idnits 2.17.1 draft-ietf-nfsv4-federated-fs-protocol-06.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document seems to contain a disclaimer for pre-RFC5378 work, and may have content which was first submitted before 10 November 2008. The disclaimer is necessary when there are original authors that you have been unable to contact, or if some do not wish to grant the BCP78 rights to the IETF Trust. If you are able to get all authors (current and original) to grant those rights, you can and should remove the disclaimer; otherwise, the disclaimer is needed and you can ignore this comment. (See the Legal Provisions document at https://trustee.ietf.org/license-info for more information.) -- The document date (July 10, 2010) is 5039 days in the past. Is this intentional? -- Found something which looks like a code comment -- if you have code sections in the document, please surround them with '' and '' lines. Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) -- Looks like a reference, but probably isn't: '0' on line 1455 -- Looks like a reference, but probably isn't: '255' on line 1455 ** Obsolete normative reference: RFC 3530 (Obsoleted by RFC 7530) ** Obsolete normative reference: RFC 5246 (Obsoleted by RFC 8446) ** Obsolete normative reference: RFC 5661 (Obsoleted by RFC 8881) Summary: 3 errors (**), 0 flaws (~~), 1 warning (==), 5 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 NFSv4 Working Group J. Lentini 3 Internet-Draft C. Everhart 4 Intended status: Standards Track NetApp 5 Expires: January 11, 2011 D. Ellard 6 Raytheon BBN Technologies 7 R. Tewari 8 M. Naik 9 IBM Almaden 10 July 10, 2010 12 NSDB Protocol for Federated Filesystems 13 draft-ietf-nfsv4-federated-fs-protocol-06 15 Abstract 17 This document describes a filesystem federation protocol that enables 18 file access and namespace traversal across collections of 19 independently administered fileservers. The protocol specifies a set 20 of interfaces by which fileservers with different administrators can 21 form a fileserver federation that provides a namespace composed of 22 the filesystems physically hosted on and exported by the constituent 23 fileservers. 25 Requirements Language 27 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 28 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 29 document are to be interpreted as described in [RFC2119]. 31 Status of this Memo 33 This Internet-Draft is submitted in full conformance with the 34 provisions of BCP 78 and BCP 79. 36 Internet-Drafts are working documents of the Internet Engineering 37 Task Force (IETF). Note that other groups may also distribute 38 working documents as Internet-Drafts. The list of current Internet- 39 Drafts is at http://datatracker.ietf.org/drafts/current/. 41 Internet-Drafts are draft documents valid for a maximum of six months 42 and may be updated, replaced, or obsoleted by other documents at any 43 time. It is inappropriate to use Internet-Drafts as reference 44 material or to cite them other than as "work in progress." 46 This Internet-Draft will expire on January 11, 2011. 48 Copyright Notice 49 Copyright (c) 2010 IETF Trust and the persons identified as the 50 document authors. All rights reserved. 52 This document is subject to BCP 78 and the IETF Trust's Legal 53 Provisions Relating to IETF Documents 54 (http://trustee.ietf.org/license-info) in effect on the date of 55 publication of this document. Please review these documents 56 carefully, as they describe your rights and restrictions with respect 57 to this document. Code Components extracted from this document must 58 include Simplified BSD License text as described in Section 4.e of 59 the Trust Legal Provisions and are provided without warranty as 60 described in the Simplified BSD License. 62 This document may contain material from IETF Documents or IETF 63 Contributions published or made publicly available before November 64 10, 2008. The person(s) controlling the copyright in some of this 65 material may not have granted the IETF Trust the right to allow 66 modifications of such material outside the IETF Standards Process. 67 Without obtaining an adequate license from the person(s) controlling 68 the copyright in such materials, this document may not be modified 69 outside the IETF Standards Process, and derivative works of it may 70 not be created outside the IETF Standards Process, except to format 71 it for publication as an RFC or to translate it into languages other 72 than English. 74 Table of Contents 76 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4 77 2. Overview of Features and Concepts . . . . . . . . . . . . . . 5 78 2.1. Namespace . . . . . . . . . . . . . . . . . . . . . . . . 5 79 2.2. Fileset . . . . . . . . . . . . . . . . . . . . . . . . . 5 80 2.3. Fileset Name (FSN) . . . . . . . . . . . . . . . . . . . . 5 81 2.4. Fileset Location (FSL) . . . . . . . . . . . . . . . . . . 6 82 2.4.1. Mutual Consistency across Fileset Locations . . . . . 6 83 2.4.2. Caching of Fileset Locations . . . . . . . . . . . . . 7 84 2.4.3. Generating A Referral from Fileset Locations . . . . . 8 85 2.5. Namespace Database (NSDB) . . . . . . . . . . . . . . . . 9 86 2.6. Mount Points, Junctions and Referrals . . . . . . . . . . 9 87 2.7. Unified Namespace and the Root Fileset . . . . . . . . . . 10 88 2.8. Fileservers . . . . . . . . . . . . . . . . . . . . . . . 10 89 2.9. File-access Clients . . . . . . . . . . . . . . . . . . . 10 90 3. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 91 3.1. Creating a Fileset and its FSL(s) . . . . . . . . . . . . 11 92 3.1.1. Creating a Fileset and an FSN . . . . . . . . . . . . 11 93 3.1.2. Adding a Replica of a Fileset . . . . . . . . . . . . 12 94 3.2. Junction Resolution . . . . . . . . . . . . . . . . . . . 12 95 3.3. Example Use Cases for Fileset Annotations . . . . . . . . 13 96 4. NSDB Configuration and Schema . . . . . . . . . . . . . . . . 13 97 4.1. LDAP Configuration . . . . . . . . . . . . . . . . . . . . 14 98 4.2. LDAP Schema . . . . . . . . . . . . . . . . . . . . . . . 15 99 4.2.1. LDAP Attributes . . . . . . . . . . . . . . . . . . . 16 100 4.2.2. LDAP Objects . . . . . . . . . . . . . . . . . . . . . 34 101 5. NSDB Operations . . . . . . . . . . . . . . . . . . . . . . . 37 102 5.1. NSDB Operations for Administrators . . . . . . . . . . . . 38 103 5.1.1. Create an FSN . . . . . . . . . . . . . . . . . . . . 39 104 5.1.2. Delete an FSN . . . . . . . . . . . . . . . . . . . . 40 105 5.1.3. Create an FSL . . . . . . . . . . . . . . . . . . . . 40 106 5.1.4. Delete an FSL . . . . . . . . . . . . . . . . . . . . 43 107 5.1.5. Update an FSL . . . . . . . . . . . . . . . . . . . . 43 108 5.2. NSDB Operations for Fileservers . . . . . . . . . . . . . 44 109 5.2.1. NSDB Container Entry (NCE) Enumeration . . . . . . . . 44 110 5.2.2. Lookup FSLs for an FSN . . . . . . . . . . . . . . . . 44 111 6. Security Considerations . . . . . . . . . . . . . . . . . . . 46 112 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 46 113 7.1. LDAP Descriptor Registration . . . . . . . . . . . . . . . 47 114 8. Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 115 9. References . . . . . . . . . . . . . . . . . . . . . . . . . . 52 116 9.1. Normative References . . . . . . . . . . . . . . . . . . . 52 117 9.2. Informative References . . . . . . . . . . . . . . . . . . 54 118 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . . 55 119 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 55 121 1. Introduction 123 A federated filesystem enables file access and namespace traversal in 124 a uniform, secure and consistent manner across multiple independent 125 fileservers within an enterprise or across multiple enterprises. 127 This document specifies a set of protocols that allow fileservers, 128 possibly from different vendors and with different administrators, to 129 cooperatively form a federation containing one or more federated 130 filesystems. Each federated filesystem's namespace is composed of 131 the filesystems physically hosted on and exported by the federation's 132 fileservers. A federation MAY contain a common namespace across all 133 its fileservers. A federation MAY project multiple namespaces and 134 enable clients to traverse each one. A federation MAY contain an 135 arbitrary number of namespace repositories, each belonging to a 136 different administrative entity, and each rendering a part of the 137 namespace. A federation MAY also have an arbitrary number of 138 administrative entities responsible for administering disjoint 139 subsets of the fileservers. 141 Traditionally, building a namespace that spans multiple fileservers 142 has been difficult for two reasons. First, the fileservers that 143 export pieces of the namespace are often not in the same 144 administrative domain. Second, there is no standard mechanism for 145 the fileservers to cooperatively present the namespace. Fileservers 146 may provide proprietary management tools and in some cases an 147 administrator may be able to use the proprietary tools to build a 148 shared namespace out of the exported filesystems. However, relying 149 on vendor-specific proprietary tools does not work in larger 150 enterprises or when collaborating across enterprises because the 151 fileservers are likely to be from multiple vendors or use different 152 software versions, each with their own namespace protocols, with no 153 common mechanism to manage the namespace or exchange namespace 154 information. 156 The federated filesystem protocols in this document define how to 157 construct a namespace accessible by an NFSv4 [RFC3530] or NFSv4.1 158 [RFC5661] client and have been designed to accommodate other file 159 access protocols in the future. 161 The requirements for federated filesystems are described in 162 [RFC5716]. A protocol for administering a fileserver's namespace is 163 described in [FEDFS-ADMIN]. The mechanism for discovering the root 164 of an NFSv4 namespace is described in [FEDFS-DNS-SRV]. In the rest 165 of the document, the term fileserver denotes a fileserver that is 166 part of a federation. 168 2. Overview of Features and Concepts 170 2.1. Namespace 172 The goal of a unified namespace is to make all managed data available 173 to all clients via the same path in a common filesystem-like 174 namespace. This should be achieved with minimal or zero client 175 configuration. In particular, updates to the common namespace should 176 not require configuration changes at the client. Filesets, which are 177 the unit of data management, are a set of files and directories. 178 From the perspective of the clients, the common namespace is 179 constructed by mounting filesets that are physically located on 180 different fileservers. The namespace, which is defined in terms of 181 fileset definitions, fileset identifiers, the location of each 182 fileset in the namespace, and the physical location of the 183 implementation(s) of each fileset, is stored in a set of namespace 184 repositories, each managed by an administrative entity. The 185 namespace schema defines the model used for populating, modifying, 186 and querying the namespace repositories. It is not required by the 187 federation that the namespace be common across all fileservers. It 188 should be possible to have several independently rooted namespaces. 190 2.2. Fileset 192 A fileset is defined to be a container of data and is the basic unit 193 of data management. Depending on the configuration, they may be 194 anything between an individual directory of an exported filesystem to 195 an entire exported filesystem at a fileserver. 197 2.3. Fileset Name (FSN) 199 A fileset is uniquely represented by its fileset name (FSN). An FSN 200 is considered unique across the federation. After an FSN is created, 201 it is associated with one or more fileset locations (FSLs) on a 202 fileserver. 204 The attributes of an FSN are: 206 NsdbName: the network location of the NSDB node that contains 207 authoritative information for this FSN. 209 FsnUuid: a 128-bit UUID (universally unique identifier), 210 conforming to [RFC4122], that is used to uniquely identify an 211 FSN. 213 2.4. Fileset Location (FSL) 215 An FSL describes the location where the fileset data resides. An FSL 216 contains generic and type specific information which together 217 describe how to access the fileset. An FSL's type indicates which 218 protocol(s) may be used to access its data. An FSL's attributes can 219 be used by a fileserver to decide which locations it will return to a 220 client. 222 All FSLs have the following attributes: 224 FslUuid: a 128-bit UUID, conforming to [RFC4122], that is used to 225 uniquely identify an FSL. 227 FsnUuid: the 128-bit UUID of the FSL's FSN. 229 NsdbName: the network location of the NSDB node that contains 230 authoritative information for this FSL. 232 FslHost: the network location of the host fileserver storing the 233 physical data 235 FslTTL: the time in seconds during which the FSL may be cached 237 Annotations: optional name/value pairs that can be interpreted by 238 a fileserver. The semantics of this field are not defined by 239 this document. These tuples are intended to be used by higher- 240 level protocols. 242 Descriptions: optional text descriptions. The semantics of this 243 field are not defined by this document. 245 This document defines an FSL subtype for NFS. An NFS FSL contains 246 information suitable for use in an NFSv4 fs_locations [RFC3530] or 247 NFSv4.1 fs_locations_info attribute [RFC5661]. 249 A fileset MAY be accessible by protocols other than NFS. For each 250 such protocol, a corresponding FSL subtype SHOULD be defined. The 251 contents and format of such FSL subtypes are not defined in this 252 document. 254 2.4.1. Mutual Consistency across Fileset Locations 256 All of the FSLs that have the same FSN (and thereby reference the 257 same fileset) are equivalent from the point of view of client access; 258 the different locations of a fileset represent the same data, though 259 potentially at different points in time. Fileset locations are 260 equivalent but not identical. Locations may either be read-only or 261 read-write. Typically, multiple read-write locations are backed by a 262 clustered filesystem while read-only locations are replicas created 263 by a federation-initiated or external replication operation. Read- 264 only locations may represent consistent point-in-time copies of a 265 read-write location. The federation protocols, however, cannot 266 prevent subsequent changes to a read-only location nor guarantee 267 point-in-time consistency of a read-only location if the read-write 268 location is changing. 270 Regardless of the type, all locations exist at the same mount point 271 in the namespace and, thus, one client may be referred to one 272 location while another is directed to a different location. Since 273 updates to each fileset location are not controlled by the federation 274 protocol, it is the responsibility of administrators to guarantee the 275 functional equivalence of the data. 277 The federation protocol does not guarantee that the different 278 locations are mutually consistent in terms of the currency of the 279 data. It relies on the client file-access protocol (e.g., NFSv4) to 280 contain sufficient information to help the clients determine the 281 currency of the data at each location in order to ensure that the 282 clients do not revert back in time when switching locations. 284 2.4.2. Caching of Fileset Locations 286 To resolve an FSN to a set of FSL records, the fileserver queries the 287 appropriate NSDB for the FSL records. A fileserver MAY cache these 288 FSL records for a limited period of time. The period of time, if 289 any, during which FSL records MAY be cached is indicated by the FSL's 290 TTL field. 292 The combination of FSL caching and FSL migration presents a 293 challenge. For example, suppose there are three fileservers named A, 294 B, and C and fileserver A contains a junction to fileset X stored on 295 fileserver B. Now suppose that fileset X is migrated from fileserver 296 B to fileserver C and the corresponding FSL information for fileset X 297 in the appropriate NSDB is updated. If fileserver A has a cached FSL 298 for fileset X, a user traversing the junction on fileserver A will be 299 referred to fileserver B even though fileset X has migrated to 300 fileserver C. If fileserver A had not cached the FSL record, it would 301 have queried the NSDB and obtained the correct location of fileset X. 303 Administrators are advised to be aware of FSL caching when performing 304 a migration. When migrating a fileset, administrators SHOULD create 305 a junction at the fileset's old location referring back to the NSDB 306 entry for the fileset. This junction will redirect any users who 307 follow stale FSL information to the correct location. Thus, in the 308 above example, fileserver A would direct clients to fileserver B, but 309 fileserver B would in turn direct clients to fileserver C. 311 Such supplemental junctions (on fileserver B in the example) would 312 not be required to be in place forever. They need to stay in place 313 only until cached FSL entries for the target fileset are invalidated. 314 Each FSL contains a TTL field, a count in seconds of the time 315 interval the FSL MAY be cached. This is an upper bound for the 316 lifetime of the cached information and a lower bound for the lifetime 317 of the supplemental junctions. For example, suppose this field 318 contains the value 3600 seconds (one hour). In such a case, 319 administrators MUST keep the supplemental junctions in place for at 320 least one hour after the fileset move has taken place, and FSL data 321 MUST NOT be cached by a referring fileserver for more than one hour 322 without a refresh. 324 2.4.3. Generating A Referral from Fileset Locations 326 After resolving an FSN to a set of FSL records, the fileserver can 327 generate a referral to redirect the client to one or more of the 328 FSLs. The fileserver will convert the FSL records to a referral 329 format understood by the client, such as an NFSv4 fs_locations 330 attribute or NFSv4.1 fs_locations_info attribute. 332 In order to give the client as many options as possible, the 333 fileserver SHOULD include the maximum possible number of FSL records 334 in a referral. However, the fileserver MAY omit some of the FSL 335 records from the referral. For example, the fileserver might omit an 336 FSL record with a different file access protocol from the one in use 337 between the fileserver and client, or the fileserver might omit an 338 FSL record because of limitations in the file access protocol's 339 referral format, or the fileserver might omit an FSL record based on 340 some other criteria. 342 For a given FSL record, the fileserver MAY convert or reduce the FSL 343 record's contents in a manner appropriate to the referral format. 344 For example, an NFS FSL record contains all the data necessary to 345 construct an NFSv4.1 fs_locations_info attribute, but an NFSv4.1 346 fs_locations_info attribute contains several pieces of information 347 that are not found in an NFSv4 fs_locations attribute. A fileserver 348 will construct entries in an NFSv4 fs_locations attribute using the 349 relevant contents of an NFS FSL record. Whenever the fileserver 350 converts or reduces FSL data, the fileserver SHOULD attempt to 351 maintain the original meaning where possible. For example, an NFS 352 FSL record contains the rank and order information that is included 353 in an NFSv4.1 fs_locations_info attribute (see NFSv4.1's 354 FSLI4BX_READRANK, FSLI4BX_READORDER, FSLI4BX_WRITERANK, and 355 FSLI4BX_WRITEORDER). While this rank and order information is not 356 explicitly expressible in an NFSv4 fs_locations attribute, the 357 fileserver can arrange the NFSv4 fs_locations attribute's locations 358 list base on the rank and order values. 360 2.5. Namespace Database (NSDB) 362 The NSDB service is a federation-wide service that provides 363 interfaces to define, update, and query FSN information, FSL 364 information, and FSN to FSL mapping information. An individual 365 repository of namespace information is called an NSDB node. Each 366 NSDB node is managed by a single administrative entity. A single 367 admin entity can manage multiple NSDB nodes. 369 The difference between the NSDB service and an NSDB node is analogous 370 to that between the DNS service and a particular DNS server. 372 Each NSDB node stores the definition of the FSNs for which it is 373 authoritative. It also stores the definitions of the FSLs associated 374 with those FSNs. An NSDB node is authoritative for the filesets that 375 it defines. An NSDB node can cache information from a peer NSDB 376 node. The fileserver can always contact a local NSDB node (if it has 377 been defined) or directly contact any NSDB node to resolve a 378 junction. Each NSDB node supports an LDAP [RFC4510] interface and 379 can be accessed by an LDAP client. 381 An NSDB MAY be replicated throughout the federation. If an NSDB is 382 replicated, the NSDB MUST exhibit loose, converging consistency as 383 defined in [RFC3254]. The mechanism by which this is achieved is 384 outside the scope of this document. Many LDAP implementations 385 support replication. These features MAY be used to replicate the 386 NSDB. 388 2.6. Mount Points, Junctions and Referrals 390 A mount point is a directory in a parent fileset where a target 391 fileset may be attached. If a client traverses the path leading from 392 the root of the namespace to the mount point of a target fileset it 393 should be able to access the data in that target fileset (assuming 394 appropriate permissions). 396 The directory where a fileset is mounted is represented by a junction 397 in the underlying filesystem. In other words, a junction can be 398 viewed as a reference from a directory in one fileset to the root of 399 the target fileset. A junction can be implemented as a special 400 marker on a directory that is interpreted by the fileserver as a 401 mount point, or by some other mechanism in the underlying filesystem. 403 What data is used by the underlying filesystem to represent the 404 junction is not defined by this protocol. The essential property is 405 that the server must be able to find, given the junction, the FSN for 406 the target fileset. The mechanism by which the server maps a 407 junction to an FSN is outside the scope of this document. The FSN 408 (as described earlier) contains the authoritative NSDB node, the 409 optional NSDB search base if one is defined, and the FsnUuid (a UUID 410 for the fileset). 412 When a client traversal reaches a junction, the client is referred to 413 a list of FSLs associated with the FSN targeted by the junction. The 414 client can then redirect its connection to one of the FSLs. This act 415 is called a referral. For NFSv4 and NFSv4.1 clients, the FSL 416 information is returned in the fs_locations and fs_locations_info 417 attributes respectively. 419 The federation protocols do not limit where and how many times a 420 fileset is mounted in the namespace. Filesets can be nested; a 421 fileset can be mounted under another fileset. 423 2.7. Unified Namespace and the Root Fileset 425 The root fileset, when defined, is the top-level fileset of the 426 federation-wide namespace. The root of the unified namespace is the 427 top level directory of this fileset. A set of designated fileservers 428 in the federation can export the root fileset to render the 429 federation-wide unified namespace. When a client mounts the root 430 fileset from any of these designated fileservers it can view a common 431 federation-wide namespace. The root fileset could be implemented 432 either as an exported NFS file system or as data in the NSDB itself. 433 The properties and schema definition of an NSDB-based root fileset 434 and the protocol details that describe how to configure and replicate 435 the root fileset are not defined in this document. 437 2.8. Fileservers 439 Fileservers are servers that store the physical fileset data or refer 440 the client to other fileservers. A fileserver can be implemented in 441 a number of different ways, including a single system, a cluster of 442 systems, or some other configuration. A fileserver provides access 443 to a federated filesystem via NFSv4, NFSv4.1, or some other protocol. 445 2.9. File-access Clients 447 File access clients are standard off-the-shelf network attached 448 storage (NAS) clients that access file data using the NFSv4 protocol, 449 the NFSv4.1 protocol, or some other protocol. 451 3. Examples 453 In this section we provide examples and discussion of the basic 454 operations facilitated by the federated filesystem protocol: creating 455 a fileset, adding a replica of a fileset, resolving a junction, and 456 creating a junction. 458 3.1. Creating a Fileset and its FSL(s) 460 A fileset is the abstraction of a set of files and the directory tree 461 that contains them. The fileset abstraction is the fundamental unit 462 of data management in the federation. This abstraction is 463 implemented by an actual directory tree whose root location is 464 specified by a fileset location (FSL). 466 In this section, we describe the basic requirements for starting with 467 a directory tree and creating a fileset that can be used in the 468 federation protocols. Note that we do not assume that the process of 469 creating a fileset requires any transformation of the files or the 470 directory hierarchy. The only thing that is required by this process 471 is assigning the fileset a fileset name (FSN) and expressing the 472 location of the implementation of the fileset as an FSL. 474 There are many possible variations to this procedure, depending on 475 how the FSN that binds the FSL is created, and whether other replicas 476 of the fileset exist, are known to the federation, and need to be 477 bound to the same FSN. 479 It is easiest to describe this in terms of how to create the initial 480 implementation of the fileset, and then describe how to add replicas. 482 3.1.1. Creating a Fileset and an FSN 484 1. Choose the NSDB node that will keep track of the FSL(s) and 485 related information for the fileset. 487 2. Create an FSN in the NSDB node. 489 The FSN UUID is chosen by the administrator or generated 490 automatically by administration software. The former case is 491 used if the fileset is being restored, perhaps as part of 492 disaster recovery, and the administrator wishes to specify the 493 FSN UUID in order to permit existing junctions that reference 494 that FSN to work again. 496 At this point, the FSN exists, but its fileset locations are 497 unspecified. 499 3. For the FSN created above, create an FSL with the appropriate 500 information in the NSDB node. 502 3.1.2. Adding a Replica of a Fileset 504 Adding a replica is straightforward: the NSDB node and the FSN are 505 already known. The only remaining step is to add another FSL. 507 Note that the federation protocols only provide the mechanisms to 508 register and unregister replicas of a fileset. Fileserver-to- 509 fileserver replication protocols are not defined. 511 3.2. Junction Resolution 513 A fileset may contain references to other filesets. These references 514 are represented by junctions. If a client requests access to a 515 fileset object that is a junction, the fileserver resolves the 516 junction to discover one or more FSLs that implement the referenced 517 fileset. 519 There are many possible variations to this procedure, depending on 520 how the junctions are represented by the fileserver and how the 521 fileserver performs junction resolution. 523 Step 4 is the only step that interacts directly with the federation 524 protocols. The rest of the steps may use platform-specific 525 interfaces. 527 1. The fileserver determines that the object being accessed is a 528 junction. 530 2. The fileserver does a local lookup to find the FSN of the target 531 fileset. 533 3. Using the FSN, the fileserver finds the NSDB node responsible for 534 the target FSN. 536 4. The fileserver contacts that NSDB node and asks for the set of 537 FSLs that implement the target FSN. The NSDB node responds with 538 a (possibly empty) set of FSLs. 540 5. The fileserver converts one or more of the FSLs to the location 541 type used by the client (e.g., a Network File System (NFSv4) 542 fs_location, as described in [RFC3530]). 544 6. The fileserver redirects (in whatever manner is appropriate for 545 the client) the client to the location(s). 547 3.3. Example Use Cases for Fileset Annotations 549 Fileset annotations MAY be used to convey additional attributes of a 550 fileset 552 For example, fileset annotations can be used to define relationships 553 between filesets that can be used by an auxiliary replication 554 protocol. Consider the scenario where a fileset is created and 555 mounted at some point in the namespace. A snapshot of the read-write 556 FSL of that fileset is taken periodically at different frequencies 557 say a daily snapshot or a weekly snapshot. The different snapshots 558 are mounted at different locations in the namespace. The daily 559 snapshots are considered as a different fileset from the weekly ones 560 but both are related to the source fileset. For this we can define 561 an annotation labeling the filesets as source and replica. The 562 replication protocol can use this information to copy data from one 563 or more FSLs of the source fileset to all the FSLs of the replica 564 fileset. The replica filesets are read-only while the source fileset 565 is read-write. 567 This follows the traditional Andrew File System (AFS) model of 568 mounting the read-only volume at a path in the namespace different 569 from that of the read-write volume [AFS]. 571 The federation protocol does not control or manage the relationship 572 among filesets. It merely enables annotating the filesets with user- 573 defined relationships. 575 Another potential use for annotations is recording references to an 576 FSN. A single annotation containing the number of references could 577 be defined or multiple annotations, one per reference, could be used 578 to store detailed information on the location of each reference. As 579 with the replication annotation described above, the maintenance of 580 reference information would not be controlled by the federation 581 protocol. The information would mostly likely be non-authoritative 582 because the the ability to create a junction does not require the 583 authority to update the FSN record. In any event, such annotations 584 could be useful to administrators for determining if an FSN is 585 referenced by a junction. 587 4. NSDB Configuration and Schema 589 This section describes how an NSDB is constructed using an LDAP 590 Version 3 [RFC4510] Directory. Section 4.1 describes the basic 591 properties of the LDAP configuration that MUST be used in order to 592 ensure compatibility between different implementations. Section 4.2 593 defines the new LDAP attribute types, the new object types, and 594 specifies how the distinguished name (DN) of each object instance 595 MUST be constructed. 597 4.1. LDAP Configuration 599 An NSDB is constructed using an LDAP Directory. This LDAP Directory 600 MAY have multiple naming contexts. For each naming context, the LDAP 601 Directory's root DSE will have a namingContext attribute. Each 602 namingContext attribute contains the DN of the naming context's root 603 entry. For each naming context that contains federation entries 604 (e.g. FSNs and FSLs): 606 1. There MUST be an LDAP entry that is superior to all of the naming 607 context's federation entries in the Directory Information Tree 608 (DIT) This entry is termed the NSDB Container Entry (NCE). The 609 NCE's children are FSNs. An FSNs children are FSLs. 611 2. The naming context's root entry MUST include the 612 fedfsNsdbContainerInfo (defined below) as one of its object 613 classes. The fedfsNsdbContainerInfo's fedfsNcePrefix attribute 614 is used to locate the naming context's NCE. 616 If a naming context does not contain federation entries, it will not 617 contain an NCE and its root entry will not include a 618 fedfsNsdbContainerInfo as one of its object classes. 620 A fedfsNsdbContainerInfo's fedfsNcePrefix attribute contains a 621 string. Prepending this string to the namingContext value produces 622 the Distinguished Name (DN) of the NSDB Container Entry. An empty 623 fedfsNcePrefix string value indicates that the NSDB Container Entry 624 is the namingContext's root entry. 626 For example, an LDAP directory might have the following entries: 628 -+ [root DSE] 629 | namingContext: o=fedfs 630 | namingContext: dc=example,dc=com 631 | namingContext: ou=system 632 | 633 | 634 +---- [o=fedfs] 635 | fedfsNcePrefix: 636 | 637 | 638 +---- [dc=example,dc=com] 639 | fedfsNcePrefix: ou=fedfs,ou=corp-it 640 | 641 | 642 +---- [ou=system] 644 In this case, the o=fedfs namingContext has an NSBD Container Entry 645 at o=fedfs, the dc=example,dc=com namingContext has an NSDB Container 646 Entry at ou=fedfs,ou=corp-it,dc=example,dc=com, and the ou=system 647 namingContext has no NSDB Container Entry. 649 The NSDB SHOULD be configured with one or more privileged LDAP users. 650 These users are able to modify the contents of the LDAP database. An 651 administrator that performs the operations described in Section 5.1 652 SHOULD authenticate using the DN of a privileged LDAP user. 654 It MUST be possible for an unprivileged (unauthenticated) user to 655 perform LDAP queries that access the NSDB data. A fileserver 656 performs the operations described in Section 5.2 as an unprivileged 657 user. 659 All implementations SHOULD use the same schema, or, at minimum, a 660 schema that includes all of the objects, with each of the attributes, 661 named in the following sections. 663 Given the above configuration guidelines, an NSDB SHOULD be 664 constructed using a dedicated LDAP directory. Separate LDAP 665 directories are RECOMMENDED for other purposes, such as storing user 666 account information. By using an LDAP directory dedicated to storing 667 NSDB records, there is no need to disturb the configuration of any 668 other LDAP directories that store information unrelated to an NSDB. 670 4.2. LDAP Schema 672 The schema definitions provided in this document use the LDAP schema 673 syntax defined in [RFC4512]. The definitions are formatted to allow 674 the reader to easily extract them from the document. The reader can 675 use the following shell script to extract the definitions: 677 679 #!/bin/sh 680 grep '^ *///' | sed 's?^ */// ??' | sed 's?^ *///$??' 682 684 If the above script is stored in a file called "extract.sh", and this 685 document is in a file called "spec.txt", then the reader can do: 687 689 sh extract.sh < spec.txt > fedfs.schema 691 693 The effect of the script is to remove leading white space from each 694 line, plus a sentinel sequence of "///". 696 4.2.1. LDAP Attributes 698 This section describes the required attributes of the NSDB LDAP 699 schema. The following definitions are used below: 701 o The "name" attribute described in [RFC4519]. 703 o The Integer syntax (1.3.6.1.4.1.1466.115.121.1.27) described in 704 [RFC4517]. 706 o The "integerMatch" rule described in [RFC4517]. 708 o The Octet String syntax (1.3.6.1.4.1.1466.115.121.1.40) described 709 in [RFC4517]. 711 o The "octetStringMatch" rule described in [RFC4517]. 713 o The Boolean syntax (1.3.6.1.4.1.1466.115.121.1.7) described in 714 [RFC4517]. 716 o The "booleanMatch" rule described in [RFC4517]. 718 4.2.1.1. fedfsUuid 720 A fedfsUuid is the base type for all of the universally unique 721 identifiers (UUIDs) used by the federated filesystem protocols. 723 To minimize the probability of two UUIDs colliding, a consistent 724 procedure for generating UUIDs SHOULD be used throughout a 725 federation. Within a federation, UUIDs SHOULD be generated using the 726 procedure described for version 1 of the UUID variant specified in 727 [RFC4122]. 729 The UUID's text representation (as defined in [RFC4122]) SHOULD be 730 encoded as a UTF-8 string. 732 It MAY also be useful, for purposes of debugging or annotation, to 733 permit a fedfsUuid to include members of a more general class of 734 strings. 736 A fedfsUuid is a single-valued LDAP attribute. 738 740 /// 741 /// attributetype ( 742 /// 1.3.6.1.4.1.31103.1.1 NAME 'fedfsUuid' 743 /// DESC 'A UUID used by NSDB' 744 /// SUP name 745 /// SINGLE-VALUE 746 /// ) 747 /// 749 751 4.2.1.2. fedfsNetAddr 753 A fedfsNetAddr is the locative name of a network service. It MUST be 754 a UTF-8 string and represent a network location in either IPv4, IPv6, 755 or DNS name notation. 757 An IPv4 address MUST be represented using the standard dotted decimal 758 format defined by the IPv4address rule in Section 3.2.2 of RFC 3986 759 [RFC3986]. An IPv6 address MUST be represented using the format 760 defined in Section 2.2 of RFC 4291 [RFC4291]. 762 A DNS name MUST be represented using a fully qualified domain name. 763 A system (i.e. fileserver or administrative host) SHOULD resolve the 764 fully qualified domain name to a network address using the system's 765 standard resolution mechanisms. 767 This attribute is single-valued. 769 771 /// 772 /// attributetype ( 773 /// 1.3.6.1.4.1.31103.1.2 NAME 'fedfsNetAddr' 774 /// DESC 'The network name of a host or service' 775 /// SUP name 776 /// SINGLE-VALUE 777 /// ) 778 /// 780 782 4.2.1.3. fedfsNetPort 784 A fedfsNetPort is the decimal representation of a transport service's 785 port number. A fedfsNetPort MUST be encoded as an Integer syntax 786 value [RFC4517]. 788 This attribute is single-valued. 790 792 /// 793 /// attributetype ( 794 /// 1.3.6.1.4.1.31103.1.3 NAME 'fedfsNetPort' 795 /// DESC 'A transport port number of a service' 796 /// EQUALITY integerMatch 797 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 798 /// SINGLE-VALUE 799 /// ) 800 /// 802 804 4.2.1.4. fedfsFsnUuid 806 A fedfsFsnUuid represents the UUID component of an FSN. An NSDB 807 SHOULD ensure that no two FSNs it stores have the same fedfsFsnUuid. 809 The fedfsFsnUuid is a subclass of fedfsUuid, with the same encoding 810 rules. 812 This attribute is single-valued. 814 816 /// 817 /// attributetype ( 818 /// 1.3.6.1.4.1.31103.1.4 NAME 'fedfsFsnUuid' 819 /// DESC 'The FSN UUID component of an FSN' 820 /// SUP fedfsUuid 821 /// SINGLE-VALUE 822 /// ) 823 /// 825 827 4.2.1.5. fedfsNsdbName 829 A fedfsNsdbName is the NSDB component of an FSN. 831 It MUST be a UTF-8 string containing a DNS name. The DNS name MUST 832 be represented using a fully qualified domain name. A system (i.e. 833 fileserver or administrative host) SHOULD resolve the fully qualified 834 domain name to a network address using the system's standard 835 resolution mechanisms. 837 FSNs are immutable and invariant. The attributes of an FSN, 838 including the fedfsNsdbName, are expected to remain constant. 839 Therefore, a fedfsNsdbName SHOULD NOT contain a network address, such 840 as an IPv4 or IPv6 address, as this would indefinitely assign the 841 network address. 843 This attribute is single-valued. 845 847 /// 848 /// attributetype ( 849 /// 1.3.6.1.4.1.31103.1.5 NAME 'fedfsNsdbName' 850 /// DESC 'The NSDB node component of an FSN' 851 /// SUP name 852 /// SINGLE-VALUE 853 /// ) 854 /// 856 858 4.2.1.6. fedfsNsdbPort 860 A fedfsNsdbPort is the decimal representation of an NSDB's port 861 number. The fedfsNsdbPort attribute is a subclass of fedfsNetPort, 862 with the same encoding rules. 864 This attribute is single-valued. 866 868 /// 869 /// attributetype ( 870 /// 1.3.6.1.4.1.31103.1.6 NAME 'fedfsNsdbPort' 871 /// DESC 'The transport port number of an NSDB' 872 /// SUP fedfsNetPort 873 /// SINGLE-VALUE 874 /// ) 875 /// 877 879 4.2.1.7. fedfsNcePrefix 881 A fedfsNcePrefix stores a UTF-8 encoded string. 883 This attribute is single-valued. 885 887 /// 888 /// attributetype ( 889 /// 1.3.6.1.4.1.31103.1.7 NAME 'fedfsNcePrefix' 890 /// DESC 'NCE prefix' 891 /// SUP name 892 /// SINGLE-VALUE 893 /// ) 894 /// 896 898 OID 1.3.6.1.4.1.1466.115.121.1.12 is the DN syntax [RFC4517]. 900 4.2.1.8. fedfsFslUuid 902 A fedfsFslUuid represents the UUID of an FSL. An NSDB SHOULD ensure 903 that no two FSLs it stores have the same fedfsFslUuid. 905 The fedfsFslUuid attribute is a subclass of fedfsUuid, with the same 906 encoding rules. 908 This attribute is single-valued. 910 912 /// 913 /// attributetype ( 914 /// 1.3.6.1.4.1.31103.1.8 NAME 'fedfsFslUuid' 915 /// DESC 'UUID of an FSL' 916 /// SUP fedfsUuid 917 /// SINGLE-VALUE 918 /// ) 919 /// 921 923 4.2.1.9. fedfsFslHost 925 A fedfsFslHost is the host component of an FSL. The fedfsFslHost 926 attribute is a subclass of fedfsNetAddr, with the same encoding 927 rules. 929 This attribute is single-valued. 931 933 /// 934 /// attributetype ( 935 /// 1.3.6.1.4.1.31103.1.9 NAME 'fedfsFslHost' 936 /// DESC 'Service location for a fileserver' 937 /// SUP fedfsNetAddr 938 /// SINGLE-VALUE 939 /// ) 940 /// 942 944 4.2.1.10. fedfsFslPort 946 A fedfsFslPort is the decimal representation of a file service's port 947 number. The fedfsFslPort attribute is a subclass of fedfsNetPort, 948 with the same encoding rules. 950 This attribute is single-valued. 952 954 /// 955 /// attributetype ( 956 /// 1.3.6.1.4.1.31103.1.10 NAME 'fedfsFslPort' 957 /// DESC 'The file service transport port number' 958 /// SUP fedfsNetPort 959 /// SINGLE-VALUE 960 /// ) 961 /// 963 965 4.2.1.11. fedfsFslTTL 967 A fedfsFslTTL is the amount of time in seconds an FSL SHOULD be 968 cached by a fileserver. A fedfsFslTTL MUST be encoded as an Integer 969 syntax value [RFC4517]. 971 This attribute is single-valued. 973 975 /// 976 /// attributetype ( 977 /// 1.3.6.1.4.1.31103.1.11 NAME 'fedfsFslTTL' 978 /// DESC 'Time to live of an FSL' 979 /// EQUALITY integerMatch 980 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 981 /// SINGLE-VALUE 982 /// ) 983 /// 985 987 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 989 4.2.1.12. fedfsAnnotation 991 A fedfsAnnotation contains an object annotation. 993 This attribute is multi-valued; an object type that permits 994 annotations may have any number of annotations per instance. 996 A fedfsAnnotation attribute MUST be an UTF-8 string formatted as 997 follows: 999 "KEY" = "VAL" 1001 White space, defined as space, form-feed ('\f'), newline ('\n'), 1002 carriage return ('\r'), horizontal tab ('\t'), and vertical tab 1003 ('\v') characters, is ignored. 1005 KEY and VAL MAY may contain any UTF-8 characters. The following 1006 escape sequences are allowed: 1008 +-----------------+-------------+ 1009 | escape sequence | replacement | 1010 +-----------------+-------------+ 1011 | \\ | \ | 1012 | \" | " | 1013 +-----------------+-------------+ 1015 A fedfsAnnotation attribute that does not adhere to this format 1016 SHOULD be ignored. 1018 The following are examples of valid fedfsAnnotation attributes: 1020 "key1" = "foo" 1021 "another key" = "x=3" 1022 "key-2" = "A string with \" and \\ characters." 1024 which correspond to the following key/value pairs: 1026 +-------------+-----------------------------------+ 1027 | key | value | 1028 +-------------+-----------------------------------+ 1029 | key1 | foo | 1030 | another key | x=3 | 1031 | key-2 | A string with " and \ characters. | 1032 +-------------+-----------------------------------+ 1034 1036 /// 1037 /// attributetype ( 1038 /// 1.3.6.1.4.1.31103.1.12 NAME 'fedfsAnnotation' 1039 /// DESC 'Annotation of an object' 1040 /// SUP name 1041 /// ) 1042 /// 1044 1046 4.2.1.13. fedfsDescr 1048 A fedfsDescr stores an object description. The description MUST be 1049 encoded as a UTF-8 string. 1051 This attribute is multi-valued which permits any number of 1052 descriptions per entry. 1054 1056 /// 1057 /// attributetype ( 1058 /// 1.3.6.1.4.1.31103.1.13 NAME 'fedfsDescr' 1059 /// DESC 'Description of an object' 1060 /// SUP name 1061 /// ) 1062 /// 1064 1066 4.2.1.14. fedfsNfsPath 1068 A fedfsNfsPath is the path component of an FSL. The path MUST be the 1069 XDR encoded NFS pathname as defined by the fs_location's rootpath 1070 [RFC3530] and the fs_locations_item's fli_rootpath [RFC5661]. A 1071 pathname is an XDR encoded variable length array of variable length 1072 opaque data. 1074 This attribute is single-valued. 1076 1078 /// 1079 /// attributetype ( 1080 /// 1.3.6.1.4.1.31103.1.100 NAME 'fedfsNfsPath' 1081 /// DESC 'Server-local path to a fileset' 1082 /// EQUALITY octetStringMatch 1083 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.40 1084 /// SINGLE-VALUE 1085 /// ) 1086 /// 1088 1090 OID 1.3.6.1.4.1.1466.115.121.1.40 is the Octet String syntax 1091 [RFC4517]. 1093 4.2.1.15. fedfsNfsMajorVer 1095 A fedfsNfsMajorVer contains the NFS major version of the associated 1096 NFS FSL. A fedfsNfsMajorVer MUST be encoded as an Integer syntax 1097 value [RFC4517]. 1099 For example if the FSL was exported via NFS 4.1, the contents of this 1100 attribute would be the value 4. 1102 This attribute is single-valued. 1104 1106 /// 1107 /// attributetype ( 1108 /// 1.3.6.1.4.1.31103.1.101 NAME 'fedfsNfsMajorVer' 1109 /// DESC 'NFS major version' 1110 /// EQUALITY integerMatch 1111 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1112 /// SINGLE-VALUE 1113 /// ) 1114 /// 1116 1118 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1120 4.2.1.16. fedfsNfsMinorVer 1122 A fedfsNfsMinorVer contain the NFS minor version of the associated 1123 NFS FSL. A fedfsNfsMinorVer MUST be encoded as an Integer syntax 1124 value [RFC4517]. 1126 For example if the FSL was exported via NFS 4.1, the contents of this 1127 attribute would be the value 1. 1129 This attribute is single-valued. 1131 1133 /// 1134 /// attributetype ( 1135 /// 1.3.6.1.4.1.31103.1.102 NAME 'fedfsNfsMinorVer' 1136 /// DESC 'NFS minor version' 1137 /// EQUALITY integerMatch 1138 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1139 /// SINGLE-VALUE 1140 /// ) 1141 /// 1143 1145 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1147 4.2.1.17. fedfsNfsCurrency 1149 A fedfsNfsCurrency stores the NFSv4.1 fs_locations_server's 1150 fls_currency value [RFC5661]. A fedfsNfsCurrency MUST be encoded as 1151 an Integer syntax value [RFC4517] in the range [-2147483648, 1152 2147483647]. 1154 This attribute is single-valued. 1156 1157 /// 1158 /// attributetype ( 1159 /// 1.3.6.1.4.1.31103.1.103 NAME 'fedfsNfsCurrency' 1160 /// DESC 'up-to-date measure of the data' 1161 /// EQUALITY integerMatch 1162 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1163 /// SINGLE-VALUE 1164 /// ) 1165 /// 1167 1169 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1171 4.2.1.18. fedfsNfsGenFlagWritable 1173 A fedfsNfsGenFlagWritable stores the value of an FSL's NFSv4.1 1174 FSLI4GF_WRITABLE bit [RFC5661]. A value of "TRUE" indicates the bit 1175 is true. A value of "FALSE" indicates the bit is false. 1177 1179 /// 1180 /// attributetype ( 1181 /// 1.3.6.1.4.1.31103.1.104 NAME 'fedfsNfsGenFlagWritable' 1182 /// DESC 'Indicates if the filesystem is writable' 1183 /// EQUALITY booleanMatch 1184 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 1185 /// SINGLE-VALUE 1186 /// ) 1187 /// 1189 1191 OID 1.3.6.1.4.1.1466.115.121.1.7 is the Boolean syntax [RFC4517]. 1193 4.2.1.19. fedfsNfsGenFlagGoing 1195 A fedfsNfsGenFlagGoing stores the value of an FSL's NFSv4.1 1196 FSLI4GF_GOING bit [RFC5661]. A value of "TRUE" indicates the bit is 1197 true. A value of "FALSE" indicates the bit is false. 1199 1200 /// 1201 /// attributetype ( 1202 /// 1.3.6.1.4.1.31103.1.105 NAME 'fedfsNfsGenFlagGoing' 1203 /// DESC 'Indicates if the filesystem is going' 1204 /// EQUALITY booleanMatch 1205 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 1206 /// SINGLE-VALUE 1207 /// ) 1208 /// 1210 1212 OID 1.3.6.1.4.1.1466.115.121.1.7 is the Boolean syntax [RFC4517]. 1214 4.2.1.20. fedfsNfsGenFlagSplit 1216 A fedfsNfsGenFlagSplit stores the value of an FSL's NFSv4.1 1217 FSLI4GF_SPLIT bit [RFC5661]. A value of "TRUE" indicates the bit is 1218 true. A value of "FALSE" indicates the bit is false. 1220 1222 /// 1223 /// attributetype ( 1224 /// 1.3.6.1.4.1.31103.1.106 NAME 'fedfsNfsGenFlagSplit' 1225 /// DESC 'Indicates if there are multiple filesystems' 1226 /// EQUALITY booleanMatch 1227 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 1228 /// SINGLE-VALUE 1229 /// ) 1230 /// 1232 1234 OID 1.3.6.1.4.1.1466.115.121.1.7 is the Boolean syntax [RFC4517]. 1236 4.2.1.21. fedfsNfsTransFlagRdma 1238 A fedfsNfsTransFlagRdma stores the value of an FSL's NFSv4.1 1239 FSLI4TF_RDMA bit [RFC5661]. A value of "TRUE" indicates the bit is 1240 true. A value of "FALSE" indicates the bit is false. 1242 1243 /// 1244 /// attributetype ( 1245 /// 1.3.6.1.4.1.31103.1.107 NAME 'fedfsNfsTransFlagRdma' 1246 /// DESC 'Indicates if the transport supports RDMA' 1247 /// EQUALITY booleanMatch 1248 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 1249 /// SINGLE-VALUE 1250 /// ) 1251 /// 1253 1255 OID 1.3.6.1.4.1.1466.115.121.1.7 is the Boolean syntax [RFC4517]. 1257 4.2.1.22. fedfsNfsClassSimul 1259 A fedfsNfsClassSimul contains the FSL's NFSv4.1 FSLI4BX_CLSIMUL 1260 [RFC5661] value. A fedfsNfsClassSimul MUST be encoded as an Integer 1261 syntax value [RFC4517] in the range [0, 255]. 1263 1265 /// 1266 /// attributetype ( 1267 /// 1.3.6.1.4.1.31103.1.108 NAME 'fedfsNfsClassSimul' 1268 /// DESC 'The simultaneous-use class of the filesystem' 1269 /// EQUALITY integerMatch 1270 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1271 /// SINGLE-VALUE 1272 /// ) 1273 /// 1275 1277 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1279 4.2.1.23. fedfsNfsClassHandle 1281 A fedfsNfsClassHandle contains the FSL's NFSv4.1 FSLI4BX_CLHANDLE 1282 [RFC5661] value. A fedfsNfsClassHandle MUST be encoded as an Integer 1283 syntax value [RFC4517] in the range [0, 255]. 1285 1286 /// 1287 /// attributetype ( 1288 /// 1.3.6.1.4.1.31103.1.109 NAME 'fedfsNfsClassHandle' 1289 /// DESC 'The handle class of the filesystem' 1290 /// EQUALITY integerMatch 1291 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1292 /// SINGLE-VALUE 1293 /// ) 1294 /// 1296 1298 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1300 4.2.1.24. fedfsNfsClassFileid 1302 A fedfsNfsClassFileid contains the FSL's NFSv4.1 FSLI4BX_CLFILEID 1303 [RFC5661] value. A fedfsNfsClassFileid MUST be encoded as an Integer 1304 syntax value [RFC4517] in the range [0, 255]. 1306 1308 /// 1309 /// attributetype ( 1310 /// 1.3.6.1.4.1.31103.1.110 NAME 'fedfsNfsClassFileid' 1311 /// DESC 'The fileid class of the filesystem' 1312 /// EQUALITY integerMatch 1313 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1314 /// SINGLE-VALUE 1315 /// ) 1316 /// 1318 1320 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1322 4.2.1.25. fedfsNfsClassWritever 1324 A fedfsNfsClassWritever contains the FSL's NFSv4.1 FSLI4BX_CLWRITEVER 1325 [RFC5661] value. A fedfsNfsClassWritever MUST be encoded as an 1326 Integer syntax value [RFC4517] in the range [0, 255]. 1328 1329 /// 1330 /// attributetype ( 1331 /// 1.3.6.1.4.1.31103.1.111 NAME 'fedfsNfsClassWritever' 1332 /// DESC 'The write-verifier class of the filesystem' 1333 /// EQUALITY integerMatch 1334 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1335 /// SINGLE-VALUE 1336 /// ) 1337 /// 1339 1341 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1343 4.2.1.26. fedfsNfsClassChange 1345 A fedfsNfsClassChange contains the FSL's NFSv4.1 FSLI4BX_CLCHANGE 1346 [RFC5661] value. A fedfsNfsClassChange MUST be encoded as an Integer 1347 syntax value [RFC4517] in the range [0, 255]. 1349 1351 /// 1352 /// attributetype ( 1353 /// 1.3.6.1.4.1.31103.1.112 NAME 'fedfsNfsClassChange' 1354 /// DESC 'The change class of the filesystem' 1355 /// EQUALITY integerMatch 1356 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1357 /// SINGLE-VALUE 1358 /// ) 1359 /// 1361 1363 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1365 4.2.1.27. fedfsNfsClassReaddir 1367 A fedfsNfsClassReaddir contains the FSL's NFSv4.1 FSLI4BX_CLREADDIR 1368 [RFC5661] value. A fedfsNfsClassReaddir MUST be encoded as an 1369 Integer syntax value [RFC4517] in the range [0, 255]. 1371 1372 /// 1373 /// attributetype ( 1374 /// 1.3.6.1.4.1.31103.1.113 NAME 'fedfsNfsClassReaddir' 1375 /// DESC 'The readdir class of the filesystem' 1376 /// EQUALITY integerMatch 1377 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1378 /// SINGLE-VALUE 1379 /// ) 1380 /// 1382 1384 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1386 4.2.1.28. fedfsNfsReadRank 1388 A fedfsNfsReadRank contains the FSL's NFSv4.1 FSLI4BX_READRANK 1389 [RFC5661] value. A fedfsNfsReadRank MUST be encoded as an Integer 1390 syntax value [RFC4517] in the range [0, 255]. 1392 1394 /// 1395 /// attributetype ( 1396 /// 1.3.6.1.4.1.31103.1.114 NAME 'fedfsNfsReadRank' 1397 /// DESC 'The read rank of the filesystem' 1398 /// EQUALITY integerMatch 1399 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1400 /// SINGLE-VALUE 1401 /// ) 1402 /// 1404 1406 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1408 4.2.1.29. fedfsNfsReadOrder 1410 A fedfsNfsReadOrder contains the FSL's NFSv4.1 FSLI4BX_READORDER 1411 [RFC5661] value. A fedfsNfsReadOrder MUST be encoded as an Integer 1412 syntax value [RFC4517] in the range [0, 255]. 1414 1415 /// 1416 /// attributetype ( 1417 /// 1.3.6.1.4.1.31103.1.115 NAME 'fedfsNfsReadOrder' 1418 /// DESC 'The read order of the filesystem' 1419 /// EQUALITY integerMatch 1420 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1421 /// SINGLE-VALUE 1422 /// ) 1423 /// 1425 1427 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1429 4.2.1.30. fedfsNfsWriteRank 1431 A fedfsNfsWriteRank contains the FSL's FSLI4BX_WRITERANK [RFC5661] 1432 value. A fedfsNfsWriteRank MUST be encoded as an Integer syntax 1433 value [RFC4517] in the range [0, 255]. 1435 1437 /// 1438 /// attributetype ( 1439 /// 1.3.6.1.4.1.31103.1.116 NAME 'fedfsNfsWriteRank' 1440 /// DESC 'The write rank of the filesystem' 1441 /// EQUALITY integerMatch 1442 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1443 /// SINGLE-VALUE 1444 /// ) 1445 /// 1447 1449 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1451 4.2.1.31. fedfsNfsWriteOrder 1453 A fedfsNfsWriteOrder contains the FSL's FSLI4BX_WRITEORDER [RFC5661] 1454 value. A fedfsNfsWriteOrder MUST be encoded as an Integer syntax 1455 value [RFC4517] in the range [0, 255]. 1457 1458 /// 1459 /// attributetype ( 1460 /// 1.3.6.1.4.1.31103.1.117 NAME 'fedfsNfsWriteOrder' 1461 /// DESC 'The write order of the filesystem' 1462 /// EQUALITY integerMatch 1463 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1464 /// SINGLE-VALUE 1465 /// ) 1466 /// 1468 1470 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1472 4.2.1.32. fedfsNfsVarSub 1474 A fedfsNfsVarSub stores the value of an FSL's NFSv4.1 FSLI4F_VAR_SUB 1475 bit [RFC5661]. A value of "TRUE" indicates the bit is true. A value 1476 of "FALSE" indicates the bit is false. 1478 1480 /// 1481 /// attributetype ( 1482 /// 1.3.6.1.4.1.31103.1.118 NAME 'fedfsNfsVarSub' 1483 /// DESC 'Indicates if variable substitution is present' 1484 /// EQUALITY booleanMatch 1485 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 1486 /// SINGLE-VALUE 1487 /// ) 1488 /// 1490 1492 OID 1.3.6.1.4.1.1466.115.121.1.7 is the Boolean syntax [RFC4517]. 1494 4.2.1.33. fedfsNfsValidFor 1496 A fedfsNfsValidFor stores an FSL's NFSv4.1 fs_locations_info 1497 fli_valid_for value [RFC5661]. A fedfsNfsValidFor MUST be encoded as 1498 an Integer syntax value [RFC4517] in the range [-2147483648, 1499 2147483647]. 1501 An FSL's fedfsFslTTL value and fedfsNfsValidFor value MAY be 1502 different. 1504 This attribute is single-valued. 1506 1508 /// 1509 /// attributetype ( 1510 /// 1.3.6.1.4.1.31103.1.19 NAME 'fedfsNfsValidFor' 1511 /// DESC 'Valid for time' 1512 /// EQUALITY integerMatch 1513 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1514 /// SINGLE-VALUE 1515 /// ) 1516 /// 1518 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1520 1522 4.2.2. LDAP Objects 1524 4.2.2.1. fedfsNsdbContainerInfo 1526 A fedfsNsdbContainerInfo describes the location of the NCE. 1528 A fedfsFsn's fedfsNcePrefix attribute is REQUIRED. 1530 A fedfsFsn's fedfsAnnotation and fedfsDescr attributes are OPTIONAL. 1532 1534 /// 1535 /// objectclass ( 1536 /// 1.3.6.1.4.1.31103.1.1001 NAME 'fedfsNsdbContainerInfo' 1537 /// DESC 'Describes NCE location' 1538 /// SUP top AUXILIARY 1539 /// MUST ( 1540 /// fedfsNcePrefix 1541 /// ) 1542 /// MAY ( 1543 /// fedfsAnnotation 1544 /// $ fedfsDescr 1545 /// )) 1546 /// 1548 1550 4.2.2.2. fedfsFsn 1552 A fedfsFsn represents an FSN. 1554 A fedfsFsn's fedfsNsdbName and fedfsFsnUuid attributes are REQUIRED. 1556 A fedfsFsn's fedfsNsdbPort, fedfsAnnotation, and fedfsDescr 1557 attributes are OPTIONAL. 1559 If the fedfsNsdbPort is omitted, the standard LDAP port number, 389, 1560 SHOULD be assumed. 1562 The DN of an FSN is REQUIRED to take the following form: 1563 "fedfsFsnUuid=$FSNUUID,$NCE", where $FSNUUID is the UUID of the FSN 1564 and $NCE is the DN of the NCE ("o=fedfs" by default). Since LDAP 1565 requires a DN to be unique, this ensures that each FSN entry has a 1566 unique UUID value within the LDAP directory. 1568 A fedfsFsn MAY also have additional attributes, but these attributes 1569 MUST NOT be referenced by any part of this document. 1571 1573 /// 1574 /// objectclass ( 1575 /// 1.3.6.1.4.1.31103.1.1002 NAME 'fedfsFsn' 1576 /// DESC 'Represents a fileset' 1577 /// SUP top STRUCTURAL 1578 /// MUST ( 1579 /// fedfsFsnUuid 1580 /// $ fedfsNsdbName 1581 /// ) 1582 /// MAY ( 1583 /// fedfsNsdbPort 1584 /// $ fedfsAnnotation 1585 /// $ fedfsDescr 1586 /// )) 1587 /// 1589 1591 4.2.2.3. fedfsFsl 1593 The fedfsFsl object class represents an FSL. 1595 The fedfsFsl is an abstract object class. Protocol specific subtypes 1596 of this object class are used to store FSL information. The 1597 fedfsNfsFsl object class defined below is used to record an NFS FSL's 1598 location. Other subtypes MAY be defined for other protocols (e.g. 1599 CIFS). 1601 A fedfsFsl's fedfsFslUuid, fedfsFsnUuid, fedfsNsdbName, fedfsFslHost, 1602 and fedfsFslTTL attributes are REQUIRED. 1604 A fedfsFsl's fedfsNsdbPort, fedfsFslPort, fedfsAnnotation, and 1605 fedfsDescr attributes are OPTIONAL. 1607 If the fedfsNsdbPort is omitted, the standard LDAP port number, 389, 1608 SHOULD be assumed. 1610 If the fedfsFslPort is omitted, a standard port number based on the 1611 type of FSL should be assumed. For an NFS FSL, the standard NFS port 1612 number, 2049, SHOULD be assumed. 1614 The DN of an FSL is REQUIRED to take the following form: 1615 "fedfsFslUuid=$FSLUUID,fedfsFsnUuid=$FSNUUID,$NCE" where $FSLUUID is 1616 the FSL's UUID, $FSNUUID is the FSN's UUID, and $NCE is the DN of the 1617 NCE ("o=fedfs" by default). Since LDAP requires a DN to be unique, 1618 this ensures that each FSL entry has a unique UUID value within the 1619 LDAP directory. 1621 1623 /// 1624 /// objectclass ( 1625 /// 1.3.6.1.4.1.31103.1.1003 NAME 'fedfsFsl' 1626 /// DESC 'A physical location of a fileset' 1627 /// SUP top ABSTRACT 1628 /// MUST ( 1629 /// fedfsFslUuid 1630 /// $ fedfsFsnUuid 1631 /// $ fedfsNsdbName 1632 /// $ fedfsFslHost 1633 /// $ fedfsFslTTL 1634 /// ) 1635 /// MAY ( 1636 /// fedfsNsdbPort 1637 /// $ fedfsFslPort 1638 /// $ fedfsAnnotation 1639 /// $ fedfsDescr 1640 /// )) 1641 /// 1643 1645 4.2.2.4. fedfsNfsFsl 1647 A fedfsNfsFsl is used to represent an NFS FSL. The fedfsNfsFsl 1648 inherits all of the attributes of the fedfsFsl and extends the 1649 fedfsFsl with information specific to the NFS protocol. 1651 The DN of an NFS FSL is REQUIRED to take the following form: 1652 "fedfsFslUuid=$FSLUUID,fedfsFsnUuid=$FSNUUID,$NCE" where $FSLUUID is 1653 the FSL's UUID, $FSNUUID is the FSN's UUID, and $NCE is the DN of the 1654 NCE ("o=fedfs" by default). Since LDAP requires a DN to be unique, 1655 this ensures that each NFS FSL entry has a unique UUID value within 1656 the LDAP directory. 1658 1660 /// 1661 /// objectclass ( 1662 /// 1.3.6.1.4.1.31103.1.1004 NAME 'fedfsNfsFsl' 1663 /// DESC 'An NFS location of a fileset' 1664 /// SUP fedfsFsl STRUCTURAL 1665 /// MUST ( 1666 /// fedfsNfsPath 1667 /// $ fedfsNfsMajorVer 1668 /// $ fedfsNfsMinorVer 1669 /// $ fedfsNfsCurrency 1670 /// $ fedfsNfsGenFlagWritable 1671 /// $ fedfsNfsGenFlagGoing 1672 /// $ fedfsNfsGenFlagSplit 1673 /// $ fedfsNfsTransFlagRdma 1674 /// $ fedfsNfsClassSimul 1675 /// $ fedfsNfsClassHandle 1676 /// $ fedfsNfsClassFileid 1677 /// $ fedfsNfsClassWritever 1678 /// $ fedfsNfsClassChange 1679 /// $ fedfsNfsClassReaddir 1680 /// $ fedfsNfsReadRank 1681 /// $ fedfsNfsReadOrder 1682 /// $ fedfsNfsWriteRank 1683 /// $ fedfsNfsWriteOrder 1684 /// $ fedfsNfsVarSub 1685 /// $ fedfsNfsValidFor 1686 /// )) 1687 /// 1689 1691 5. NSDB Operations 1693 The operations defined by the protocol can be described as several 1694 sub-protocols that are used by entities within the federation to 1695 perform different roles. 1697 The first of these sub-protocols defines how the state of an NSDB 1698 node can be initialized and updated. The primary use of this sub- 1699 protocol is by an administrator to add, edit, or delete filesets, 1700 their properties, and their fileset locations. 1702 The second of these sub-protocols defines the queries that are sent 1703 to an NSDB node in order to perform resolution (or to find other 1704 information about the data stored within that NSDB node) and the 1705 responses returned by the NSDB node. The primary use of this sub- 1706 protocol is by a fileserver in order to perform resolution, but it 1707 may also be used by an administrator to query the state of the 1708 system. 1710 The first and second sub-protocols are defined as LDAP operations, 1711 using the schema defined in the previous section. If each NSDB node 1712 is a standard LDAP server, then, in theory, it is unnecessary to 1713 describe the LDAP operations in detail, because the operations are 1714 ordinary LDAP operations to query and update records. However, we do 1715 not require that an NSDB node implement a complete LDAP service, and 1716 therefore we define in these sections the minimum level of LDAP 1717 functionality required to implement an NSDB node. 1719 The NSDB sub-protocols are defined in the next two sub-sections. The 1720 descriptions of LDAP messages in these sections use the LDAP Data 1721 Interchange Format (LDIF) [RFC2849]. In order to differentiate 1722 constant and variable strings in the LDIF specifications, variables 1723 are prefixed by a $ character and use all upper case characters. For 1724 example, a variable named FOO would be specified as $FOO. 1726 The third sub-protocol defines the queries and other requests that 1727 are sent to a fileserver in order to get information from it or to 1728 modify the state of the fileserver in a manner related to the 1729 federation protocols. The primary purpose of this protocol is for an 1730 administrator to create or delete a junction or discover related 1731 information about a particular fileserver. 1733 The third sub-protocol is defined as an ONC RPC protocols. The 1734 reason for using ONC RPC instead of LDAP is that all fileservers 1735 support ONC RPC but some do not support an LDAP Directory server. 1737 The ONC RPC administration protocol is defined in [FEDFS-ADMIN]. 1739 5.1. NSDB Operations for Administrators 1741 The admin entity initiates and controls the commands to manage 1742 fileset and namespace information. The admin entity, however, is 1743 stateless. All state is maintained at the NSDB nodes or at the 1744 fileserver. 1746 We require that each NSDB node be able to act as an LDAP server and 1747 that the protocol used for communicating between the admin entity and 1748 each NSDB node is LDAP. 1750 The names we assign to these operations are entirely for the purpose 1751 of exposition in this document, and are not part of the LDAP dialogs. 1753 5.1.1. Create an FSN 1755 This operation creates a new FSN in the NSDB by adding a new fedfsFsn 1756 entry in the NSDB's LDAP directory. 1758 A fedfsFsn entry contains a fedfsFsnUuid and fedfsNsdbName. The 1759 administrator chooses the fedfsFsnUuid and fedfsNsdbName. The 1760 process for choosing the fedfsFsnUuid is described in 1761 Section 4.2.1.1). The fedfsNsdbName is the name of the NSDB node 1762 that will serve as the source of definitive information about the FSN 1763 for the life of the FSN. 1765 The NSDB node that receives the request SHOULD check that 1766 fedfsNsdbName value matches its own value and return an error if it 1767 does not. This is to ensure that an FSN is always created by the 1768 NSDB node encoded within the FSN as its owner. 1770 The NSDB node that receives the request SHOULD check all of the 1771 attributes for validity and consistency, but this is not generally 1772 possible for LDAP servers because the consistency requirements cannot 1773 be expressed in the LDAP schema (although many LDAP servers can be 1774 extended, via plug-ins or other mechanisms, to add functionality 1775 beyond the strict definition of LDAP). 1777 5.1.1.1. LDAP Request 1779 This operation is implemented using the LDAP ADD request described by 1780 the LDIF below. 1782 dn: fedfsFsnUuid=$FSNUUID,$NCE 1783 changeType: add 1784 objectClass: fedfsFsn 1785 fedfsFsnUuid: $FSNUUID 1786 fedfsNsdbName: $NSDBNAME 1788 For example, if the $FSNUUID is "f81d4fae-7dec-11d0-a765- 1789 00a0c91e6bf6", the $NSDBNAME is "nsdb.example.com", and the $NCE is 1790 "o=fedfs" the operation would be: 1792 dn: fedfsFsnUuid=f81d4fae-7dec-11d0-a765-00a0c91e6bf6,o=fedfs 1793 changeType: add 1794 objectClass: fedfsFsn 1795 fedfsFsnUuid: f81d4fae-7dec-11d0-a765-00a0c91e6bf6 1796 fedfsNsdbName: nsdb.example.com 1798 5.1.2. Delete an FSN 1800 This operation deletes an FSN by removing a fedfsFsn entry in the 1801 NSDB's LDAP directory. 1803 If the FSN entry being deleted has child FSL entries, this function 1804 MUST return an error. This ensures that the NSDB will not contain 1805 any orphaned FSL entries. A compliant LDAP implementation will meet 1806 this requirement since Section 4.8 of [RFC4511] defines the LDAP 1807 delete operation to only be capable of removing leaf entries. 1809 Note that the FSN delete function only removes the fileset from the 1810 namespace (by removing the records for that FSN from the NSDB node 1811 that receives this request). The fileset and its data are not 1812 deleted. Any junction that has this FSN as its target may continue 1813 to point to this non-existent FSN. A dangling reference may be 1814 detected when a client tries to resolve the target of a junction that 1815 refers to the deleted FSN and the NSDB returns an error. 1817 5.1.2.1. LDAP Request 1819 This operation is implemented using the LDAP DELETE request described 1820 by the LDIF below. 1822 dn: fedfsFsnUuid=$FSNUUID,$NCE 1823 changeType: delete 1825 For example, if the $FSNUUID is "f81d4fae-7dec-11d0-a765- 1826 00a0c91e6bf6" and $NCE is "o=fedfs", the operation would be: 1828 dn: fedfsFsnUuid=f81d4fae-7dec-11d0-a765-00a0c91e6bf6,o=fedfs 1829 changeType: delete 1831 5.1.3. Create an FSL 1833 This operation creates a new FSL for the given FSN by adding a new 1834 fedfsFsl entry in the NSDB's LDAP directory. 1836 A fedfsFsl entry contains a fedfsFslUuid, fedfsFsnUuid, 1837 fedfsNsdbName, fedfsFslHost, and fedfsFslTTL. The administrator 1838 chooses the fedfsFslUuid. The process for choosing the fedfsFslUuid 1839 is described in Section 4.2.1.1. The fedfsFsnUuid is the UUID of the 1840 FSL's FSN. The fedfsNsdbName is the name of the NSDB node that 1841 stores definitive information about the FSL's FSN. The fedfsFslHost 1842 value is the network location of the fileserver that stores the FSL. 1843 The fedfsFslTTL is chosen by the administrator as described in 1844 Section 2.4.2. 1846 The administrator will also set additional attributes depending on 1847 the FSL type. 1849 5.1.3.1. LDAP Request 1851 This operation is implemented using the LDAP ADD request described by 1852 the LDIF below (NOTE: the LDIF shows the creation of an NFS FSL) 1854 dn:fedfsFslUuid=$FSLUUID,fedfsFsnUuid=$FSNUUID,$NCE 1855 changeType: add 1856 objectClass: fedfsNfsFsl 1857 fedfsFslUuid: $FSLUUID 1858 fedfsFsnUuid: $FSNUUID 1859 fedfsNsdbName: $NSDBNAME 1860 fedfsFslHost: $HOST 1861 fedfsFslPort: $PORT 1862 fedfsFslTTL: $TTL 1863 fedfsNfsPath: $PATH 1864 fedfsNfsMajorVer: $MAJOR 1865 fedfsNfsMinorVer: $MINOR 1866 fedfsNfsCurrency: $CURRENCY 1867 fedfsNfsGenFlagWritable: $WRITABLE 1868 fedfsNfsGenFlagGoing: $GOING 1869 fedfsNfsGenFlagSplit: $SPLIT 1870 fedfsNfsTransFlagRdma: $RDMA 1871 fedfsNfsClassSimul: $CLASS_SIMUL 1872 fedfsNfsClassHandle:$CLASS_HANDLE 1873 fedfsNfsClassFileid:$CLASS_FILEID 1874 fedfsNfsClassWritever:$CLASS_WRITEVER 1875 fedfsNfsClassChange: $CLASS_CHANGE 1876 fedfsNfsClassReaddir: $CLASS_READDIR 1877 fedfsNfsReadRank: $READ_RANK 1878 fedfsNfsReadOrder: $READ_ORDER 1879 fedfsNfsWriteRank: $WRITE_RANK 1880 fedfsNfsWriteOrder: $WRITE_ORDER 1881 fedfsNfsVarSub: $VAR_SUB 1882 fedfsNfsValidFor: $TIME 1883 fedfsAnnotation: $ANNOTATION 1884 fedfsDescr: $DESCR 1886 For example, if the $FSNUUID is "f81d4fae-7dec-11d0-a765- 1887 00a0c91e6bf6", the $FSLUUID is "84f775a7-8e31-14ae-b39d- 1888 10eeee060d2c", the $NSDBNAME is "nsdb.example.com", the $HOST is 1889 "server.example.com", $PORT is "2049", the $TTL is "300" seconds, the 1890 $PATH is stored in the file "/tmp/fsl_path", fileset is exported via 1891 NFSv4.1 ($MAJOR is "4" and $MINOR is "1"), $CURRENCY is "0" (an up to 1892 date copy), the FSL is writable, but not going, split, or accessible 1893 via RDMA, the simultaneous-use class is "1", the handle class is "0", 1894 the fileid class is "1", the write-verifier class is "1", the change 1895 class is "1", the readdir class is "9", the read rank is "7", the 1896 read order is "8", the write rank is "5", the write order is "6", 1897 variable substitution is false, $TIME is "300" seconds, $ANNOTATION 1898 is ""foo" = "bar"", $DESC is "This is a description.", and the $NCE 1899 is "o=fedfs", the operation would be (for readability the DN is split 1900 into two lines): 1902 dn:fedfsFslUuid=84f775a7-8e31-14ae-b39d-10eeee060d2c, 1903 fedfsFsnUuid=f81d4fae-7dec-11d0-a765-00a0c91e6bf6,o=fedfs 1904 changeType: add 1905 objectClass: fedfsNfsFsl 1906 fedfsFslUuid: 84f775a7-8e31-14ae-b39d-10eeee060d2c 1907 fedfsFsnUuid: f81d4fae-7dec-11d0-a765-00a0c91e6bf6 1908 fedfsNsdbName: nsdb.example.com 1909 fedfsFslHost: server.example.com 1910 fedfsFslPort: 2049 1911 fedfsFslTTL: 300 1912 fedfsNfsPath:< file:///tmp/fsl_path 1913 fedfsNfsMajorVer: 4 1914 fedfsNfsMinorVer: 1 1915 fedfsNfsCurrency: 0 1916 fedfsNfsGenFlagWritable: TRUE 1917 fedfsNfsGenFlagGoing: FALSE 1918 fedfsNfsGenFlagSplit: FALSE 1919 fedfsNfsTransFlagRdma: FALSE 1920 fedfsNfsClassSimul: 1 1921 fedfsNfsClassHandle: 0 1922 fedfsNfsClassFileid: 1 1923 fedfsNfsClassWritever: 1 1924 fedfsNfsClassChange: 1 1925 fedfsNfsClassReaddir: 9 1926 fedfsNfsReadRank: 7 1927 fedfsNfsReadOrder: 8 1928 fedfsNfsWriteRank: 5 1929 fedfsNfsWriteOrder: 6 1930 fedfsNfsVarSub: FALSE 1931 fedfsNfsValidFor: 300 1932 fedfsAnnotation: "foo" = "bar" 1933 fedfsDescr: This is a description. 1935 5.1.4. Delete an FSL 1937 This operation deletes the given Fileset location. The admin 1938 requests the NSDB node storing the fedfsFsl to delete it from its 1939 database. This operation does not result in the fileset location's 1940 data being deleted at the fileserver. 1942 5.1.4.1. LDAP Request 1944 The admin sends an LDAP DELETE request to the NSDB node to remove the 1945 FSL. 1947 dn: fedfsFslUuid=$FSLUUID,fedfsFsnUuid=$FSNUUID,$NCE 1948 changeType: delete 1950 For example, if the $FSNUUID is "f81d4fae-7dec-11d0-a765- 1951 00a0c91e6bf6", the $FSLUUID is "84f775a7-8e31-14ae-b39d- 1952 10eeee060d2c", and the $NCE is "o=fedfs", the operation would be (for 1953 readability the DN is split into two lines): 1955 dn: fedfsFslUuid=84f775a7-8e31-14ae-b39d-10eeee060d2c, 1956 fedfsFsnUuid=f81d4fae-7dec-11d0-a765-00a0c91e6bf6,o=fedfs 1957 changeType: delete 1959 5.1.5. Update an FSL 1961 This operation updates the attributes of a given FSL. This command 1962 results in a change in the attributes of the fedfsFsl at the NSDB 1963 node maintaining this FSL. The attributes that must not change are 1964 the fedfsFslUuid and the fedfsFsnUuid of the fileset this FSL 1965 implements. 1967 5.1.5.1. LDAP Request 1969 The admin sends an LDAP MODIFY request to the NSDB node to update the 1970 FSL. 1972 dn: fedfsFslUuid=$FSLUUID,fedfsFsnUuid=$FSNUUID,$NCE 1973 changeType: modify 1974 replace: $ATTRIBUTE-TYPE 1976 For example, if the $FSNUUID is "f81d4fae-7dec-11d0-a765- 1977 00a0c91e6bf6", the $FSLUUID is "84f775a7-8e31-14ae-b39d- 1978 10eeee060d2c", the $NCE is "o=fedfs", and the administrator wished to 1979 change the TTL to 10 minutes, the operation would be (for readability 1980 the DN is split into two lines): 1982 dn: fedfsFslUuid=84f775a7-8e31-14ae-b39d-10eeee060d2c, 1983 fedfsFsnUuid=f81d4fae-7dec-11d0-a765-00a0c91e6bf6,o=fedfs 1984 changeType: modify 1985 replace: fedfsFslTTL 1986 fedfsFslTTL: 600 1988 5.2. NSDB Operations for Fileservers 1990 5.2.1. NSDB Container Entry (NCE) Enumeration 1992 To find the NCEs for the NSDB foo.example.com, a fileserver would do 1993 the following: 1995 nce_list = empty 1996 connect to the LDAP directory at foo.example.com 1997 for each namingContext value $BAR in the root DSE 1998 /* $BAR is a DN */ 1999 query for a fedfsNcePrefix value at $BAR 2000 /* 2001 * The LDAP URL for this search would be 2002 * 2003 * ldap://foo.example.com:389/$BAR?fedfsNcePrefix?? 2004 * (objectClass=fedfsNsdbContainerInfo) 2005 * 2006 */ 2007 if a fedfsNcePrefix value is found 2008 prepend value to $BAR and add to nce_list 2010 5.2.2. Lookup FSLs for an FSN 2012 Using an LDAP search, the fileserver can obtain all of the FSLs for a 2013 given FSN. The FSN's fedfsFsnUuid is used as the search key. The 2014 following examples use the LDAP URI format defined in [RFC4516]. 2016 To obtain a list of all FSLs for $FSNUUID on the NSDB named 2017 $NSDBNAME, the following search can be used (for readability the URI 2018 is split into two lines): 2020 for each $NCE in nce_list 2021 ldap://$NSDBNAME/fsnUuid=$FSNUUID,$NCE??one? 2022 (objectClass=fedfsFsl) 2024 This search is for the children of the object with DN 2025 "fedfsFsnUuid=$FSNUUID,$NCE" with a filter for 2026 "objectClass=fedfsFsl". The scope value of "one" restricts the 2027 search to the entry's children (rather than the entire subtree below 2028 the entry) and the filter ensures that only FSL entries are returned. 2030 For example if $NSDBNAME is "nsdb.example.com", $FSNUUID is 2031 "f81d4fae-7dec-11d0-a765-00a0c91e6bf6", and $NCE is "o=fedfs", the 2032 search would be (for readability the URI is split into three lines): 2034 ldap://nsdb.example.com/ 2035 fsnUuid=f81d4fae-7dec-11d0-a765-00a0c91e6bf6,o=fedfs 2036 ??one?(objectClass=fedfsFsl) 2038 The following search can be used to obtain only the NFS FSLs for 2039 $FSNUUID on the NSDB named $NSDBNAME (for readability the URI is 2040 split into two lines): 2042 for each $NCE in nce_list 2043 ldap://$NSDBNAME/fsnUuid=$FSNUUID,$NCE??one? 2044 (objectClass=fedfsNfsFsl) 2046 This also searches for the children of the object with DN 2047 "fedfsFsnUuid=$FSNUUID,$NCE", but the filter for "objectClass = 2048 fedfsNfsFsl" restricts the results to only NFS FSLs. 2050 For example if $NSDBNAME is nsdb.example.com, $FSNUUID is f81d4fae- 2051 7dec-11d0-a765-00a0c91e6bf6, and $NCE is "o=fedfs",the search would 2052 be (for readability the URI is split into three lines): 2054 ldap://nsdb.example.com/ 2055 fsnUuid=f81d4fae-7dec-11d0-a765-00a0c91e6bf6,o=fedfs 2056 ??one?(objectClass=fedfsNfsFsl) 2058 The fileserver will generate a referral based on the set of FSLs 2059 returned by these queries using the process described in 2060 Section 2.4.3. 2062 6. Security Considerations 2064 Both NFSv4/NFSv4.1 and LDAP provide security mechanisms. When used 2065 in conjunction with the federated filesystem protocols described in 2066 this document, the use of these mechanisms is RECOMMENDED. 2067 Specifically, the use of RPCSEC_GSS [RFC2203], which is built on the 2068 GSS-API [RFC2743], is RECOMMENDED on all NFS connections between a 2069 client and fileserver. The "Security Considerations" sections of the 2070 the NFSv4 [RFC3530] and NFSv4.1 [RFC5661] specifications contain 2071 special considerations for the handling of GETATTR operations for the 2072 fs_locations and fs_locations_info attributes. For all LDAP 2073 connections established by the federated filesystem protocols, the 2074 use of TLS [RFC5246], as described in [RFC4513], is RECOMMENDED. 2076 Within a federation, there are two types of components an attacker 2077 may compromise: a fileserver and an NSDB. 2079 If an attacker compromises a fileserver, the attacker can interfere 2080 with the client's filesystem I/O operations (e.g. by returning 2081 fictitious data in the response to a read request) or fabricating a 2082 referral. The attacker's abilities are the same regardless of 2083 whether or not the federation protocols are in use. While the 2084 federation protocols do not give the attacker additional 2085 capabilities, they are additional targets for attack. The LDAP 2086 protocol described in Section 5.2 SHOULD be secured using the methods 2087 described above to defeat attacks on a fileserver via this channel. 2089 If an attacker compromises an NSDB, the attacker will be able to 2090 forge FSL information and thus poison the fileserver's referral 2091 information. Therefore an NSDB should be as secure as the 2092 fileservers which query it. The LDAP operations described in 2093 Section 5 SHOULD be secured using the methods described above to 2094 defeat attacks on an NSDB via this channel. 2096 It should be noted that the federation protocols do not directly 2097 provide access to filesystem data. The federation protocols only 2098 provide a mechanism for building a namespace. All data transfers 2099 occur between a client and server just as they would if the 2100 federation protocols were not in use. As a result, the federation 2101 protocols do not require new user authentication and authorization 2102 mechanisms or require a fileserver to act as a proxy for a client. 2104 7. IANA Considerations 2106 The LDAP attributes and object classes defined in this document are 2107 assigned object identifier (OID) values from the 1.3.6.1.4.1.31103.x 2108 range. This is an Internet Private Enterprise Numbers range and was 2109 assigned to the authors using the process described in [RFC2578]. 2111 In accordance with Section 3.4 and Section 4 of [RFC4520], the object 2112 identifier descriptors defined in this document (listed below) will 2113 be registered via the Expert Review process. 2115 7.1. LDAP Descriptor Registration 2117 Subject: Request for LDAP Descriptor Registration 2118 Person & email address to contact for further information: See 2119 "Author/Change Controller" 2120 Specification: draft-ietf-nfsv4-federated-fs-protocol 2121 Author/Change Controller: [document authors] 2123 Object Identifier: 1.3.6.1.4.1.31103.1.1 2124 Descriptor (short name): fedfsUuid 2125 Usage: attribute type 2127 Object Identifier: 1.3.6.1.4.1.31103.1.2 2128 Descriptor (short name): fedfsNetAddr 2129 Usage: attribute type 2131 Object Identifier: 1.3.6.1.4.1.31103.1.3 2132 Descriptor (short name): fedfsNetPort 2133 Usage: attribute type 2135 Object Identifier: 1.3.6.1.4.1.31103.1.4 2136 Descriptor (short name): fedfsFsnUuid 2137 Usage: attribute type 2139 Object Identifier: 1.3.6.1.4.1.31103.1.5 2140 Descriptor (short name): fedfsNsdbName 2141 Usage: attribute type 2143 Object Identifier: 1.3.6.1.4.1.31103.1.6 2144 Descriptor (short name): fedfsNsdbPort 2145 Usage: attribute type 2147 Object Identifier: 1.3.6.1.4.1.31103.1.7 2148 Descriptor (short name): fedfsNcePrefix 2149 Usage: attribute type 2151 Object Identifier: 1.3.6.1.4.1.31103.1.8 2152 Descriptor (short name): fedfsFslUuid 2153 Usage: attribute type 2155 Object Identifier: 1.3.6.1.4.1.31103.1.9 2156 Descriptor (short name): fedfsFslHost 2157 Usage: attribute type 2159 Object Identifier: 1.3.6.1.4.1.31103.1.10 2160 Descriptor (short name): fedfsFslPort 2161 Usage: attribute type 2163 Object Identifier: 1.3.6.1.4.1.31103.1.11 2164 Descriptor (short name): fedfsFslTTL 2165 Usage: attribute type 2167 Object Identifier: 1.3.6.1.4.1.31103.1.12 2168 Descriptor (short name): fedfsAnnotation 2169 Usage: attribute type 2171 Object Identifier: 1.3.6.1.4.1.31103.1.13 2172 Descriptor (short name): fedfsDescr 2173 Usage: attribute type 2175 Object Identifier: 1.3.6.1.4.1.31103.1.100 2176 Descriptor (short name): fedfsNfsPath 2177 Usage: attribute type 2179 Object Identifier: 1.3.6.1.4.1.31103.1.101 2180 Descriptor (short name): fedfsNfsMajorVer 2181 Usage: attribute type 2183 Object Identifier: 1.3.6.1.4.1.31103.1.102 2184 Descriptor (short name): fedfsNfsMinorVer 2185 Usage: attribute type 2187 Object Identifier: 1.3.6.1.4.1.31103.1.103 2188 Descriptor (short name): fedfsNfsCurrency 2189 Usage: attribute type 2191 Object Identifier: 1.3.6.1.4.1.31103.1.104 2192 Descriptor (short name): fedfsNfsGenFlagWritable 2193 Usage: attribute type 2195 Object Identifier: 1.3.6.1.4.1.31103.1.105 2196 Descriptor (short name): fedfsNfsGenFlagGoing 2197 Usage: attribute type 2199 Object Identifier: 1.3.6.1.4.1.31103.1.106 2200 Descriptor (short name): fedfsNfsGenFlagSplit 2201 Usage: attribute type 2203 Object Identifier: 1.3.6.1.4.1.31103.1.107 2204 Descriptor (short name): fedfsNfsTransFlagRdma 2205 Usage: attribute type 2207 Object Identifier: 1.3.6.1.4.1.31103.1.108 2208 Descriptor (short name): fedfsNfsClassSimul 2209 Usage: attribute type 2211 Object Identifier: 1.3.6.1.4.1.31103.1.109 2212 Descriptor (short name): fedfsNfsClassHandle 2213 Usage: attribute type 2215 Object Identifier: 1.3.6.1.4.1.31103.1.110 2216 Descriptor (short name): fedfsNfsClassFileid 2217 Usage: attribute type 2219 Object Identifier: 1.3.6.1.4.1.31103.1.111 2220 Descriptor (short name): fedfsNfsClassWritever 2221 Usage: attribute type 2223 Object Identifier: 1.3.6.1.4.1.31103.1.112 2224 Descriptor (short name): fedfsNfsClassChange 2225 Usage: attribute type 2227 Object Identifier: 1.3.6.1.4.1.31103.1.113 2228 Descriptor (short name): fedfsNfsClassReaddir 2229 Usage: attribute type 2231 Object Identifier: 1.3.6.1.4.1.31103.1.114 2232 Descriptor (short name): fedfsNfsReadRank 2233 Usage: attribute type 2235 Object Identifier: 1.3.6.1.4.1.31103.1.115 2236 Descriptor (short name): fedfsNfsReadOrder 2237 Usage: attribute type 2239 Object Identifier: 1.3.6.1.4.1.31103.1.116 2240 Descriptor (short name): fedfsNfsWriteRank 2241 Usage: attribute type 2243 Object Identifier: 1.3.6.1.4.1.31103.1.117 2244 Descriptor (short name): fedfsNfsWriteOrder 2245 Usage: attribute type 2247 Object Identifier: 1.3.6.1.4.1.31103.1.118 2248 Descriptor (short name): fedfsNfsVarSub 2249 Usage: attribute type 2251 Object Identifier: 1.3.6.1.4.1.31103.1.119 2252 Descriptor (short name): fedfsNfsValidFor 2253 Usage: attribute type 2255 Object Identifier: 1.3.6.1.4.1.31103.1.1001 2256 Descriptor (short name): fedfsNsdbContainerInfo 2257 Usage: object class 2259 Object Identifier: 1.3.6.1.4.1.31103.1.1002 2260 Descriptor (short name): fedfsFsn 2261 Usage: object class 2263 Object Identifier: 1.3.6.1.4.1.31103.1.1003 2264 Descriptor (short name): fedfsFsl 2265 Usage: object class 2267 Object Identifier: 1.3.6.1.4.1.31103.1.1004 2268 Descriptor (short name): fedfsNfsFsl 2269 Usage: object class 2271 8. Glossary 2273 Administrator: user with the necessary authority to initiate 2274 administrative tasks on one or more servers. 2276 Admin Entity: A server or agent that administers a collection of 2277 fileservers and persistently stores the namespace information. 2279 Client: Any client that accesses the fileserver data using a 2280 supported filesystem access protocol. 2282 Federation: A set of server collections and singleton servers that 2283 use a common set of interfaces and protocols in order to provide 2284 to their clients a federated namespace accessible through a 2285 filesystem access protocol. 2287 Fileserver: A server exporting a filesystem via a network filesystem 2288 access protocol. 2290 Fileset: The abstraction of a set of files and the directory tree 2291 that contains them. A fileset is the fundamental unit of data 2292 management in the federation. 2294 Note that all files within a fileset are descendants of one 2295 directory, and that filesets do not span filesystems. 2297 Filesystem: A self-contained unit of export for a fileserver, and 2298 the mechanism used to implement filesets. The fileset does not 2299 need to be rooted at the root of the filesystem, nor at the export 2300 point for the filesystem. 2302 A single filesystem MAY implement more than one fileset, if the 2303 client protocol and the fileserver permit this. 2305 Filesystem Access Protocol: A network filesystem access protocol 2306 such as NFSv2 [RFC1094], NFSv3 [RFC1813], NFSv4 [RFC3530], or CIFS 2307 (Common Internet File System) [MS-SMB] [MS-SMB2] [MS-CIFS]. 2309 FSL (Fileset Location): The location of the implementation of a 2310 fileset at a particular moment in time. An FSL MUST be something 2311 that can be translated into a protocol-specific description of a 2312 resource that a client can access directly, such as an fs_location 2313 (for NFSv4), or share name (for CIFS). Note that not all FSLs 2314 need to be explicitly exported as long as they are contained 2315 within an exported path on the fileserver. 2317 FSN (Fileset Name): A platform-independent and globally unique name 2318 for a fileset. Two FSLs that implement replicas of the same 2319 fileset MUST have the same FSN, and if a fileset is migrated from 2320 one location to another, the FSN of that fileset MUST remain the 2321 same. 2323 Junction: A filesystem object used to link a directory name in the 2324 current fileset with an object within another fileset. The 2325 server-side "link" from a leaf node in one fileset to the root of 2326 another fileset. 2328 Namespace: A filename/directory tree that a sufficiently authorized 2329 client can observe. 2331 NSDB (Namespace Database) Service: A service that maps FSNs to FSLs. 2332 The NSDB may also be used to store other information, such as 2333 annotations for these mappings and their components. 2335 NSDB Node: The name or location of a server that implements part of 2336 the NSDB service and is responsible for keeping track of the FSLs 2337 (and related info) that implement a given partition of the FSNs. 2339 Referral: A server response to a client access that directs the 2340 client to evaluate the current object as a reference to an object 2341 at a different location (specified by an FSL) in another fileset, 2342 and possibly hosted on another fileserver. The client re-attempts 2343 the access to the object at the new location. 2345 Replica: A replica is a redundant implementation of a fileset. Each 2346 replica shares the same FSN, but has a different FSL. 2348 Replicas may be used to increase availability or performance. 2349 Updates to replicas of the same fileset MUST appear to occur in 2350 the same order, and therefore each replica is self-consistent at 2351 any moment. 2353 We do not assume that updates to each replica occur 2354 simultaneously. If a replica is offline or unreachable, the other 2355 replicas may be updated. 2357 Server Collection: A set of fileservers administered as a unit. A 2358 server collection may be administered with vendor-specific 2359 software. 2361 The namespace provided by a server collection could be part of the 2362 federated namespace. 2364 Singleton Server: A server collection containing only one server; a 2365 stand-alone fileserver. 2367 9. References 2369 9.1. Normative References 2371 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 2372 Requirement Levels", BCP 14, RFC 2119, March 1997. 2374 [RFC2203] Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol 2375 Specification", RFC 2203, September 1997. 2377 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J. 2378 Schoenwaelder, Ed., "Structure of Management Information 2379 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999. 2381 [RFC2743] Linn, J., "Generic Security Service Application Program 2382 Interface Version 2, Update 1", RFC 2743, January 2000. 2384 [RFC2849] Good, G., "The LDAP Data Interchange Format (LDIF) - 2385 Technical Specification", RFC 2849, June 2000. 2387 [RFC3530] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R., 2388 Beame, C., Eisler, M., and D. Noveck, "Network File System 2389 (NFS) version 4 Protocol", RFC 3530, April 2003. 2391 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform 2392 Resource Identifier (URI): Generic Syntax", STD 66, 2393 RFC 3986, January 2005. 2395 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally 2396 Unique IDentifier (UUID) URN Namespace", RFC 4122, 2397 July 2005. 2399 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing 2400 Architecture", RFC 4291, February 2006. 2402 [RFC4510] Zeilenga, K., "Lightweight Directory Access Protocol 2403 (LDAP): Technical Specification Road Map", RFC 4510, 2404 June 2006. 2406 [RFC4511] Sermersheim, J., "Lightweight Directory Access Protocol 2407 (LDAP): The Protocol", RFC 4511, June 2006. 2409 [RFC4512] Zeilenga, K., "Lightweight Directory Access Protocol 2410 (LDAP): Directory Information Models", RFC 4512, 2411 June 2006. 2413 [RFC4513] Harrison, R., "Lightweight Directory Access Protocol 2414 (LDAP): Authentication Methods and Security Mechanisms", 2415 RFC 4513, June 2006. 2417 [RFC4516] Smith, M. and T. Howes, "Lightweight Directory Access 2418 Protocol (LDAP): Uniform Resource Locator", RFC 4516, 2419 June 2006. 2421 [RFC4517] Legg, S., "Lightweight Directory Access Protocol (LDAP): 2422 Syntaxes and Matching Rules", RFC 4517, June 2006. 2424 [RFC4519] Sciberras, A., "Lightweight Directory Access Protocol 2425 (LDAP): Schema for User Applications", RFC 4519, 2426 June 2006. 2428 [RFC4520] Zeilenga, K., "Internet Assigned Numbers Authority (IANA) 2429 Considerations for the Lightweight Directory Access 2430 Protocol (LDAP)", BCP 64, RFC 4520, June 2006. 2432 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security 2433 (TLS) Protocol Version 1.2", RFC 5246, August 2008. 2435 [RFC5661] Shepler, S., Eisler, M., and D. Noveck, "Network File 2436 System (NFS) Version 4 Minor Version 1 Protocol", 2437 RFC 5661, January 2010. 2439 9.2. Informative References 2441 [AFS] Howard, J., "An Overview of the Andrew File System", 2442 Proceeding of the USENIX Winter Technical Conference , 2443 1988. 2445 [FEDFS-ADMIN] 2446 Lentini, J., Everhart, C., Ellard, D., Tewari, R., and M. 2447 Naik, "Administration Protocol for Federated Filesystems", 2448 draft-ietf-nfsv4-federated-fs-admin (Work In Progress), 2449 2010. 2451 [FEDFS-DNS-SRV] 2452 Everhart, C., Adamson, W., and J. Zhang, "Using DNS SRV to 2453 Specify a Global File Name Space with NFS version 4", 2454 draft-ietf-nfsv4-federated-fs-dns-srv-namespace (Work In 2455 Progress), 2010. 2457 [MS-CIFS] Microsoft Corporation, "Common Internet File System (CIFS) 2458 Protocol Specification", MS-CIFS 2.0, November 2009. 2460 [MS-SMB] Microsoft Corporation, "Server Message Block (SMB) 2461 Protocol Specification", MS-SMB 17.0, November 2009. 2463 [MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Version 2464 2 Protocol Specification", MS-SMB2 19.0, November 2009. 2466 [RFC1094] Nowicki, B., "NFS: Network File System Protocol 2467 specification", RFC 1094, March 1989. 2469 [RFC1813] Callaghan, B., Pawlowski, B., and P. Staubach, "NFS 2470 Version 3 Protocol Specification", RFC 1813, June 1995. 2472 [RFC3254] Alvestrand, H., "Definitions for talking about 2473 directories", RFC 3254, April 2002. 2475 [RFC5662] Shepler, S., Eisler, M., and D. Noveck, "Network File 2476 System (NFS) Version 4 Minor Version 1 External Data 2477 Representation Standard (XDR) Description", RFC 5662, 2478 January 2010. 2480 [RFC5716] Lentini, J., Everhart, C., Ellard, D., Tewari, R., and M. 2481 Naik, "Requirements for Federated File Systems", RFC 5716, 2482 January 2010. 2484 Appendix A. Acknowledgments 2486 We would like to thank Andy Adamson of NetApp, Paul Lemahieu of EMC, 2487 Robert Thurlow of Sun Microsystems, and Mario Wurzl of EMC for 2488 helping to author this document. 2490 We would also like to thank George Amvrosiadis, Trond Myklebust, and 2491 Nicolas Williams for their comments. 2493 The extract.sh shell script and formatting conventions were first 2494 described by the authors of the NFSv4.1 XDR specification [RFC5662]. 2496 Authors' Addresses 2498 James Lentini 2499 NetApp 2500 1601 Trapelo Rd, Suite 16 2501 Waltham, MA 02451 2502 US 2504 Phone: +1 781-768-5359 2505 Email: jlentini@netapp.com 2507 Craig Everhart 2508 NetApp 2509 7301 Kit Creek Rd 2510 Research Triangle Park, NC 27709 2511 US 2513 Phone: +1 919-476-5320 2514 Email: everhart@netapp.com 2515 Daniel Ellard 2516 Raytheon BBN Technologies 2517 10 Moulton Street 2518 Cambridge, MA 02138 2519 US 2521 Phone: +1 617-873-8000 2522 Email: dellard@bbn.com 2524 Renu Tewari 2525 IBM Almaden 2526 650 Harry Rd 2527 San Jose, CA 95120 2528 US 2530 Email: tewarir@us.ibm.com 2532 Manoj Naik 2533 IBM Almaden 2534 650 Harry Rd 2535 San Jose, CA 95120 2536 US 2538 Email: manoj@almaden.ibm.com