idnits 2.17.1 draft-ietf-lisp-lcaf-21.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- == There are 1 instance of lines with private range IPv4 addresses in the document. If these are generic example addresses, they should be changed to use any of the ranges defined in RFC 6890 (or successor): 192.0.2.x, 198.51.100.x or 203.0.113.x. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (November 16, 2016) is 2718 days in the past. Is this intentional? Checking references for intended status: Experimental ---------------------------------------------------------------------------- == Unused Reference: 'BCP160' is defined on line 1345, but no explicit reference was found in the text ** Obsolete normative reference: RFC 5226 (Obsoleted by RFC 8126) ** Obsolete normative reference: RFC 6830 (Obsoleted by RFC 9300, RFC 9301) ** Obsolete normative reference: RFC 7159 (Obsoleted by RFC 8259) == Outdated reference: A later version (-19) exists of draft-ermagan-lisp-nat-traversal-11 == Outdated reference: A later version (-12) exists of draft-farinacci-lisp-te-11 == Outdated reference: A later version (-09) exists of draft-ietf-lisp-ddt-08 == Outdated reference: A later version (-02) exists of draft-portoles-lisp-eid-mobility-01 Summary: 3 errors (**), 0 flaws (~~), 7 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group D. Farinacci 3 Internet-Draft lispers.net 4 Intended status: Experimental D. Meyer 5 Expires: May 20, 2017 Brocade 6 J. Snijders 7 NTT Communications 8 November 16, 2016 10 LISP Canonical Address Format (LCAF) 11 draft-ietf-lisp-lcaf-21 13 Abstract 15 This draft defines a canonical address format encoding used in LISP 16 control messages and in the encoding of lookup keys for the LISP 17 Mapping Database System. 19 Requirements Language 21 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 22 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 23 document are to be interpreted as described in [RFC2119]. 25 Status of This Memo 27 This Internet-Draft is submitted in full conformance with the 28 provisions of BCP 78 and BCP 79. 30 Internet-Drafts are working documents of the Internet Engineering 31 Task Force (IETF). Note that other groups may also distribute 32 working documents as Internet-Drafts. The list of current Internet- 33 Drafts is at http://datatracker.ietf.org/drafts/current/. 35 Internet-Drafts are draft documents valid for a maximum of six months 36 and may be updated, replaced, or obsoleted by other documents at any 37 time. It is inappropriate to use Internet-Drafts as reference 38 material or to cite them other than as "work in progress." 40 This Internet-Draft will expire on May 20, 2017. 42 Copyright Notice 44 Copyright (c) 2016 IETF Trust and the persons identified as the 45 document authors. All rights reserved. 47 This document is subject to BCP 78 and the IETF Trust's Legal 48 Provisions Relating to IETF Documents 49 (http://trustee.ietf.org/license-info) in effect on the date of 50 publication of this document. Please review these documents 51 carefully, as they describe your rights and restrictions with respect 52 to this document. Code Components extracted from this document must 53 include Simplified BSD License text as described in Section 4.e of 54 the Trust Legal Provisions and are provided without warranty as 55 described in the Simplified BSD License. 57 Table of Contents 59 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 60 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 61 3. LISP Canonical Address Format Encodings . . . . . . . . . . . 5 62 4. LISP Canonical Address Applications . . . . . . . . . . . . . 7 63 4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 7 64 4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 9 65 4.3. Assigning Geo Coordinates to Locator Addresses . . . . . 10 66 4.4. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 12 67 4.5. Multicast Group Membership Information . . . . . . . . . 14 68 4.6. Traffic Engineering using Re-encapsulating Tunnels . . . 16 69 4.7. Storing Security Data in the Mapping Database . . . . . . 17 70 4.8. Source/Destination 2-Tuple Lookups . . . . . . . . . . . 19 71 4.9. Replication List Entries for Multicast Forwarding . . . . 21 72 4.10. Applications for AFI List Type . . . . . . . . . . . . . 22 73 4.10.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . 22 74 4.10.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 23 75 4.10.3. ASCII Names in the Mapping Database . . . . . . . . 24 76 4.10.4. Using Recursive LISP Canonical Address Encodings . . 25 77 4.10.5. Compatibility Mode Use Case . . . . . . . . . . . . 26 78 5. Experimental LISP Canonical Address Applications . . . . . . 27 79 5.1. Convey Application Specific Data . . . . . . . . . . . . 27 80 5.2. Generic Database Mapping Lookups . . . . . . . . . . . . 29 81 5.3. PETR Admission Control Functionality . . . . . . . . . . 30 82 5.4. Data Model Encoding . . . . . . . . . . . . . . . . . . . 31 83 5.5. Encoding Key/Value Address Pairs . . . . . . . . . . . . 32 84 5.6. Multiple Data-Planes . . . . . . . . . . . . . . . . . . 33 85 6. Security Considerations . . . . . . . . . . . . . . . . . . . 35 86 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 36 87 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 36 88 8.1. Normative References . . . . . . . . . . . . . . . . . . 36 89 8.2. Informative References . . . . . . . . . . . . . . . . . 38 90 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . 39 91 Appendix B. Document Change Log . . . . . . . . . . . . . . . . 40 92 B.1. Changes to draft-ietf-lisp-lcaf-21.txt . . . . . . . . . 40 93 B.2. Changes to draft-ietf-lisp-lcaf-20.txt . . . . . . . . . 40 94 B.3. Changes to draft-ietf-lisp-lcaf-19.txt . . . . . . . . . 40 95 B.4. Changes to draft-ietf-lisp-lcaf-18.txt . . . . . . . . . 40 96 B.5. Changes to draft-ietf-lisp-lcaf-17.txt . . . . . . . . . 41 97 B.6. Changes to draft-ietf-lisp-lcaf-16.txt . . . . . . . . . 41 98 B.7. Changes to draft-ietf-lisp-lcaf-15.txt . . . . . . . . . 41 99 B.8. Changes to draft-ietf-lisp-lcaf-14.txt . . . . . . . . . 41 100 B.9. Changes to draft-ietf-lisp-lcaf-13.txt . . . . . . . . . 41 101 B.10. Changes to draft-ietf-lisp-lcaf-12.txt . . . . . . . . . 41 102 B.11. Changes to draft-ietf-lisp-lcaf-11.txt . . . . . . . . . 42 103 B.12. Changes to draft-ietf-lisp-lcaf-10.txt . . . . . . . . . 42 104 B.13. Changes to draft-ietf-lisp-lcaf-09.txt . . . . . . . . . 42 105 B.14. Changes to draft-ietf-lisp-lcaf-08.txt . . . . . . . . . 42 106 B.15. Changes to draft-ietf-lisp-lcaf-07.txt . . . . . . . . . 42 107 B.16. Changes to draft-ietf-lisp-lcaf-06.txt . . . . . . . . . 42 108 B.17. Changes to draft-ietf-lisp-lcaf-05.txt . . . . . . . . . 43 109 B.18. Changes to draft-ietf-lisp-lcaf-04.txt . . . . . . . . . 43 110 B.19. Changes to draft-ietf-lisp-lcaf-03.txt . . . . . . . . . 43 111 B.20. Changes to draft-ietf-lisp-lcaf-02.txt . . . . . . . . . 43 112 B.21. Changes to draft-ietf-lisp-lcaf-01.txt . . . . . . . . . 43 113 B.22. Changes to draft-ietf-lisp-lcaf-00.txt . . . . . . . . . 44 114 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 44 116 1. Introduction 118 The LISP architecture and protocols [RFC6830] introduces two new 119 numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators 120 (RLOCs). To provide flexibility for current and future applications, 121 these values can be encoded in LISP control messages using a general 122 syntax that includes Address Family Identifier (AFI), length, and 123 value fields. 125 Currently defined AFIs include IPv4 and IPv6 addresses, which are 126 formatted according to code-points assigned in [AFI] as follows: 128 Specific detail uses for the LCAF types defined in this document can 129 be found in the use-case documents that use them. There may be more 130 than one use-case document that use the same LCAF type. 132 IPv4 Encoded Address: 134 0 1 2 3 135 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 136 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 137 | AFI = 1 | IPv4 Address ... | 138 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 139 | ... IPv4 Address | 140 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 141 IPv6 Encoded Address: 143 0 1 2 3 144 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 145 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 146 | AFI = 2 | IPv6 Address ... | 147 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 148 | ... IPv6 Address ... | 149 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 150 | ... IPv6 Address ... | 151 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 152 | ... IPv6 Address ... | 153 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 154 | ... IPv6 Address | 155 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 157 This document describes the currently-defined AFIs the LISP protocol 158 uses along with their encodings and introduces the LISP Canonical 159 Address Format (LCAF) that can be used to define the LISP-specific 160 encodings for arbitrary AFI values. 162 2. Definition of Terms 164 Address Family Identifier (AFI): a term used to describe an address 165 encoding in a packet. Address families are defined for IPv4 and 166 IPv6. See [AFI] and [RFC3232] for details. The reserved AFI 167 value of 0 is used in this specification to indicate an 168 unspecified encoded address where the length of the address is 0 169 bytes following the 16-bit AFI value of 0. 171 Unspecified Address Format: 173 0 1 2 3 174 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 175 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 176 | AFI = 0 | 177 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 179 Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value 180 used in the source and destination address fields of the first 181 (most inner) LISP header of a packet. The host obtains a 182 destination EID the same way it obtains a destination address 183 today, for example through a DNS lookup or SIP exchange. The 184 source EID is obtained via existing mechanisms used to set a 185 host's "local" IP address. An EID is allocated to a host from an 186 EID-prefix block associated with the site where the host is 187 located. An EID can be used by a host to refer to other hosts. 189 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress 190 tunnel router (ETR). It is the output of a EID-to-RLOC mapping 191 lookup. An EID maps to one or more RLOCs. Typically, RLOCs are 192 numbered from topologically aggregatable blocks that are assigned 193 to a site at each point to which it attaches to the global 194 Internet; where the topology is defined by the connectivity of 195 provider networks, RLOCs can be thought of as Provider-Assigned 196 (PA) addresses. Multiple RLOCs can be assigned to the same ETR 197 device or to multiple ETR devices at a site. 199 3. LISP Canonical Address Format Encodings 201 IANA has assigned AFI value 16387 (0x4003) to the LISP architecture 202 and protocols. This specification defines the encoding format of the 203 LISP Canonical Address (LCA). This section defines all types for 204 which an initial allocation in the LISP-LCAF registry is requested. 205 See IANA Considerations section for the complete list of such types. 207 The Address Family AFI definitions from [AFI] only allocate code- 208 points for the AFI value itself. The length of the address or entity 209 that follows is not defined and is implied based on conventional 210 experience. When the LISP protocol uses LCAF definitions from this 211 document, the AFI-based address lengths are specified in this 212 document. When new LCAF definitions are defined in other use case 213 documents, the AFI-based address lengths for any new AFI encoded 214 addresses are specified in those documents. 216 The first 6 bytes of an LISP Canonical Address are followed by a 217 variable number of fields of variable length: 219 0 1 2 3 220 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 221 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 222 | AFI = 16387 | Rsvd1 | Flags | 223 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 224 | Type | Rsvd2 | Length | 225 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 226 | . . . | 227 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 229 Rsvd1/Rsvd2: these 8-bit fields are reserved for future use and MUST 230 be transmitted as 0 and ignored on receipt. 232 Flags: this 8-bit field is for future definition and use. For now, 233 set to zero on transmission and ignored on receipt. 235 Type: this 8-bit field is specific to the LISP Canonical Address 236 formatted encodings. Currently allocated values are: 238 Type 0: Null Body Type 240 Type 1: AFI List Type 242 Type 2: Instance ID Type 244 Type 3: AS Number Type 246 Type 4: Application Data Type 248 Type 5: Geo Coordinates Type 250 Type 6: Opaque Key Type 252 Type 7: NAT-Traversal Type 254 Type 8: Nonce Locator Type 256 Type 9: Multicast Info Type 258 Type 10: Explicit Locator Path Type 260 Type 11: Security Key Type 262 Type 12: Source/Dest Key Type 264 Type 13: Replication List Entry Type 266 Type 14: JSON Data Model Type 268 Type 15: Key/Value Address Pair Type 270 Type 16: Encapsulation Format Type 272 Length: this 16-bit field is in units of bytes and covers all of the 273 LISP Canonical Address payload, starting and including the byte 274 after the Length field. When including the AFI, an LCAF encoded 275 address will have a minimum length of 8 bytes when the Length 276 field is 0. The 8 bytes include the AFI, Flags, Type, Rsvd1, 277 Rsvd2, and Length fields. When the AFI is not next to an encoded 278 address in a control message, then the encoded address will have a 279 minimum length of 6 bytes when the Length field is 0. The 6 bytes 280 include the Flags, Type, Rsvd1, Rsvd2, and Length fields. 282 [RFC6830] states RLOC records are sorted when encoded in control 283 messages so the locator-set has consistent order across all xTRs for 284 a given EID. The sort order is based on sort-key {afi, RLOC- 285 address}. When an RLOC is LCAF encoded, the sort-key is {afi, LCAF- 286 Type}. Therefore, when a locator-set has a mix of AFI records and 287 LCAF records, they are ordered from smallest to largest AFI value. 289 4. LISP Canonical Address Applications 291 4.1. Segmentation using LISP 293 When multiple organizations inside of a LISP site are using private 294 addresses [RFC1918] as EID-prefixes, their address spaces must remain 295 segregated due to possible address duplication. An Instance ID in 296 the address encoding can aid in making the entire AFI-based address 297 unique. 299 Another use for the Instance ID LISP Canonical Address Format is when 300 creating multiple segmented VPNs inside of a LISP site where keeping 301 EID-prefix based subnets is desirable. 303 Instance ID LISP Canonical Address Format: 305 0 1 2 3 306 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 307 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 308 | AFI = 16387 | Rsvd1 | Flags | 309 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 310 | Type = 2 | IID mask-len | Length | 311 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 312 | Instance ID | 313 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 314 | AFI = x | Address ... | 315 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 317 IID mask-len: if the AFI is set to 0, then this format is not 318 encoding an extended EID-prefix but rather an instance-ID range 319 where the 'IID mask-len' indicates the number of high-order bits 320 used in the Instance ID field for the range. The low-order bits 321 of the Instance ID field must be 0. 323 Length: length in bytes starting and including the byte after this 324 Length field. 326 Instance ID: the low-order 24-bits that can go into a LISP data 327 header when the I-bit is set. See [RFC6830] for details. The 328 reason for the length difference is so that the maximum number of 329 instances supported per mapping system is 2^32 while conserving 330 space in the LISP data header. This comes at the expense of 331 limiting the maximum number of instances per xTR to 2^24. If an 332 xTR is configured with multiple instance-IDs where the value in 333 the high-order 8 bits are the same, then the low-order 24 bits 334 MUST be unique. 336 AFI = x: x can be any AFI value from [AFI]. 338 This LISP Canonical Address Type can be used to encode either EID or 339 RLOC addresses. 341 Usage: When used as a lookup key, the EID is regarded as an extended- 342 EID in the mapping system. This encoding is used in EID records in 343 Map-Requests, Map-Replies, Map-Registers, and Map-Notify messages. 344 When LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system 345 mechanism, extended EIDs are used in Map-Referral messages. 347 4.2. Carrying AS Numbers in the Mapping Database 349 When an AS number is stored in the LISP Mapping Database System for 350 either policy or documentation reasons, it can be encoded in a LISP 351 Canonical Address. 353 AS Number LISP Canonical Address Format: 355 0 1 2 3 356 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 357 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 358 | AFI = 16387 | Rsvd1 | Flags | 359 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 360 | Type = 3 | Rsvd2 | Length | 361 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 362 | AS Number | 363 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 364 | AFI = x | Address ... | 365 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 367 Length: length in bytes starting and including the byte after this 368 Length field. 370 AS Number: the 32-bit AS number of the autonomous system that has 371 been assigned to either the EID or RLOC that follows. 373 AFI = x: x can be any AFI value from [AFI]. 375 The AS Number Canonical Address Type can be used to encode either EID 376 or RLOC addresses. The former is used to describe the LISP-ALT AS 377 number the EID-prefix for the site is being carried for. The latter 378 is used to describe the AS that is carrying RLOC based prefixes in 379 the underlying routing system. 381 Usage: This encoding can be used in EID or RLOC records in Map- 382 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 383 LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, 384 extended EIDs are used in Map-Referral messages. 386 4.3. Assigning Geo Coordinates to Locator Addresses 388 If an ETR desires to send a Map-Reply describing the Geo Coordinates 389 for each locator in its locator-set, it can use the Geo Coordinate 390 Type to convey physical location information. 392 Coordinates are specified using the WGS-84 (World Geodetic System) 393 reference coordinate system [WGS-84]. 395 Geo Coordinate LISP Canonical Address Format: 397 0 1 2 3 398 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 399 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 400 | AFI = 16387 | Rsvd1 | Flags | 401 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 402 | Type = 5 | Rsvd2 | Length | 403 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 404 |N| Latitude Degrees | Minutes | Seconds | 405 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 406 |E| Longitude Degrees | Minutes | Seconds | 407 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 408 | Altitude | 409 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 410 | AFI = x | Address ... | 411 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 413 Length: length in bytes starting and including the byte after this 414 Length field. 416 N: When set to 1 means North, otherwise South. 418 Latitude Degrees: Valid values range from 0 to 90 degrees above or 419 below the equator (northern or southern hemisphere, respectively). 421 Latitude Minutes: Valid values range from 0 to 59. 423 Latitude Seconds: Valid values range from 0 to 59. 425 E: When set to 1 means East, otherwise West. 427 Longitude Degrees: Valid values are from 0 to 180 degrees right or 428 left of the Prime Meridian. 430 Longitude Minutes: Valid values range from 0 to 59. 432 Longitude Seconds: Valid values range from 0 to 59. 434 Altitude: Height relative to sea level in meters. This is a two's 435 complement signed integer meaning that the altitude could be below 436 sea level. A value of 0x7fffffff indicates no Altitude value is 437 encoded. 439 AFI = x: x can be any AFI value from [AFI]. 441 The Geo Coordinates Canonical Address Type can be used to encode 442 either EID or RLOC addresses. When used for EID encodings, you can 443 determine the physical location of an EID along with the topological 444 location by observing the locator-set. 446 Usage: This encoding can be used in EID or RLOC records in Map- 447 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 448 LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, 449 extended EIDs are used in Map-Referral messages. 451 4.4. NAT Traversal Scenarios 453 When a LISP system is conveying global address and mapped port 454 information when traversing through a NAT device, the NAT-Traversal 455 LCAF Type is used. See [I-D.ermagan-lisp-nat-traversal] for details. 457 NAT-Traversal Canonical Address Format: 459 0 1 2 3 460 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 461 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 462 | AFI = 16387 | Rsvd1 | Flags | 463 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 464 | Type = 7 | Rsvd2 | Length | 465 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 466 | MS UDP Port Number | ETR UDP Port Number | 467 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 468 | AFI = x | Global ETR RLOC Address ... | 469 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 470 | AFI = x | MS RLOC Address ... | 471 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 472 | AFI = x | Private ETR RLOC Address ... | 473 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 474 | AFI = x | RTR RLOC Address 1 ... | 475 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 476 | AFI = x | RTR RLOC Address k ... | 477 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 479 Length: length in bytes starting and including the byte after this 480 Length field. 482 MS UDP Port Number: this is the UDP port number of the Map-Server 483 and is set to 4342. 485 ETR UDP Port Number: this is the port number returned to a LISP 486 system which was copied from the source port from a packet that 487 has flowed through a NAT device. 489 AFI = x: x can be any AFI value from [AFI]. 491 Global ETR RLOC Address: this is an address known to be globally 492 unique built by NAT-traversal functionality in a LISP router. 494 MS RLOC Address: this is the address of the Map-Server used in the 495 destination RLOC of a packet that has flowed through a NAT device. 497 Private ETR RLOC Address: this is an address known to be a private 498 address inserted in this LCAF by a LISP router that resides on the 499 private side of a NAT device. 501 RTR RLOC Address: this is an encapsulation address used by an ITR or 502 PITR which resides behind a NAT device. This address is known to 503 have state in a NAT device so packets can flow from it to the LISP 504 ETR behind the NAT. There can be one or more NAT Reencapsulating 505 Tunnel Router (RTR) [I-D.ermagan-lisp-nat-traversal] addresses 506 supplied in these set of fields. The number of RTRs encoded is 507 determined by parsing each field. When there are no RTRs 508 supplied, the RTR fields can be omitted and reflected by the LCAF 509 length field or an AFI of 0 can be used to indicate zero RTRs 510 encoded. 512 Usage: This encoding can be used in Info-Request and Info-Reply 513 messages. The mapping system does not store this information. The 514 information is used by an xTR and Map-Server to convey private and 515 public address information when traversing NAT and firewall devices. 517 4.5. Multicast Group Membership Information 519 Multicast group information can be published in the mapping database. 520 So a lookup on a group address EID can return a replication list of 521 RLOC group addresses or RLOC unicast addresses. The intent of this 522 type of unicast replication is to deliver packets to multiple ETRs at 523 receiver LISP multicast sites. The locator-set encoding for this EID 524 record type can be a list of ETRs when they each register with "Merge 525 Semantics". The encoding can be a typical AFI-encoded locator 526 address. When an RTR list is being registered (with multiple levels 527 according to [I-D.coras-lisp-re]), the Replication List Entry LCAF 528 type is used for locator encoding. 530 This LCAF encoding can be used to send broadcast packets to all 531 members of a subnet when an EID is away from its home subnet 532 location. 534 Multicast Info Canonical Address Format: 536 0 1 2 3 537 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 538 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 539 | AFI = 16387 | Rsvd1 | Flags | 540 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 541 | Type = 9 | Rsvd2 | Length | 542 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 543 | Instance-ID | 544 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 545 | Reserved | Source MaskLen| Group MaskLen | 546 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 547 | AFI = x | Source/Subnet Address ... | 548 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 549 | AFI = x | Group Address ... | 550 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 552 Length: length in bytes starting and including the byte after this 553 Length field. 555 Reserved: must be set to zero and ignored on receipt. 557 Instance ID: the low-order 24-bits that can go into a LISP data 558 header when the I-bit is set. See [RFC6830] for details. The use 559 of the Instance-ID in this LCAF type is to associate a multicast 560 forwarding entry for a given VPN. The instance-ID describes the 561 VPN and is registered to the mapping database system as a 3-tuple 562 of (Instance-ID, S-prefix, G-prefix). 564 Source MaskLen: the mask length of the source prefix that follows. 565 The length is the number of high-order mask bits set. 567 Group MaskLen: the mask length of the group prefix that follows. 568 The length is the number of high-order mask bits set. 570 AFI = x: x can be any AFI value from [AFI]. When a specific address 571 family has a multicast address semantic, this field must be either 572 a group address or a broadcast address. 574 Source/Subnet Address: is the source address or prefix for encoding 575 a (S,G) multicast entry. 577 Group Address: is the group address or group prefix for encoding 578 (S,G) or (*,G) multicast entries. 580 Usage: This encoding can be used in EID records in Map-Requests, Map- 581 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 582 [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended 583 EIDs are used in Map-Referral messages. 585 4.6. Traffic Engineering using Re-encapsulating Tunnels 587 For a given EID lookup into the mapping database, this LCAF can be 588 returned to provide a list of locators in an explicit re- 589 encapsulation path. See [I-D.farinacci-lisp-te] for details. 591 Explicit Locator Path (ELP) Canonical Address Format: 593 0 1 2 3 594 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 595 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 596 | AFI = 16387 | Rsvd1 | Flags | 597 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 598 | Type = 10 | Rsvd2 | Length | 599 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 600 | Rsvd3 |L|P|S| AFI = x | 601 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 602 | Reencap Hop 1 ... | 603 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 604 | Rsvd3 |L|P|S| AFI = x | 605 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 606 | Reencap Hop k ... | 607 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 609 Length: length in bytes starting and including the byte after this 610 Length field. 612 Rsvd3: this field is reserved for future use and MUST be transmitted 613 as 0 and ignored on receipt. 615 Lookup bit (L): this is the Lookup bit used to indicate to the user 616 of the ELP to not use this address for encapsulation but to look 617 it up in the mapping database system to obtain an encapsulating 618 RLOC address. 620 RLOC-Probe bit (P): this is the RLOC-probe bit which means the 621 Reencap Hop allows RLOC-probe messages to be sent to it. When the 622 R-bit is set to 0, RLOC-probes must not be sent. When a Reencap 623 Hop is an anycast address then multiple physical Reencap Hops are 624 using the same RLOC address. In this case, RLOC-probes are not 625 needed because when the closest RLOC address is not reachable 626 another RLOC address can be reachable. 628 Strict bit (S): this is the strict bit which means the associated 629 Reencap Hop is required to be used. If this bit is 0, the 630 reencapsulator can skip this Reencap Hop and go to the next one in 631 the list. 633 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 634 its own encoding of a multicast address, this field must be either 635 a group address or a broadcast address. 637 Usage: This encoding can be used in RLOC records in Map-Requests, 638 Map-Replies, Map-Registers, and Map-Notify messages. This encoding 639 does not need to be understood by the mapping system for mapping 640 database lookups since this LCAF type is not a lookup key. 642 4.7. Storing Security Data in the Mapping Database 644 When a locator in a locator-set has a security key associated with 645 it, this LCAF will be used to encode key material. See 646 [I-D.ietf-lisp-ddt] for details. 648 Security Key Canonical Address Format: 650 0 1 2 3 651 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 652 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 653 | AFI = 16387 | Rsvd1 | Flags | 654 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 655 | Type = 11 | Rsvd2 | Length | 656 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 657 | Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R| 658 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 659 | Key Length | Key Material ... | 660 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 661 | ... Key Material | 662 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 663 | AFI = x | Locator Address ... | 664 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 666 Length: length in bytes starting and including the byte after this 667 Length field. 669 Key Count: the Key Count field declares the number of Key sections 670 included in this LCAF. A key section is made up of "Key Length" 671 and "Key Material" fields. 673 Rsvd3: this field is reserved for future use and MUST be transmitted 674 as 0 and ignored on receipt. 676 Key Algorithm: the Algorithm field identifies the key's 677 cryptographic algorithm and specifies the format of the Public Key 678 field. Refer to the [I-D.ietf-lisp-ddt] and 679 [I-D.ietf-lisp-crypto] use cases for definitions of this field. 681 Rsvd4: this field is reserved for future use and MUST be transmitted 682 as 0 and ignored on receipt. 684 R bit: this is the revoke bit and, if set, it specifies that this 685 Key is being Revoked. 687 Key Length: this field determines the length in bytes of the Key 688 Material field. 690 Key Material: the Key Material field stores the key material. The 691 format of the key material stored depends on the Key Algorithm 692 field. 694 AFI = x: x can be any AFI value from [AFI]. This is the locator 695 address that owns the encoded security key. 697 Usage: This encoding can be used in EID or RLOC records in Map- 698 Requests, Map-Replies, Map-Registers, and Map-Notify messages. When 699 LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, 700 extended EIDs are used in Map-Referral messages. 702 4.8. Source/Destination 2-Tuple Lookups 704 When both a source and destination address of a flow need 705 consideration for different locator-sets, this 2-tuple key is used in 706 EID fields in LISP control messages. When the Source/Dest key is 707 registered to the mapping database, it can be encoded as a source- 708 prefix and destination-prefix. When the Source/Dest is used as a key 709 for a mapping database lookup the source and destination come from a 710 data packet. 712 Source/Dest Key Canonical Address Format: 714 0 1 2 3 715 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 716 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 717 | AFI = 16387 | Rsvd1 | Flags | 718 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 719 | Type = 12 | Rsvd2 | Length | 720 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 721 | Reserved | Source-ML | Dest-ML | 722 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 723 | AFI = x | Source-Prefix ... | 724 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 725 | AFI = y | Destination-Prefix ... | 726 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 728 Length: length in bytes starting and including the byte after this 729 Length field. 731 Reserved: must be set to zero and ignore on receipt. 733 Source-ML: the mask length of the source prefix that follows. The 734 length is the number of high-order mask bits set. 736 Dest-ML: the mask length of the destination prefix that follows. 737 The length is the number of high-order mask bits set. 739 AFI = x: x can be any AFI value from [AFI]. 741 AFI = y: y can be any AFI value from [AFI]. When a specific address 742 family has a multicast address semantic, this field must be either 743 a group address or a broadcast address. 745 Usage: This encoding can be used in EID records in Map-Requests, Map- 746 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 747 [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended 748 EIDs are used in Map-Referral messages. Refer to 749 [I-D.farinacci-lisp-te] for usage details of this LCAF type. 751 4.9. Replication List Entries for Multicast Forwarding 753 The Replication List Entry LCAF type is an encoding for a locator 754 being used for unicast replication according to the specification in 755 [I-D.coras-lisp-re]. This locator encoding is pointed to by a 756 Multicast Info LCAF Type and is registered by Re-encapsulating Tunnel 757 Routers (RTRs) that are participating in an overlay distribution 758 tree. Each RTR will register its locator address and its configured 759 level in the distribution tree. 761 Replication List Entry Address Format: 763 0 1 2 3 764 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 765 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 766 | AFI = 16387 | Rsvd1 | Flags | 767 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 768 | Type = 13 | Rsvd2 | Length | 769 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 770 | Rsvd3 | Rsvd4 | Level Value | 771 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 772 | AFI = x | RTR/ETR #1 ... | 773 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 774 | Rsvd3 | Rsvd4 | Level Value | 775 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 776 | AFI = x | RTR/ETR #n ... | 777 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 779 Length: length in bytes starting and including the byte after this 780 Length field. 782 Rsvd3/Rsvd4: must be set to zero and ignore on receipt. 784 Level Value: this value is associated with the level within the 785 overlay distribution tree hierarchy where the RTR resides. The 786 level numbers are ordered from lowest value being close to the ITR 787 (meaning that ITRs replicate to level-0 RTRs) and higher levels 788 are further downstream on the distribution tree closer to ETRs of 789 multicast receiver sites. 791 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 792 own encoding of either a unicast or multicast locator address. 793 For efficiency reasons, all RTR/ETR entries for the same level 794 should be combined together by a Map-Server to avoid searching 795 through the entire multi-level list of locator entries in a Map- 796 Reply message. 798 Usage: This encoding can be used in RLOC records in Map-Requests, 799 Map-Replies, Map-Registers, and Map-Notify messages. 801 4.10. Applications for AFI List Type 803 4.10.1. Binding IPv4 and IPv6 Addresses 805 When header translation between IPv4 and IPv6 is desirable a LISP 806 Canonical Address can use the AFI List Type to carry a variable 807 number of AFIs in one LCAF AFI. 809 Address Binding LISP Canonical Address Format: 811 0 1 2 3 812 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 813 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 814 | AFI = 16387 | Rsvd1 | Flags | 815 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 816 | Type = 1 | Rsvd2 | Length | 817 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 818 | AFI = 1 | IPv4 Address ... | 819 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 820 | ... IPv4 Address | AFI = 2 | 821 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 822 | IPv6 Address ... | 823 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 824 | ... IPv6 Address ... | 825 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 826 | ... IPv6 Address ... | 827 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 828 | ... IPv6 Address | 829 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 831 Length: length in bytes starting and including the byte after this 832 Length field. 834 This type of address format can be included in a Map-Request when the 835 address is being used as an EID, but the Mapping Database System 836 lookup destination can use only the IPv4 address. This is so a 837 Mapping Database Service Transport System, such as LISP-ALT 838 [RFC6836], can use the Map-Request destination address to route the 839 control message to the desired LISP site. 841 Usage: This encoding can be used in EID or RLOC records in Map- 842 Requests, Map-Replies, Map-Registers, and Map-Notify messages. See 843 subsections in this section for specific use cases. 845 4.10.2. Layer-2 VPNs 847 When MAC addresses are stored in the LISP Mapping Database System, 848 the AFI List Type can be used to carry AFI 6. 850 MAC Address LISP Canonical Address Format: 852 0 1 2 3 853 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 854 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 855 | AFI = 16387 | Rsvd1 | Flags | 856 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 857 | Type = 1 | Rsvd2 | Length | 858 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 859 | AFI = 6 | Layer-2 MAC Address ... | 860 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 861 | ... Layer-2 MAC Address | 862 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 864 Length: length in bytes starting and including the byte after this 865 Length field. 867 This address format can be used to connect layer-2 domains together 868 using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. 869 In this use case, a MAC address is being used as an EID, and the 870 locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or 871 even another MAC address being used as an RLOC. See 872 [I-D.portoles-lisp-eid-mobility] for how layer-2 VPNs operate when 873 doing EID mobility. Refer to the Security Considerations section for 874 privacy protection. 876 4.10.3. ASCII Names in the Mapping Database 878 If DNS names [RFC1035] or URIs [RFC3986] are stored in the LISP 879 Mapping Database System, the AFI List Type can be used to carry an 880 ASCII string. 882 ASCII LISP Canonical Address Format: 884 0 1 2 3 885 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 886 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 887 | AFI = 16387 | Rsvd1 | Flags | 888 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 889 | Type = 1 | Rsvd2 | Length | 890 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 891 | AFI = 17 | DNS Name or URI ... | 892 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 894 Length: length in bytes starting and including the byte after this 895 Length field. 897 An example for using DNS names is when an ETR registers a mapping 898 with an EID-record encoded as (AFI=1, 10.0.0.0/8) with a RLOC-record 899 (AFI=17, "router.abc.com"). 901 4.10.4. Using Recursive LISP Canonical Address Encodings 903 When any combination of above is desirable, the AFI List Type value 904 can be used to carry within the LCAF AFI another LCAF AFI (for 905 example, Application Specific Data see Section 5.1. 907 Recursive LISP Canonical Address Format: 909 0 1 2 3 910 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 911 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 912 | AFI = 16387 | Rsvd1 | Flags | 913 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 914 | Type = 1 | Rsvd2 | Length | 915 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 916 | AFI = 16387 | Rsvd1 | Flags | 917 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 918 | Type = 4 | Rsvd2 | Length2 | 919 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 920 | IP TOS, IPv6 TC or Flow Label | Protocol | 921 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 922 | Local Port (lower-range) | Local Port (upper-range) | 923 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 924 | Remote Port (lower-range) | Remote Port (upper-range) | 925 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 926 | AFI = 1 | IPv4 Address ... | 927 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 928 | ... IPv4 Address | 929 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 931 Length: length in bytes starting and including the byte after this 932 Length field. 934 Length2: length in bytes starting and including the byte after this 935 Length2 field. 937 This format could be used by a Mapping Database Transport System, 938 such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is used as 939 an EID and placed in the Map-Request destination address by the 940 sending LISP system. The ALT system can deliver the Map-Request to 941 the LISP destination site independent of the Application Data Type 942 AFI payload values. When this AFI is processed by the destination 943 LISP site, it can return different locator-sets based on the type of 944 application or level of service that is being requested. 946 4.10.5. Compatibility Mode Use Case 948 A LISP system should use the AFI List Type format when sending to 949 LISP systems that do not support a particular LCAF Type used to 950 encode locators. This allows the receiving system to be able to 951 parse a locator address for encapsulation purposes. The list of AFIs 952 in an AFI List LCAF Type has no semantic ordering and a receiver 953 should parse each AFI element no matter what the ordering. 955 Compatibility Mode Address Format: 957 0 1 2 3 958 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 959 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 960 | AFI = 16387 | Rsvd1 | Flags | 961 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 962 | Type = 1 | Rsvd2 | Length | 963 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 964 | AFI = 16387 | Rsvd1 | Flags | 965 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 966 | Type = 5 | Rsvd2 | Length2 | 967 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 968 |N| Latitude Degrees | Minutes | Seconds | 969 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 970 |E| Longitude Degrees | Minutes | Seconds | 971 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 972 | Altitude | 973 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 974 | AFI = 0 | AFI = 1 | 975 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 976 | IPv4 Address | 977 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 979 Length: length in bytes starting and including the byte after this 980 Length field. 982 Length2: length in bytes starting and including the byte after this 983 Length2 field. 985 If a system does not recognized the Geo Coordinate LCAF Type that is 986 accompanying a locator address, an encoder can include the Geo 987 Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI 988 in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in 989 the list is encoded with a valid AFI value to identify the locator 990 address. 992 A LISP system is required to support the AFI List LCAF Type to use 993 this procedure. It would skip over 10 bytes of the Geo Coordinate 994 LCAF Type to get to the locator address encoding (an IPv4 locator 995 address). A LISP system that does support the Geo Coordinate LCAF 996 Type can support parsing the locator address within the Geo 997 Coordinate LCAF encoding or in the locator encoding that follows in 998 the AFI List LCAF. 1000 5. Experimental LISP Canonical Address Applications 1002 5.1. Convey Application Specific Data 1004 When a locator-set needs to be conveyed based on the type of 1005 application or the Per-Hop Behavior (PHB) of a packet, the 1006 Application Data Type can be used. 1008 Application Data LISP Canonical Address Format: 1010 0 1 2 3 1011 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1012 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1013 | AFI = 16387 | Rsvd1 | Flags | 1014 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1015 | Type = 4 | Rsvd2 | Length | 1016 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1017 | IP TOS, IPv6 TC, or Flow Label | Protocol | 1018 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1019 | Local Port (lower-range) | Local Port (upper-range) | 1020 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1021 | Remote Port (lower-range) | Remote Port (upper-range) | 1022 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1023 | AFI = x | Address ... | 1024 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1026 Length: length in bytes starting and including the byte after this 1027 Length field. 1029 IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS 1030 field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow 1031 Label used in an IPv6 header. 1033 Local Port/Remote Port Ranges: these fields are from the TCP, UDP, 1034 or SCTP transport header. A range can be specified by using a 1035 lower value and an upper value. When a single port is encoded, 1036 the lower and upper value fields are the same. 1038 AFI = x: x can be any AFI value from [AFI]. 1040 The Application Data Canonical Address Type is used for an EID 1041 encoding when an ITR wants a locator-set for a specific application. 1042 When used for an RLOC encoding, the ETR is supplying a locator-set 1043 for each specific application is has been configured to advertise. 1045 Usage: This encoding can be used in EID records in Map-Requests, Map- 1046 Replies, Map-Registers, and Map-Notify messages. When LISP-DDT 1047 [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended 1048 EIDs are used in Map-Referral messages. This LCAF type is used as a 1049 lookup key to the mapping system that can return a longest-match or 1050 exact-match entry. 1052 5.2. Generic Database Mapping Lookups 1054 When the LISP Mapping Database system holds information accessed by a 1055 generic formatted key (where the key is not the usual IPv4 or IPv6 1056 address), an opaque key may be desirable. 1058 Opaque Key LISP Canonical Address Format: 1060 0 1 2 3 1061 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1062 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1063 | AFI = 16387 | Rsvd1 | Flags | 1064 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1065 | Type = 6 | Rsvd2 | Length | 1066 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1067 | Key Field Num | Key Wildcard Fields | Key . . . | 1068 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1069 | . . . Key | 1070 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1072 Length: length in bytes starting and including the byte after this 1073 Length field. 1075 Key Field Num: the value of this field is the number of "Key" sub- 1076 fields minus 1, the "Key" field can be broken up into. So if this 1077 field has a value of 0, there is 1 sub-field in the "Key". The 1078 width of the sub-fields are fixed length. So for a key size of 8 1079 bytes, with a Key Field Num of 3, allows 4 sub-fields of 2 bytes 1080 each in length. Allowing for a reasonable number of 16 sub-field 1081 separators, valid values range from 0 to 15. 1083 Key Wildcard Fields: describes which fields in the key are not used 1084 as part of the key lookup. This wildcard encoding is a bitfield. 1085 Each bit is a don't-care bit for a corresponding field in the key. 1086 Bit 0 (the low-order bit) in this bitfield corresponds the first 1087 field, the low-order field in the key, bit 1 the second field, and 1088 so on. When a bit is set in the bitfield it is a don't-care bit 1089 and should not be considered as part of the database lookup. When 1090 the entire 16-bits is set to 0, then all bits of the key are used 1091 for the database lookup. 1093 Key: the variable length key used to do a LISP Database Mapping 1094 lookup. The length of the key is the value n (as shown above). 1096 Usage: This is an experimental type where the usage has not been 1097 defined yet. 1099 5.3. PETR Admission Control Functionality 1101 When a public PETR device wants to verify who is encapsulating to it, 1102 it can check for a specific nonce value in the LISP encapsulated 1103 packet. To convey the nonce to admitted ITRs or PITRs, this LCAF is 1104 used in a Map-Register or Map-Reply locator-record. 1106 Nonce Locator Canonical Address Format: 1108 0 1 2 3 1109 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1110 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1111 | AFI = 16387 | Rsvd1 | Flags | 1112 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1113 | Type = 8 | Rsvd2 | Length | 1114 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1115 | Reserved | Nonce | 1116 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1117 | AFI = x | Address ... | 1118 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1120 Length: length in bytes starting and including the byte after this 1121 Length field. 1123 Reserved: must be set to zero and ignore on receipt. 1125 Nonce: this is a nonce value returned by an ETR in a Map-Reply 1126 locator-record to be used by an ITR or PITR when encapsulating to 1127 the locator address encoded in the AFI field of this LCAF type. 1128 This nonce value is inserted in the nonce field in the LISP header 1129 encapsulation. 1131 AFI = x: x can be any AFI value from [AFI]. 1133 Usage: This is an experimental type where the usage has not been 1134 defined yet. 1136 5.4. Data Model Encoding 1138 This type allows a JSON data model to be encoded either as an EID or 1139 RLOC. 1141 JSON Data Model Type Address Format: 1143 0 1 2 3 1144 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1145 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1146 | AFI = 16387 | Rsvd1 | Flags | 1147 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1148 | Type = 14 | Rsvd2 |B| Length | 1149 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1150 | JSON length | JSON binary/text encoding ... | 1151 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1152 | AFI = x | Optional Address ... | 1153 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1155 Length: length in bytes starting and including the byte after this 1156 Length field. 1158 B bit: indicates that the JSON field is binary encoded according to 1159 [JSON-BINARY] when the bit is set to 1. Otherwise the encoding is 1160 based on text encoding according to [RFC7159]. 1162 JSON length: length in octets of the following 'JSON binary/text 1163 encoding' field. 1165 JSON binary/text encoding field: a variable length field that 1166 contains either binary or text encodings. 1168 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 1169 own encoding of either a unicast or multicast locator address. 1170 All RTR/ETR entries for the same level should be combined together 1171 by a Map-Server to avoid searching through the entire multi-level 1172 list of locator entries in a Map-Reply message. 1174 Usage: This is an experimental type where the usage has not been 1175 defined yet. An example mapping is an EID-record encoded as a 1176 distinguished-name "cpe-rotuer" and a RLOC-record encoded as a JSON 1177 string "{ "router-address" : "1.1.1.1", "router-mask" : "8" }". 1179 5.5. Encoding Key/Value Address Pairs 1181 The Key/Value pair is, for example, useful for attaching attributes 1182 to other elements of LISP packets, such as EIDs or RLOCs. When 1183 attaching attributes to EIDs or RLOCs, it's necessary to distinguish 1184 between the element that should be used as EID or RLOC, and hence as 1185 the key for lookups, and additional attributes. This is especially 1186 the case when the difference cannot be determined from the types of 1187 the elements, such as when two IP addresses are being used. 1189 Key/Value Pair Address Format: 1191 0 1 2 3 1192 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1193 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1194 | AFI = 16387 | Rsvd1 | Flags | 1195 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1196 | Type = 15 | Rsvd2 | Length | 1197 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1198 | AFI = x | Address as Key ... | 1199 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1200 | AFI = y | Address as Value ... | 1201 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1203 Length: length in bytes starting and including the byte after this 1204 Length field. 1206 AFI = x: x is the "Address as Key" AFI that can have any value from 1207 [AFI]. A specific AFI has its own encoding of either a unicast or 1208 multicast locator address. All RTR/ETR entries for the same level 1209 should be combined together by a Map-Server to avoid searching 1210 through the entire multi-level list of locator entries in a Map- 1211 Reply message. 1213 Address as Key: this AFI-encoded address will be attached with the 1214 attributes encoded in "Address as Value" which follows this field. 1216 AFI = y: y is the "Address of Value" AFI that can have any value 1217 from [AFI]. A specific AFI has its own encoding of either a 1218 unicast or multicast locator address. All RTR/ETR entries for the 1219 same level should be combined together by a Map-Server to avoid 1220 searching through the entire multi-level list of locator entries 1221 in a Map-Reply message. 1223 Address as Value: this AFI-encoded address will be the attribute 1224 address that goes along with "Address as Key" which precedes this 1225 field. 1227 Usage: This is an experimental type where the usage has not been 1228 defined yet. 1230 5.6. Multiple Data-Planes 1232 Overlays are becoming popular in many parts of the network which have 1233 created an explosion of data-plane encapsulation headers. Since the 1234 LISP mapping system can hold many types of address formats, it can 1235 represent the encapsulation format supported by an RLOC as well. 1236 When an encapsulator receives a Map-Reply with an Encapsulation 1237 Format LCAF Type encoded in an RLOC-record, it can select an 1238 encapsulation format, that it can support, from any of the 1239 encapsulation protocols which have the bit set to 1 in this LCAF 1240 type. 1242 Encapsulation Format Address Format: 1244 0 1 2 3 1245 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1246 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1247 | AFI = 16387 | Rsvd1 | Flags | 1248 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1249 | Type = 16 | Rsvd2 | Length | 1250 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1251 | Reserved-for-Future-Encapsulations |U|G|N|v|V|l|L| 1252 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1253 | AFI = x | Address ... | 1254 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1256 Length: length in bytes starting and including the byte after this 1257 Length field. 1259 Reserved-for-Future-Encapsulations: must be set to zero and ignored 1260 on receipt. This field will get bits allocated to future 1261 encapsulations, as they are created. 1263 L: The RLOCs listed in the AFI-encoded addresses in the next longword 1264 can accept layer 3 LISP encapsulation using destination UDP port 1265 4341 [RFC6830]. 1267 l: The RLOCs listed in the AFI-encoded addresses in the next longword 1268 can accept layer 2 LISP encapsulation using destination UDP port 1269 8472 [I-D.smith-lisp-layer2]. 1271 V: The RLOCs listed in the AFI-encoded addresses in the next longword 1272 can accept VXLAN encapsulation using destination UDP port 4789 1273 [RFC7348]. 1275 v: The RLOCs listed in the AFI-encoded addresses in the next longword 1276 can accept VXLAN-GPE encapsulation using destination UDP port 4790 1277 [I-D.quinn-vxlan-gpe]. 1279 N: The RLOCs listed in the AFI-encoded addresses in the next longword 1280 can accept NV-GRE encapsulation using IPv4/ IPv6 protocol number 1281 47 [RFC7637]. 1283 G: The RLOCs listed in the AFI-encoded addresses in the next longword 1284 can accept GENEVE encapsulation using destination UDP port 6081 1285 [I-D.gross-geneve]. 1287 U: The RLOCs listed in the AFI-encoded addresses in the next longword 1288 can accept GUE encapsulation using destination UDP port TBD 1289 [I-D.herbert-gue]. 1291 Usage: This encoding can be used in RLOC records in Map-Requests, 1292 Map-Replies, Map-Registers, and Map-Notify messages. 1294 6. Security Considerations 1296 There are no security considerations for this specification. The 1297 security considerations are documented for the protocols that use 1298 LISP Canonical Addressing. 1300 The use of the Geo-Coordinates LCAF Type may raise physical privacy 1301 issues. Care should be taken when configuring the mapping system to 1302 use specific policy parameters so geo-location information is not 1303 returned gratuitously. It is recommended that any documents that 1304 specify the use of the Geo-Coordinates LCAF Type should consider the 1305 applicability of the BCP160 [RFC6280] for location-based privacy 1306 protection. 1308 7. IANA Considerations 1310 This document defines a canonical address format encoding used in 1311 LISP control messages and in the encoding of lookup keys for the LISP 1312 Mapping Database System. Such address format is based on a fixed AFI 1313 (16387) and a LISP LCAF Type field. 1315 The LISP LCAF Type field is an 8-bit field specific to the LISP 1316 Canonical Address formatted encodings, for which IANA is to create 1317 and maintain a new registry (as outlined in [RFC5226]) entitled "LISP 1318 LCAF Type". Initial values for the LISP LCAF Type registry are given 1319 below. Future assignments are to be made through expert review with 1320 a specification required publication. Assignments consist of a LISP 1321 LCAF Type name and its associated value: 1323 +-------+------------------------------+------------+ 1324 | Value | LISP LCAF Type Name | Definition | 1325 +-------+------------------------------+------------+ 1326 | 0 | Null Body Type | Section 3 | 1327 | 1 | AFI List Type | Section 3 | 1328 | 2 | Instance ID Type | Section 3 | 1329 | 3 | AS Number Type | Section 3 | 1330 | 5 | Geo Coordinates Type | Section 3 | 1331 | 7 | NAT-Traversal Type | Section 3 | 1332 | 9 | Multicast Info Type | Section 3 | 1333 | 10 | Explicit Locator Path Type | Section 3 | 1334 | 11 | Security Key Type | Section 3 | 1335 | 12 | Source/Dest Key Type | Section 3 | 1336 | 13 | Replication List Entry Type | Section 3 | 1337 +-------+------------------------------+------------+ 1339 Table 1: LISP LCAF Type Initial Values 1341 8. References 1343 8.1. Normative References 1345 [BCP160] "An Architecture for Location and Location Privacy in 1346 Internet Applications", Best Current Practices 1347 https://www.rfc-editor.org/bcp/bcp160.txt, July 2011. 1349 [RFC1035] Mockapetris, P., "Domain names - implementation and 1350 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035, 1351 November 1987, . 1353 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G., 1354 and E. Lear, "Address Allocation for Private Internets", 1355 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996, 1356 . 1358 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1359 Requirement Levels", BCP 14, RFC 2119, 1360 DOI 10.17487/RFC2119, March 1997, 1361 . 1363 [RFC3232] Reynolds, J., Ed., "Assigned Numbers: RFC 1700 is Replaced 1364 by an On-line Database", RFC 3232, DOI 10.17487/RFC3232, 1365 January 2002, . 1367 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform 1368 Resource Identifier (URI): Generic Syntax", STD 66, 1369 RFC 3986, DOI 10.17487/RFC3986, January 2005, 1370 . 1372 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an 1373 IANA Considerations Section in RFCs", BCP 26, RFC 5226, 1374 DOI 10.17487/RFC5226, May 2008, 1375 . 1377 [RFC6280] Barnes, R., Lepinski, M., Cooper, A., Morris, J., 1378 Tschofenig, H., and H. Schulzrinne, "An Architecture for 1379 Location and Location Privacy in Internet Applications", 1380 BCP 160, RFC 6280, DOI 10.17487/RFC6280, July 2011, 1381 . 1383 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The 1384 Locator/ID Separation Protocol (LISP)", RFC 6830, 1385 DOI 10.17487/RFC6830, January 2013, 1386 . 1388 [RFC6836] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, 1389 "Locator/ID Separation Protocol Alternative Logical 1390 Topology (LISP+ALT)", RFC 6836, DOI 10.17487/RFC6836, 1391 January 2013, . 1393 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data 1394 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March 1395 2014, . 1397 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, 1398 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual 1399 eXtensible Local Area Network (VXLAN): A Framework for 1400 Overlaying Virtualized Layer 2 Networks over Layer 3 1401 Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014, 1402 . 1404 [RFC7637] Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network 1405 Virtualization Using Generic Routing Encapsulation", 1406 RFC 7637, DOI 10.17487/RFC7637, September 2015, 1407 . 1409 8.2. Informative References 1411 [AFI] IANA, , "Address Family Identifier (AFIs)", ADDRESS FAMILY 1412 NUMBERS http://www.iana.org/assignments/address-family- 1413 numbers/address-family-numbers.xhtml?, Febuary 2007. 1415 [I-D.coras-lisp-re] 1416 Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J., 1417 Maino, F., and D. Farinacci, "LISP Replication 1418 Engineering", draft-coras-lisp-re-08 (work in progress), 1419 November 2015. 1421 [I-D.ermagan-lisp-nat-traversal] 1422 Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, 1423 F., and C. White, "NAT traversal for LISP", draft-ermagan- 1424 lisp-nat-traversal-11 (work in progress), August 2016. 1426 [I-D.farinacci-lisp-te] 1427 Farinacci, D., Kowal, M., and P. Lahiri, "LISP Traffic 1428 Engineering Use-Cases", draft-farinacci-lisp-te-11 (work 1429 in progress), September 2016. 1431 [I-D.gross-geneve] 1432 Gross, J., Sridhar, T., Garg, P., Wright, C., Ganga, I., 1433 Agarwal, P., Duda, K., Dutt, D., and J. Hudson, "Geneve: 1434 Generic Network Virtualization Encapsulation", draft- 1435 gross-geneve-02 (work in progress), October 2014. 1437 [I-D.herbert-gue] 1438 Herbert, T., Yong, L., and O. Zia, "Generic UDP 1439 Encapsulation", draft-herbert-gue-03 (work in progress), 1440 March 2015. 1442 [I-D.ietf-lisp-crypto] 1443 Farinacci, D. and B. Weis, "LISP Data-Plane 1444 Confidentiality", draft-ietf-lisp-crypto-10 (work in 1445 progress), October 2016. 1447 [I-D.ietf-lisp-ddt] 1448 Fuller, V., Lewis, D., Ermagan, V., Jain, A., and A. 1449 Smirnov, "LISP Delegated Database Tree", draft-ietf-lisp- 1450 ddt-08 (work in progress), September 2016. 1452 [I-D.portoles-lisp-eid-mobility] 1453 Portoles-Comeras, M., Ashtaputre, V., Moreno, V., Maino, 1454 F., and D. Farinacci, "LISP L2/L3 EID Mobility Using a 1455 Unified Control Plane", draft-portoles-lisp-eid- 1456 mobility-01 (work in progress), October 2016. 1458 [I-D.quinn-vxlan-gpe] 1459 Quinn, P., Manur, R., Kreeger, L., Lewis, D., Maino, F., 1460 Smith, M., Agarwal, P., Yong, L., Xu, X., Elzur, U., Garg, 1461 P., and D. Melman, "Generic Protocol Extension for VXLAN", 1462 draft-quinn-vxlan-gpe-04 (work in progress), February 1463 2015. 1465 [I-D.smith-lisp-layer2] 1466 Smith, M., Dutt, D., Farinacci, D., and F. Maino, "Layer 2 1467 (L2) LISP Encapsulation Format", draft-smith-lisp- 1468 layer2-03 (work in progress), September 2013. 1470 [JSON-BINARY] 1471 "Universal Binary JSON Specification", 1472 URL http://ubjson.org. 1474 [WGS-84] Geodesy and Geophysics Department, DoD., "World Geodetic 1475 System 1984", NIMA TR8350.2, January 2000, . 1478 Appendix A. Acknowledgments 1480 The authors would like to thank Vince Fuller, Gregg Schudel, Jesper 1481 Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for 1482 their technical and editorial commentary. 1484 The authors would like to thank Victor Moreno for discussions that 1485 lead to the definition of the Multicast Info LCAF type. 1487 The authors would like to thank Parantap Lahiri and Michael Kowal for 1488 discussions that lead to the definition of the Explicit Locator Path 1489 (ELP) LCAF type. 1491 The authors would like to thank Fabio Maino and Vina Ermagan for 1492 discussions that lead to the definition of the Security Key LCAF 1493 type. 1495 The authors would like to thank Albert Cabellos-Aparicio and Florin 1496 Coras for discussions that lead to the definition of the Replication 1497 List Entry LCAF type. 1499 Thanks goes to Michiel Blokzijl and Alberto Rodriguez-Natal for 1500 suggesting new LCAF types. 1502 Thanks also goes to Terry Manderson for assistance obtaining a LISP 1503 AFI value from IANA. 1505 Appendix B. Document Change Log 1507 [RFC Editor: Please delete this section on publication as RFC.] 1509 B.1. Changes to draft-ietf-lisp-lcaf-21.txt 1511 o Submitted November 2016. 1513 o Reflect Alexey's DISCUSS comments. 1515 o Add text to intro section that says the details for any LCAF type 1516 can be found in other use-case documents. 1518 o Provide general examples for JSON and DNS LCAF types. 1520 B.2. Changes to draft-ietf-lisp-lcaf-20.txt 1522 o Submitted October 2016. 1524 o Put in references to DNS names and URIs per Alexey's comment. 1526 B.3. Changes to draft-ietf-lisp-lcaf-19.txt 1528 o Submitted October 2016. 1530 o Make it more clear that any use-case documents that use the Geo- 1531 Coordinates LCAF type should discuss RFC6280 compliance. 1533 B.4. Changes to draft-ietf-lisp-lcaf-18.txt 1535 o Submitted October 2016 after October 13th telechat. 1537 o Addressed comments from Ben Campbell, Jari Arrko, Stephen Farrel, 1538 Peter Yee, Dale Worley, Mirja Kuehlewind, and Suresh Krishnan. 1540 B.5. Changes to draft-ietf-lisp-lcaf-17.txt 1542 o Submitted October 2016. 1544 o Addressed comments from Gen-ART reviewer Peter Yee. 1546 o Addressed IESG last-call comments from Suresh Krishnan. 1548 B.6. Changes to draft-ietf-lisp-lcaf-16.txt 1550 o Submitted October 2016. 1552 o Addressed comments from Security Directorate reviewer David 1553 Mandelberg. 1555 B.7. Changes to draft-ietf-lisp-lcaf-15.txt 1557 o Submitted September 2016. 1559 o Addressed comments from Routing Directorate reviewer Stig Venass. 1561 B.8. Changes to draft-ietf-lisp-lcaf-14.txt 1563 o Submitted July 2016. 1565 o Fix IDnits errors and comments from Luigi Iannone, document 1566 shepherd. 1568 B.9. Changes to draft-ietf-lisp-lcaf-13.txt 1570 o Submitted May 2016. 1572 o Explain the Instance-ID LCAF Type is 32-bits in length and the 1573 Instance-ID field in the LISP encapsulation header is 24-bits. 1575 B.10. Changes to draft-ietf-lisp-lcaf-12.txt 1577 o Submitted March 2016. 1579 o Updated references and document timer. 1581 o Removed the R, J, and L bits from the Multicast Info Type LCAF 1582 since working group decided to not go forward with draft- 1583 farinacci-lisp-mr-signaling-03.txt in favor of draft- ietf-lisp- 1584 signal-free-00.txt. 1586 B.11. Changes to draft-ietf-lisp-lcaf-11.txt 1588 o Submitted September 2015. 1590 o Reflecting comments from Prague LISP working group. 1592 o Readying document for a LISP LCAF registry, RFC publication, and 1593 for new use cases that will be defined in the new charter. 1595 B.12. Changes to draft-ietf-lisp-lcaf-10.txt 1597 o Submitted June 2015. 1599 o Fix coauthor Job's contact information. 1601 B.13. Changes to draft-ietf-lisp-lcaf-09.txt 1603 o Submitted June 2015. 1605 o Fix IANA Considerations section to request a registry to allocate 1606 and track LCAF Type values. 1608 B.14. Changes to draft-ietf-lisp-lcaf-08.txt 1610 o Submitted April 2015. 1612 o Comment from Florin. The Application Data Type length field has a 1613 typo. The field should be labeled "12 + n" and not "8 + n". 1615 o Fix length fields in the sections titled "Using Recursive LISP 1616 Canonical Address Encodings", "Generic Database Mapping Lookups", 1617 and "Data Model Encoding". 1619 B.15. Changes to draft-ietf-lisp-lcaf-07.txt 1621 o Submitted December 2014. 1623 o Add a new LCAF Type called "Encapsulation Format" so decapsulating 1624 xTRs can inform encapsulating xTRs what data-plane encapsulations 1625 they support. 1627 B.16. Changes to draft-ietf-lisp-lcaf-06.txt 1629 o Submitted October 2014. 1631 o Make it clear how sorted RLOC records are done when LCAFs are used 1632 as the RLOC record. 1634 B.17. Changes to draft-ietf-lisp-lcaf-05.txt 1636 o Submitted May 2014. 1638 o Add a length field of the JSON payload that can be used for either 1639 binary or text encoding of JSON data. 1641 B.18. Changes to draft-ietf-lisp-lcaf-04.txt 1643 o Submitted January 2014. 1645 o Agreement among ELP implementors to have the AFI 16-bit field 1646 adjacent to the address. This will make the encoding consistent 1647 with all other LCAF type address encodings. 1649 B.19. Changes to draft-ietf-lisp-lcaf-03.txt 1651 o Submitted September 2013. 1653 o Updated references and author's affilations. 1655 o Added Instance-ID to the Multicast Info Type so there is relative 1656 ease in parsing (S,G) entries within a VPN. 1658 o Add port range encodings to the Application Data LCAF Type. 1660 o Add a new JSON LCAF Type. 1662 o Add Address Key/Value LCAF Type to allow attributes to be attached 1663 to an address. 1665 B.20. Changes to draft-ietf-lisp-lcaf-02.txt 1667 o Submitted March 2013. 1669 o Added new LCAF Type "Replication List Entry" to support LISP 1670 replication engineering use cases. 1672 o Changed references to new LISP RFCs. 1674 B.21. Changes to draft-ietf-lisp-lcaf-01.txt 1676 o Submitted January 2013. 1678 o Change longitude range from 0-90 to 0-180 in section 4.4. 1680 o Added reference to WGS-84 in section 4.4. 1682 B.22. Changes to draft-ietf-lisp-lcaf-00.txt 1684 o Posted first working group draft August 2012. 1686 o This draft was renamed from draft-farinacci-lisp-lcaf-10.txt. 1688 Authors' Addresses 1690 Dino Farinacci 1691 lispers.net 1692 San Jose, CA 1693 USA 1695 Email: farinacci@gmail.com 1697 Dave Meyer 1698 Brocade 1699 San Jose, CA 1700 USA 1702 Email: dmm@1-4-5.net 1704 Job Snijders 1705 NTT Communications 1706 Theodorus Majofskistraat 100 1707 Amsterdam 1065 SZ 1708 NL 1710 Email: job@ntt.net