347 by an On-line Database", RFC 3232, DOI 10.17487/RFC3232, 1348 January 2002, . 1350 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an 1351 IANA Considerations Section in RFCs", BCP 26, RFC 5226, 1352 DOI 10.17487/RFC5226, May 2008, 1353 . 1355 [RFC6280] Barnes, R., Lepinski, M., Cooper, A., Morris, J., 1356 Tschofenig, H., and H. Schulzrinne, "An Architecture for 1357 Location and Location Privacy in Internet Applications", 1358 BCP 160, RFC 6280, DOI 10.17487/RFC6280, July 2011, 1359 . 1361 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The 1362 Locator/ID Separation Protocol (LISP)", RFC 6830, 1363 DOI 10.17487/RFC6830, January 2013, 1364 . 1366 [RFC6836] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, 1367 "Locator/ID Separation Protocol Alternative Logical 1368 Topology (LISP+ALT)", RFC 6836, DOI 10.17487/RFC6836, 1369 January 2013, . 1371 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data 1372 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March 1373 2014, . 1375 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, 1376 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual 1377 eXtensible Local Area Network (VXLAN): A Framework for 1378 Overlaying Virtualized Layer 2 Networks over Layer 3 1379 Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014, 1380 . 1382 [RFC7637] Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network 1383 Virtualization Using Generic Routing Encapsulation", 1384 RFC 7637, DOI 10.17487/RFC7637, September 2015, 1385 . 1387 8.2. Informative References 1389 [AFI] IANA, , "Address Family Identifier (AFIs)", ADDRESS FAMILY 1390 NUMBERS http://www.iana.org/assignments/address-family- 1391 numbers/address-family-numbers.xhtml?, Febuary 2007. 1393 [I-D.coras-lisp-re] 1394 Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J., 1395 Maino, F., and D. Farinacci, "LISP Replication 1396 Engineering", draft-coras-lisp-re-08 (work in progress), 1397 November 2015. 1399 [I-D.ermagan-lisp-nat-traversal] 1400 Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, 1401 F., and C. White, "NAT traversal for LISP", draft-ermagan- 1402 lisp-nat-traversal-11 (work in progress), August 2016. 1404 [I-D.farinacci-lisp-te] 1405 Farinacci, D., Kowal, M., and P. Lahiri, "LISP Traffic 1406 Engineering Use-Cases", draft-farinacci-lisp-te-11 (work 1407 in progress), September 2016. 1409 [I-D.gross-geneve] 1410 Gross, J., Sridhar, T., Garg, P., Wright, C., Ganga, I., 1411 Agarwal, P., Duda, K., Dutt, D., and J. Hudson, "Geneve: 1412 Generic Network Virtualization Encapsulation", draft- 1413 gross-geneve-02 (work in progress), October 2014. 1415 [I-D.herbert-gue] 1416 Herbert, T., Yong, L., and O. Zia, "Generic UDP 1417 Encapsulation", draft-herbert-gue-03 (work in progress), 1418 March 2015. 1420 [I-D.ietf-lisp-crypto] 1421 Farinacci, D. and B. Weis, "LISP Data-Plane 1422 Confidentiality", draft-ietf-lisp-crypto-10 (work in 1423 progress), October 2016. 1425 [I-D.ietf-lisp-ddt] 1426 Fuller, V., Lewis, D., Ermagan, V., Jain, A., and A. 1427 Smirnov, "LISP Delegated Database Tree", draft-ietf-lisp- 1428 ddt-08 (work in progress), September 2016. 1430 [I-D.portoles-lisp-eid-mobility] 1431 Portoles-Comeras, M., Ashtaputre, V., Moreno, V., Maino, 1432 F., and D. Farinacci, "LISP L2/L3 EID Mobility Using a 1433 Unified Control Plane", draft-portoles-lisp-eid- 1434 mobility-01 (work in progress), October 2016. 1436 [I-D.quinn-vxlan-gpe] 1437 Quinn, P., Manur, R., Kreeger, L., Lewis, D., Maino, F., 1438 Smith, M., Agarwal, P., Yong, L., Xu, X., Elzur, U., Garg, 1439 P., and D. Melman, "Generic Protocol Extension for VXLAN", 1440 draft-quinn-vxlan-gpe-04 (work in progress), February 1441 2015. 1443 [I-D.smith-lisp-layer2] 1444 Smith, M., Dutt, D., Farinacci, D., and F. Maino, "Layer 2 1445 (L2) LISP Encapsulation Format", draft-smith-lisp- 1446 layer2-03 (work in progress), September 2013. 1448 [JSON-BINARY] 1449 "Universal Binary JSON Specification", 1450 URL http://ubjson.org. 1452 [WGS-84] Geodesy and Geophysics Department, DoD., "World Geodetic 1453 System 1984", NIMA TR8350.2, January 2000, . 1456 Appendix A. Acknowledgments 1458 The authors would like to thank Vince Fuller, Gregg Schudel, Jesper 1459 Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for 1460 their technical and editorial commentary. 1462 The authors would like to thank Victor Moreno for discussions that 1463 lead to the definition of the Multicast Info LCAF type. 1465 The authors would like to thank Parantap Lahiri and Michael Kowal for 1466 discussions that lead to the definition of the Explicit Locator Path 1467 (ELP) LCAF type. 1469 The authors would like to thank Fabio Maino and Vina Ermagan for 1470 discussions that lead to the definition of the Security Key LCAF 1471 type. 1473 The authors would like to thank Albert Cabellos-Aparicio and Florin 1474 Coras for discussions that lead to the definition of the Replication 1475 List Entry LCAF type. 1477 Thanks goes to Michiel Blokzijl and Alberto Rodriguez-Natal for 1478 suggesting new LCAF types. 1480 Thanks also goes to Terry Manderson for assistance obtaining a LISP 1481 AFI value from IANA. 1483 Appendix B. Document Change Log 1485 [RFC Editor: Please delete this section on publication as RFC.] 1487 B.1. Changes to draft-ietf-lisp-lcaf-19.txt 1489 o Submitted October 2016. 1491 o Make it more clear that any use-case documents that use the Geo- 1492 Coordinates LCAF type should discuss RFC6280 compliance. 1494 B.2. Changes to draft-ietf-lisp-lcaf-18.txt 1496 o Submitted October 2016 after October 13th telechat. 1498 o Addressed comments from Ben Campbell, Jari Arrko, Stephen Farrel, 1499 Peter Yee, Dale Worley, Mirja Kuehlewind, and Suresh Krishnan. 1501 B.3. Changes to draft-ietf-lisp-lcaf-17.txt 1503 o Submitted October 2016. 1505 o Addressed comments from Gen-ART reviewer Peter Yee. 1507 o Addressed IESG last-call comments from Suresh Krishnan. 1509 B.4. Changes to draft-ietf-lisp-lcaf-16.txt 1511 o Submitted October 2016. 1513 o Addressed comments from Security Directorate reviewer David 1514 Mandelberg. 1516 B.5. Changes to draft-ietf-lisp-lcaf-15.txt 1518 o Submitted September 2016. 1520 o Addressed comments from Routing Directorate reviewer Stig Venass. 1522 B.6. Changes to draft-ietf-lisp-lcaf-14.txt 1524 o Submitted July 2016. 1526 o Fix IDnits errors and comments from Luigi Iannone, document 1527 shepherd. 1529 B.7. Changes to draft-ietf-lisp-lcaf-13.txt 1531 o Submitted May 2016. 1533 o Explain the Instance-ID LCAF Type is 32-bits in length and the 1534 Instance-ID field in the LISP encapsulation header is 24-bits. 1536 B.8. Changes to draft-ietf-lisp-lcaf-12.txt 1538 o Submitted March 2016. 1540 o Updated references and document timer. 1542 o Removed the R, J, and L bits from the Multicast Info Type LCAF 1543 since working group decided to not go forward with draft- 1544 farinacci-lisp-mr-signaling-03.txt in favor of draft- ietf-lisp- 1545 signal-free-00.txt. 1547 B.9. Changes to draft-ietf-lisp-lcaf-11.txt 1549 o Submitted September 2015. 1551 o Reflecting comments from Prague LISP working group. 1553 o Readying document for a LISP LCAF registry, RFC publication, and 1554 for new use cases that will be defined in the new charter. 1556 B.10. Changes to draft-ietf-lisp-lcaf-10.txt 1558 o Submitted June 2015. 1560 o Fix coauthor Job's contact information. 1562 B.11. Changes to draft-ietf-lisp-lcaf-09.txt 1564 o Submitted June 2015. 1566 o Fix IANA Considerations section to request a registry to allocate 1567 and track LCAF Type values. 1569 B.12. Changes to draft-ietf-lisp-lcaf-08.txt 1571 o Submitted April 2015. 1573 o Comment from Florin. The Application Data Type length field has a 1574 typo. The field should be labeled "12 + n" and not "8 + n". 1576 o Fix length fields in the sections titled "Using Recursive LISP 1577 Canonical Address Encodings", "Generic Database Mapping Lookups", 1578 and "Data Model Encoding". 1580 B.13. Changes to draft-ietf-lisp-lcaf-07.txt 1582 o Submitted December 2014. 1584 o Add a new LCAF Type called "Encapsulation Format" so decapsulating 1585 xTRs can inform encapsulating xTRs what data-plane encapsulations 1586 they support. 1588 B.14. Changes to draft-ietf-lisp-lcaf-06.txt 1590 o Submitted October 2014. 1592 o Make it clear how sorted RLOC records are done when LCAFs are used 1593 as the RLOC record. 1595 B.15. Changes to draft-ietf-lisp-lcaf-05.txt 1597 o Submitted May 2014. 1599 o Add a length field of the JSON payload that can be used for either 1600 binary or text encoding of JSON data. 1602 B.16. Changes to draft-ietf-lisp-lcaf-04.txt 1604 o Submitted January 2014. 1606 o Agreement among ELP implementors to have the AFI 16-bit field 1607 adjacent to the address. This will make the encoding consistent 1608 with all other LCAF type address encodings. 1610 B.17. Changes to draft-ietf-lisp-lcaf-03.txt 1612 o Submitted September 2013. 1614 o Updated references and author's affilations. 1616 o Added Instance-ID to the Multicast Info Type so there is relative 1617 ease in parsing (S,G) entries within a VPN. 1619 o Add port range encodings to the Application Data LCAF Type. 1621 o Add a new JSON LCAF Type. 1623 o Add Address Key/Value LCAF Type to allow attributes to be attached 1624 to an address. 1626 B.18. Changes to draft-ietf-lisp-lcaf-02.txt 1628 o Submitted March 2013. 1630 o Added new LCAF Type "Replication List Entry" to support LISP 1631 replication engineering use cases. 1633 o Changed references to new LISP RFCs. 1635 B.19. Changes to draft-ietf-lisp-lcaf-01.txt 1637 o Submitted January 2013. 1639 o Change longitude range from 0-90 to 0-180 in section 4.4. 1641 o Added reference to WGS-84 in section 4.4. 1643 B.20. Changes to draft-ietf-lisp-lcaf-00.txt 1645 o Posted first working group draft August 2012. 1647 o This draft was renamed from draft-farinacci-lisp-lcaf-10.txt. 1649 Authors' Addresses 1651 Dino Farinacci 1652 lispers.net 1653 San Jose, CA 1654 USA 1656 Email: farinacci@gmail.com 1657 Dave Meyer 1658 Brocade 1659 San Jose, CA 1660 USA 1662 Email: dmm@1-4-5.net 1664 Job Snijders 1665 NTT Communications 1666 Theodorus Majofskistraat 100 1667 Amsterdam 1065 SZ 1668 NL 1670 Email: job@ntt.net