idnits 2.17.1 draft-ietf-lpwan-overview-08.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (January 30, 2018) is 2278 days in the past. Is this intentional? Checking references for intended status: Informational ---------------------------------------------------------------------------- == Missing Reference: 'FANTPS' is mentioned on line 955, but not defined -- Obsolete informational reference (is this intentional?): RFC 2460 (Obsoleted by RFC 8200) -- Obsolete informational reference (is this intentional?): RFC 3315 (Obsoleted by RFC 8415) -- Obsolete informational reference (is this intentional?): RFC 5246 (Obsoleted by RFC 8446) -- Obsolete informational reference (is this intentional?): RFC 6961 (Obsoleted by RFC 8446) Summary: 0 errors (**), 0 flaws (~~), 2 warnings (==), 5 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 lpwan S. Farrell, Ed. 3 Internet-Draft Trinity College Dublin 4 Intended status: Informational January 30, 2018 5 Expires: August 3, 2018 7 LPWAN Overview 8 draft-ietf-lpwan-overview-08 10 Abstract 12 Low Power Wide Area Networks (LPWAN) are wireless technologies with 13 characteristics such as large coverage areas, low bandwidth, possibly 14 very small packet and application layer data sizes and long battery 15 life operation. This memo is an informational overview of the set of 16 LPWAN technologies being considered in the IETF and of the gaps that 17 exist between the needs of those technologies and the goal of running 18 IP in LPWANs. 20 Status of This Memo 22 This Internet-Draft is submitted in full conformance with the 23 provisions of BCP 78 and BCP 79. 25 Internet-Drafts are working documents of the Internet Engineering 26 Task Force (IETF). Note that other groups may also distribute 27 working documents as Internet-Drafts. The list of current Internet- 28 Drafts is at http://datatracker.ietf.org/drafts/current/. 30 Internet-Drafts are draft documents valid for a maximum of six months 31 and may be updated, replaced, or obsoleted by other documents at any 32 time. It is inappropriate to use Internet-Drafts as reference 33 material or to cite them other than as "work in progress." 35 This Internet-Draft will expire on August 3, 2018. 37 Copyright Notice 39 Copyright (c) 2018 IETF Trust and the persons identified as the 40 document authors. All rights reserved. 42 This document is subject to BCP 78 and the IETF Trust's Legal 43 Provisions Relating to IETF Documents 44 (http://trustee.ietf.org/license-info) in effect on the date of 45 publication of this document. Please review these documents 46 carefully, as they describe your rights and restrictions with respect 47 to this document. Code Components extracted from this document must 48 include Simplified BSD License text as described in Section 4.e of 49 the Trust Legal Provisions and are provided without warranty as 50 described in the Simplified BSD License. 52 Table of Contents 54 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 55 2. LPWAN Technologies . . . . . . . . . . . . . . . . . . . . . 3 56 2.1. LoRaWAN . . . . . . . . . . . . . . . . . . . . . . . . . 4 57 2.1.1. Provenance and Documents . . . . . . . . . . . . . . 4 58 2.1.2. Characteristics . . . . . . . . . . . . . . . . . . . 4 59 2.2. Narrowband IoT (NB-IoT) . . . . . . . . . . . . . . . . . 11 60 2.2.1. Provenance and Documents . . . . . . . . . . . . . . 11 61 2.2.2. Characteristics . . . . . . . . . . . . . . . . . . . 11 62 2.3. SIGFOX . . . . . . . . . . . . . . . . . . . . . . . . . 15 63 2.3.1. Provenance and Documents . . . . . . . . . . . . . . 15 64 2.3.2. Characteristics . . . . . . . . . . . . . . . . . . . 16 65 2.4. Wi-SUN Alliance Field Area Network (FAN) . . . . . . . . 20 66 2.4.1. Provenance and Documents . . . . . . . . . . . . . . 20 67 2.4.2. Characteristics . . . . . . . . . . . . . . . . . . . 21 68 3. Generic Terminology . . . . . . . . . . . . . . . . . . . . . 24 69 4. Gap Analysis . . . . . . . . . . . . . . . . . . . . . . . . 25 70 4.1. Naive application of IPv6 . . . . . . . . . . . . . . . . 26 71 4.2. 6LoWPAN . . . . . . . . . . . . . . . . . . . . . . . . . 26 72 4.2.1. Header Compression . . . . . . . . . . . . . . . . . 27 73 4.2.2. Address Autoconfiguration . . . . . . . . . . . . . . 27 74 4.2.3. Fragmentation . . . . . . . . . . . . . . . . . . . . 27 75 4.2.4. Neighbor Discovery . . . . . . . . . . . . . . . . . 28 76 4.3. 6lo . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 77 4.4. 6tisch . . . . . . . . . . . . . . . . . . . . . . . . . 29 78 4.5. RoHC . . . . . . . . . . . . . . . . . . . . . . . . . . 29 79 4.6. ROLL . . . . . . . . . . . . . . . . . . . . . . . . . . 30 80 4.7. CoAP . . . . . . . . . . . . . . . . . . . . . . . . . . 30 81 4.8. Mobility . . . . . . . . . . . . . . . . . . . . . . . . 30 82 4.9. DNS and LPWAN . . . . . . . . . . . . . . . . . . . . . . 31 83 5. Security Considerations . . . . . . . . . . . . . . . . . . . 31 84 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 32 85 7. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 32 86 8. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 35 87 9. Informative References . . . . . . . . . . . . . . . . . . . 35 88 Appendix A. Changes . . . . . . . . . . . . . . . . . . . . . . 40 89 A.1. From -00 to -01 . . . . . . . . . . . . . . . . . . . . . 40 90 A.2. From -01 to -02 . . . . . . . . . . . . . . . . . . . . . 41 91 A.3. From -02 to -03 . . . . . . . . . . . . . . . . . . . . . 41 92 A.4. From -03 to -04 . . . . . . . . . . . . . . . . . . . . . 41 93 A.5. From -04 to -05 . . . . . . . . . . . . . . . . . . . . . 41 94 A.6. From -05 to -06 . . . . . . . . . . . . . . . . . . . . . 42 95 A.7. From -06 to -07 . . . . . . . . . . . . . . . . . . . . . 42 96 A.8. From -07 to -08 . . . . . . . . . . . . . . . . . . . . . 42 98 Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 42 100 1. Introduction 102 This document provides background material and an overview of the 103 technologies being considered in the IETF's Low Power Wide-Area 104 Networking (LPWAN) working group. We also provide a gap analysis 105 between the needs of these technologies and currently available IETF 106 specifications. 108 Most technologies in this space aim for similar goals of supporting 109 large numbers of very low-cost, low-throughput devices with very-low 110 power consumption, so that even battery-powered devices can be 111 deployed for years. LPWAN devices also tend to be constrained in 112 their use of bandwidth, for example with limited frequencies being 113 allowed to be used within limited duty-cycles (usually expressed as a 114 percentage of time per-hour that the device is allowed to transmit.) 115 And as the name implies, coverage of large areas is also a common 116 goal. So, by and large, the different technologies aim for 117 deployment in very similar circumstances. 119 What mainly distinguishes LPWANs from other constrained networks is 120 that in LPWANs the balancing act related to power consumption/battery 121 life, cost and bandwidth tends to prioritise doing better with 122 respect to power and cost and we are more willing to live with 123 extremely low bandwidth and constrained duty-cycles when making the 124 various trade-offs required, in order to get the multiple-kilometre 125 radio links implied by the "wide area" aspect of the LPWAN term. 127 Existing pilot deployments have shown huge potential and created much 128 industrial interest in these technologies. As of today, essentially 129 no LPWAN end-devices (other than for Wi-SUN) have IP capabilities. 130 Connecting LPWANs to the Internet would provide significant benefits 131 to these networks in terms of interoperability, application 132 deployment, and management, among others. The goal of the IETF LPWAN 133 working group is to, where necessary, adapt IETF-defined protocols, 134 addressing schemes and naming to this particular constrained 135 environment. 137 This document is largely the work of the people listed in Section 7. 139 2. LPWAN Technologies 141 This section provides an overview of the set of LPWAN technologies 142 that are being considered in the LPWAN working group. The text for 143 each was mainly contributed by proponents of each technology. 145 Note that this text is not intended to be normative in any sense, but 146 simply to help the reader in finding the relevant layer 2 147 specifications and in understanding how those integrate with IETF- 148 defined technologies. Similarly, there is no attempt here to set out 149 the pros and cons of the relevant technologies. 151 Note that some of the technology-specific drafts referenced below may 152 have been updated since publication of this document. 154 2.1. LoRaWAN 156 2.1.1. Provenance and Documents 158 LoRaWAN is an ISM-based wireless technology for long-range low-power 159 low-data-rate applications developed by the LoRa Alliance, a 160 membership consortium. This draft 161 is based on version 1.0.2 [LoRaSpec] of the LoRa specification. That 162 specification is publicly available and has already seen several 163 deployments across the globe. 165 2.1.2. Characteristics 167 LoRaWAN aims to support end-devices operating on a single battery for 168 an extended period of time (e.g., 10 years or more), extended 169 coverage through 155 dB maximum coupling loss, and reliable and 170 efficient file download (as needed for remote software/firmware 171 upgrade). 173 LoRaWAN networks are typically organized in a star-of-stars topology 174 in which gateways relay messages between end-devices and a central 175 "network server" in the backend. Gateways are connected to the 176 network server via IP links while end-devices use single-hop LoRaWAN 177 communication that can be received at one or more gateways. 178 Communication is generally bi-directional; uplink communication from 179 end-devices to the network server is favored in terms of overall 180 bandwidth availability. 182 Figure 1 shows the entities involved in a LoRaWAN network. 184 +----------+ 185 |End-device| * * * 186 +----------+ * +---------+ 187 * | Gateway +---+ 188 +----------+ * +---------+ | +---------+ 189 |End-device| * * * +---+ Network +--- Application 190 +----------+ * | | Server | 191 * +---------+ | +---------+ 192 +----------+ * | Gateway +---+ 193 |End-device| * * * * +---------+ 194 +----------+ 195 Key: * LoRaWAN Radio 196 +---+ IP connectivity 198 Figure 1: LoRaWAN architecture 200 o End-device: a LoRa client device, sometimes called a mote. 201 Communicates with gateways. 203 o Gateway: a radio on the infrastructure-side, sometimes called a 204 concentrator or base-station. Communicates with end-devices and, 205 via IP, with a network server. 207 o Network Server: The Network Server (NS) terminates the LoRaWAN MAC 208 layer for the end-devices connected to the network. It is the 209 center of the star topology. 211 o Join Server: The Join Server (JS) is a server on the Internet side 212 of an NS that processes join requests from an end-devices. 214 o Uplink message: refers to communications from an end-device to a 215 network server or application via one or more gateways. 217 o Downlink message: refers to communications from a network server 218 or application via one gateway to a single end-device or a group 219 of end-devices (considering multicasting). 221 o Application: refers to application layer code both on the end- 222 device and running "behind" the network server. For LoRaWAN, 223 there will generally only be one application running on most end- 224 devices. Interfaces between the network server and application 225 are not further described here. 227 In LoRaWAN networks, end-device transmissions may be received at 228 multiple gateways, so during nominal operation a network server may 229 see multiple instances of the same uplink message from an end-device. 231 The LoRaWAN network infrastructure manages the data rate and RF 232 output power for each end-device individually by means of an adaptive 233 data rate (ADR) scheme. End-devices may transmit on any channel 234 allowed by local regulation at any time. 236 LoRaWAN radios make use of industrial, scientific and medical (ISM) 237 bands, for example, 433MHz and 868MHz within the European Union and 238 915MHz in the Americas. 240 The end-device changes channel in a pseudo-random fashion for every 241 transmission to help make the system more robust to interference and/ 242 or to conform to local regulations. 244 Figure 2 below shows that after a transmission slot a Class A device 245 turns on its receiver for two short receive windows that are offset 246 from the end of the transmission window. End-devices can only 247 transmit a subsequent uplink frame after the end of the associated 248 receive windows. When a device joins a LoRaWAN network, there are 249 similar timeouts on parts of that process. 251 |----------------------------| |--------| |--------| 252 | Tx | | Rx | | Rx | 253 |----------------------------| |--------| |--------| 254 |---------| 255 Rx delay 1 256 |------------------------| 257 Rx delay 2 259 Figure 2: LoRaWAN Class A transmission and reception window 261 Given the different regional requirements the detailed specification 262 for the LoRaWAN physical layer (taking up more than 30 pages of the 263 specification) is not reproduced here. Instead and mainly to 264 illustrate the kinds of issue encountered, in Table 1 we present some 265 of the default settings for one ISM band (without fully explaining 266 those here) and in Table 2 we describe maxima and minima for some 267 parameters of interest to those defining ways to use IETF protocols 268 over the LoRaWAN MAC layer. 270 +------------------------+------------------------------------------+ 271 | Parameters | Default Value | 272 +------------------------+------------------------------------------+ 273 | Rx delay 1 | 1 s | 274 | | | 275 | Rx delay 2 | 2 s (must be RECEIVE_DELAY1 + 1s) | 276 | | | 277 | join delay 1 | 5 s | 278 | | | 279 | join delay 2 | 6 s | 280 | | | 281 | 868MHz Default | 3 (868.1,868.2,868.3), data rate: 0.3-5 | 282 | channels | kbps | 283 +------------------------+------------------------------------------+ 285 Table 1: Default settings for EU 868MHz band 287 +-----------------------------------------------+--------+----------+ 288 | Parameter/Notes | Min | Max | 289 +-----------------------------------------------+--------+----------+ 290 | Duty Cycle: some but not all ISM bands impose | 1% | no-limit | 291 | a limit in terms of how often an end-device | | | 292 | can transmit. In some cases LoRaWAN is more | | | 293 | restrictive in an attempt to avoid | | | 294 | congestion. | | | 295 | | | | 296 | EU 868MHz band data rate/frame-size | 250 | 50000 | 297 | | bits/s | bits/s : | 298 | | : 59 | 250 | 299 | | octets | octets | 300 | | | | 301 | US 915MHz band data rate/frame-size | 980 | 21900 | 302 | | bits/s | bits/s : | 303 | | : 19 | 250 | 304 | | octets | octets | 305 +-----------------------------------------------+--------+----------+ 307 Table 2: Minima and Maxima for various LoRaWAN Parameters 309 Note that in the case of the smallest frame size (19 octets), 8 310 octets are required for LoRa MAC layer headers leaving only 11 octets 311 for payload (including MAC layer options). However, those settings 312 do not apply for the join procedure - end-devices are required to use 313 a channel and data rate that can send the 23-byte Join-request 314 message for the join procedure. 316 Uplink and downlink higher layer data is carried in a MACPayload. 317 There is a concept of "ports" (an optional 8-bit value) to handle 318 different applications on an end-device. Port zero is reserved for 319 LoRaWAN specific messaging, such as the configuration of the end 320 device's network parameters (available channels, data rates, ADR 321 parameters, RX1/2 delay, etc.). 323 In addition to carrying higher layer PDUs there are Join-Request and 324 Join-Response (aka Join-Accept) messages for handling network access. 325 And so-called "MAC commands" (see below) up to 15 bytes long can be 326 piggybacked in an options field ("FOpts"). 328 There are a number of MAC commands for link and device status 329 checking, ADR and duty-cycle negotiation, managing the RX windows and 330 radio channel settings. For example, the link check response message 331 allows the network server (in response to a request from an end- 332 device) to inform an end-device about the signal attenuation seen 333 most recently at a gateway, and to also tell the end-device how many 334 gateways received the corresponding link request MAC command. 336 Some MAC commands are initiated by the network server. For example, 337 one command allows the network server to ask an end-device to reduce 338 its duty-cycle to only use a proportion of the maximum allowed in a 339 region. Another allows the network server to query the end-device's 340 power status with the response from the end-device specifying whether 341 it has an external power source or is battery powered (in which case 342 a relative battery level is also sent to the network server). 344 In order to operate nominally on a LoRaWAN network, a device needs a 345 32-bit device address, that is assigned when the device "joins" the 346 network (see below for the join procedure) or that is pre-provisioned 347 into the device. In case of roaming devices, the device address is 348 assigned based on the 24-bit network identifier (NetID) that is 349 allocated to the network by the LoRa Alliance. Non-roaming devices 350 can be assigned device addresses by the network without relying on a 351 LoRa Alliance-assigned NetID. 353 End-devices are assumed to work with one or a quite limited number of 354 applications, identified by a 64-bit AppEUI, which is assumed to be a 355 registered IEEE EUI64 value. In addition, a device needs to have two 356 symmetric session keys, one for protecting network artifacts 357 (port=0), the NwkSKey, and another for protecting application layer 358 traffic, the AppSKey. Both keys are used for 128-bit AES 359 cryptographic operations. So, one option is for an end-device to 360 have all of the above, plus channel information, somehow 361 (pre-)provisioned, in which case the end-device can simply start 362 transmitting. This is achievable in many cases via out-of-band means 363 given the nature of LoRaWAN networks. Table 3 summarizes these 364 values. 366 +---------+---------------------------------------------------------+ 367 | Value | Description | 368 +---------+---------------------------------------------------------+ 369 | DevAddr | DevAddr (32-bits) = device-specific network address | 370 | | generated from the NetID | 371 | | | 372 | AppEUI | IEEE EUI64 corresponding to the join server for an | 373 | | application | 374 | | | 375 | NwkSKey | 128-bit network session key used with AES-CMAC | 376 | | | 377 | AppSKey | 128-bit application session key used with AES-CTR | 378 | | | 379 | AppKey | 128-bit application session key used with AES-ECB | 380 +---------+---------------------------------------------------------+ 382 Table 3: Values required for nominal operation 384 As an alternative, end-devices can use the LoRaWAN join procedure 385 with a join server behind the NS in order to setup some of these 386 values and dynamically gain access to the network. To use the join 387 procedure, an end-device must still know the AppEUI, and in addition, 388 a different (long-term) symmetric key that is bound to the AppEUI - 389 this is the application key (AppKey), and is distinct from the 390 application session key (AppSKey). The AppKey is required to be 391 specific to the device, that is, each end-device should have a 392 different AppKey value. And finally, the end-device also needs a 393 long-term identifier for itself, syntactically also an EUI-64, and 394 known as the device EUI or DevEUI. Table 4 summarizes these values. 396 +---------+----------------------------------------------------+ 397 | Value | Description | 398 +---------+----------------------------------------------------+ 399 | DevEUI | IEEE EUI64 naming the device | 400 | | | 401 | AppEUI | IEEE EUI64 naming the application | 402 | | | 403 | AppKey | 128-bit long term application key for use with AES | 404 +---------+----------------------------------------------------+ 406 Table 4: Values required for join procedure 408 The join procedure involves a special exchange where the end-device 409 asserts the AppEUI and DevEUI (integrity protected with the long-term 410 AppKey, but not encrypted) in a Join-request uplink message. This is 411 then routed to the network server which interacts with an entity that 412 knows that AppKey to verify the Join-request. All going well, a 413 Join-accept downlink message is returned from the network server to 414 the end-device that specifies the 24-bit NetID, 32-bit DevAddr and 415 channel information and from which the AppSKey and NwkSKey can be 416 derived based on knowledge of the AppKey. This provides the end- 417 device with all the values listed in Table 3. 419 All payloads are encrypted and have data integrity. MAC commands, 420 when sent as a payload (port zero), are therefore protected. MAC 421 commands piggy-backed as frame options ("FOpts") are however sent in 422 clear. Any MAC commands sent as frame options and not only as 423 payload, are visible to a passive attacker but are not malleable for 424 an active attacker due to the use of the Message Integrity Check 425 (MIC) described below. 427 For LoRaWAN version 1.0.x, the NWkSkey session key is used to provide 428 data integrity between the end-device and the network server. The 429 AppSKey is used to provide data confidentiality between the end- 430 device and network server, or to the application "behind" the network 431 server, depending on the implementation of the network. 433 All MAC layer messages have an outer 32-bit MIC calculated using AES- 434 CMAC calculated over the ciphertext payload and other headers and 435 using the NwkSkey. Payloads are encrypted using AES-128, with a 436 counter-mode derived from IEEE 802.15.4 using the AppSKey. Gateways 437 are not expected to be provided with the AppSKey or NwkSKey, all of 438 the infrastructure-side cryptography happens in (or "behind") the 439 network server. When session keys are derived from the AppKey as a 440 result of the join procedure the Join-accept message payload is 441 specially handled. 443 The long-term AppKey is directly used to protect the Join-accept 444 message content, but the function used is not an AES-encrypt 445 operation, but rather an AES-decrypt operation. The justification is 446 that this means that the end-device only needs to implement the AES- 447 encrypt operation. (The counter mode variant used for payload 448 decryption means the end-device doesn't need an AES-decrypt 449 primitive.) 451 The Join-accept plaintext is always less than 16 bytes long, so 452 electronic code book (ECB) mode is used for protecting Join-accept 453 messages. The Join-accept contains an AppNonce (a 24 bit value) that 454 is recovered on the end-device along with the other Join-accept 455 content (e.g. DevAddr) using the AES-encrypt operation. Once the 456 Join-accept payload is available to the end-device the session keys 457 are derived from the AppKey, AppNonce and other values, again using 458 an ECB mode AES-encrypt operation, with the plaintext input being a 459 maximum of 16 octets. 461 2.2. Narrowband IoT (NB-IoT) 463 2.2.1. Provenance and Documents 465 Narrowband Internet of Things (NB-IoT) is developed and standardized 466 by 3GPP. The standardization of NB-IoT was finalized with 3GPP 467 Release 13 in June 2016, and further enhancements for NB-IoT are 468 specified in 3GPP Release 14 in 2017, for example in the form of 469 multicast support. Further features and improvements will be 470 developed in the following releases, but NB-IoT has been ready to be 471 deployed since 2016, and is rather simple to deploy especially in the 472 existing LTE networks with a software upgrade in the operator's base 473 stations. For more information of what has been specified for NB- 474 IoT, 3GPP specification 36.300 [TGPP36300] provides an overview and 475 overall description of the E-UTRAN radio interface protocol 476 architecture, while specifications 36.321 [TGPP36321], 36.322 477 [TGPP36322], 36.323 [TGPP36323] and 36.331 [TGPP36331] give more 478 detailed description of MAC, Radio Link Control (RLC), Packet Data 479 Convergence Protocol (PDCP) and Radio Resource Control (RRC) protocol 480 layers, respectively. Note that the description below assumes 481 familiarity with numerous 3GPP terms. 483 For a general overview of NB-IoT, see [nbiot-ov]. 485 2.2.2. Characteristics 487 Specific targets for NB-IoT include: Less than US$5 module cost, 488 extended coverage of 164 dB maximum coupling loss, battery life of 489 over 10 years, ~55000 devices per cell and uplink reporting latency 490 of less than 10 seconds. 492 NB-IoT supports Half Duplex FDD operation mode with 60 kbps peak rate 493 in uplink and 30 kbps peak rate in downlink, and a maximum 494 transmission unit (MTU) size of 1600 bytes limited by PDCP layer (see 495 Figure 4 for the protocol structure), which is the highest layer in 496 the user plane, as explained later. Any packet size up to the said 497 MTU size can be passed to the NB-IoT stack from higher layers, 498 segmentation of the packet is performed in the RLC layer, which can 499 segment the data to transmission blocks with size as small as 16 500 bits. As the name suggests, NB-IoT uses narrowbands with bandwidth 501 of 180 kHz in both downlink and uplink. The multiple access scheme 502 used in the downlink is OFDMA with 15 kHz sub-carrier spacing. In 503 uplink, SC-FDMA single tone with either 15kHz or 3.75 kHz tone 504 spacing is used, or optionally multi-tone SC- FDMA can be used with 505 15 kHz tone spacing. 507 NB-IoT can be deployed in three ways. In-band deployment means that 508 the narrowband is deployed inside the LTE band and radio resources 509 are flexibly shared between NB-IoT and normal LTE carrier. In Guard- 510 band deployment the narrowband uses the unused resource blocks 511 between two adjacent LTE carriers. Standalone deployment is also 512 supported, where the narrowband can be located alone in dedicated 513 spectrum, which makes it possible for example to reframe a GSM 514 carrier at 850/900 MHz for NB-IoT. All three deployment modes are 515 used in licensed frequency bands. The maximum transmission power is 516 either 20 or 23 dBm for uplink transmissions, while for downlink 517 transmission the eNodeB may use higher transmission power, up to 46 518 dBm depending on the deployment. 520 A maximum coupling loss (MCL) target for NB-IoT coverage enhancements 521 defined by 3GPP is 164 dB. With this MCL, the performance of NB-IoT 522 in downlink varies between 200 bps and 2-3 kbps, depending on the 523 deployment mode. Stand-alone operation may achieve the highest data 524 rates, up to few kbps, while in-band and guard-band operations may 525 reach several hundreds of bps. NB-IoT may even operate with MCL 526 higher than 170 dB with very low bit rates. 528 For signaling optimization, two options are introduced in addition to 529 legacy LTE RRC connection setup; mandatory Data-over-NAS (Control 530 Plane optimization, solution 2 in [TGPP23720]) and optional RRC 531 Suspend/Resume (User Plane optimization, solution 18 in [TGPP23720]). 532 In the control plane optimization the data is sent over Non-Access 533 Stratum, directly to/from Mobility Management Entity (MME) (see 534 Figure 3 for the network architecture) in the core network to the 535 User Equipment (UE) without interaction from the base station. This 536 means there are no Access Stratum security or header compression 537 provided by the PDCP layer in the eNodeB, as the Access Stratum is 538 bypassed, and only limited RRC procedures. RoHC based header 539 compression may still optionally be provided and terminated in MME. 541 The RRC Suspend/Resume procedures reduce the signaling overhead 542 required for UE state transition from RRC Idle to RRC Connected mode 543 compared to legacy LTE operation in order to have quicker user plane 544 transaction with the network and return to RRC Idle mode faster. 546 In order to prolong device battery life, both power-saving mode (PSM) 547 and extended DRX (eDRX) are available to NB-IoT. With eDRX the RRC 548 Connected mode DRX cycle is up to 10.24 seconds and in RRC Idle the 549 eDRX cycle can be up to 3 hours. In PSM the device is in a deep 550 sleep state and only wakes up for uplink reporting, after which there 551 is a window, configured by the network, during which the device 552 receiver is open for downlink connectivity, of for periodical "keep- 553 alive" signaling (PSM uses periodic TAU signaling with additional 554 reception window for downlink reachability). 556 Since NB-IoT operates in licensed spectrum, it has no channel access 557 restrictions allowing up to a 100% duty-cycle. 559 3GPP access security is specified in [TGPP33203]. 561 +--+ 562 |UE| \ +------+ +------+ 563 +--+ \ | MME |------| HSS | 564 \ / +------+ +------+ 565 +--+ \+-----+ / | 566 |UE| ----| eNB |- | 567 +--+ /+-----+ \ | 568 / \ +--------+ 569 / \| | +------+ Service PDN 570 +--+ / | S-GW |----| P-GW |---- e.g. Internet 571 |UE| | | +------+ 572 +--+ +--------+ 574 Figure 3: 3GPP network architecture 576 Figure 3 shows the 3GPP network architecture, which applies to NB- 577 IoT. Mobility Management Entity (MME) is responsible for handling 578 the mobility of the UE. MME tasks include tracking and paging UEs, 579 session management, choosing the Serving gateway for the UE during 580 initial attachment and authenticating the user. At MME, the Non- 581 Access Stratum (NAS) signaling from the UE is terminated. 583 Serving Gateway (S-GW) routes and forwards the user data packets 584 through the access network and acts as a mobility anchor for UEs 585 during handover between base stations known as eNodeBs and also 586 during handovers between NB-IoT and other 3GPP technologies. 588 Packet Data Network Gateway (P-GW) works as an interface between 3GPP 589 network and external networks. 591 The Home Subscriber Server (HSS) contains user-related and 592 subscription- related information. It is a database, which performs 593 mobility management, session establishment support, user 594 authentication and access authorization. 596 E-UTRAN consists of components of a single type, eNodeB. eNodeB is a 597 base station, which controls the UEs in one or several cells. 599 The 3GPP radio protocol architecture is illustrated in Figure 4. 601 +---------+ +---------+ 602 | NAS |----|-----------------------------|----| NAS | 603 +---------+ | +---------+---------+ | +---------+ 604 | RRC |----|----| RRC | S1-AP |----|----| S1-AP | 605 +---------+ | +---------+---------+ | +---------+ 606 | PDCP |----|----| PDCP | SCTP |----|----| SCTP | 607 +---------+ | +---------+---------+ | +---------+ 608 | RLC |----|----| RLC | IP |----|----| IP | 609 +---------+ | +---------+---------+ | +---------+ 610 | MAC |----|----| MAC | L2 |----|----| L2 | 611 +---------+ | +---------+---------+ | +---------+ 612 | PHY |----|----| PHY | PHY |----|----| PHY | 613 +---------+ +---------+---------+ +---------+ 614 LTE-Uu S1-MME 615 UE eNodeB MME 617 Figure 4: 3GPP radio protocol architecture for control plane 619 Control plane protocol stack 621 The radio protocol architecture of NB-IoT (and LTE) is separated into 622 control plane and user plane. The control plane consists of 623 protocols which control the radio access bearers and the connection 624 between the UE and the network. The highest layer of control plane 625 is called Non-Access Stratum (NAS), which conveys the radio signaling 626 between the UE and the Evolved Packet Core (EPC), passing 627 transparently through the radio network. NAS responsible for 628 authentication, security control, mobility management and bearer 629 management. 631 Access Stratum (AS) is the functional layer below NAS, and in the 632 control plane it consists of Radio Resource Control protocol (RRC) 633 [TGPP36331], which handles connection establishment and release 634 functions, broadcast of system information, radio bearer 635 establishment, reconfiguration and release. RRC configures the user 636 and control planes according to the network status. There exists two 637 RRC states, RRC_Idle or RRC_Connected, and RRC entity controls the 638 switching between these states. In RRC_Idle, the network knows that 639 the UE is present in the network and the UE can be reached in case of 640 incoming call/downlink data. In this state, the UE monitors paging, 641 performs cell measurements and cell selection and acquires system 642 information. Also the UE can receive broadcast and multicast data, 643 but it is not expected to transmit or receive unicast data. In 644 RRC_Connected the UE has a connection to the eNodeB, the network 645 knows the UE location on the cell level and the UE may receive and 646 transmit unicast data. An RRC connection is established when the UE 647 is expected to be active in the network, to transmit or receive data. 648 The RRC connection is released, switching back to RRC_Idle, when 649 there is no more traffic in order to preserve UE battery life and 650 radio resources. However, a new feature was introduced for NB-IoT, 651 as mentioned earlier, which allows data to be transmitted from the 652 MME directly to the UE transparently to the eNodeB, thus bypassing AS 653 functions. 655 Packet Data Convergence Protocol's (PDCP) [TGPP36323] main services 656 in control plane are transfer of control plane data, ciphering and 657 integrity protection. 659 Radio Link Control protocol (RLC) [TGPP36322] performs transfer of 660 upper layer PDUs and optionally error correction with Automatic 661 Repeat reQuest (ARQ), concatenation, segmentation, and reassembly of 662 RLC SDUs, in-sequence delivery of upper layer PDUs, duplicate 663 detection, RLC SDU discard, RLC-re-establishment and protocol error 664 detection and recovery. 666 Medium Access Control protocol (MAC) [TGPP36321] provides mapping 667 between logical channels and transport channels, multiplexing of MAC 668 SDUs, scheduling information reporting, error correction with HARQ, 669 priority handling and transport format selection. 671 Physical layer [TGPP36201] provides data transport services to higher 672 layers. These include error detection and indication to higher 673 layers, FEC encoding, HARQ soft-combining, rate matching and mapping 674 of the transport channels onto physical channels, power weighting and 675 modulation of physical channels, frequency and time synchronization 676 and radio characteristics measurements. 678 User plane is responsible for transferring the user data through the 679 Access Stratum. It interfaces with IP and the highest layer of user 680 plane is PDCP, which in user plane performs header compression using 681 Robust Header Compression (RoHC), transfer of user plane data between 682 eNodeB and UE, ciphering and integrity protection. Similar to 683 control plane, lower layers in user plane include RLC, MAC and 684 physical layer performing the same tasks as in control plane. 686 2.3. SIGFOX 688 2.3.1. Provenance and Documents 690 The SIGFOX LPWAN is in line with the terminology and specifications 691 being defined by ETSI [etsi_unb]. As of today, SIGFOX's network has 692 been fully deployed in 12 countries, with ongoing deployments on 26 693 other countries, giving in total a geography of 2 million square 694 kilometers, containing 512 million people. 696 2.3.2. Characteristics 698 SIGFOX LPWAN autonomous battery-operated devices send only a few 699 bytes per day, week or month, in principle allowing them to remain on 700 a single battery for up to 10-15 years. Hence, the system is 701 designed as to allow devices to last several years, sometimes even 702 buried underground. 704 Since the radio protocol is connection-less and optimized for uplink 705 communications, the capacity of a SIGFOX base station depends on the 706 number of messages generated by devices, and not on the actual number 707 of devices. Likewise, the battery life of devices depends on the 708 number of messages generated by the device. Depending on the use 709 case, devices can vary from sending less than one message per device 710 per day, to dozens of messages per device per day. 712 The coverage of the cell depends on the link budget and on the type 713 of deployment (urban, rural, etc.). The radio interface is compliant 714 with the following regulations: 716 Spectrum allocation in the USA [fcc_ref] 718 Spectrum allocation in Europe [etsi_ref] 720 Spectrum allocation in Japan [arib_ref] 722 The SIGFOX radio interface is also compliant with the local 723 regulations of the following countries: Australia, Brazil, Canada, 724 Kenya, Lebanon, Mauritius, Mexico, New Zealand, Oman, Peru, 725 Singapore, South Africa, South Korea, and Thailand. 727 The radio interface is based on Ultra Narrow Band (UNB) 728 communications, which allow an increased transmission range by 729 spending a limited amount of energy at the device. Moreover, UNB 730 allows a large number of devices to coexist in a given cell without 731 significantly increasing the spectrum interference. 733 Both uplink and downlink are supported, although the system is 734 optimized for uplink communications. Due to spectrum optimizations, 735 different uplink and downlink frames and time synchronization methods 736 are needed. 738 The main radio characteristics of the UNB uplink transmission are: 740 o Channelization mask: 100 Hz / 600 Hz (depending on the region) 742 o Uplink baud rate: 100 baud / 600 baud (depending on the region) 743 o Modulation scheme: DBPSK 745 o Uplink transmission power: compliant with local regulation 747 o Link budget: 155 dB (or better) 749 o Central frequency accuracy: not relevant, provided there is no 750 significant frequency drift within an uplink packet transmission 752 For example, in Europe the UNB uplink frequency band is limited to 753 868.00 to 868.60 MHz, with a maximum output power of 25 mW and a duty 754 cycle of 1%. 756 The format of the uplink frame is the following: 758 +--------+--------+--------+------------------+-------------+-----+ 759 |Preamble| Frame | Dev ID | Payload |Msg Auth Code| FCS | 760 | | Sync | | | | | 761 +--------+--------+--------+------------------+-------------+-----+ 763 Figure 5: Uplink Frame Format 765 The uplink frame is composed of the following fields: 767 o Preamble: 19 bits 769 o Frame sync and header: 29 bits 771 o Device ID: 32 bits 773 o Payload: 0-96 bits 775 o Authentication: 16-40 bits 777 o Frame check sequence: 16 bits (CRC) 779 The main radio characteristics of the UNB downlink transmission are: 781 o Channelization mask: 1.5 kHz 783 o Downlink baud rate: 600 baud 785 o Modulation scheme: GFSK 787 o Downlink transmission power: 500 mW / 4W (depending on the region) 789 o Link budget: 153 dB (or better) 790 o Central frequency accuracy: the center frequency of downlink 791 transmission is set by the network according to the corresponding 792 uplink transmission 794 For example, in Europe the UNB downlink frequency band is limited to 795 869.40 to 869.65 MHz, with a maximum output power of 500 mW with 10% 796 duty cycle. 798 The format of the downlink frame is the following: 800 +------------+-----+---------+------------------+-------------+-----+ 801 | Preamble |Frame| ECC | Payload |Msg Auth Code| FCS | 802 | |Sync | | | | | 803 +------------+-----+---------+------------------+-------------+-----+ 805 Figure 6: Downlink Frame Format 807 The downlink frame is composed of the following fields: 809 o Preamble: 91 bits 811 o Frame sync and header: 13 bits 813 o Error Correcting Code (ECC): 32 bits 815 o Payload: 0-64 bits 817 o Authentication: 16 bits 819 o Frame check sequence: 8 bits (CRC) 821 The radio interface is optimized for uplink transmissions, which are 822 asynchronous. Downlink communications are achieved by devices 823 querying the network for available data. 825 A device willing to receive downlink messages opens a fixed window 826 for reception after sending an uplink transmission. The delay and 827 duration of this window have fixed values. The network transmits the 828 downlink message for a given device during the reception window, and 829 the network also selects the base station (BS) for transmitting the 830 corresponding downlink message. 832 Uplink and downlink transmissions are unbalanced due to the 833 regulatory constraints on ISM bands. Under the strictest 834 regulations, the system can allow a maximum of 140 uplink messages 835 and 4 downlink messages per device per day. These restrictions can 836 be slightly relaxed depending on system conditions and the specific 837 regulatory domain of operation. 839 +---+ 840 |DEV| * +------+ 841 +---+ * | RA | 842 * +------+ 843 +---+ * | 844 |DEV| * * * * | 845 +---+ * +----+ | 846 * | BS | \ +--------+ 847 +---+ * +----+ \ | | 848 DA -----|DEV| * * * | SC |----- NA 849 +---+ * / | | 850 * +----+ / +--------+ 851 +---+ * | BS |/ 852 |DEV| * * * * +----+ 853 +---+ * 854 * 855 +---+ * 856 |DEV| * * 857 +---+ 859 Figure 7: SIGFOX network architecture 861 Figure 7 depicts the different elements of the SIGFOX network 862 architecture. 864 SIGFOX has a "one-contract one-network" model allowing devices to 865 connect in any country, without any need or notion of either roaming 866 or handover. 868 The architecture consists of a single cloud-based core network, which 869 allows global connectivity with minimal impact on the end device and 870 radio access network. The core network elements are the Service 871 Center (SC) and the Registration Authority (RA). The SC is in charge 872 of the data connectivity between the Base Station (BS) and the 873 Internet, as well as the control and management of the BSs and End 874 Points. The RA is in charge of the End Point network access 875 authorization. 877 The radio access network is comprised of several BSs connected 878 directly to the SC. Each BS performs complex L1/L2 functions, 879 leaving some L2 and L3 functionalities to the SC. 881 The Devices (DEVs) or End Points (EPs) are the objects that 882 communicate application data between local device applications (DAs) 883 and network applications (NAs). 885 Devices (or EPs) can be static or nomadic, as they associate with the 886 SC and they do not attach to any specific BS. Hence, they can 887 communicate with the SC through one or multiple BSs. 889 Due to constraints in the complexity of the Device, it is assumed 890 that Devices host only one or very few device applications, which 891 most of the time communicate each to a single network application at 892 a time. 894 The radio protocol authenticates and ensures the integrity of each 895 message. This is achieved by using a unique device ID and an AES-128 896 based message authentication code, ensuring that the message has been 897 generated and sent by the device with the ID claimed in the message. 898 Application data can be encrypted at the application level or not, 899 depending on the criticality of the use case, to provide a balance 900 between cost and effort vs. risk. AES-128 in counter mode is used 901 for encryption. Cryptographic keys are independent for each device. 902 These keys are associated with the device ID and separate integrity 903 and confidentiality keys are pre-provisioned. A confidentiality key 904 is only provisioned if confidentiality is to be used. At the time of 905 writing the algorithms and keying details for this are not published. 907 2.4. Wi-SUN Alliance Field Area Network (FAN) 909 Text here is via personal communication from Bob Heile 910 (bheile@ieee.org) and was authored by Bob and Sum Chin Sean. Duffy 911 (paduffy@cisco.com) also provided additional comments/input on this 912 section. 914 2.4.1. Provenance and Documents 916 The Wi-SUN Alliance is an industry alliance 917 for smart city, smart grid, smart utility, and a broad set of general 918 IoT applications. The Wi-SUN Alliance Field Area Network (FAN) 919 profile is open standards based (primarily on IETF and IEEE802 920 standards) and was developed to address applications like smart 921 municipality/city infrastructure monitoring and management, electric 922 vehicle (EV) infrastructure, advanced metering infrastructure (AMI), 923 distribution automation (DA), supervisory control and data 924 acquisition (SCADA) protection/management, distributed generation 925 monitoring and management, and many more IoT applications. 926 Additionally, the Alliance has created a certification program to 927 promote global multi-vendor interoperability. 929 The FAN profile is specified within ANSI/TIA as an extension of work 930 previously done on Smart Utility Networks. [ANSI-4957-000]. Updates 931 to those specifications intended to be published in 2017 will contain 932 details of the FAN profile. A current snapshot of the work to 933 produce that profile is presented in [wisun-pressie1] 934 [wisun-pressie2] . 936 2.4.2. Characteristics 938 The FAN profile is an IPv6 wireless mesh network with support for 939 enterprise level security. The frequency hopping wireless mesh 940 topology aims to offer superior network robustness, reliability due 941 to high redundancy, good scalability due to the flexible mesh 942 configuration and good resilience to interference. Very low power 943 modes are in development permitting long term battery operation of 944 network nodes. 946 The following list contains some overall characteristics of Wi-SUN 947 that are relevant to LPWAN applications. 949 o Coverage: The range of Wi-SUN FAN is typically 2 -- 3 km in line 950 of sight, matching the needs of neighborhood area networks, campus 951 area networks, or corporate area networks. The range can also be 952 extended via multi-hop networking. 954 o High bandwidth, low link latency: Wi-SUN supports relatively high 955 bandwidth, i.e. up to 300 kbps [FANTPS], enables remote update and 956 upgrade of devices so that they can handle new applications, 957 extending their working life. Wi-SUN supports LPWAN IoT 958 applications that require on-demand control by providing low link 959 latency (0.02s) and bi-directional communication. 961 o Low power consumption: FAN devices draw less than 2 uA when 962 resting and only 8 mA when listening. Such devices can maintain a 963 long lifetime even if they are frequently listening. For 964 instance, suppose the device transmits data for 10 ms once every 965 10 s; theoretically, a battery of 1000 mAh can last more than 10 966 years. 968 o Scalability: Tens of millions Wi-SUN FAN devices have been 969 deployed in urban, suburban and rural environments, including 970 deployments with more than 1 million devices. 972 A FAN contains one or more networks. Within a network, nodes assume 973 one of three operational roles. First, each network contains a 974 Border Router providing Wide Area Network (WAN) connectivity to the 975 network. The Border Router maintains source routing tables for all 976 nodes within its network, provides node authentication and key 977 management services, and disseminates network-wide information such 978 as broadcast schedules. Secondly, Router nodes, which provide upward 979 and downward packet forwarding (within a network). A Router also 980 provides services for relaying security and address management 981 protocols. Lastly, Leaf nodes provide minimum capabilities: 982 discovering and joining a network, send/receive IPv6 packets, etc. A 983 low power network may contain a mesh topology with Routers at the 984 edges that construct a star topology with Leaf nodes. 986 The FAN profile is based on various open standards developed by the 987 IETF (including [RFC0768], [RFC2460], [RFC4443] and [RFC6282]), 988 IEEE802 (including [IEEE-802-15-4] and [IEEE-802-15-9]) and ANSI/TIA 989 [ANSI-4957-210] for low power and lossy networks. 991 The FAN profile specification provides an application-independent 992 IPv6-based transport service. There are two possible methods for 993 establishing the IPv6 packet routing: Routing Protocol for Low-Power 994 and Lossy Networks (RPL) at the Network layer is mandatory, and 995 Multi-Hop Delivery Service (MHDS) is optional at the Data Link layer. 996 Table 5 provides an overview of the FAN network stack. 998 The Transport service is based on User Datagram Protocol (UDP) 999 defined in RFC768 or Transmission Control Protocol (TCP) defined in 1000 RFC793. 1002 The Network service is provided by IPv6 as defined in RFC2460 with 1003 6LoWPAN adaptation as defined in RFC4944 and RFC6282. ICMPv6, as 1004 defined in RFC4443, is used for the control plane during information 1005 exchange. 1007 The Data Link service provides both control/management of the 1008 Physical layer and data transfer/management services to the Network 1009 layer. These services are divided into Media Access Control (MAC) 1010 and Logical Link Control (LLC) sub-layers. The LLC sub-layer 1011 provides a protocol dispatch service which supports 6LoWPAN and an 1012 optional MAC sub-layer mesh service. The MAC sub-layer is 1013 constructed using data structures defined in IEEE802.15.4-2015. 1014 Multiple modes of frequency hopping are defined. The entire MAC 1015 payload is encapsulated in an IEEE802.15.9 Information Element to 1016 enable LLC protocol dispatch between upper layer 6LoWPAN processing, 1017 MAC sublayer mesh processing, etc. These areas will be expanded once 1018 IEEE802.15.12 is completed. 1020 The PHY service is derived from a sub-set of the SUN FSK 1021 specification in IEEE802.15.4-2015. The 2-FSK modulation schemes, 1022 with channel spacing range from 200 to 600 kHz, are defined to 1023 provide data rates from 50 to 300 kbps, with Forward Error Coding 1024 (FEC) as an optional feature. Towards enabling ultra-low-power 1025 applications, the PHY layer design is also extendable to low energy 1026 and critical infrastructure monitoring networks. 1028 +----------------------+--------------------------------------------+ 1029 | Layer | Description | 1030 +----------------------+--------------------------------------------+ 1031 | IPv6 protocol suite | TCP/UDP | 1032 | | | 1033 | | 6LoWPAN Adaptation + Header Compression | 1034 | | | 1035 | | DHCPv6 for IP address management. | 1036 | | | 1037 | | Routing using RPL. | 1038 | | | 1039 | | ICMPv6. | 1040 | | | 1041 | | Unicast and Multicast forwarding. | 1042 | | | 1043 | MAC based on IEEE | Frequency hopping | 1044 | 802.15.4e + IE | | 1045 | extensions | | 1046 | | | 1047 | | Discovery and Join | 1048 | | | 1049 | | Protocol Dispatch (IEEE 802.15.9) | 1050 | | | 1051 | | Several Frame Exchange patterns | 1052 | | | 1053 | | Optional Mesh Under routing (ANSI | 1054 | | 4957.210). | 1055 | | | 1056 | PHY based on | Various data rates and regions | 1057 | 802.15.4g | | 1058 | | | 1059 | Security | 802.1X/EAP-TLS/PKI Authentication. | 1060 | | TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 | 1061 | | required for EAP-TLS. | 1062 | | | 1063 | | 802.11i Group Key Management | 1064 | | | 1065 | | Frame security is implemented as AES-CCM* | 1066 | | as specified in IEEE 802.15.4 | 1067 | | | 1068 | | Optional ETSI-TS-102-887-2 Node 2 Node Key | 1069 | | Management | 1070 +----------------------+--------------------------------------------+ 1072 Table 5: Wi-SUN Stack Overview 1074 The FAN security supports Data Link layer network access control, 1075 mutual authentication, and establishment of a secure pairwise link 1076 between a FAN node and its Border Router, which is implemented with 1077 an adaptation of IEEE802.1X and EAP-TLS as described in [RFC5216] 1078 using secure device identity as described in IEEE802.1AR. 1079 Certificate formats are based upon [RFC5280]. A secure group link 1080 between a Border Router and a set of FAN nodes is established using 1081 an adaptation of the IEEE802.11 Four-Way Handshake. A set of 4 group 1082 keys are maintained within the network, one of which is the current 1083 transmit key. Secure node to node links are supported between one- 1084 hop FAN neighbors using an adaptation of ETSI-TS-102-887-2. FAN 1085 nodes implement Frame Security as specified in IEEE802.15.4-2015. 1087 3. Generic Terminology 1089 LPWAN technologies, such as those discussed above, have similar 1090 architectures but different terminology. We can identify different 1091 types of entities in a typical LPWAN network: 1093 o End-Devices are the devices or the "things" (e.g. sensors, 1094 actuators, etc.); they are named differently in each technology 1095 (End Device, User Equipment or End Point). There can be a high 1096 density of end devices per radio gateway. 1098 o The Radio Gateway, which is the end point of the constrained link. 1099 It is known as: Gateway, Evolved Node B or Base station. 1101 o The Network Gateway or Router is the interconnection node between 1102 the Radio Gateway and the Internet. It is known as: Network 1103 Server, Serving GW or Service Center. 1105 o LPWAN-AAA Server, which controls the user authentication, the 1106 applications. It is known as: Join-Server, Home Subscriber Server 1107 or Registration Authority. (We use the term LPWAN-AAA server 1108 because we're not assuming that this entity speaks RADIUS or 1109 Diameter as many/most AAA servers do, but equally we don't want to 1110 rule that out, as the functionality will be similar. 1112 o At last we have the Application Server, known also as Packet Data 1113 Node Gateway or Network Application. 1115 +---------------------------------------------------------------------+ 1116 | Function/ | | | | | | 1117 |Technology | LORAWAN | NB-IOT | SIGFOX | Wi-SUN | IETF | 1118 +-----------+-----------+-----------+------------+--------+-----------+ 1119 | Sensor, | | | | | | 1120 |Actuator, | End | User | End | Leaf | Device | 1121 |device, | Device | Equipment | Point | Node | (Dev) | 1122 | object | | | | | | 1123 +-----------+-----------+-----------+------------+--------+-----------+ 1124 |Transceiver| | Evolved | Base | Router | RADIO | 1125 | Antenna | Gateway | Node B | Station | Node | Gateway | 1126 +-----------+-----------+-----------+------------+--------+-----------+ 1127 | Server | Network | PDN GW/ | Service | Border | Network | 1128 | | Server | SCEF | Center | Router | Gateway | 1129 | | | | | | (NGW) | 1130 +-----------+-----------+-----------+------------+--------+-----------+ 1131 | Security | Join | Home |Registration|Authent.| LPWAN- | 1132 | Server | Server | Subscriber| Authority | Server | AAA | 1133 | | | Server | | | SERVER | 1134 +-----------+-----------+-----------+------------+--------+-----------+ 1135 |Application|Application|Application| Network |Appli- |Application| 1136 | | Server | Server | Application| cation | (App) | 1137 +---------------------------------------------------------------------+ 1139 Figure 8: LPWAN Architecture Terminology 1141 +------+ 1142 () () () | |LPWAN-| 1143 () () () () / \ +---------+ | AAA | 1144 () () () () () () / \========| /\ |====|Server| +-----------+ 1145 () () () | | <--|--> | +------+ |APPLICATION| 1146 () () () () / \============| v |==============| (App) | 1147 () () () / \ +---------+ +-----------+ 1148 Dev Radio Gateways NGW 1150 Figure 9: LPWAN Architecture 1152 In addition to the names of entities, LPWANs are also subject to 1153 possibly regional frequency band regulations. Those may include 1154 restrictions on the duty-cycle, for example requiring that hosts only 1155 transmit for a certain percentage of each hour. 1157 4. Gap Analysis 1159 This section considers some of the gaps between current LPWAN 1160 technologies and the goals of the LPWAN working group. Many of the 1161 generic considerations described in [RFC7452] will also apply in 1162 LPWANs, as end-devices can also be considered as a subclass of (so- 1163 called) "smart objects." In addition, LPWAN device implementers will 1164 also need to consider the issues relating to firmware updates 1165 described in [RFC8240]. 1167 4.1. Naive application of IPv6 1169 IPv6 [RFC8200] has been designed to allocate addresses to all the 1170 nodes connected to the Internet. Nevertheless, the header overhead 1171 of at least 40 bytes introduced by the protocol is incompatible with 1172 LPWAN constraints. If IPv6 with no further optimization were used, 1173 several LPWAN frames could be needed just to carry the IP header. 1174 Another problem arises from IPv6 MTU requirements, which require the 1175 layer below to support at least 1280 byte packets [RFC2460]. 1177 IPv6 has a configuration protocol - neighbor discovery protocol, 1178 (NDP) [RFC4861]). For a node to learn network parameters NDP 1179 generates regular traffic with a relatively large message size that 1180 does not fit LPWAN constraints. 1182 In some LPWAN technologies, layer two multicast is not supported. In 1183 that case, if the network topology is a star, the solution and 1184 considerations of section 3.2.5 of [RFC7668] may be applied. 1186 Other key protocols such as DHCPv6 [RFC3315], IPsec [RFC4301] and TLS 1187 [RFC5246] have similarly problematic properties in this context. 1188 Each of those require relatively frequent round-trips between the 1189 host and some other host on the network. In the case of 1190 cryptographic protocols such as IPsec and TLS, in addition to the 1191 round-trips required for secure session establishment, cryptographic 1192 operations can require padding and addition of authenticators that 1193 are problematic when considering LPWAN lower layers. Note that mains 1194 powered Wi-SUN mesh router nodes will typically be more resource 1195 capable than the other LPWAN techs discussed. This can enable use of 1196 more "chatty" protocols for some aspects of Wi-SUN. 1198 4.2. 6LoWPAN 1200 Several technologies that exhibit significant constraints in various 1201 dimensions have exploited the 6LoWPAN suite of specifications 1202 [RFC4944], [RFC6282], [RFC6775] to support IPv6 [I-D.hong-6lo-use- 1203 cases]. However, the constraints of LPWANs, often more extreme than 1204 those typical of technologies that have (re)used 6LoWPAN, constitute 1205 a challenge for the 6LoWPAN suite in order to enable IPv6 over LPWAN. 1206 LPWANs are characterized by device constraints (in terms of 1207 processing capacity, memory, and energy availability), and specially, 1208 link constraints, such as: 1210 o very low layer two payload size (from ~10 to ~100 bytes), 1211 o very low bit rate (from ~10 bit/s to ~100 kbit/s), and 1213 o in some specific technologies, further message rate constraints 1214 (e.g. between ~0.1 message/minute and ~1 message/minute) due to 1215 regional regulations that limit the duty cycle. 1217 4.2.1. Header Compression 1219 6LoWPAN header compression reduces IPv6 (and UDP) header overhead by 1220 eliding header fields when they can be derived from the link layer, 1221 and by assuming that some of the header fields will frequently carry 1222 expected values. 6LoWPAN provides both stateless and stateful header 1223 compression. In the latter, all nodes of a 6LoWPAN are assumed to 1224 share compression context. In the best case, the IPv6 header for 1225 link-local communication can be reduced to only 2 bytes. For global 1226 communication, the IPv6 header may be compressed down to 3 bytes in 1227 the most extreme case. However, in more practical situations, the 1228 smallest IPv6 header size may be 11 bytes (one address prefix 1229 compressed) or 19 bytes (both source and destination prefixes 1230 compressed). These headers are large considering the link layer 1231 payload size of LPWAN technologies, and in some cases are even bigger 1232 than the LPWAN PDUs. 6LoWPAN has been initially designed for IEEE 1233 802.15.4 networks with a frame size up to 127 bytes and a throughput 1234 of up to 250 kb/s, which may or may not be duty-cycled. 1236 4.2.2. Address Autoconfiguration 1238 Traditionally, Interface Identifiers (IIDs) have been derived from 1239 link layer identifiers [RFC4944] . This allows optimizations such as 1240 header compression. Nevertheless, recent guidance has given advice 1241 on the fact that, due to privacy concerns, 6LoWPAN devices should not 1242 be configured to embed their link layer addresses in the IID by 1243 default. 1245 4.2.3. Fragmentation 1247 As stated above, IPv6 requires the layer below to support an MTU of 1248 1280 bytes [RFC2460]. Therefore, given the low maximum payload size 1249 of LPWAN technologies, fragmentation is needed. 1251 If a layer of an LPWAN technology supports fragmentation, proper 1252 analysis has to be carried out to decide whether the fragmentation 1253 functionality provided by the lower layer or fragmentation at the 1254 adaptation layer should be used. Otherwise, fragmentation 1255 functionality shall be used at the adaptation layer. 1257 6LoWPAN defined a fragmentation mechanism and a fragmentation header 1258 to support the transmission of IPv6 packets over IEEE 802.15.4 1259 networks [RFC4944]. While the 6LoWPAN fragmentation header is 1260 appropriate for IEEE 802.15.4-2003 (which has a frame payload size of 1261 81-102 bytes), it is not suitable for several LPWAN technologies, 1262 many of which have a maximum payload size that is one order of 1263 magnitude below that of IEEE 802.15.4-2003. The overhead of the 1264 6LoWPAN fragmentation header is high, considering the reduced payload 1265 size of LPWAN technologies and the limited energy availability of the 1266 devices using such technologies. Furthermore, its datagram offset 1267 field is expressed in increments of eight octets. In some LPWAN 1268 technologies, the 6LoWPAN fragmentation header plus eight octets from 1269 the original datagram exceeds the available space in the layer two 1270 payload. In addition, the MTU in the LPWAN networks could be 1271 variable which implies a variable fragmentation solution. 1273 4.2.4. Neighbor Discovery 1275 6LoWPAN Neighbor Discovery [RFC6775] defined optimizations to IPv6 1276 Neighbor Discovery [RFC4861], in order to adapt functionality of the 1277 latter for networks of devices using IEEE 802.15.4 or similar 1278 technologies. The optimizations comprise host-initiated interactions 1279 to allow for sleeping hosts, replacement of multicast-based address 1280 resolution for hosts by an address registration mechanism, multihop 1281 extensions for prefix distribution and duplicate address detection 1282 (note that these are not needed in a star topology network), and 1283 support for 6LoWPAN header compression. 1285 6LoWPAN Neighbor Discovery may be used in not so severely constrained 1286 LPWAN networks. The relative overhead incurred will depend on the 1287 LPWAN technology used (and on its configuration, if appropriate). In 1288 certain LPWAN setups (with a maximum payload size above ~60 bytes, 1289 and duty-cycle-free or equivalent operation), an RS/RA/NS/NA exchange 1290 may be completed in a few seconds, without incurring packet 1291 fragmentation. 1293 In other LPWANs (with a maximum payload size of ~10 bytes, and a 1294 message rate of ~0.1 message/minute), the same exchange may take 1295 hours or even days, leading to severe fragmentation and consuming a 1296 significant amount of the available network resources. 6LoWPAN 1297 Neighbor Discovery behavior may be tuned through the use of 1298 appropriate values for the default Router Lifetime, the Valid 1299 Lifetime in the PIOs, and the Valid Lifetime in the 6LoWPAN Context 1300 Option (6CO), as well as the address Registration Lifetime. However, 1301 for the latter LPWANs mentioned above, 6LoWPAN Neighbor Discovery is 1302 not suitable. 1304 4.3. 6lo 1306 The 6lo WG has been reusing and adapting 6LoWPAN to enable IPv6 1307 support over link layer technologies such as Bluetooth Low Energy 1308 (BTLE), ITU-T G.9959, DECT-ULE, MS/TP-RS485, NFC IEEE 802.11ah. (See 1309 for details.) These technologies are 1310 similar in several aspects to IEEE 802.15.4, which was the original 1311 6LoWPAN target technology. 1313 6lo has mostly used the subset of 6LoWPAN techniques best suited for 1314 each lower layer technology, and has provided additional 1315 optimizations for technologies where the star topology is used, such 1316 as BTLE or DECT-ULE. 1318 The main constraint in these networks comes from the nature of the 1319 devices (constrained devices), whereas in LPWANs it is the network 1320 itself that imposes the most stringent constraints. 1322 4.4. 6tisch 1324 The 6tisch solution is dedicated to mesh networks that operate using 1325 802.15.4e MAC with a deterministic slotted channel. The time slot 1326 channel (TSCH) can help to reduce collisions and to enable a better 1327 balance over the channels. It improves the battery life by avoiding 1328 the idle listening time for the return channel. 1330 A key element of 6tisch is the use of synchronization to enable 1331 determinism. TSCH and 6TiSCH may provide a standard scheduling 1332 function. The LPWAN networks probably will not support 1333 synchronization like the one used in 6tisch. 1335 4.5. RoHC 1337 Robust header compression (RoHC) is a header compression mechanism 1338 [RFC3095] developed for multimedia flows in a point to point channel. 1339 RoHC uses 3 levels of compression, each level having its own header 1340 format. In the first level, RoHC sends 52 bytes of header, in the 1341 second level the header could be from 34 to 15 bytes and in the third 1342 level header size could be from 7 to 2 bytes. The level of 1343 compression is managed by a sequence number, which varies in size 1344 from 2 bytes to 4 bits in the minimal compression. SN compression is 1345 done with an algorithm called W-LSB (Window- Least Significant Bits). 1346 This window has a 4-bit size representing 15 packets, so every 15 1347 packets RoHC needs to slide the window in order to receive the 1348 correct sequence number, and sliding the window implies a reduction 1349 of the level of compression. When packets are lost or errored, the 1350 decompressor loses context and drops packets until a bigger header is 1351 sent with more complete information. To estimate the performance of 1352 RoHC, an average header size is used. This average depends on the 1353 transmission conditions, but most of the time is between 3 and 4 1354 bytes. 1356 RoHC has not been adapted specifically to the constrained hosts and 1357 networks of LPWANs: it does not take into account energy limitations 1358 nor the transmission rate, and RoHC context is synchronised during 1359 transmission, which does not allow better compression. 1361 4.6. ROLL 1363 Most technologies considered by the lpwan WG are based on a star 1364 topology, which eliminates the need for routing at that layer. 1365 Future work may address additional use-cases that may require 1366 adaptation of existing routing protocols or the definition of new 1367 ones. As of the time of writing, work similar to that done in the 1368 ROLL WG and other routing protocols are out of scope of the LPWAN WG. 1370 4.7. CoAP 1372 CoAP [RFC7252] provides a RESTful framework for applications intended 1373 to run on constrained IP networks. It may be necessary to adapt CoAP 1374 or related protocols to take into account for the extreme duty cycles 1375 and the potentially extremely limited throughput of LPWANs. 1377 For example, some of the timers in CoAP may need to be redefined. 1378 Taking into account CoAP acknowledgments may allow the reduction of 1379 L2 acknowledgments. On the other hand, the current work in progress 1380 in the CoRE WG where the COMI/CoOL network management interface 1381 which, uses Structured Identifiers (SID) to reduce payload size over 1382 CoAP may prove to be a good solution for the LPWAN technologies. The 1383 overhead is reduced by adding a dictionary which matches a URI to a 1384 small identifier and a compact mapping of the YANG model into the 1385 CBOR binary representation. 1387 4.8. Mobility 1389 LPWAN nodes can be mobile. However, LPWAN mobility is different from 1390 the one specified for Mobile IP. LPWAN implies sporadic traffic and 1391 will rarely be used for high-frequency, real-time communications. 1392 The applications do not generate a flow, they need to save energy and 1393 most of the time the node will be down. 1395 In addition, LPWAN mobility may mostly apply to groups of devices, 1396 that represent a network in which case mobility is more a concern for 1397 the gateway than the devices. NEMO [RFC3963] Mobility or other 1398 mobile gateway solutions (such as a gateway with an LTE uplink) may 1399 be used in the case where some end-devices belonging to the same 1400 network gateway move from one point to another such that they are not 1401 aware of being mobile. 1403 4.9. DNS and LPWAN 1405 The Domain Name System (DNS) DNS [RFC1035], enables applications to 1406 name things with a globally resolvable name. Many protocols use the 1407 DNS to identify hosts, for example applications using CoAP. 1409 The DNS query/answer protocol as a pre-cursor to other communication 1410 within the time-to-live (TTL) of a DNS answer is clearly problematic 1411 in an LPWAN, say where only one round-trip per hour can be used, and 1412 with a TTL that is less than 3600. It is currently unclear whether 1413 and how DNS-like functionality might be provided in LPWANs. 1415 5. Security Considerations 1417 Most LPWAN technologies integrate some authentication or encryption 1418 mechanisms that were defined outside the IETF. The working group may 1419 need to do work to integrate these mechanisms to unify management. A 1420 standardized Authentication, Accounting, and Authorization (AAA) 1421 infrastructure [RFC2904] may offer a scalable solution for some of 1422 the security and management issues for LPWANs. AAA offers 1423 centralized management that may be of use in LPWANs, for example 1424 [I-D.garcia-dime-diameter-lorawan] and 1425 [I-D.garcia-radext-radius-lorawan] suggest possible security 1426 processes for a LoRaWAN network. Similar mechanisms may be useful to 1427 explore for other LPWAN technologies. 1429 Some applications using LPWANs may raise few or no privacy 1430 considerations. For example, temperature sensors in a large office 1431 building may not raise privacy issues. However, the same sensors, if 1432 deployed in a home environment and especially if triggered due to 1433 human presence, can raise significant privacy issues - if an end- 1434 device emits (an encrypted) packet every time someone enters a room 1435 in a home, then that traffic is privacy sensitive. And the more that 1436 the existence of that traffic is visible to network entities, the 1437 more privacy sensitivities arise. At this point, it is not clear 1438 whether there are workable mitigations for problems like this - in a 1439 more typical network, one would consider defining padding mechanisms 1440 and allowing for cover traffic. In some LPWANs, those mechanisms may 1441 not be feasible. Nonetheless, the privacy challenges do exist and 1442 can be real and so some solutions will be needed. Note that many 1443 aspects of solutions in this space may not be visible in IETF 1444 specifications, but can be e.g. implementation or deployment 1445 specific. 1447 Another challenge for LPWANs will be how to handle key management and 1448 associated protocols. In a more traditional network (e.g. the web), 1449 servers can "staple" Online Certificate Status Protocol (OCSP) 1450 responses in order to allow browsers to check revocation status for 1451 presented certificates. [RFC6961] While the stapling approach is 1452 likely something that would help in an LPWAN, as it avoids an RTT, 1453 certificates and OCSP responses are bulky items and will prove 1454 challenging to handle in LPWANs with bounded bandwidth. 1456 6. IANA Considerations 1458 There are no IANA considerations related to this memo. 1460 7. Contributors 1462 As stated above this document is mainly a collection of content 1463 developed by the full set of contributors listed below. The main 1464 input documents and their authors were: 1466 o Text for Section 2.1 was provided by Alper Yegin and Stephen 1467 Farrell in [I-D.farrell-lpwan-lora-overview]. 1469 o Text for Section 2.2 was provided by Antti Ratilainen in 1470 [I-D.ratilainen-lpwan-nb-iot]. 1472 o Text for Section 2.3 was provided by Juan Carlos Zuniga and Benoit 1473 Ponsard in [I-D.zuniga-lpwan-sigfox-system-description]. 1475 o Text for Section 2.4 was provided via personal communication from 1476 Bob Heile (bheile@ieee.org) and was authored by Bob and Sum Chin 1477 Sean. There is no Internet draft for that at present. 1479 o Text for Section 4 was provided by Ana Minabiru, Carles Gomez, 1480 Laurent Toutain, Josep Paradells and Jon Crowcroft in 1481 [I-D.minaburo-lpwan-gap-analysis]. Additional text from that 1482 draft is also used elsewhere above. 1484 The full list of contributors are: 1486 Jon Crowcroft 1487 University of Cambridge 1488 JJ Thomson Avenue 1489 Cambridge, CB3 0FD 1490 United Kingdom 1492 Email: jon.crowcroft@cl.cam.ac.uk 1493 Carles Gomez 1494 UPC/i2CAT 1495 C/Esteve Terradas, 7 1496 Castelldefels 08860 1497 Spain 1499 Email: carlesgo@entel.upc.edu 1501 Bob Heile 1502 Wi-Sun Alliance 1503 11 Robert Toner Blvd, Suite 5-301 1504 North Attleboro, MA 02763 1505 USA 1507 Phone: +1-781-929-4832 1508 Email: bheile@ieee.org 1510 Ana Minaburo 1511 Acklio 1512 2bis rue de la Chataigneraie 1513 35510 Cesson-Sevigne Cedex 1514 France 1516 Email: ana@ackl.io 1518 Josep PAradells 1519 UPC/i2CAT 1520 C/Jordi Girona, 1-3 1521 Barcelona 08034 1522 Spain 1524 Email: josep.paradells@entel.upc.edu 1526 Benoit Ponsard 1527 SIGFOX 1528 425 rue Jean Rostand 1529 Labege 31670 1530 France 1532 Email: Benoit.Ponsard@sigfox.com 1533 URI: http://www.sigfox.com/ 1535 Antti Ratilainen 1536 Ericsson 1537 Hirsalantie 11 1538 Jorvas 02420 1539 Finland 1541 Email: antti.ratilainen@ericsson.com 1543 Chin-Sean SUM 1544 Wi-Sun Alliance 1545 20, Science Park Rd 1546 Singapore 117674 1548 Phone: +65 6771 1011 1549 Email: sum@wi-sun.org 1551 Laurent Toutain 1552 Institut MINES TELECOM ; TELECOM Bretagne 1553 2 rue de la Chataigneraie 1554 CS 17607 1555 35576 Cesson-Sevigne Cedex 1556 France 1558 Email: Laurent.Toutain@telecom-bretagne.eu 1560 Alper Yegin 1561 Actility 1562 Paris, Paris 1563 FR 1565 Email: alper.yegin@actility.com 1567 Juan Carlos Zuniga 1568 SIGFOX 1569 425 rue Jean Rostand 1570 Labege 31670 1571 France 1573 Email: JuanCarlos.Zuniga@sigfox.com 1574 URI: http://www.sigfox.com/ 1576 8. Acknowledgments 1578 Thanks to all those listed in Section 7 for the excellent text. 1579 Errors in the handling of that are solely the editor's fault. 1581 [[RFC editor: Please surnames below for I18N, at least Mirja's does 1582 need fixing.]] 1584 In addition to the contributors above, thanks are due to (in 1585 alphabetical order): Abdussalam Baryun, Andy Malis, Arun 1586 (arun@acklio.com), Behcet SariKaya, Dan Garcia Carrillo, Jiazi Yi, 1587 Mirja Kuehlewind, Paul Duffy, Russ Housley, Thad Guidry, Warren 1588 Kumari, for comments. 1590 Alexander Pelov and Pascal Thubert were the LPWAN WG chairs while 1591 this document was developed. 1593 Stephen Farrell's work on this memo was supported by Pervasive 1594 Nation, the Science Foundation Ireland's CONNECT centre national IoT 1595 network. 1597 9. Informative References 1599 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, 1600 DOI 10.17487/RFC0768, August 1980, . 1603 [RFC1035] Mockapetris, P., "Domain names - implementation and 1604 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035, 1605 November 1987, . 1607 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6 1608 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460, 1609 December 1998, . 1611 [RFC2904] Vollbrecht, J., Calhoun, P., Farrell, S., Gommans, L., 1612 Gross, G., de Bruijn, B., de Laat, C., Holdrege, M., and 1613 D. Spence, "AAA Authorization Framework", RFC 2904, 1614 DOI 10.17487/RFC2904, August 2000, . 1617 [RFC3095] Bormann, C., Burmeister, C., Degermark, M., Fukushima, H., 1618 Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T., Le, 1619 K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K., 1620 Wiebke, T., Yoshimura, T., and H. Zheng, "RObust Header 1621 Compression (ROHC): Framework and four profiles: RTP, UDP, 1622 ESP, and uncompressed", RFC 3095, DOI 10.17487/RFC3095, 1623 July 2001, . 1625 [RFC3315] Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins, 1626 C., and M. Carney, "Dynamic Host Configuration Protocol 1627 for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July 1628 2003, . 1630 [RFC3963] Devarapalli, V., Wakikawa, R., Petrescu, A., and P. 1631 Thubert, "Network Mobility (NEMO) Basic Support Protocol", 1632 RFC 3963, DOI 10.17487/RFC3963, January 2005, 1633 . 1635 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the 1636 Internet Protocol", RFC 4301, DOI 10.17487/RFC4301, 1637 December 2005, . 1639 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet 1640 Control Message Protocol (ICMPv6) for the Internet 1641 Protocol Version 6 (IPv6) Specification", STD 89, 1642 RFC 4443, DOI 10.17487/RFC4443, March 2006, 1643 . 1645 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman, 1646 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861, 1647 DOI 10.17487/RFC4861, September 2007, . 1650 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler, 1651 "Transmission of IPv6 Packets over IEEE 802.15.4 1652 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007, 1653 . 1655 [RFC5216] Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS 1656 Authentication Protocol", RFC 5216, DOI 10.17487/RFC5216, 1657 March 2008, . 1659 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security 1660 (TLS) Protocol Version 1.2", RFC 5246, 1661 DOI 10.17487/RFC5246, August 2008, . 1664 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., 1665 Housley, R., and W. Polk, "Internet X.509 Public Key 1666 Infrastructure Certificate and Certificate Revocation List 1667 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008, 1668 . 1670 [RFC6282] Hui, J., Ed. and P. Thubert, "Compression Format for IPv6 1671 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282, 1672 DOI 10.17487/RFC6282, September 2011, . 1675 [RFC6775] Shelby, Z., Ed., Chakrabarti, S., Nordmark, E., and C. 1676 Bormann, "Neighbor Discovery Optimization for IPv6 over 1677 Low-Power Wireless Personal Area Networks (6LoWPANs)", 1678 RFC 6775, DOI 10.17487/RFC6775, November 2012, 1679 . 1681 [RFC6961] Pettersen, Y., "The Transport Layer Security (TLS) 1682 Multiple Certificate Status Request Extension", RFC 6961, 1683 DOI 10.17487/RFC6961, June 2013, . 1686 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained 1687 Application Protocol (CoAP)", RFC 7252, 1688 DOI 10.17487/RFC7252, June 2014, . 1691 [RFC7452] Tschofenig, H., Arkko, J., Thaler, D., and D. McPherson, 1692 "Architectural Considerations in Smart Object Networking", 1693 RFC 7452, DOI 10.17487/RFC7452, March 2015, 1694 . 1696 [RFC7668] Nieminen, J., Savolainen, T., Isomaki, M., Patil, B., 1697 Shelby, Z., and C. Gomez, "IPv6 over BLUETOOTH(R) Low 1698 Energy", RFC 7668, DOI 10.17487/RFC7668, October 2015, 1699 . 1701 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6 1702 (IPv6) Specification", STD 86, RFC 8200, 1703 DOI 10.17487/RFC8200, July 2017, . 1706 [RFC8240] Tschofenig, H. and S. Farrell, "Report from the Internet 1707 of Things Software Update (IoTSU) Workshop 2016", 1708 RFC 8240, DOI 10.17487/RFC8240, September 2017, 1709 . 1711 [I-D.farrell-lpwan-lora-overview] 1712 Farrell, S. and A. Yegin, "LoRaWAN Overview", draft- 1713 farrell-lpwan-lora-overview-01 (work in progress), October 1714 2016. 1716 [I-D.minaburo-lpwan-gap-analysis] 1717 Minaburo, A., Gomez, C., Toutain, L., Paradells, J., and 1718 J. Crowcroft, "LPWAN Survey and GAP Analysis", draft- 1719 minaburo-lpwan-gap-analysis-02 (work in progress), October 1720 2016. 1722 [I-D.zuniga-lpwan-sigfox-system-description] 1723 Zuniga, J. and B. PONSARD, "SIGFOX System Description", 1724 draft-zuniga-lpwan-sigfox-system-description-04 (work in 1725 progress), December 2017. 1727 [I-D.ratilainen-lpwan-nb-iot] 1728 Ratilainen, A., "NB-IoT characteristics", draft- 1729 ratilainen-lpwan-nb-iot-00 (work in progress), July 2016. 1731 [I-D.garcia-dime-diameter-lorawan] 1732 Garcia, D., Lopez, R., Kandasamy, A., and A. Pelov, 1733 "LoRaWAN Authentication in Diameter", draft-garcia-dime- 1734 diameter-lorawan-00 (work in progress), May 2016. 1736 [I-D.garcia-radext-radius-lorawan] 1737 Garcia, D., Lopez, R., Kandasamy, A., and A. Pelov, 1738 "LoRaWAN Authentication in RADIUS", draft-garcia-radext- 1739 radius-lorawan-03 (work in progress), May 2017. 1741 [TGPP36300] 1742 3GPP, "TS 36.300 v13.4.0 Evolved Universal Terrestrial 1743 Radio Access (E-UTRA) and Evolved Universal Terrestrial 1744 Radio Access Network (E-UTRAN); Overall description; Stage 1745 2", 2016, 1746 . 1748 [TGPP36321] 1749 3GPP, "TS 36.321 v13.2.0 Evolved Universal Terrestrial 1750 Radio Access (E-UTRA); Medium Access Control (MAC) 1751 protocol specification", 2016. 1753 [TGPP36322] 1754 3GPP, "TS 36.322 v13.2.0 Evolved Universal Terrestrial 1755 Radio Access (E-UTRA); Radio Link Control (RLC) protocol 1756 specification", 2016. 1758 [TGPP36323] 1759 3GPP, "TS 36.323 v13.2.0 Evolved Universal Terrestrial 1760 Radio Access (E-UTRA); Packet Data Convergence Protocol 1761 (PDCP) specification (Not yet available)", 2016. 1763 [TGPP36331] 1764 3GPP, "TS 36.331 v13.2.0 Evolved Universal Terrestrial 1765 Radio Access (E-UTRA); Radio Resource Control (RRC); 1766 Protocol specification", 2016. 1768 [TGPP36201] 1769 3GPP, "TS 36.201 v13.2.0 - Evolved Universal Terrestrial 1770 Radio Access (E-UTRA); LTE physical layer; General 1771 description", 2016. 1773 [TGPP23720] 1774 3GPP, "TR 23.720 v13.0.0 - Study on architecture 1775 enhancements for Cellular Internet of Things", 2016. 1777 [TGPP33203] 1778 3GPP, "TS 33.203 v13.1.0 - 3G security; Access security 1779 for IP-based services", 2016. 1781 [fcc_ref] "FCC CFR 47 Part 15.247 Telecommunication Radio Frequency 1782 Devices - Operation within the bands 902-928 MHz, 1783 2400-2483.5 MHz, and 5725-5850 MHz.", June 2016. 1785 [etsi_ref] 1786 "ETSI EN 300-220 (Parts 1 and 2): Electromagnetic 1787 compatibility and Radio spectrum Matters (ERM); Short 1788 Range Devices (SRD); Radio equipment to be used in the 25 1789 MHz to 1 000 MHz frequency range with power levels ranging 1790 up to 500 mW", May 2016. 1792 [arib_ref] 1793 "ARIB STD-T108 (Version 1.0): 920MHz-Band Telemeter, 1794 Telecontrol and data transmission radio equipment.", 1795 February 2012. 1797 [LoRaSpec] 1798 LoRa Alliance, "LoRaWAN Specification Version V1.0.2", 1799 July 2016, . 1803 [ANSI-4957-000] 1804 ANSI, TIA-4957.000, "Architecture Overview for the Smart 1805 Utility Network", May 2013, . 1808 [ANSI-4957-210] 1809 ANSI, TIA-4957.210, "Multi-Hop Delivery Specification of a 1810 Data Link Sub-Layer", May 2013, . 1813 [wisun-pressie1] 1814 Phil Beecher, Chair, Wi-SUN Alliance, "Wi-SUN Alliance 1815 Overview", March 2017, . 1819 [wisun-pressie2] 1820 Bob Heile, Director of Standards, Wi-SUN Alliance, "IETF97 1821 Wi-SUN Alliance Field Area Network (FAN) Overview", 1822 November 2016, 1823 . 1826 [IEEE-802-15-4] 1827 "IEEE Standard for Low-Rate Wireless Personal Area 1828 Networks (WPANs)", IEEE Standard 802.15.4, 2015, 1829 . 1832 [IEEE-802-15-9] 1833 "IEEE Recommended Practice for Transport of Key Management 1834 Protocol (KMP) Datagrams", IEEE Standard 802.15.9, 2016, 1835 . 1838 [etsi_unb] 1839 "ETSI TR 103 435 System Reference document (SRdoc); Short 1840 Range Devices (SRD); Technical characteristics for Ultra 1841 Narrow Band (UNB) SRDs operating in the UHF spectrum below 1842 1 GHz", February 2017. 1844 [nbiot-ov] 1845 Beyene, Yihenew Dagne, et al., "NB-IoT technology overview 1846 and experience from cloud-RAN implementation", IEEE 1847 Wireless Communications 24,3 (2017): 26-32, June 2017. 1849 Appendix A. Changes 1851 A.1. From -00 to -01 1853 o WG have stated they want this to be an RFC. 1855 o WG clearly want to keep the RF details. 1857 o Various changes made to remove/resolve a number of editorial notes 1858 from -00 (in some cases as per suggestions from Ana Minaburo) 1860 o Merged PR's: #1... 1862 o Rejected PR's: #2 (change was made to .txt not .xml but was 1863 replicated manually by editor) 1865 o Github repo is at: https://github.com/sftcd/lpwan-ov 1867 A.2. From -01 to -02 1869 o WG seem to agree with editor suggestions in slides 13-24 of the 1870 presentation on this topic given at IETF98 (See: 1871 https://www.ietf.org/proceedings/98/slides/slides-98-lpwan- 1872 aggregated-slides-07.pdf) 1874 o Got new text wrt Wi-SUN via email from Paul Duffy and merged that 1875 in 1877 o Reflected list discussion wrt terminology and "end-device" 1879 o Merged PR's: #3... 1881 A.3. From -02 to -03 1883 o Editorial changes and typo fixes thanks to Fred Baker running 1884 something called Grammerly and sending me it's report. 1886 o Merged PR's: #4, #6, #7... 1888 o Editor did an editing pass on the lot. 1890 A.4. From -03 to -04 1892 o Picked up a PR that had been wrongly applied that expands UE 1894 o Editorial changes wrt LoRa suggested by Alper 1896 o Editorial changes wrt SIGFOX provided by Juan-Carlos 1898 A.5. From -04 to -05 1900 o Handled Russ Housley's WGLC review. 1902 o Handled Alper Yegin's WGLC review. 1904 A.6. From -05 to -06 1906 o More Alper comments:-) 1908 o Added some more detail about sigfox security. 1910 o Added Wi-SUN changes from Charlie Perkins 1912 A.7. From -06 to -07 1914 Yet more Alper comments:-) 1916 Comments from Behcet Sarikaya 1918 A.8. From -07 to -08 1920 various typos 1922 Last call and directorate comments from Abdussalam Baryun (AB) and 1923 Andy Malis 1925 20180118 IESG ballot comments from Warren: nits handled, two 1926 possible bits of text still needed. 1928 Some more AB comments handled. Still need to check over 7452 and 1929 8240 to see if issues from those need to be discussed here. 1931 Corrected "no IP capabilities - Wi-SUN devices do v6 (thanks Paul 1932 Duffy:-) 1934 Mirja's AD ballot comments handled. 1936 Added a sentence in intro trying to say what's "special" about 1937 LPWAN compared to other constrained networks. (As suggested by 1938 Warren.) 1940 Added text @ start of gap analysis referring to RFCs 7252 and 1941 8240, as suggested by a few folks (AB, Warren, Mirja) 1943 Added nbiot-ov reference for those who'd like a more polished 1944 presentation of NB-IoT 1946 Author's Address 1947 Stephen Farrell (editor) 1948 Trinity College Dublin 1949 Dublin 2 1950 Ireland 1952 Phone: +353-1-896-2354 1953 Email: stephen.farrell@cs.tcd.ie