idnits 2.17.1 draft-ietf-lisp-nexagon-19.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (September 14, 2021) is 956 days in the past. Is this intentional? Checking references for intended status: Informational ---------------------------------------------------------------------------- == Outdated reference: A later version (-38) exists of draft-ietf-lisp-rfc6830bis-36 Summary: 0 errors (**), 0 flaws (~~), 2 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 LISP Working Group S. Barkai 2 Internet-Draft B. Fernandez-Ruiz 3 Intended status: Informational R. Tamir 4 Expires: January 1, 2022 Nexar Inc. 5 A. Rodriguez-Natal 6 F. Maino 7 Cisco Systems 8 A. Cabellos-Aparicio 9 J. Paillisse Vilanova 10 Technical University of Catalonia 11 D. Farinacci 12 lispers.net 13 September 14, 2021 15 Network-Hexagons: H3-LISP GeoState & Mobility Network 16 draft-ietf-lisp-nexagon-19 18 Abstract 20 This document specifies the use of H3 and LISP for Geolocation 21 Services. Geolocation Services utilize geospatial data for: 22 Fresh HDMaps, Intelligent Driving, Cruise and Parking assists. 23 Geospatial utilization is delivered using in-network compute for 24 brokered verification, curation, and localization of data, using: 26 - EID addressable geospatial-tiles abstraction of road-segments. 27 - EID Interface for detections and uploads to the tile-contexts. 28 - EID Routing-Sharing hazards, blockages, parking, road-inventory. 29 - EID themed multicast channels per tile to subscribed clients. 31 Status of This Memo 33 This Internet-Draft is submitted in full conformance with the 34 provisions of BCP 78 and BCP 79. 36 Internet-Drafts are working documents of the Internet Engineering 37 Task Force (IETF). Note that other groups may also distribute 38 working documents as Internet-Drafts. The list of current Internet- 39 Drafts is at https://datatracker.ietf.org/drafts/current/. 41 Internet-Drafts are draft documents valid for a maximum of six months 42 and may be updated, replaced, or obsoleted by other documents at any 43 time. It is inappropriate to use Internet-Drafts as reference 44 material or to cite them other than as "work in progress." 46 This Internet-Draft will expire on January 1, 2022. 48 Copyright Notice 50 Copyright (c) 2021 IETF Trust and the persons identified as the 51 document authors. All rights reserved. 53 This document is subject to BCP 78 and the IETF Trust's Legal 54 Provisions Relating to IETF Documents 55 (https://trustee.ietf.org/license-info) in effect on the date of 56 publication of this document. Please review these documents 57 carefully, as they describe your rights and restrictions with respect 58 to this document. Code Components extracted from this document must 59 include Simplified BSD License text as described in Section 4.e of 60 the Trust Legal Provisions and are provided without warranty as 61 described in the Simplified BSD License. 63 Table of Contents 65 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 66 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 5 67 3. Deployment Assumptions . . . . . . . . . . . . . . . . . . . 7 68 4. Mobility Clients Network Services . . . . . . . . . . . . . . 10 69 5. Mobility Unicast and Multicast . . . . . . . . . . . . . . . 11 70 6. Security Considerations . . . . . . . . . . . . . . . . . . . 17 71 7. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 18 72 8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 19 73 9. Normative References . . . . . . . . . . . . . . . . . . . . 30 74 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 31 76 1. Introduction 78 The Locator/ID Separation Protocol (LISP) [I-D.ietf-lisp-rfc6830bis] 79 splits IP addresses in two different namespaces, Endpoint Identifiers 80 (EIDs) and Routing Locators (RLOCs). LISP uses map-and-encap approach 81 (1) a Mapping System (distributed database) that stores and resolves 82 EID-RLOC mappings and on (2) LISP tunnel routers (xTRs) encapsulating 83 and decapsulating data packets based on content of those mappings. 85 H3 (https://h3geo.org)is a geospatial indexing system using hexagonal 86 grid that can be subdivided into finer and finer hexagonal grids, 87 combining the benefits of a hexagonal grid with hierarchy. 88 H3 supports sixteen resolutions. Each finer resolution has cells with 89 1/7 the area of the coarser resolution. Hexagons cannot be perfectly 90 subdivided into seven hexagons, so the finer cells are approximately 91 contained within a parent cell. Each cell is identified by 64bit HID. 93 The Berkeley Deep Drive (BDD) (https://bdd-data.berkeley.edu) Industry 94 Consortium investigates computer vision technologies for automotive 95 applications and for taxonomy of published automotive classification. 97 These standards are combined to create an in-network state reflecting 98 condition of each hexagonal tile (~1sqm) in every road. The mobility 99 H3-LISP network maps & encapsulates traffic between client endpoint 100 identifiers (EID) and addressable geospatial contexts (H3-HID=>EID). 102 The H3-LISP mobility network bridges timing and location gaps between 103 production and consumption of information by clients of mobility data: 104 o information producers: vision, sensory, LIADR, AI applications 105 o information consumers: driving-apps, map-apps, command & control 107 This is achieved by putting the physical world on a shared addressable 108 geospatial context-grid of road-segments represented at the edge. 109 Geospatial state sharing is done using this brokered-network of tile 110 representation, an indirection which solves key issues in v2v 111 information sharing. For example multiple vision perspectives, geo 112 privacy, cyber security. These challenges arise when clients are 113 asked to communicate directly when they do not really need to. 114 A communication pattern which causes complexity and exposures. 116 In non brokered v2v models, for a situation observable by some end 117 points, it is unclear if the need-to-know end-points will receive: 118 i. consistent, ii. conflicting, iii. multiple, or iv. no indications. 119 As an example, when a vehicle experiences a sudden highway slow-down, 120 sees brake lights or senses an accelerometer slowdown, there is no 121 clear way for it to share this data with vehicles 20-30sec away. 122 Or, when a vehicle crosses an intersection, observing opposite-lane 123 obstruction such as: construction, double-park, commercial loading, 124 garbage truck, or stopped school-bus.. there is no clear way for it 125 to alert approachers from another direction as it drives away. 127 Geospatial context indirection helps communicate advanced vision and 128 radar annotations. As these are evolving technologies, relaying road 129 enumerations using peer-to-peer poses interoperability challenges. 131 These peer-to-peer limitations are inherent yet unnecessary, in most 132 situations vehicles are not really proper peers. They happen to be in 133 the same place at the same time. H3-LISP mobility network solves the 134 limitations of direct vehicle-to-vehicle communication by brokering 135 exchanges using addressable geospatial context. Bridging timing, 136 security, privacy, and interoperability gaps between endpoints. 137 Brokering is achieved by clients communicating via context, 138 addressable tiles which aggregated and relay data using H3 EIDs. 140 Clients can provide drivers with heads-up alerts on hazards/obstacles 141 beyond the line of sight of driver and in-car sensors: over traffic, 142 around blocks, far-side junction, beyond road turns or curvatures. 143 This highlights the importance of networks for road safety 144 and role in Autonomous Vehicle (AV) operation support (AV-OSS). 146 To summarize the H3-LISP mobility solution principles are: 148 (1) Problem Partition: 64bit H3.r15 ID road-tiles for detections 149 (2) Enumerated State: 64bit values of tile condition representation 150 (3) Grouping: EID per H3.r9 geo-context for its H3.r15 road-tiles 151 (4) Group Channels: H3.r9 EIDs mcast address for geo-state updates 152 (5) Scale: EID addressable contexts distributed on edge servers 153 (6) Overlay: tunneled-network routes the mobility-network traffic 154 (7) Signal-free: overlay is used to map-register for mcast channels 155 (8) Layering: overlay tunnels used between clients and geo-contexts 156 (9) Access: client/server XTRs tunnel traffic to-from the LISP RTRs 157 (10) Control: RTRs register-resolve H3 EIDs and mcast subscriptions 159 |-0-|-1-|-2-|-3-|-4-|-5-|-6-|-7-|-8-|-9-|-A-|-B-|-C-|-D-|-E-|-F-| 160 | H3 Hexagon ID Key | 161 |-0-|-1-|-2-|-3-|-4-|-5-|-6-|-7-|-8-|-9-|-A-|-B-|-C-|-D-|-E-|-F-| 162 | H3 Hexagon State-Value | 163 |---------------------------------------------------------------| 165 Figure 1: 64 bit H3 ID, 64 bit compiled state value 167 Each H3.r9 hexagon is an EID context with corresponding H3 hexagon ID. 168 Bound to that context is a LISP xTR specified to encapsulate packets 169 to and from EID context and LISP Edge. Edge RTRs are used to re 170 -tunnel packets from clients to services. Each service is also a 171 multicast source for updating clients on the state of the H3.r15 172 tiles, aggregated by the EID addressable geospatial context. 174 2. Definition of Terms 176 H3ServiceEID: Is an addressable aggregation of H3.r15 tiles. 177 It functions as geospatial data association context for filtering, 178 verifying, localizing, and propagating vehicles data uploads. 179 It is a designated destination for physical world annotations, 180 and an (s,g) source of multicast themed update channels. 181 H3ServiceEID is itself an H3 hexagon, large enough to provide 182 geo-spatial compute context, but not too large as to over-burden 183 subscribers with too much information. For Mobility Network it is 184 H3.r9. It has a light-weight LISP protocol stack to tunnel packets 185 aka ServerXTR. The EID is an IPv6 EID that contains the H3 64-bit 186 address numbering scheme. 188 ServerXTR: Is a data-plane only LISP protocol stack implementation, it 189 co-exists with H3ServiceEID process. When the server roams, the xTR 190 is with it. ServerXTR encaps & decaps packets to/from EdgeRTRs. 192 MobilityClient: Is a roaming application that may be a part of an 193 automobile, part of a navigation application, part of municipal, 194 state or federal government command and control application, or a 195 street view consumer application. It has a light-weight LISP 196 data-plane stack to tunnel packets, aka ClientXTR. 198 MobilityClient EID: Is the IPv6 EID used by the Mobility Clients 199 to source packets. The destination of such packets are only 200 H3ServiceEIDs. The EID format is opaque and is assigned as 201 part of the MobilityClient mobility-network authorization. 203 ClientXTR: Is a data-plane only LISP protocol stack implementation 204 co-located with the Mobility Client application. It encaps/ 205 decaps packets from/to applications to/from EdgeRTRs. 207 EdgeRTR: Is the core scale and structure of the LISP mobility network. 208 EdgeRTRs proxy H3ServiceEIDs and MobilityClient H3ServiceEID mcast 209 registration. EdgeRTRs aggregate MobilityClients/H3Services using 210 tunnels to facilitate hosting-providers and mobile-providers for 211 accessing the mobility network. EdgeRTRs decapsulate packets 212 from ClientXTRs, ServerXTRs and re-encaps packets to the clients 213 and servers tunnels. EdgeRTRs glean H3ServiceEIDs/MobilityClient 214 EIDs when they decapsulates packets. EdgeRTRs store H3ServiceEIDs 215 and RLOCs of where the H3ServiceEID is currently reachable from 216 the map-cache. These mappings are registered to the LISP mapping. 217 These mappings may be provisioned when H3Services are assigned 218 EdgeRTRs. EdgeRTRs do not register MobilityClients' EIDs. 219 Enterprises may provide their own EdgeRTRs to protect geo-privacy. 221 ___ ___ 222 H3ServiceEIDs ___ / \ H3ServiceEIDs ___ / \ 223 ___ / | H3.r9 | ___ / | H3.r9 | 224 / | H3.r9 \ ___ / / | H3.r9 \ ___ / 225 | H3.r9 \ ___ / sXTR | H3.r9 \ ___ / sXTR 226 \ ___ / sXTR | \ ___ / sXTR | 227 sXTR | | sXTR | | 228 | | | | | | 229 | | | | | | 230 + - - + - - EdgeRTR EdgeRTR - + - + - - + 231 || ( ( (( || 232 ( ) 233 ( Network Hexagons ) 234 ( H3-LISP ) 235 ( Mobility Network ) 236 (( ) 237 || (( (()) () || 238 || || 239 = = = = = = = = = = = = = = 240 || || 241 EdgeRTR EdgeRTR 242 .. .. .. .. 243 .. .. .. .. 244 ((((|)))) ((((|)))) ((((|)))) ((((|)))) 245 /|\ RAN /|\ /|\ RAN /|\ 246 .. .. 247 .. .. 248 .. Road tiled by 1 sqm H3.r15 ID-Ed Geo-States .. 249 .. .. 250 .. ___ ___ ___ .. 251 .. ............. / \/ \/ \ << cXTR::MobilityClientB 252 .. - - - - - - - H3.r15 H3.r15 H3.r15 - - - - - - - - - - - - 253 MobilityClientA::cXTR >> \ ___ /\ ___ / ....................... 255 Figure 2: H3.r15 state representation, H3.r9 state aggregation 257 Figure 2 above describes the following entities: 258 - MobilityClientA sees MobilityClientB future, and, vice versa 259 - Clients: share information using addressable state routed by LISP 260 - ClientXTR (cXTR): encapsulates over access network to EdgeRTR 261 - ServerXTR (sXTR): encapsulates over cloud network to EdgeRTR 262 - H3-LISP Mobility: overlay which spans cXTRs to sXTRs 263 - Uploads: routed to appropriate tile by the LISP network 264 - EdgeRTRs: perform multicast replication to edges and then cXTRs 265 - Clients: receive tile-by-tile geo-state updates via the multicast 267 3. Deployment Assumptions 269 The specification described in this document makes the following 270 deployment assumptions: 272 (1) Unique 64-bit HID is associated with each H3 geo-spatial tile 273 (2) MobilityClients and H3ServiceEIDs share this well known index 274 (3) 64-bit BDD state value is associated with each H3-indexed tile 275 (4) Tile state is compiled 16 fields of 4-bits, or max 16 enums 277 0 1 2 3 4 5 6 7 278 +-------+-------+-------+-------+-------+-------+-------+-------+ 279 |-0-|-1-|-2-|-3-|-4-|-5-|-6-|-7-|-8-|-9-|-A-|-B-|-C-|-D-|-E-|-F-| 280 |0123012301230123012301230123012301230123012301230123012301230123 281 +---------------------------------------------------------------+ 283 Figure 3: Nibble based representation, 16 fields x 16 enumerations 285 We name the nibbles using hexadecimal index according to the 286 position where the most significant nibble has index 0. 287 Values are defined in section 8. 289 Subscription of MobilityClients to mobility-network is renewed 290 while on the move and is not intended as the basic connectivity. 291 MobilityClients use DNS/AAA to obtain temporary EIDs/EdgeRTRs 292 and use (LISP) data-plane tunnels to communicate using their 293 temporary EIDs with the dynamically assigned EdgeRTRs. 295 MobilityClient are otherwise unaware of the LISP network control 296 plane and simply regard the data-plane tunnels as a virtual 297 private network (VPN) that supports IPv6 EID to upload (Ucast) 298 and Subscribe-to (Mcast) H3Services. 300 In order to get access to the MobilityVPN, MobilityClients first 301 authenticate with the MobilityVPN AAA Server. DIAMETER [RFC6733] 302 based AAA is typically done at the provider edge (PE) by gateways. 303 However, the typical case involves several types of CPE connected 304 to a specific service provider. On other hand, the Mobility VPN 305 may overlay a number of wireless networks and cloud-edge providers. 306 It also involves dozens of Car-OEM, Driving-Applications, Smart- 307 City vendors. This is why we require clients to first go through 308 AAA in order to get both a MobilityClientEID and EdgeRTR RLOC. 310 ClientXTR performs the following steps to use the mobility network: 311 1) obtain the address of the mobility network AAA server using DNS 312 2) obtain MobilityClientEID and EdgeRTR(s) from AAA DIAMETER server 313 3) renew authorization from AAA while using the mobility network 314 MobilityClient DomainNameServer DIAMETER-AAA MobilityEdgeRTR 315 | | | | 316 | nslookup nexagon | | | 317 |------------------->| | | 318 |<-------------------| | | 319 | Mobility AAA IP | | | 320 | | | | 321 | AAR(AVP:IMSI/User/Password/Toyota) | | 322 |--------------------------------------->| | 323 | | | ACR(AVP ClientEID)| 324 | | |------------------>| 325 | | |<------------------| 326 | | | ACA(AVP ClientEID)| 327 | AAA (Client::EID,EdgeRTR::RLOC) | | 328 |<---------------------------------------| | 329 | | | | 330 . . 331 . Upload to IPv6 H3ServiceEID, Subscribe MLDv2 H3ServiceEID . 332 . . 333 | | 334 |----------------------------------------------------------->| 335 . . 336 . . 337 |<-----------------------------------------------------------| 338 | | 339 . . 340 . Signal freeing multicast Updates from H3ServiceEID . 341 . . 342 | | | | 343 | AAR(Interim) | | 344 |--------------------------------------->| ACR (Interim) | 345 | | |------------------>| 346 | | |<------------------| 347 | | | ACA (Interim) | 348 |<---------------------------------------| | 349 | AAA (Interim) | | 351 Figure 4: DNS and AAA Exchange for nexagon-network login 353 Using this network login and re-login method we ensure that: 354 - MobilityClientEIDs serve as credentials with the EdgeRTRs 355 - EdgeRTRs are provisioned to whitelist MobilityClient EIDs 356 - EdgeRTRs are not tightly coupled to H3.r9 areas (privacy/balance) 357 - MobilityClients do not need to update EdgeRTRs while roaming 358 The same EdgeRTR may serve several H3.r9 areas for ride continuity 359 and several EdgeRTRs may load balance an H3.r9 area with high 360 density of MobilityClients. When a MobilityClient ClientXTR is 361 homed to EdgeRTR, it is able to communicate with H3ServiceEIDs. 363 4. Mobility Clients Network Services 365 The mobility network functions as a standard LISP overlay. 366 The overlay delivers unicast and multicast packets across: 367 - multiple access-networks and radio-access specifications 368 - multiple edge providers, public, private, and hybrid clouds 370 We use data-plane XTRs in the stack of each mobility client/server. 371 ClientXTRs and ServerXTRs are homed to one or more EdgeRTRs. 372 This structure allows for MobilityClients to "show up" at any time, 373 behind any network provider in a given mobility network admin/NAT 374 domain, and for any H3ServiceEID to be instantiated, moved, or 375 failed-over to any rack in any cloud-provider. LISP overlay enables 376 these roaming mobility network elements to communicate uninterrupted. 377 This quality is insured by the LISP RFCs. The determination of 378 identities for MobilityClients to always refer to the correct 379 H3ServiceEID is insured by H3 geo-spatial HIDs. 381 There are two options to associate ClientXTRs with LISP EdgeRTRs: 383 i. Semi-random load-balancing by DNS/AAA 385 In this option we assume that in a given metro edge a pool of 386 EdgeRTRs can distribute the Mobility Clients load randomly between 387 them and that EdgeRTRs are topologically equivalent. Each RTR uses 388 LISP to tunnel traffic to and from other EdgeRTRs for MobilityClient 389 with H3Service exchanges. MobilityClients home to EdgeRTRs. 391 ii. Topological by anycast 393 In this option we align an EdgeRTR with topological aggregation. 394 Mobility Clients are roaming in an area home to that RTR and so 395 is the H3 Server. There is only one hop across the edge overlay 396 between clients and servers and mcast replication is more 397 focused, but clients need to keep re-homing as they move. 399 To summarize the H3LISP mobility network layout: 401 (1) Mobility-Clients traffic is tunneled via data-plane ClientXTRs 402 ClientXTRs are (multi) homed to EdgeRTR(s) 403 (2) H3ServiceEID traffic is tunneled via data-plane ServerXTR 404 ServerXTRs are (multi) homed to EdgeRTR(s) 405 (3) EdgeRTRs use mapping service to resolve Ucast HIDs to RTR RLOCs 406 EdgeRTRs also register to (Source, Group) H3ServiceEID multicasts 408 MobilityClients <> ClientXTR EdgeRTR v 409 v 410 v < < < < Map-Assisted Mobility-Network Overlay < < < < v 411 v 412 > > > > EdgeRTR ServerXTR <> H3ServiceEID 414 Figure 5: The Data Flow Between MobilityClients and H3ServiceEIDs 416 5. Mobility Unicast and Multicast 418 Regardless of the way a given ClientXTR was associated with EdgeRTR, 419 an authenticated MobilityClient EID can send: [64bitH3.15ID :: 420 64bitState]annotations to the H3.r9 H3ServiceEID. The H3.r9 EID can 421 be calculated by clients algorithmically from the H3.15 localization. 423 The ClientXTR encapsulates MobilityClient EID and H3ServiceEID from 424 the ClientXTR with the destination of the EdgeRTR RLOC LISP port. 425 EdgeRTRs then re-encapsulate annotation packets to remote EdgeRTR. 426 The remote EdgeRTR aggregating H3ServiceEIDs re-encapsulates 427 MobilityClient EID to the ServerXTR, to the H3ServiceEID. 429 The headers consist of the following fields: 431 Outer headers = 40 (IPv6) + 8 (UDP) + 8 (LISP) = 56 432 Inner headers = 40 (IPv6) + 8 (UDP) + 4 (Nexagon Header) = 52 433 1500 (MTU) - 56 - 52 = 1392 bytes of effective payload 435 Nexagon Header Type allows for kv tupples or vkkk flooding 436 Type 0:reserved 437 Type 1:key-value, key-value.. 1392 / (8 + 8) = 87 pairs 438 Type 2:value, key,key,key.. (1392 - 8) / 8 = 173 H3-R15 IDs 439 Type 3-255: unassigned 440 Nexagon Header GZIP field: 0x000 no compression, or GZIP version. 441 Nexagon Header Reserved bits 442 Nexagon Header kv count (in any format) 444 0 1 2 3 445 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 446 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ 447 |Version| Traffic Class | Flow Label | | 448 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 449 | Payload Length | Next Header | Hop Limit | | 450 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 451 | | | 452 + + | 453 | | | 454 + Source MobilityClientEID + | 455 | | IPv6 456 + + | 457 | | | 458 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 459 | | | 460 + + | 461 | | | 462 + Dest H3ServiceEID + | 463 | | | 464 + + | 465 | | / 466 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 467 | Source Port = xxxx | Dest Port = xxxx | \ 468 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ UDP 469 | UDP Length | UDP Checksum | / 470 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ 471 | Type |gzip | Reserved | Pair Count = X| Nexgon 472 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / 473 | | 474 + 64 Bit H3-R15 ID + 475 | | 476 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 477 | | 478 + 64 Bit State + 479 | | 480 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 481 | | 482 + 64 Bit H3-R15 ID + 483 | | 484 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 485 | | 486 + 64 Bit State + 487 | | 488 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 490 Figure 6: Uploaded detections packet format 491 To Summarize Unicast Uploads: 493 (1) MobilityClients can send annotations are localized to H3.r15 494 tile. These annotations are sent to H3.r9 mobility H3ServiceEIDs 495 (2) MobilityClient EID and H3ServiceEID HID are encapsulated: 496 XTR <> RTR <> RTR <> XTR 497 * RTRs can map-resolve re-tunnel HIDs 498 (3) RTRs re-encapsulate original source-dest to ServerXTRs 499 ServerXTRs decapsulate packets to H3ServiceEID 501 Each H3.r9 Server is also an IP Multicast Source used to update 502 subscribers on the aggregate state of the H3.r15 tiles in the H3.r9 503 server. This forms a multipoint to multipoint state channel per H3 504 location, where the aggregation has compute-first propagation. 506 We use [RFC8378] signal-free multicast to implement mcast channels in 507 the overlay. The mobility network has many channels, with thousands 508 subscribers per channel. MobilityClients driving through/subscribing 509 to an H3.r9 area can explicitly issue an [RFC4604] MLDv2 in order to 510 subscribe, or, may be subscribed implicitly by the EdgeRTR. 512 The advantage of explicit client MLDv2 registration as [RFC8378] 513 trigger is that clients manage their own mobility mcast handover per 514 location-direction vectors, and that it allows for otherwise silent 515 non annotating clients. The advantage of EdgeRTR implicit registration 516 is that less signaling required. 518 MLDv2 signaling messages are encapsulated between the ClientXTR and 519 EdgeRTR, therefore there is no requirement for the underlying network 520 to support native multicast. If native access multicast is supported 521 then MobilityClient registration to H3ServiceEID safety channels may 522 be integrated with it, in which case mobile packet-core element 523 supporting it will use this standard to register with the 524 appropriate H3.r9 channels in its area. 526 Multicast update packets are of the following structure: 528 0 1 2 3 529 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 530 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ 531 |Version| Traffic Class | Flow Label | | 532 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 533 | Payload Length | Next Header | Hop Limit | | 534 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 535 | | | 536 + + | 537 | | | 538 + Source H3-R9 EID Address + | 539 | | IPv6 540 + + | 541 | | | 542 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 543 | | | 544 + + | 545 | | | 546 + Group Address + | 547 | | | 548 + + | 549 | | / 550 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 551 | Source Port = xxxx | Dest Port = xxxx | \ 552 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ UDP 553 | UDP Length | UDP Checksum | / 554 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ 555 | |Nexagon 556 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / 557 ~ Nexagons Payload ~ 558 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 560 Figure 7: Mcast update packet header 562 0 1 2 3 563 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 564 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ 565 | Type = 1 |gzip | Reserved | Pair Count = X|Nexagon 566 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / 567 | | 568 + 64 Bit H3-R15 ID + 569 | | 570 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 571 | | 572 + 64 Bit State + 573 | | 574 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 575 | | 576 + 64 Bit H3-R15 ID + 577 | | 578 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 579 | | 580 + 64 Bit State + 581 | | 582 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 584 Figure 8: Mcast update payload, key-value, key-value.. 586 0 1 2 3 587 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 588 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ 589 | Type = 2 |gzip | Reserved |H3R15 Count = X|Nexagon 590 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / 591 | | 592 + 64 Bit State + 593 | | 594 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 595 | | 596 + 64 Bit H3-R15 ID + 597 | | 598 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 599 | | 600 + 64 Bit H3-R15 ID + 601 | | 602 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 603 | | 604 + 64 Bit H3-R15 ID + 605 | | 606 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 608 Figure 9: Mcast update payload, value, key, key.. for larger areas 610 The remote EdgeRTRs homing MobilityClients in turn replicate the 611 packet to the MobilityClients registered with them. 613 We expect an average of 600 H3.r15 tiles of the full 7^6 (~100K) 614 possible in H3.r9 to be part of any road. The H3.r9 server can 615 transmit the status of all 600 or just those with meaningful states 616 based on updated SLA and policy. 618 To Summarize: 620 (1) H3LISP Clients tune to H3.r9 mobility updates using [RFC8378] 621 H3LISP Client issue MLDv2 registration to H3.r9 HIDs 622 ClientXTRs encapsulate MLDv2 to EdgeRTRs who register (s,g). 624 (2) ServerXTRs encapsulate updates to EdgeRTRs who map-resolve (s,g) 625 RLOCs EdgeRTRs replicate mobility update and tunnel to registered 626 EdgeRTRs Remote EdgeRTRs replicate updates to ClientXTRs. 628 6. Security Considerations 630 The nexagon layer3 v2n network is inherently more secure and private 631 then peer to peer alternatives because of the indirection. No car or 632 infrastructure element communicates directly with MobilityClients. 633 All information is conveyed using shared addressable geo-state. 634 MobilityClients receive information only from geospatial channels 635 originating from a trusted broker. MobilityClients have no indication 636 as to the origin of the information. This is an important step towards 637 better privacy, security, extendability, and interoperability compared 638 with legacy layer2 protocols. 640 In order to be able to use the nexagon mobility network for a given 641 period, the mobility clients go through a DNS/AAA stage by which they 642 obtain their clientEID identifiers-credentials and the RLOCs of 643 EdgeRTRs they may use as gateways to the network. This MobilityClient 644 <> EdgeRTR interface is the most sensitive in this network to privacy 645 and security considerations. 647 The traffic on the MobilityClient<>EdgeRTR interface is tunneled, and 648 its UDP content may be encrypted; still, the EdgeRTR will know based 649 on the LISP headers alone the MobilityClient RLOC and H3-R9 (~0.1sqkm) 650 geo-spatial area to which a given client uploads or subscribes to. 652 For this reason we envision the ability of enterprise or groups of 653 users to "bring their own" EdgeRTRs. BYO-RTR masks individual clients' 654 RLOC to H3-R9 association and is pre-provisioned to be able to use the 655 mapping system and be on a white-list of EdgeRTRs aggregating 656 H3ServiceEIDs. If the EdgeRTR functionality is delivered by 5GCore UPF 657 then the only entity which can correlate underlay IP, User, and Geo- 658 location is the regulated carrier, which can do so anyway. 660 Beyond this hop, the mapping system does not hold MobilityClientEIDs, 661 and remote EdgeRTRs are only aware of MobilityClient ephemeral EIDs, 662 not actual RLOC or any other mobile-device identifiers. EdgeRTRs 663 register in the mapping (s,g) H3-R9 multicast groups. Which clients 664 use which EdgeRTR is not in the mapping system, only the AAA server is 665 aware of that. The H3ServiceEIDs themselves decrypt and parse actual 666 H3-R15 annotations; they also consider during this MobilityClientEID 667 credentials to avoid "fake-news", but again these are only temporary 668 EIDs allocated to clients in order to be able to use the mobility 669 network and not for their actual IP. 671 H3Services are provisioned to their EdgeRTRs, in the EdgeRTRs, and 672 optionally also in the mapping system. 674 In summary of main risk mitigations for the lisp-nexagon interface: 676 (1) tapping: all communications are through dynamic tunnels therefore 677 may be encrypted using IP-Sec or other supported point to point 678 underlay standards. These are not static tunnels but LISP re-tunneling 679 routers (RTRs) perform all nexagon Overlay aggregation. 681 (2) spoofing: it is very hard to guess a MobilityClientEID valid for 682 a short period of time. Clients and H3Services EIDs are whitelisted 683 in EdgeRTRs, Clients using the AAA procedure, H3Services via dev-ops. 685 (3) impersonating: efforts to use MobilityClients and H3Services RLOCs 686 should be caught by the underlying service provider edge and access 687 networks. EID impersonating is caught by EdgeRTR EID RLOC whitelist 688 mismatch. 690 (4) credibility: the interface crowd-sources geo-state and does not 691 assume to trust single detections. Credit history track to 692 MobilityClientEIDs by as part of normal H3Services fact checking, 693 aggregate scores affect AAA credentials. 695 (5) privacy: Only EdgeRTRs are aware of both clients' RLOC and 696 geo-location, only AAA is aware of client IDs credentials and credit 697 but not geo-location. Aggregate credit score span all H3Services 698 administratively without source. 700 7. Acknowledgments 702 We would like to kindly thank Joel Halperin for helping structure the 703 AAA section and Geo-Privacy provisions, Luigi Lannone for promoting 704 such LISP Compute First Networking (CFN) use-cases, helping structure 705 the IANA section, and shepherding this draft to completion. 707 8. IANA Considerations 709 This section provides guidance to the Internet Assigned Numbers 710 Authority (IANA) regarding registration of values related to the LISP 711 specification, in accordance with BCP 26 [RFC8126]. 713 IANA is asked to create a registry named NEXAGON Parameters. 715 Such registry should be populated with the following sub registries. 717 State Enumeration Field 0x0: Traffic Direction: 718 +-------+--------------------+-----------------+ 719 | Value | Description | Reference | 720 +-------+--------------------+-----------------+ 721 | 0x0 | Null | [This Document] | 722 | | | | 723 | 0x1 | Lane North | [This Document] | 724 | | | | 725 | 0x2 | Lane North + 30 | [This Document] | 726 | | | | 727 | 0x3 | Lane North + 60 | [This Document] | 728 | | | | 729 | 0x4 | Lane North + 90 | [This Document] | 730 | | | | 731 | 0x5 | Lane North + 120 | [This Document] | 732 | | | | 733 | 0x6 | Lane North + 150 | [This Document] | 734 | | | | 735 | 0x7 | Lane North + 180 | [This Document] | 736 | | | | 737 | 0x8 | Lane North + 210 | [This Document] | 738 | | | | 739 | 0x9 | Lane North + 240 | [This Document] | 740 | | | | 741 | 0xA | Lane North + 270 | [This Document] | 742 | | | | 743 | 0xB | Lane North + 300 | [This Document] | 744 | | | | 745 | 0xC | Lane North + 330 | [This Document] | 746 | | | | 747 | 0xD | Junction | [This Document] | 748 | | | | 749 | 0xE | Shoulder | [This Document] | 750 | | | | 751 | 0xF | Sidewalk | [This Document] | 752 +-------+--------------------+-----------------+ 753 State Enumeration Field 0x1: Persistent Condition: 754 +-------+--------------------+-----------------+ 755 | Value | Description | Reference | 756 +-------+--------------------+-----------------+ 757 | 0x0 | Null | [This Document] | 758 | | | | 759 | 0x1 | Pothole Light | [This Document] | 760 | | | | 761 | 0x2 | Pothole Deep | [This Document] | 762 | | | | 763 | 0x3 | Speed-bump Low | [This Document] | 764 | | | | 765 | 0x4 | Speed-bump High | [This Document] | 766 | | | | 767 | 0x5 | Icy | [This Document] | 768 | | | | 769 | 0x6 | Flooded | [This Document] | 770 | | | | 771 | 0x7 | Snow-cover | [This Document] | 772 | | | | 773 | 0x8 | Deep Snow | [This Document] | 774 | | | | 775 | 0x9 | Cone | [This Document] | 776 | | | | 777 | 0xA | Gravel | [This Document] | 778 | | | | 779 | 0xB | Choppy | [This Document] | 780 | | | | 781 | 0xC | Blind-Curve | [This Document] | 782 | | | | 783 | 0xD | Steep | [This Document] | 784 | | | | 785 | 0xE | Low-bridge | [This Document] | 786 | | | | 787 | 0xF | Other | [This Document] | 788 +-------+--------------------+-----------------+ 789 State Enumeration Field 0x2: Transient Condition: 790 +-------+--------------------+-----------------+ 791 | Value | Description | Reference | 792 +-------+--------------------+-----------------+ 793 | 0x0 | Null | [This Document] | 794 | | | | 795 | 0x1 | Jaywalker | [This Document] | 796 | | | | 797 | 0x2 | Bike or Scooter | [This Document] | 798 | | | | 799 | 0x3 | Stopped Vehicle | [This Document] | 800 | | | | 801 | 0x4 | Moving on Shoulder | [This Document] | 802 | | | | 803 | 0x5 | First Responder | [This Document] | 804 | | | | 805 | 0x6 | Sudden Slowdown | [This Document] | 806 | | | | 807 | 0x7 | Oversize Vehicle | [This Document] | 808 | | | | 809 | 0x8 | Light/Sign Breach | [This Document] | 810 | | | | 811 | 0x9 | Collision Light | [This Document] | 812 | | | | 813 | 0xA | Collision Severe | [This Document] | 814 | | | | 815 | 0xB | Collision Debris | [This Document] | 816 | | | | 817 | 0xC | Collision Course | [This Document] | 818 | | | | 819 | 0xD | Vehicle Hard Brake | [This Document] | 820 | | | | 821 | 0xE | Vehicle Sharp Turn | [This Document] | 822 | | | | 823 | 0xF | Freed-up Parking | [This Document] | 824 +-------+--------------------+-----------------+ 825 State Enumeration Field 0x3: Traffic-light Counter: 826 +-------+--------------------+-----------------+ 827 | Value | Description | Reference | 828 +-------+--------------------+-----------------+ 829 | 0x0 | Null | [This Document] | 830 | | | | 831 | 0x1 | 1 Second to Green | [This Document] | 832 | | | | 833 | 0x2 | 2 Second to Green | [This Document] | 834 | | | | 835 | 0x3 | 3 Second to Green | [This Document] | 836 | | | | 837 | 0x4 | 4 Second to Green | [This Document] | 838 | | | | 839 | 0x5 | 5 Second to Green | [This Document] | 840 | | | | 841 | 0x6 | 6 Second to Green | [This Document] | 842 | | | | 843 | 0x7 | 7 Second to Green | [This Document] | 844 | | | | 845 | 0x8 | 8 Second to Green | [This Document] | 846 | | | | 847 | 0x9 | 9 Second to Green | [This Document] | 848 | | | | 849 | 0xA | 10 Second to Green | [This Document] | 850 | | | | 851 | 0xB | 20 Second to Green | [This Document] | 852 | | | | 853 | 0xC | 30 Second to Green | [This Document] | 854 | | | | 855 | 0xD | 60 Second to Green | [This Document] | 856 | | | | 857 | 0xE | Green Now | [This Document] | 858 | | | | 859 | 0xF | Red Now | [This Document] | 860 +-------+--------------------+-----------------+ 861 State Enumeration Field 0x4: Impacted Tile: 862 +-------+--------------------+-----------------+ 863 | Value | Description | Reference | 864 +-------+--------------------+-----------------+ 865 | 0x0 | Null | [This Document] | 866 | | | | 867 | 0x1 | Epicenter | [This Document] | 868 | | | | 869 | 0x2 | 2 Tiles Away | [This Document] | 870 | | | | 871 | 0x3 | 3 Tiles Away | [This Document] | 872 | | | | 873 | 0x4 | 4 Tiles Away | [This Document] | 874 | | | | 875 | 0x5 | 5 Tiles Away | [This Document] | 876 | | | | 877 | 0x6 | 6 Tiles Away | [This Document] | 878 | | | | 879 | 0x7 | 7 Tiles Away | [This Document] | 880 | | | | 881 | 0x8 | 8 Tiles Away | [This Document] | 882 | | | | 883 | 0x9 | 9 Tiles Away | [This Document] | 884 | | | | 885 | 0xA | 10 Tiles Away | [This Document] | 886 | | | | 887 | 0xB | 20 Tiles Away | [This Document] | 888 | | | | 889 | 0xC | 30 Tiles Away | [This Document] | 890 | | | | 891 | 0xD | 60 Tiles Away | [This Document] | 892 | | | | 893 | 0xE | <100 Tiles Away | [This Document] | 894 | | | | 895 | 0xF | <200 Tiles Away | [This Document] | 896 +-------+--------------------+-----------------+ 897 State Enumeration Field 0x5: Expected Duration: 898 +-------+--------------------+-----------------+ 899 | Value | Description | Reference | 900 +-------+--------------------+-----------------+ 901 | 0x0 | Null | [This Document] | 902 | | | | 903 | 0x1 | Next 1 Second | [This Document] | 904 | | | | 905 | 0x2 | Next 5 Seconds | [This Document] | 906 | | | | 907 | 0x3 | Next 10 Seconds | [This Document] | 908 | | | | 909 | 0x4 | Next 20 Seconds | [This Document] | 910 | | | | 911 | 0x5 | Next 40 Seconds | [This Document] | 912 | | | | 913 | 0x6 | Next 60 Seconds | [This Document] | 914 | | | | 915 | 0x7 | Next 2 Minutes | [This Document] | 916 | | | | 917 | 0x8 | Next 3 Minutes | [This Document] | 918 | | | | 919 | 0x9 | Next 4 Minutes | [This Document] | 920 | | | | 921 | 0xA | Next 5 Minutes | [This Document] | 922 | | | | 923 | 0xB | Next 10 Minutes | [This Document] | 924 | | | | 925 | 0xC | Next 15 Minutes | [This Document] | 926 | | | | 927 | 0xD | Next 30 Minutes | [This Document] | 928 | | | | 929 | 0xE | Next 60 Minutes | [This Document] | 930 | | | | 931 | 0xF | Next 24 Hours | [This Document] | 932 +-------+--------------------+-----------------+ 933 State Enumeration Field 0x6: Lane Right Sign: 934 +-------+--------------------+-----------------+ 935 | Value | Description | Reference | 936 +-------+--------------------+-----------------+ 937 | 0x0 | Null | [This Document] | 938 | | | | 939 | 0x1 | Yield | [This Document] | 940 | | | | 941 | 0x2 | Speed Limit | [This Document] | 942 | | | | 943 | 0x3 | Straight Only | [This Document] | 944 | | | | 945 | 0x4 | No Straight | [This Document] | 946 | | | | 947 | 0x5 | Right Only | [This Document] | 948 | | | | 949 | 0x6 | No Right | [This Document] | 950 | | | | 951 | 0x7 | Left Only | [This Document] | 952 | | | | 953 | 0x8 | No Left | [This Document] | 954 | | | | 955 | 0x9 | Right Straight | [This Document] | 956 | | | | 957 | 0xA | Left Straight | [This Document] | 958 | | | | 959 | 0xB | No U Turn | [This Document] | 960 | | | | 961 | 0xC | No Left or U | [This Document] | 962 | | | | 963 | 0xD | Bike Lane | [This Document] | 964 | | | | 965 | 0xE | HOV Lane | [This Document] | 966 | | | | 967 | 0xF | Stop | [This Document] | 968 +-------+--------------------+-----------------+ 969 State Enumeration Field 0x7: Movement Sign: 970 +-------+--------------------+-----------------+ 971 | Value | Description | Reference | 972 +-------+--------------------+-----------------+ 973 | 0x0 | Null | [This Document] | 974 | | | | 975 | 0x1 | Keep Right | [This Document] | 976 | | | | 977 | 0x2 | Keep Left | [This Document] | 978 | | | | 979 | 0x3 | Stay in Lane | [This Document] | 980 | | | | 981 | 0x4 | Do Not Enter | [This Document] | 982 | | | | 983 | 0x5 | No Trucks | [This Document] | 984 | | | | 985 | 0x6 | No Bikes | [This Document] | 986 | | | | 987 | 0x7 | No Peds | [This Document] | 988 | | | | 989 | 0x8 | One Way | [This Document] | 990 | | | | 991 | 0x9 | Parking | [This Document] | 992 | | | | 993 | 0xA | No Parking | [This Document] | 994 | | | | 995 | 0xB | No Standing | [This Document] | 996 | | | | 997 | 0xC | No Passing | [This Document] | 998 | | | | 999 | 0xD | Loading Zone | [This Document] | 1000 | | | | 1001 | 0xE | Rail Crossing | [This Document] | 1002 | | | | 1003 | 0xF | School Zone | [This Document] | 1004 +-------+--------------------+-----------------+ 1005 State Enumeration Field 0x8: Curves & Intersections: 1006 +-------+--------------------+-----------------+ 1007 | Value | Description | Reference | 1008 +-------+--------------------+-----------------+ 1009 | 0x0 | Null | [This Document] | 1010 | | | | 1011 | 0x1 | Turns Left | [This Document] | 1012 | | | | 1013 | 0x2 | Turns Right | [This Document] | 1014 | | | | 1015 | 0x3 | Curves Left | [This Document] | 1016 | | | | 1017 | 0x4 | Curves Right | [This Document] | 1018 | | | | 1019 | 0x5 | Reverses Left | [This Document] | 1020 | | | | 1021 | 0x6 | Reverses Right | [This Document] | 1022 | | | | 1023 | 0x7 | Winding Road | [This Document] | 1024 | | | | 1025 | 0x8 | Hair Pin | [This Document] | 1026 | | | | 1027 | 0x9 | Pretzel Turn | [This Document] | 1028 | | | | 1029 | 0xA | Cross Roads | [This Document] | 1030 | | | | 1031 | 0xB | Cross T | [This Document] | 1032 | | | | 1033 | 0xC | Cross Y | [This Document] | 1034 | | | | 1035 | 0xD | Circle | [This Document] | 1036 | | | | 1037 | 0xE | Lane Ends | [This Document] | 1038 | | | | 1039 | 0xF | Road Narrows | [This Document] | 1040 +-------+--------------------+-----------------+ 1041 State Enumeration Field 0x9: Tile Traffic Speed: 1042 +-------+--------------------+-----------------+ 1043 | Value | Description | Reference | 1044 +-------+--------------------+-----------------+ 1045 | 0x0 | Null | [This Document] | 1046 | | | | 1047 | 0x1 | < 1 m/sec | [This Document] | 1048 | | | | 1049 | 0x2 | < 2 m/sec | [This Document] | 1050 | | | | 1051 | 0x3 | < 3 m/sec | [This Document] | 1052 | | | | 1053 | 0x4 | < 4 m/sec | [This Document] | 1054 | | | | 1055 | 0x5 | < 5 m/sec | [This Document] | 1056 | | | | 1057 | 0x6 | < 6 m/sec | [This Document] | 1058 | | | | 1059 | 0x7 | < 7 m/sec | [This Document] | 1060 | | | | 1061 | 0x8 | < 8 m/sec | [This Document] | 1062 | | | | 1063 | 0x9 | < 9 m/sec | [This Document] | 1064 | | | | 1065 | 0xA | < 10 m/sec | [This Document] | 1066 | | | | 1067 | 0xB | < 20 m/sec | [This Document] | 1068 | | | | 1069 | 0xC | < 30 m/sec | [This Document] | 1070 | | | | 1071 | 0xD | < 40 m/sec | [This Document] | 1072 | | | | 1073 | 0xE | < 50 m/sec | [This Document] | 1074 | | | | 1075 | 0xF | > 50 m/sec | [This Document] | 1076 +-------+--------------------+-----------------+ 1077 State Enumeration Field 0xA: Pedestrian Curb Density: 1078 +-------+--------------------+-----------------+ 1079 | Value | Description | Reference | 1080 +-------+--------------------+-----------------+ 1081 | 0x0 | Null | [This Document] | 1082 | | | | 1083 | 0x1 | 100% | [This Document] | 1084 | | | | 1085 | 0x2 | 95% | [This Document] | 1086 | | | | 1087 | 0x3 | 90% | [This Document] | 1088 | | | | 1089 | 0x4 | 85% | [This Document] | 1090 | | | | 1091 | 0x5 | 80% | [This Document] | 1092 | | | | 1093 | 0x6 | 70% | [This Document] | 1094 | | | | 1095 | 0x7 | 60% | [This Document] | 1096 | | | | 1097 | 0x8 | 50% | [This Document] | 1098 | | | | 1099 | 0x9 | 40% | [This Document] | 1100 | | | | 1101 | 0xA | 30% | [This Document] | 1102 | | | | 1103 | 0xB | 20% | [This Document] | 1104 | | | | 1105 | 0xC | 15% | [This Document] | 1106 | | | | 1107 | 0xD | 10% | [This Document] | 1108 | | | | 1109 | 0xE | 5% | [This Document] | 1110 | | | | 1111 | 0xF | No Peds | [This Document] | 1112 +-------+--------------------+-----------------+ 1114 State enumeration fields 0xB, 0xC, 0xD, 0xE, 0xF, are unassigned. 1115 IANA can assign them on a "First Come First Served" basis 1116 according to [RFC8126]. 1118 9. Normative References 1120 [I-D.ietf-lisp-rfc6830bis] 1121 Farinacci, D., Fuller, V., Meyer, D., Lewis, D., and A. 1122 Cabellos-Aparicio, "The Locator/ID Separation Protocol 1123 (LISP)", draft-ietf-lisp-rfc6830bis-36 (work in progress), 1124 September 2020. 1126 [RFC4604] Holbrook, H. Cain, B. Haberman, B., "Using Internet Group 1127 Management Protocol Version 3 (IGMPv3) and Multicast 1128 Listener DiscoveryProtocol Version 2 (MLDv2) for 1129 Source-Specific Multicast", RFC4604, 1130 DOI 10.17487/RFC4604, August 2006, 1131 . 1133 [RFC6733] Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn, 1134 Ed., "Diameter Base Protocol", RFC 6733, 1135 DOI 10.17487/RFC6733, October 2012, 1136 . 1138 [RFC8126] Cotton, M., Leiba, B., Narten, T., "Guidelines for 1139 Writing an IANA Considerations Section in RFCs", RFC8126, 1140 DOI 10.17487/RFC8126, June 2017, 1141 . 1143 [RFC8378] Farinacci, D., Moreno, V., "Signal-Free Locator/ID 1144 Separation Protocol (LISP) Multicast", RFC8378, 1145 DOI 10.17487/RFC8378, May 2018, 1146 . 1148 Authors' Addresses 1150 Sharon Barkai 1151 Nexar 1152 CA 1153 USA 1155 Email: sbarkai@gmail.com 1157 Bruno Fernandez-Ruiz 1158 Nexar 1159 London 1160 UK 1162 Email: b@getnexar.com 1164 Rotem Tamir 1165 Nexar 1166 Israel 1168 rotemtamir@getnexar.com 1170 Alberto Rodriguez-Natal 1171 Cisco Systems 1172 170 Tasman Drive 1173 San Jose, CA 1174 USA 1176 Email: natal@cisco.com 1178 Fabio Maino 1179 Cisco Systems 1180 170 Tasman Drive 1181 San Jose, CA 1182 USA 1184 Email: fmaino@cisco.com 1185 Albert Cabellos-Aparicio 1186 Technical University of Catalonia 1187 Barcelona 1188 Spain 1190 Email: acabello@ac.upc.edu 1192 Jordi Paillisse-Vilanova 1193 Technical University of Catalonia 1194 Barcelona 1195 Spain 1197 Email: jordip@ac.upc.edu 1199 Dino Farinacci 1200 lispers.net 1201 San Jose, CA 1202 USA 1204 Email: farinacci@gmail.com