idnits 2.17.1 draft-ietf-lisp-nexagon-18.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (September 8, 2021) is 953 days in the past. Is this intentional? Checking references for intended status: Informational ---------------------------------------------------------------------------- == Outdated reference: A later version (-38) exists of draft-ietf-lisp-rfc6830bis-36 Summary: 0 errors (**), 0 flaws (~~), 2 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 LISP Working Group S. Barkai 2 Internet-Draft B. Fernandez-Ruiz 3 Intended status: Informational S. ZionB 4 Expires: January 1, 2022 R. Tamir 5 Nexar Inc. 6 A. Rodriguez-Natal 7 F. Maino 8 Cisco Systems 9 A. Cabellos-Aparicio 10 J. Paillisse Vilanova 11 Technical University of Catalonia 12 D. Farinacci 13 lispers.net 14 September 8, 2021 16 Network-Hexagons: H3-LISP GeoState & Mobility Network 17 draft-ietf-lisp-nexagon-18 19 Abstract 21 This document specifies the use of H3 and LISP for Geolocation 22 Services. Geolocation Services utilize geospatial data for: 23 Fresh HDMaps, Intelligent Driving, Cruise and Parking assists. 24 Geospatial utilization is delivered using in-network compute: 25 verification, localization, and brokering of data, using: 27 - EID addressable geospatial tiled-abstraction of road-segments. 28 - EID Interface for detections and uploads to a geospatial-context. 29 - EID Routing-Sharing hazards, blockages, parking, road-inventory. 30 - EID geospatial themed multicast channels to subscribed clients. 32 Status of This Memo 34 This Internet-Draft is submitted in full conformance with the 35 provisions of BCP 78 and BCP 79. 37 Internet-Drafts are working documents of the Internet Engineering 38 Task Force (IETF). Note that other groups may also distribute 39 working documents as Internet-Drafts. The list of current Internet- 40 Drafts is at https://datatracker.ietf.org/drafts/current/. 42 Internet-Drafts are draft documents valid for a maximum of six months 43 and may be updated, replaced, or obsoleted by other documents at any 44 time. It is inappropriate to use Internet-Drafts as reference 45 material or to cite them other than as "work in progress." 47 This Internet-Draft will expire on January 1, 2022. 49 Copyright Notice 51 Copyright (c) 2021 IETF Trust and the persons identified as the 52 document authors. All rights reserved. 54 This document is subject to BCP 78 and the IETF Trust's Legal 55 Provisions Relating to IETF Documents 56 (https://trustee.ietf.org/license-info) in effect on the date of 57 publication of this document. Please review these documents 58 carefully, as they describe your rights and restrictions with respect 59 to this document. Code Components extracted from this document must 60 include Simplified BSD License text as described in Section 4.e of 61 the Trust Legal Provisions and are provided without warranty as 62 described in the Simplified BSD License. 64 Table of Contents 66 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 67 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 5 68 3. Deployment Assumptions . . . . . . . . . . . . . . . . . . . 7 69 4. Mobility Clients Network Services . . . . . . . . . . . . . . 10 70 5. Mobility Unicast and Multicast . . . . . . . . . . . . . . . 11 71 6. Security Considerations . . . . . . . . . . . . . . . . . . . 17 72 7. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 18 73 8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 19 74 9. Normative References . . . . . . . . . . . . . . . . . . . . 30 75 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 31 77 1. Introduction 79 The Locator/ID Separation Protocol (LISP) [I-D.ietf-lisp-rfc6830bis] 80 splits IP addresses in two different namespaces, Endpoint Identifiers 81 (EIDs) and Routing Locators (RLOCs). LISP uses map-and-encap approach 82 (1) a Mapping System (distributed database) that stores and resolves 83 EID-RLOC mappings and on (2) LISP tunnel routers (xTRs) encapsulating 84 and decapsulating data packets based on content of those mappings. 86 H3 (https://h3geo.org)is a geospatial indexing system using hexagonal 87 grid that can be subdivided into finer and finer hexagonal grids, 88 combining the benefits of a hexagonal grid with hierarchy. 89 H3 supports sixteen resolutions. Each finer resolution has cells with 90 1/7 the area of the coarser resolution. Hexagons cannot be perfectly 91 subdivided into seven hexagons, so the finer cells are approximately 92 contained within a parent cell. Each cell is identified by 64bit HID. 94 The Berkeley Deep Drive (BDD) (https://bdd-data.berkeley.edu) Industry 95 Consortium investigates computer vision technologies for automotive 96 applications and for taxonomy of published automotive classification. 98 These standards are combined to create an in-network state reflecting 99 condition of each hexagonal tile (~1sqm) in every road. The mobility 100 H3-LISP network maps & encapsulates traffic between client endpoint 101 identifiers (EID) and addressable geospatial contexts (H3-HID=>EID). 103 The H3-LISP mobility network bridges timing and location gaps between 104 production and consumption of information by clients of mobility data: 105 o information producers: vision, sensory, LIADR, AI applications 106 o information consumers: driving-apps, map-apps, command & control 108 This is achieved by putting the physical world on a shared addressable 109 geospatial context-grid of road-segments represented at the edge. 110 Geospatial state sharing is done using this brokered-network of tile 111 representation, an indirection which solves key issues in v2v 112 information sharing. For example multiple vision perspectives, geo 113 privacy, cyber security. These challenges arise when clients are 114 asked to communicate directly when they do not really need to. 115 A communication pattern which causes complexity and exposures. 117 In non brokered v2v models, for a situation observable by some end 118 points, it is unclear if the need-to-know end-points will receive: 119 i. consistent, ii. conflicting, iii. multiple, or iv. no indications. 120 As an example, when a vehicle experiences a sudden highway slow-down, 121 sees brake lights or senses an accelerometer slowdown, there is no 122 clear way for it to share this data with vehicles 20-30sec away. 123 Or, when a vehicle crosses an intersection, observing opposite-lane 124 obstruction such as: construction, double-park, commercial loading, 125 garbage truck, or stopped school-bus.. there is no clear way for it 126 to alert approachers from another direction as it drives away. 128 Geospatial context indirection helps communicate advanced vision and 129 radar annotations. As these are evolving technologies, relaying road 130 enumerations using peer-to-peer poses interoperability challenges. 132 These peer-to-peer limitations are inherent yet unnecessary, in most 133 situations vehicles are not really proper peers. They happen to be in 134 the same place at the same time. H3-LISP mobility network solves these 135 limitations of direct vehicle-to-vehicle communication by brokering 136 exchanges using addressable geospatial context. Bridging timing, 137 security, privacy, and interoperability gaps between endpoints. 138 Brokering is achieved by clients communicating via context, 139 addressable tiles which aggregated and relay data using H3 EIDs. 141 Clients can provide drivers with heads-up alerts on hazards/obstacles 142 beyond the line of sight of driver and in-car sensors: over traffic, 143 around blocks, far-side junction, beyond road turns or curvatures. 144 This highlights the importance of networks for road safety 145 and role in Autonomous Vehicle (AV) operation support (AV-OSS). 147 To summarize the H3-LISP mobility use-case solution principles are: 149 (1) MicroPartition: 64bit indexed geo-state per H3.r15 road-tiles 150 (2) EnumState: 64bit state values of tile condition representation 151 (3) Grouping: EID per H3.r9 geo-context for its H3.r15 road-tiles 152 (4) Channels: H3.r9 EIDs multicast address for geo-state updates 153 (5) Scale: EID addressable contexts distributed for throughput 154 (6) Overlay: tunneled-network routes the mobility-network traffic 155 (7) Signal-free: overlay is used to map-register for mcast channels 156 (8) Layering: overlay tunnels used between client EIDs and H3 EIDs 157 (9) Access: client/server XTRs tunnel traffic to-from the LISP RTRs 158 (10) Control: RTRs register-resolve H3 EIDs and mcast subscriptions 160 |-0-|-1-|-2-|-3-|-4-|-5-|-6-|-7-|-8-|-9-|-A-|-B-|-C-|-D-|-E-|-F-| 161 | H3 Hexagon ID Key | 162 |-0-|-1-|-2-|-3-|-4-|-5-|-6-|-7-|-8-|-9-|-A-|-B-|-C-|-D-|-E-|-F-| 163 | H3 Hexagon State-Value | 164 |---------------------------------------------------------------| 166 Figure 1: 64 bit H3 ID, 64 bit compiled state value 168 Each H3.r9 hexagon is an EID context with corresponding H3 hexagon ID. 169 Bound to that context is a LISP xTR specified to encapsulate packets 170 to and from EID context and LISP Edge. Edge RTRs are used to re 171 -tunnel packets from clients to services. Each service is also a 172 multicast source for updating clients on the state of the H3.r15 173 tiles, aggregated by the EID addressable geospatial context. 175 2. Definition of Terms 177 H3ServiceEID: Is an addressable aggregation of H3.r15 tiles. 178 It functions as geospatial data association context for filtering, 179 verifying, localizing, and propagating vehicles data uploads. 180 It is a designated destination for physical world annotations, 181 and an (s,g) source of multicast themed update channels. 182 H3ServiceEID is itself an H3 hexagon, large enough to provide 183 geo-spatial compute context, but not too large as to over-burden 184 subscribers with too much information. For Mobility Network it is 185 H3.r9. It has a light-weight LISP protocol stack to tunnel packets 186 aka ServerXTR. The EID is an IPv6 EID that contains the H3 64-bit 187 address numbering scheme. 189 ServerXTR: Is a data-plane only LISP protocol stack implementation, it 190 co-exists with H3ServiceEID process. When the server roams, the xTR 191 is with it. ServerXTR encaps & decaps packets to/from EdgeRTRs. 193 MobilityClient: Is a roaming application that may be a part of an 194 automobile, part of a navigation application, part of municipal, 195 state or federal government command and control application, or a 196 street view consumer application. It has a light-weight LISP 197 data-plane stack to tunnel packets, aka ClientXTR. 199 MobilityClient EID: Is the IPv6 EID used by the Mobility Clients 200 to source packets. The destination of such packets are only 201 H3ServiceEIDs. The EID format is opaque and is assigned as 202 part of the MobilityClient mobility-network authorization. 204 ClientXTR: Is a data-plane only LISP protocol stack implementation 205 co-located with the Mobility Client application. It encaps/ 206 decaps packets from/to applications to/from EdgeRTRs. 208 EdgeRTR: Is the core scale and structure of the LISP mobility network. 209 EdgeRTRs proxy H3ServiceEIDs and MobilityClient H3ServiceEID mcast 210 registration. EdgeRTRs aggregate MobilityClients/H3Services using 211 tunnels to facilitate hosting-providers and mobile-providers for 212 accessing the mobility network. EdgeRTRs decapsulate packets 213 from ClientXTRs, ServerXTRs and re-encaps packets to the clients 214 and servers tunnels. EdgeRTRs glean H3ServiceEIDs/MobilityClient 215 EIDs when they decapsulates packets. EdgeRTRs store H3ServiceEIDs 216 and RLOCs of where the H3ServiceEID is currently reachable from 217 the map-cache. These mappings are registered to the LISP mapping. 218 These mappings may be provisioned when H3Services are assigned 219 EdgeRTRs. EdgeRTRs do not register MobilityClients' EIDs. 220 Enterprises may provide their own EdgeRTRs to protect geo-privacy. 222 ___ ___ 223 H3ServiceEIDs ___ / \ H3ServiceEIDs ___ / \ 224 ___ / | H3.r9 | ___ / | H3.r9 | 225 / | H3.r9 \ ___ / / | H3.r9 \ ___ / 226 | H3.r9 \ ___ / sXTR | H3.r9 \ ___ / sXTR 227 \ ___ / sXTR | \ ___ / sXTR | 228 sXTR | | sXTR | | 229 | | | | | | 230 | | | | | | 231 + - - + - - EdgeRTR EdgeRTR - + - + - - + 232 || ( ( (( || 233 ( ) 234 ( Network Hexagons ) 235 ( H3-LISP ) 236 ( Mobility Network ) 237 (( ) 238 || (( (()) () || 239 || || 240 = = = = = = = = = = = = = = 241 || || 242 EdgeRTR EdgeRTR 243 .. .. .. .. 244 .. .. .. .. 245 ((((|)))) ((((|)))) ((((|)))) ((((|)))) 246 /|\ RAN /|\ /|\ RAN /|\ 247 .. .. 248 .. .. 249 .. Road tiled by 1 sqm H3.r15 ID-Ed Geo-States .. 250 .. .. 251 .. ___ ___ ___ .. 252 .. ............. / \/ \/ \ << cXTR::MobilityClientB 253 .. - - - - - - - H3.r15 H3.r15 H3.r15 - - - - - - - - - - - - 254 MobilityClientA::cXTR >> \ ___ /\ ___ / ....................... 256 Figure 2: H3.r15 state representation, H3.r9 state aggregation 258 Figure 2 above describes the following entities: 259 - MobilityClientA sees MobilityClientB future, and, vice versa 260 - Clients: share information using addressable state routed by LISP 261 - ClientXTR (cXTR): encapsulates over access network to EdgeRTR 262 - ServerXTR (sXTR): encapsulates over cloud network to EdgeRTR 263 - H3-LISP Mobility: overlay which spans cXTRs to sXTRs 264 - Uploads: routed to appropriate tile by the LISP network 265 - EdgeRTRs: perform multicast replication to edges and then cXTRs 266 - Clients: receive tile-by-tile geo-state updates via the multicast 268 3. Deployment Assumptions 270 The specification described in this document makes the following 271 deployment assumptions: 273 (1) Unique 64-bit HID is associated with each H3 geo-spatial tile 274 (2) MobilityClients and H3ServiceEIDs share this well known index 275 (3) 64-bit BDD state value is associated with each H3-indexed tile 276 (4) Tile state is compiled 16 fields of 4-bits, or max 16 enums 278 0 1 2 3 4 5 6 7 279 +-------+-------+-------+-------+-------+-------+-------+-------+ 280 |-0-|-1-|-2-|-3-|-4-|-5-|-6-|-7-|-8-|-9-|-A-|-B-|-C-|-D-|-E-|-F-| 281 |0123012301230123012301230123012301230123012301230123012301230123 282 +---------------------------------------------------------------+ 284 Figure 3: Nibble based representation, 16 fields x 16 enumerations 286 We name the nibbles using hexadecimal index according to the 287 position where the most significant nibble has index 0. 288 Values are defined in section 8. 290 Subscription of MobilityClients to mobility-network is renewed 291 while on the move and is not intended as the basic connectivity. 292 MobilityClients use DNS/AAA to obtain temporary EIDs/EdgeRTRs 293 and use (LISP) data-plane tunnels to communicate using their 294 temporary EIDs with the dynamically assigned EdgeRTRs. 296 MobilityClient are otherwise unaware of the LISP network control 297 plane and simply regard the data-plane tunnels as a virtual 298 private network (VPN) that supports IPv6 EID to upload (Ucast) 299 and Subscribe-to (Mcast) H3Services. 301 In order to get access to the MobilityVPN, MobilityClients first 302 authenticate with the MobilityVPN AAA Server. DIAMETER [RFC6733] 303 based AAA is typically done at the provider edge (PE) by gateways. 304 However, the typical case involves several types of CPE connected 305 to a specific service provider. The Mobility VPN, on the other hand, 306 may overlay a number of wireless networks and cloud-edge providers. 307 It also involves dozens of Car-OEM, Driving-Applications, Smart- 308 City vendors. This is why we require clients to first go through 309 AAA in order to get both a MobilityClientEID and EdgeRTR RLOC. 311 ClientXTR performs the following steps to use the mobility network: 312 1) obtain the address of the mobility network AAA server using DNS 313 2) obtain MobilityClientEID and EdgeRTR(s) from AAA DIAMETER server 314 3) renew authorization from AAA while using the mobility network 315 MobilityClient DomainNameServer DIAMETER-AAA MobilityEdgeRTR 316 | | | | 317 | nslookup nexagon | | | 318 |------------------->| | | 319 |<-------------------| | | 320 | Mobility AAA IP | | | 321 | | | | 322 | AAR(AVP:IMSI/User/Password/Toyota) | | 323 |--------------------------------------->| | 324 | | | ACR(AVP ClientEID)| 325 | | |------------------>| 326 | | |<------------------| 327 | | | ACA(AVP ClientEID)| 328 | AAA (Client::EID,EdgeRTR::RLOC) | | 329 |<---------------------------------------| | 330 | | | | 331 . . 332 . Upload to IPv6 H3ServiceEID, Subscribe MLDv2 H3ServiceEID . 333 . . 334 | | 335 |----------------------------------------------------------->| 336 . . 337 . . 338 |<-----------------------------------------------------------| 339 | | 340 . . 341 . Signal freeing multicast Updates from H3ServiceEID . 342 . . 343 | | | | 344 | AAR(Interim) | | 345 |--------------------------------------->| ACR (Interim) | 346 | | |------------------>| 347 | | |<------------------| 348 | | | ACA (Interim) | 349 |<---------------------------------------| | 350 | AAA (Interim) | | 352 Figure 4: DNS and AAA Exchange for nexagon-network login 354 Using this network login and re-login method we ensure that: 355 - MobilityClientEIDs serve as credentials with the EdgeRTRs 356 - EdgeRTRs are provisioned to whitelist MobilityClient EIDs 357 - EdgeRTRs are not tightly coupled to H3.r9 areas (privacy/balance) 358 - MobilityClients do not need to update EdgeRTRs while roaming 359 The same EdgeRTR may serve several H3.r9 areas for ride continuity 360 and several EdgeRTRs may load balance an H3.r9 area with high 361 density of MobilityClients. When a MobilityClient ClientXTR is 362 homed to EdgeRTR, it is able to communicate with H3ServiceEIDs. 364 4. Mobility Clients Network Services 366 The mobility network functions as a standard LISP overlay. 367 The overlay delivers unicast and multicast packets across: 368 - multiple access-networks and radio-access specifications 369 - multiple edge providers, public, private, and hybrid clouds 371 We use data-plane XTRs in the stack of each mobility client/server. 372 ClientXTRs and ServerXTRs are homed to one or more EdgeRTRs. 373 This structure allows for MobilityClients to "show up" at any time, 374 behind any network provider in a given mobility network admin/NAT 375 domain, and for any H3ServiceEID to be instantiated, moved, or 376 failed-over to any rack in any cloud-provider. LISP overlay enables 377 these roaming mobility network elements to communicate uninterrupted. 378 This quality is insured by the LISP RFCs. The determination of 379 identities for MobilityClients to always refer to the correct 380 H3ServiceEID is insured by H3 geo-spatial HIDs. 382 There are two options to associate ClientXTRs with LISP EdgeRTRs: 384 i. Semi-random load-balancing by DNS/AAA 386 In this option we assume that in a given metro edge a pool of 387 EdgeRTRs can distribute the Mobility Clients load randomly between 388 them and that EdgeRTRs are topologically equivalent. Each RTR uses 389 LISP to tunnel traffic to and from other EdgeRTRs for MobilityClient 390 with H3Service exchanges. MobilityClients home to EdgeRTRs. 392 ii. Topological by anycast 394 In this option we align an EdgeRTR with topological aggregation. 395 Mobility Clients are roaming in an area home to that RTR and so 396 is the H3 Server. There is only one hop across the edge overlay 397 between clients and servers and mcast replication is more 398 focused, but clients need to keep re-homing as they move. 400 To summarize the H3LISP mobility network layout: 402 (1) Mobility-Clients traffic is tunneled via data-plane ClientXTRs 403 ClientXTRs are (multi) homed to EdgeRTR(s) 404 (2) H3ServiceEID traffic is tunneled via data-plane ServerXTR 405 ServerXTRs are (multi) homed to EdgeRTR(s) 406 (3) EdgeRTRs use mapping service to resolve Ucast HIDs to RTR RLOCs 407 EdgeRTRs also register to (Source, Group) H3ServiceEID multicasts 409 MobilityClients <> ClientXTR EdgeRTR v 410 v 411 v < < < < Map-Assisted Mobility-Network Overlay < < < < v 412 v 413 > > > > EdgeRTR ServerXTR <> H3ServiceEID 415 Figure 5: The Data Flow Between MobilityClients and H3ServiceEIDs 417 5. Mobility Unicast and Multicast 419 Regardless of the way a given ClientXTR was associated with EdgeRTR, 420 an authenticated MobilityClient EID can send: [64bitH3.15ID :: 421 64bitState]annotations to the H3.r9 H3ServiceEID. The H3.r9 EID can 422 be calculated by clients algorithmically from the H3.15 localization. 424 The ClientXTR encapsulates MobilityClient EID and H3ServiceEID from 425 the ClientXTR with the destination of the EdgeRTR RLOC LISP port. 426 EdgeRTRs then re-encapsulate annotation packets to remote EdgeRTR. 427 The remote EdgeRTR aggregating H3ServiceEIDs re-encapsulates 428 MobilityClient EID to the ServerXTR, to the H3ServiceEID. 430 The headers consist of the following fields: 432 Outer headers = 40 (IPv6) + 8 (UDP) + 8 (LISP) = 56 433 Inner headers = 40 (IPv6) + 8 (UDP) + 4 (Nexagon Header) = 52 434 1500 (MTU) - 56 - 52 = 1392 bytes of effective payload 436 Nexagon Header Type allows for kv tupples or vkkk flooding 437 Type 0:reserved 438 Type 1:key-value, key-value.. 1392 / (8 + 8) = 87 pairs 439 Type 2:value, key,key,key.. (1392 - 8) / 8 = 173 H3-R15 IDs 440 Type 3-255: unassigned 441 Nexagon Header GZIP field: 0x000 no compression, or GZIP version. 442 Nexagon Header Reserved bits 443 Nexagon Header kv count (in any format) 445 0 1 2 3 446 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 447 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ 448 |Version| Traffic Class | Flow Label | | 449 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 450 | Payload Length | Next Header | Hop Limit | | 451 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 452 | | | 453 + + | 454 | | | 455 + Source MobilityClientEID + | 456 | | IPv6 457 + + | 458 | | | 459 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 460 | | | 461 + + | 462 | | | 463 + Dest H3ServiceEID + | 464 | | | 465 + + | 466 | | / 467 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 468 | Source Port = xxxx | Dest Port = xxxx | \ 469 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ UDP 470 | UDP Length | UDP Checksum | / 471 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ 472 | Type |gzip | Reserved | Pair Count = X| Nexgon 473 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / 474 | | 475 + 64 Bit H3-R15 ID + 476 | | 477 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 478 | | 479 + 64 Bit State + 480 | | 481 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 482 | | 483 + 64 Bit H3-R15 ID + 484 | | 485 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 486 | | 487 + 64 Bit State + 488 | | 489 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 491 Figure 6: Uploaded detections packet format 492 To Summarize Unicast Uploads: 494 (1) MobilityClients can send annotations are localized to H3.r15 495 tile. These annotations are sent to H3.r9 mobility H3ServiceEIDs 496 (2) MobilityClient EID and H3ServiceEID HID are encapsulated: 497 XTR <> RTR <> RTR <> XTR 498 * RTRs can map-resolve re-tunnel HIDs 499 (3) RTRs re-encapsulate original source-dest to ServerXTRs 500 ServerXTRs decapsulate packets to H3ServiceEID 502 Each H3.r9 Server is also an IP Multicast Source used to update 503 subscribers on the aggregate state of the H3.r15 tiles in the H3.r9 504 server. This forms a multipoint to multipoint state channel per H3 505 location, where the aggregation has compute-first propagation. 507 We use [RFC8378] signal-free multicast to implement mcast channels in 508 the overlay. The mobility network has many channels, with thousands 509 subscribers per channel. MobilityClients driving through/subscribing 510 to an H3.r9 area can explicitly issue an [RFC4604] MLDv2 in order to 511 subscribe, or, may be subscribed implicitly by the EdgeRTR. 513 The advantage of explicit client MLDv2 registration as [RFC8378] 514 trigger is that clients manage their own mobility mcast handover per 515 location-direction vectors, and that it allows for otherwise silent 516 non annotating clients. The advantage of EdgeRTR implicit registration 517 is that less signaling required. 519 MLDv2 signaling messages are encapsulated between the ClientXTR and 520 EdgeRTR, therefore there is no requirement for the underlying network 521 to support native multicast. If native access multicast is supported 522 then MobilityClient registration to H3ServiceEID safety channels may 523 be integrated with it, in which case mobile packet-core element 524 supporting it will use this standard to register with the 525 appropriate H3.r9 channels in its area. 527 Multicast update packets are of the following structure: 529 0 1 2 3 530 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 531 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ 532 |Version| Traffic Class | Flow Label | | 533 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 534 | Payload Length | Next Header | Hop Limit | | 535 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 536 | | | 537 + + | 538 | | | 539 + Source H3-R9 EID Address + | 540 | | IPv6 541 + + | 542 | | | 543 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 544 | | | 545 + + | 546 | | | 547 + Group Address + | 548 | | | 549 + + | 550 | | / 551 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 552 | Source Port = xxxx | Dest Port = xxxx | \ 553 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ UDP 554 | UDP Length | UDP Checksum | / 555 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ 556 | |Nexagon 557 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / 558 ~ Nexagons Payload ~ 559 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 561 Figure 7: Mcast update packet header 563 0 1 2 3 564 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 565 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ 566 | Type = 1 |gzip | Reserved | Pair Count = X|Nexagon 567 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / 568 | | 569 + 64 Bit H3-R15 ID + 570 | | 571 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 572 | | 573 + 64 Bit State + 574 | | 575 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 576 | | 577 + 64 Bit H3-R15 ID + 578 | | 579 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 580 | | 581 + 64 Bit State + 582 | | 583 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 585 Figure 8: Mcast update payload, key-value, key-value.. 587 0 1 2 3 588 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 589 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ 590 | Type = 2 |gzip | Reserved |H3R15 Count = X|Nexagon 591 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / 592 | | 593 + 64 Bit State + 594 | | 595 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 596 | | 597 + 64 Bit H3-R15 ID + 598 | | 599 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 600 | | 601 + 64 Bit H3-R15 ID + 602 | | 603 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 604 | | 605 + 64 Bit H3-R15 ID + 606 | | 607 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 609 Figure 9: Mcast update payload, value, key, key.. for larger areas 611 The remote EdgeRTRs homing MobilityClients in turn replicate the 612 packet to the MobilityClients registered with them. 614 We expect an average of 600 H3.r15 tiles of the full 7^6 (~100K) 615 possible in H3.r9 to be part of any road. The H3.r9 server can 616 transmit the status of all 600 or just those with meaningful states 617 based on updated SLA and policy. 619 To Summarize: 621 (1) H3LISP Clients tune to H3.r9 mobility updates using [RFC8378] 622 H3LISP Client issue MLDv2 registration to H3.r9 HIDs 623 ClientXTRs encapsulate MLDv2 to EdgeRTRs who register (s,g). 625 (2) ServerXTRs encapsulate updates to EdgeRTRs who map-resolve (s,g) 626 RLOCs EdgeRTRs replicate mobility update and tunnel to registered 627 EdgeRTRs Remote EdgeRTRs replicate updates to ClientXTRs. 629 6. Security Considerations 631 The nexagon layer3 v2n network is inherently more secure and private 632 then peer to peer alternatives because of the indirection. No car or 633 infrastructure element communicates directly with MobilityClients. 634 All information is conveyed using shared addressable geo-state. 635 MobilityClients receive information only from geospatial channels 636 originating from a trusted broker. MobilityClients have no indication 637 as to the origin of the information. This is an important step towards 638 better privacy, security, extendability, and interoperability compared 639 with legacy layer2 protocols. 641 In order to be able to use the nexagon mobility network for a given 642 period, the mobility clients go through a DNS/AAA stage by which they 643 obtain their clientEID identifiers-credentials and the RLOCs of 644 EdgeRTRs they may use as gateways to the network. This MobilityClient 645 <> EdgeRTR interface is the most sensitive in this network to privacy 646 and security considerations. 648 The traffic on the MobilityClient<>EdgeRTR interface is tunneled, and 649 its UDP content may be encrypted; still, the EdgeRTR will know based 650 on the LISP headers alone the MobilityClient RLOC and H3-R9 (~0.1sqkm) 651 geo-spatial area to which a given client uploads or subscribes to. 653 For this reason we envision the ability of enterprise or groups of 654 users to "bring their own" EdgeRTRs. BYO-RTR masks individual clients' 655 RLOC to H3-R9 association and is pre-provisioned to be able to use the 656 mapping system and be on a white-list of EdgeRTRs aggregating 657 H3ServiceEIDs. If the EdgeRTR functionality is delivered by 5GCore UPF 658 then the only entity which can correlate underlay IP, User, and Geo- 659 location is the regulated carrier, which can do so anyway. 661 Beyond this hop, the mapping system does not hold MobilityClientEIDs, 662 and remote EdgeRTRs are only aware of MobilityClient ephemeral EIDs, 663 not actual RLOC or any other mobile-device identifiers. EdgeRTRs 664 register in the mapping (s,g) H3-R9 multicast groups. Which clients 665 use which EdgeRTR is not in the mapping system, only the AAA server is 666 aware of that. The H3ServiceEIDs themselves decrypt and parse actual 667 H3-R15 annotations; they also consider during this MobilityClientEID 668 credentials to avoid "fake-news", but again these are only temporary 669 EIDs allocated to clients in order to be able to use the mobility 670 network and not for their actual IP. 672 H3Services are provisioned to their EdgeRTRs, in the EdgeRTRs, and 673 optionally also in the mapping system. 675 In summary of main risk mitigations for the lisp-nexagon interface: 677 (1) tapping: all communications are through dynamic tunnels therefore 678 may be encrypted using IP-Sec or other supported point to point 679 underlay standards. These are not static tunnels but LISP re-tunneling 680 routers (RTRs) perform all nexagon Overlay aggregation. 682 (2) spoofing: it is very hard to guess a MobilityClientEID valid for 683 a short period of time. Clients and H3Services EIDs are whitelisted 684 in EdgeRTRs, Clients using the AAA procedure, H3Services via dev-ops. 686 (3) impersonating: efforts to use MobilityClients and H3Services RLOCs 687 should be caught by the underlying service provider edge and access 688 networks. EID impersonating is caught by EdgeRTR EID RLOC whitelist 689 mismatch. 691 (4) credibility: the interface crowd-sources geo-state and does not 692 assume to trust single detections. Credit history track to 693 MobilityClientEIDs by as part of normal H3Services fact checking, 694 aggregate scores affect AAA credentials. 696 (5) privacy: Only EdgeRTRs are aware of both clients' RLOC and 697 geo-location, only AAA is aware of client IDs credentials and credit 698 but not geo-location. Aggregate credit score span all H3Services 699 administratively without source. 701 7. Acknowledgments 703 We would like to kindly thank Joel Halperin for helping structure the 704 AAA section and Geo-Privacy provisions, Luigi Lannone for promoting 705 such LISP Compute First Networking (CFN) use-cases, helping structure 706 the IANA section, and shepherding this draft to completion. 708 8. IANA Considerations 710 This section provides guidance to the Internet Assigned Numbers 711 Authority (IANA) regarding registration of values related to the LISP 712 specification, in accordance with BCP 26 [RFC8126]. 714 IANA is asked to create a registry named NEXAGON Parameters. 716 Such registry should be populated with the following sub registries. 718 State Enumeration Field 0x0: Traffic Direction: 719 +-------+--------------------+-----------------+ 720 | Value | Description | Reference | 721 +-------+--------------------+-----------------+ 722 | 0x0 | Null | [This Document] | 723 | | | | 724 | 0x1 | Lane North | [This Document] | 725 | | | | 726 | 0x2 | Lane North + 30 | [This Document] | 727 | | | | 728 | 0x3 | Lane North + 60 | [This Document] | 729 | | | | 730 | 0x4 | Lane North + 90 | [This Document] | 731 | | | | 732 | 0x5 | Lane North + 120 | [This Document] | 733 | | | | 734 | 0x6 | Lane North + 150 | [This Document] | 735 | | | | 736 | 0x7 | Lane North + 180 | [This Document] | 737 | | | | 738 | 0x8 | Lane North + 210 | [This Document] | 739 | | | | 740 | 0x9 | Lane North + 240 | [This Document] | 741 | | | | 742 | 0xA | Lane North + 270 | [This Document] | 743 | | | | 744 | 0xB | Lane North + 300 | [This Document] | 745 | | | | 746 | 0xC | Lane North + 330 | [This Document] | 747 | | | | 748 | 0xD | Junction | [This Document] | 749 | | | | 750 | 0xE | Shoulder | [This Document] | 751 | | | | 752 | 0xF | Sidewalk | [This Document] | 753 +-------+--------------------+-----------------+ 754 State Enumeration Field 0x1: Persistent Condition: 755 +-------+--------------------+-----------------+ 756 | Value | Description | Reference | 757 +-------+--------------------+-----------------+ 758 | 0x0 | Null | [This Document] | 759 | | | | 760 | 0x1 | Pothole Light | [This Document] | 761 | | | | 762 | 0x2 | Pothole Deep | [This Document] | 763 | | | | 764 | 0x3 | Speed-bump Low | [This Document] | 765 | | | | 766 | 0x4 | Speed-bump High | [This Document] | 767 | | | | 768 | 0x5 | Icy | [This Document] | 769 | | | | 770 | 0x6 | Flooded | [This Document] | 771 | | | | 772 | 0x7 | Snow-cover | [This Document] | 773 | | | | 774 | 0x8 | Deep Snow | [This Document] | 775 | | | | 776 | 0x9 | Cone | [This Document] | 777 | | | | 778 | 0xA | Gravel | [This Document] | 779 | | | | 780 | 0xB | Choppy | [This Document] | 781 | | | | 782 | 0xC | Blind-Curve | [This Document] | 783 | | | | 784 | 0xD | Steep | [This Document] | 785 | | | | 786 | 0xE | Low-bridge | [This Document] | 787 | | | | 788 | 0xF | Other | [This Document] | 789 +-------+--------------------+-----------------+ 790 State Enumeration Field 0x2: Transient Condition: 791 +-------+--------------------+-----------------+ 792 | Value | Description | Reference | 793 +-------+--------------------+-----------------+ 794 | 0x0 | Null | [This Document] | 795 | | | | 796 | 0x1 | Jaywalker | [This Document] | 797 | | | | 798 | 0x2 | Bike or Scooter | [This Document] | 799 | | | | 800 | 0x3 | Stopped Vehicle | [This Document] | 801 | | | | 802 | 0x4 | Moving on Shoulder | [This Document] | 803 | | | | 804 | 0x5 | First Responder | [This Document] | 805 | | | | 806 | 0x6 | Sudden Slowdown | [This Document] | 807 | | | | 808 | 0x7 | Oversize Vehicle | [This Document] | 809 | | | | 810 | 0x8 | Light/Sign Breach | [This Document] | 811 | | | | 812 | 0x9 | Collision Light | [This Document] | 813 | | | | 814 | 0xA | Collision Severe | [This Document] | 815 | | | | 816 | 0xB | Collision Debris | [This Document] | 817 | | | | 818 | 0xC | Collision Course | [This Document] | 819 | | | | 820 | 0xD | Vehicle Hard Brake | [This Document] | 821 | | | | 822 | 0xE | Vehicle Sharp Turn | [This Document] | 823 | | | | 824 | 0xF | Freed-up Parking | [This Document] | 825 +-------+--------------------+-----------------+ 826 State Enumeration Field 0x3: Traffic-light Counter: 827 +-------+--------------------+-----------------+ 828 | Value | Description | Reference | 829 +-------+--------------------+-----------------+ 830 | 0x0 | Null | [This Document] | 831 | | | | 832 | 0x1 | 1 Second to Green | [This Document] | 833 | | | | 834 | 0x2 | 2 Second to Green | [This Document] | 835 | | | | 836 | 0x3 | 3 Second to Green | [This Document] | 837 | | | | 838 | 0x4 | 4 Second to Green | [This Document] | 839 | | | | 840 | 0x5 | 5 Second to Green | [This Document] | 841 | | | | 842 | 0x6 | 6 Second to Green | [This Document] | 843 | | | | 844 | 0x7 | 7 Second to Green | [This Document] | 845 | | | | 846 | 0x8 | 8 Second to Green | [This Document] | 847 | | | | 848 | 0x9 | 9 Second to Green | [This Document] | 849 | | | | 850 | 0xA | 10 Second to Green | [This Document] | 851 | | | | 852 | 0xB | 20 Second to Green | [This Document] | 853 | | | | 854 | 0xC | 30 Second to Green | [This Document] | 855 | | | | 856 | 0xD | 60 Second to Green | [This Document] | 857 | | | | 858 | 0xE | Green Now | [This Document] | 859 | | | | 860 | 0xF | Red Now | [This Document] | 861 +-------+--------------------+-----------------+ 862 State Enumeration Field 0x4: Impacted Tile: 863 +-------+--------------------+-----------------+ 864 | Value | Description | Reference | 865 +-------+--------------------+-----------------+ 866 | 0x0 | Null | [This Document] | 867 | | | | 868 | 0x1 | Epicenter | [This Document] | 869 | | | | 870 | 0x2 | 2 Tiles Away | [This Document] | 871 | | | | 872 | 0x3 | 3 Tiles Away | [This Document] | 873 | | | | 874 | 0x4 | 4 Tiles Away | [This Document] | 875 | | | | 876 | 0x5 | 5 Tiles Away | [This Document] | 877 | | | | 878 | 0x6 | 6 Tiles Away | [This Document] | 879 | | | | 880 | 0x7 | 7 Tiles Away | [This Document] | 881 | | | | 882 | 0x8 | 8 Tiles Away | [This Document] | 883 | | | | 884 | 0x9 | 9 Tiles Away | [This Document] | 885 | | | | 886 | 0xA | 10 Tiles Away | [This Document] | 887 | | | | 888 | 0xB | 20 Tiles Away | [This Document] | 889 | | | | 890 | 0xC | 30 Tiles Away | [This Document] | 891 | | | | 892 | 0xD | 60 Tiles Away | [This Document] | 893 | | | | 894 | 0xE | <100 Tiles Away | [This Document] | 895 | | | | 896 | 0xF | <200 Tiles Away | [This Document] | 897 +-------+--------------------+-----------------+ 898 State Enumeration Field 0x5: Expected Duration: 899 +-------+--------------------+-----------------+ 900 | Value | Description | Reference | 901 +-------+--------------------+-----------------+ 902 | 0x0 | Null | [This Document] | 903 | | | | 904 | 0x1 | Next 1 Second | [This Document] | 905 | | | | 906 | 0x2 | Next 5 Seconds | [This Document] | 907 | | | | 908 | 0x3 | Next 10 Seconds | [This Document] | 909 | | | | 910 | 0x4 | Next 20 Seconds | [This Document] | 911 | | | | 912 | 0x5 | Next 40 Seconds | [This Document] | 913 | | | | 914 | 0x6 | Next 60 Seconds | [This Document] | 915 | | | | 916 | 0x7 | Next 2 Minutes | [This Document] | 917 | | | | 918 | 0x8 | Next 3 Minutes | [This Document] | 919 | | | | 920 | 0x9 | Next 4 Minutes | [This Document] | 921 | | | | 922 | 0xA | Next 5 Minutes | [This Document] | 923 | | | | 924 | 0xB | Next 10 Minutes | [This Document] | 925 | | | | 926 | 0xC | Next 15 Minutes | [This Document] | 927 | | | | 928 | 0xD | Next 30 Minutes | [This Document] | 929 | | | | 930 | 0xE | Next 60 Minutes | [This Document] | 931 | | | | 932 | 0xF | Next 24 Hours | [This Document] | 933 +-------+--------------------+-----------------+ 934 State Enumeration Field 0x6: Lane Right Sign: 935 +-------+--------------------+-----------------+ 936 | Value | Description | Reference | 937 +-------+--------------------+-----------------+ 938 | 0x0 | Null | [This Document] | 939 | | | | 940 | 0x1 | Yield | [This Document] | 941 | | | | 942 | 0x2 | Speed Limit | [This Document] | 943 | | | | 944 | 0x3 | Straight Only | [This Document] | 945 | | | | 946 | 0x4 | No Straight | [This Document] | 947 | | | | 948 | 0x5 | Right Only | [This Document] | 949 | | | | 950 | 0x6 | No Right | [This Document] | 951 | | | | 952 | 0x7 | Left Only | [This Document] | 953 | | | | 954 | 0x8 | No Left | [This Document] | 955 | | | | 956 | 0x9 | Right Straight | [This Document] | 957 | | | | 958 | 0xA | Left Straight | [This Document] | 959 | | | | 960 | 0xB | No U Turn | [This Document] | 961 | | | | 962 | 0xC | No Left or U | [This Document] | 963 | | | | 964 | 0xD | Bike Lane | [This Document] | 965 | | | | 966 | 0xE | HOV Lane | [This Document] | 967 | | | | 968 | 0xF | Stop | [This Document] | 969 +-------+--------------------+-----------------+ 970 State Enumeration Field 0x7: Movement Sign: 971 +-------+--------------------+-----------------+ 972 | Value | Description | Reference | 973 +-------+--------------------+-----------------+ 974 | 0x0 | Null | [This Document] | 975 | | | | 976 | 0x1 | Keep Right | [This Document] | 977 | | | | 978 | 0x2 | Keep Left | [This Document] | 979 | | | | 980 | 0x3 | Stay in Lane | [This Document] | 981 | | | | 982 | 0x4 | Do Not Enter | [This Document] | 983 | | | | 984 | 0x5 | No Trucks | [This Document] | 985 | | | | 986 | 0x6 | No Bikes | [This Document] | 987 | | | | 988 | 0x7 | No Peds | [This Document] | 989 | | | | 990 | 0x8 | One Way | [This Document] | 991 | | | | 992 | 0x9 | Parking | [This Document] | 993 | | | | 994 | 0xA | No Parking | [This Document] | 995 | | | | 996 | 0xB | No Standing | [This Document] | 997 | | | | 998 | 0xC | No Passing | [This Document] | 999 | | | | 1000 | 0xD | Loading Zone | [This Document] | 1001 | | | | 1002 | 0xE | Rail Crossing | [This Document] | 1003 | | | | 1004 | 0xF | School Zone | [This Document] | 1005 +-------+--------------------+-----------------+ 1006 State Enumeration Field 0x8: Curves & Intersections: 1007 +-------+--------------------+-----------------+ 1008 | Value | Description | Reference | 1009 +-------+--------------------+-----------------+ 1010 | 0x0 | Null | [This Document] | 1011 | | | | 1012 | 0x1 | Turns Left | [This Document] | 1013 | | | | 1014 | 0x2 | Turns Right | [This Document] | 1015 | | | | 1016 | 0x3 | Curves Left | [This Document] | 1017 | | | | 1018 | 0x4 | Curves Right | [This Document] | 1019 | | | | 1020 | 0x5 | Reverses Left | [This Document] | 1021 | | | | 1022 | 0x6 | Reverses Right | [This Document] | 1023 | | | | 1024 | 0x7 | Winding Road | [This Document] | 1025 | | | | 1026 | 0x8 | Hair Pin | [This Document] | 1027 | | | | 1028 | 0x9 | Pretzel Turn | [This Document] | 1029 | | | | 1030 | 0xA | Cross Roads | [This Document] | 1031 | | | | 1032 | 0xB | Cross T | [This Document] | 1033 | | | | 1034 | 0xC | Cross Y | [This Document] | 1035 | | | | 1036 | 0xD | Circle | [This Document] | 1037 | | | | 1038 | 0xE | Lane Ends | [This Document] | 1039 | | | | 1040 | 0xF | Road Narrows | [This Document] | 1041 +-------+--------------------+-----------------+ 1042 State Enumeration Field 0x9: Tile Traffic Speed: 1043 +-------+--------------------+-----------------+ 1044 | Value | Description | Reference | 1045 +-------+--------------------+-----------------+ 1046 | 0x0 | Null | [This Document] | 1047 | | | | 1048 | 0x1 | < 1 m/sec | [This Document] | 1049 | | | | 1050 | 0x2 | < 2 m/sec | [This Document] | 1051 | | | | 1052 | 0x3 | < 3 m/sec | [This Document] | 1053 | | | | 1054 | 0x4 | < 4 m/sec | [This Document] | 1055 | | | | 1056 | 0x5 | < 5 m/sec | [This Document] | 1057 | | | | 1058 | 0x6 | < 6 m/sec | [This Document] | 1059 | | | | 1060 | 0x7 | < 7 m/sec | [This Document] | 1061 | | | | 1062 | 0x8 | < 8 m/sec | [This Document] | 1063 | | | | 1064 | 0x9 | < 9 m/sec | [This Document] | 1065 | | | | 1066 | 0xA | < 10 m/sec | [This Document] | 1067 | | | | 1068 | 0xB | < 20 m/sec | [This Document] | 1069 | | | | 1070 | 0xC | < 30 m/sec | [This Document] | 1071 | | | | 1072 | 0xD | < 40 m/sec | [This Document] | 1073 | | | | 1074 | 0xE | < 50 m/sec | [This Document] | 1075 | | | | 1076 | 0xF | > 50 m/sec | [This Document] | 1077 +-------+--------------------+-----------------+ 1078 State Enumeration Field 0xA: Pedestrian Curb Density: 1079 +-------+--------------------+-----------------+ 1080 | Value | Description | Reference | 1081 +-------+--------------------+-----------------+ 1082 | 0x0 | Null | [This Document] | 1083 | | | | 1084 | 0x1 | 100% | [This Document] | 1085 | | | | 1086 | 0x2 | 95% | [This Document] | 1087 | | | | 1088 | 0x3 | 90% | [This Document] | 1089 | | | | 1090 | 0x4 | 85% | [This Document] | 1091 | | | | 1092 | 0x5 | 80% | [This Document] | 1093 | | | | 1094 | 0x6 | 70% | [This Document] | 1095 | | | | 1096 | 0x7 | 60% | [This Document] | 1097 | | | | 1098 | 0x8 | 50% | [This Document] | 1099 | | | | 1100 | 0x9 | 40% | [This Document] | 1101 | | | | 1102 | 0xA | 30% | [This Document] | 1103 | | | | 1104 | 0xB | 20% | [This Document] | 1105 | | | | 1106 | 0xC | 15% | [This Document] | 1107 | | | | 1108 | 0xD | 10% | [This Document] | 1109 | | | | 1110 | 0xE | 5% | [This Document] | 1111 | | | | 1112 | 0xF | No Peds | [This Document] | 1113 +-------+--------------------+-----------------+ 1115 State enumeration fields 0xB, 0xC, 0xD, 0xE, 0xF, are unassigned. 1116 IANA can assign them on a "First Come First Served" basis 1117 according to [RFC8126]. 1119 9. Normative References 1121 [I-D.ietf-lisp-rfc6830bis] 1122 Farinacci, D., Fuller, V., Meyer, D., Lewis, D., and A. 1123 Cabellos-Aparicio, "The Locator/ID Separation Protocol 1124 (LISP)", draft-ietf-lisp-rfc6830bis-36 (work in progress), 1125 September 2020. 1127 [RFC4604] Holbrook, H. Cain, B. Haberman, B., "Using Internet Group 1128 Management Protocol Version 3 (IGMPv3) and Multicast 1129 Listener DiscoveryProtocol Version 2 (MLDv2) for 1130 Source-Specific Multicast", RFC4604, 1131 DOI 10.17487/RFC4604, August 2006, 1132 . 1134 [RFC6733] Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn, 1135 Ed., "Diameter Base Protocol", RFC 6733, 1136 DOI 10.17487/RFC6733, October 2012, 1137 . 1139 [RFC8126] Cotton, M., Leiba, B., Narten, T., "Guidelines for 1140 Writing an IANA Considerations Section in RFCs", RFC8126, 1141 DOI 10.17487/RFC8126, June 2017, 1142 . 1144 [RFC8378] Farinacci, D., Moreno, V., "Signal-Free Locator/ID 1145 Separation Protocol (LISP) Multicast", RFC8378, 1146 DOI 10.17487/RFC8378, May 2018, 1147 . 1149 Authors' Addresses 1151 Sharon Barkai 1152 Nexar 1153 CA 1154 USA 1156 Email: sbarkai@gmail.com 1158 Bruno Fernandez-Ruiz 1159 Nexar 1160 London 1161 UK 1163 Email: b@getnexar.com 1165 S ZionB 1166 Nexar 1167 Israel 1169 Email: sharon@fermicloud.io 1171 Rotem Tamir 1172 Nexar 1173 Israel 1175 rotemtamir@getnexar.com 1177 Alberto Rodriguez-Natal 1178 Cisco Systems 1179 170 Tasman Drive 1180 San Jose, CA 1181 USA 1183 Email: natal@cisco.com 1185 Fabio Maino 1186 Cisco Systems 1187 170 Tasman Drive 1188 San Jose, CA 1189 USA 1191 Email: fmaino@cisco.com 1192 Albert Cabellos-Aparicio 1193 Technical University of Catalonia 1194 Barcelona 1195 Spain 1197 Email: acabello@ac.upc.edu 1199 Jordi Paillisse-Vilanova 1200 Technical University of Catalonia 1201 Barcelona 1202 Spain 1204 Email: jordip@ac.upc.edu 1206 Dino Farinacci 1207 lispers.net 1208 San Jose, CA 1209 USA 1211 Email: farinacci@gmail.com