idnits 2.17.1 draft-ietf-nfsv4-federated-fs-protocol-09.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document seems to contain a disclaimer for pre-RFC5378 work, and may have content which was first submitted before 10 November 2008. The disclaimer is necessary when there are original authors that you have been unable to contact, or if some do not wish to grant the BCP78 rights to the IETF Trust. If you are able to get all authors (current and original) to grant those rights, you can and should remove the disclaimer; otherwise, the disclaimer is needed and you can ignore this comment. (See the Legal Provisions document at https://trustee.ietf.org/license-info for more information.) -- The document date (September 2, 2010) is 4983 days in the past. Is this intentional? -- Found something which looks like a code comment -- if you have code sections in the document, please surround them with '' and '' lines. Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) -- Looks like a reference, but probably isn't: '0' on line 1489 -- Looks like a reference, but probably isn't: '255' on line 1489 ** Obsolete normative reference: RFC 5246 (Obsoleted by RFC 8446) ** Obsolete normative reference: RFC 5661 (Obsoleted by RFC 8881) Summary: 2 errors (**), 0 flaws (~~), 1 warning (==), 5 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 NFSv4 Working Group J. Lentini 3 Internet-Draft C. Everhart 4 Intended status: Standards Track NetApp 5 Expires: March 6, 2011 D. Ellard 6 Raytheon BBN Technologies 7 R. Tewari 8 M. Naik 9 IBM Almaden 10 September 2, 2010 12 NSDB Protocol for Federated Filesystems 13 draft-ietf-nfsv4-federated-fs-protocol-09 15 Abstract 17 This document describes a filesystem federation protocol that enables 18 file access and namespace traversal across collections of 19 independently administered fileservers. The protocol specifies a set 20 of interfaces by which fileservers with different administrators can 21 form a fileserver federation that provides a namespace composed of 22 the filesystems physically hosted on and exported by the constituent 23 fileservers. 25 Requirements Language 27 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 28 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 29 document are to be interpreted as described in [RFC2119]. 31 Status of this Memo 33 This Internet-Draft is submitted in full conformance with the 34 provisions of BCP 78 and BCP 79. 36 Internet-Drafts are working documents of the Internet Engineering 37 Task Force (IETF). Note that other groups may also distribute 38 working documents as Internet-Drafts. The list of current Internet- 39 Drafts is at http://datatracker.ietf.org/drafts/current/. 41 Internet-Drafts are draft documents valid for a maximum of six months 42 and may be updated, replaced, or obsoleted by other documents at any 43 time. It is inappropriate to use Internet-Drafts as reference 44 material or to cite them other than as "work in progress." 46 This Internet-Draft will expire on March 6, 2011. 48 Copyright Notice 49 Copyright (c) 2010 IETF Trust and the persons identified as the 50 document authors. All rights reserved. 52 This document is subject to BCP 78 and the IETF Trust's Legal 53 Provisions Relating to IETF Documents 54 (http://trustee.ietf.org/license-info) in effect on the date of 55 publication of this document. Please review these documents 56 carefully, as they describe your rights and restrictions with respect 57 to this document. Code Components extracted from this document must 58 include Simplified BSD License text as described in Section 4.e of 59 the Trust Legal Provisions and are provided without warranty as 60 described in the Simplified BSD License. 62 This document may contain material from IETF Documents or IETF 63 Contributions published or made publicly available before November 64 10, 2008. The person(s) controlling the copyright in some of this 65 material may not have granted the IETF Trust the right to allow 66 modifications of such material outside the IETF Standards Process. 67 Without obtaining an adequate license from the person(s) controlling 68 the copyright in such materials, this document may not be modified 69 outside the IETF Standards Process, and derivative works of it may 70 not be created outside the IETF Standards Process, except to format 71 it for publication as an RFC or to translate it into languages other 72 than English. 74 Table of Contents 76 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 5 77 2. Overview of Features and Concepts . . . . . . . . . . . . . . 6 78 2.1. File-access Protocol . . . . . . . . . . . . . . . . . . . 6 79 2.2. File-access Client . . . . . . . . . . . . . . . . . . . . 6 80 2.3. Fileserver . . . . . . . . . . . . . . . . . . . . . . . . 6 81 2.4. Referral . . . . . . . . . . . . . . . . . . . . . . . . . 6 82 2.5. Namespace . . . . . . . . . . . . . . . . . . . . . . . . 6 83 2.6. Fileset . . . . . . . . . . . . . . . . . . . . . . . . . 7 84 2.7. Fileset Name (FSN) . . . . . . . . . . . . . . . . . . . . 7 85 2.8. Fileset Location (FSL) . . . . . . . . . . . . . . . . . . 7 86 2.8.1. Mutual Consistency across Fileset Locations . . . . . 8 87 2.8.2. Caching of Fileset Locations . . . . . . . . . . . . . 9 88 2.8.3. Generating A Referral from Fileset Locations . . . . . 9 89 2.9. Namespace Database (NSDB) . . . . . . . . . . . . . . . . 10 90 2.10. Mount Points, Junctions and Referrals . . . . . . . . . . 11 91 2.11. Unified Namespace and the Root Fileset . . . . . . . . . . 12 92 3. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 93 3.1. Creating a Fileset and its FSL(s) . . . . . . . . . . . . 12 94 3.1.1. Creating a Fileset and an FSN . . . . . . . . . . . . 13 95 3.1.2. Adding a Replica of a Fileset . . . . . . . . . . . . 13 96 3.2. Junction Resolution . . . . . . . . . . . . . . . . . . . 13 97 3.3. Example Use Cases for Fileset Annotations . . . . . . . . 14 98 4. NSDB Configuration and Schema . . . . . . . . . . . . . . . . 15 99 4.1. LDAP Configuration . . . . . . . . . . . . . . . . . . . . 15 100 4.2. LDAP Schema . . . . . . . . . . . . . . . . . . . . . . . 16 101 4.2.1. LDAP Attributes . . . . . . . . . . . . . . . . . . . 17 102 4.2.2. LDAP Objects . . . . . . . . . . . . . . . . . . . . . 35 103 5. NSDB Operations . . . . . . . . . . . . . . . . . . . . . . . 38 104 5.1. NSDB Operations for Administrators . . . . . . . . . . . . 39 105 5.1.1. Create an FSN . . . . . . . . . . . . . . . . . . . . 40 106 5.1.2. Delete an FSN . . . . . . . . . . . . . . . . . . . . 41 107 5.1.3. Create an FSL . . . . . . . . . . . . . . . . . . . . 41 108 5.1.4. Delete an FSL . . . . . . . . . . . . . . . . . . . . 45 109 5.1.5. Update an FSL . . . . . . . . . . . . . . . . . . . . 45 110 5.2. NSDB Operations for Fileservers . . . . . . . . . . . . . 46 111 5.2.1. NSDB Container Entry (NCE) Enumeration . . . . . . . . 46 112 5.2.2. Lookup FSLs for an FSN . . . . . . . . . . . . . . . . 46 113 5.3. NSDB Operations and LDAP Referrals . . . . . . . . . . . . 48 114 6. Security Considerations . . . . . . . . . . . . . . . . . . . 48 115 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 49 116 7.1. LDAP Descriptor Registration . . . . . . . . . . . . . . . 49 117 8. Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 118 9. References . . . . . . . . . . . . . . . . . . . . . . . . . . 55 119 9.1. Normative References . . . . . . . . . . . . . . . . . . . 55 120 9.2. Informative References . . . . . . . . . . . . . . . . . . 57 121 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . . 58 122 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 58 124 1. Introduction 126 A federated filesystem enables file access and namespace traversal in 127 a uniform, secure and consistent manner across multiple independent 128 fileservers within an enterprise or across multiple enterprises. 130 This document specifies a set of protocols that allow fileservers, 131 possibly from different vendors and with different administrators, to 132 cooperatively form a federation containing one or more federated 133 filesystems. Each federated filesystem's namespace is composed of 134 the filesystems physically hosted on and exported by the federation's 135 fileservers. A federation MAY contain a common namespace across all 136 its fileservers. A federation MAY project multiple namespaces and 137 enable clients to traverse each one. A federation MAY contain an 138 arbitrary number of namespace repositories, each belonging to a 139 different administrative entity, and each rendering a part of the 140 namespace. A federation MAY also have an arbitrary number of 141 administrative entities responsible for administering disjoint 142 subsets of the fileservers. 144 Traditionally, building a namespace that spans multiple fileservers 145 has been difficult for two reasons. First, the fileservers that 146 export pieces of the namespace are often not in the same 147 administrative domain. Second, there is no standard mechanism for 148 the fileservers to cooperatively present the namespace. Fileservers 149 may provide proprietary management tools and in some cases an 150 administrator may be able to use the proprietary tools to build a 151 shared namespace out of the exported filesystems. However, relying 152 on vendor-specific proprietary tools does not work in larger 153 enterprises or when collaborating across enterprises because the 154 fileservers are likely to be from multiple vendors or use different 155 software versions, each with their own namespace protocols, with no 156 common mechanism to manage the namespace or exchange namespace 157 information. 159 The federated filesystem protocols in this document define how to 160 construct a namespace accessible by an NFSv4 [3530bis] or NFSv4.1 161 [RFC5661] client and have been designed to accommodate other file 162 access protocols in the future. 164 The requirements for federated filesystems are described in 165 [RFC5716]. A protocol for administering a fileserver's namespace is 166 described in [FEDFS-ADMIN]. The mechanism for discovering the root 167 of an NFSv4 namespace is described in [FEDFS-DNS-SRV]. 169 In the rest of the document, the term fileserver denotes a fileserver 170 that is part of a federation. 172 2. Overview of Features and Concepts 174 2.1. File-access Protocol 176 A file-access protocol is a network protocol for accessing data. The 177 NFSv4 protocol and the NFSv4.1 protocol are both examples of a file- 178 access protocol. 180 2.2. File-access Client 182 File-access clients are standard off-the-shelf network attached 183 storage (NAS) clients that communicate with fileservers using the 184 NFSv4 protocol, the NFSv4.1 protocol, or some other file-access 185 protocol. 187 2.3. Fileserver 189 Fileservers are servers that store the physical fileset data or refer 190 the client to other fileservers. A fileserver can be implemented in 191 a number of different ways, including a single system, a cluster of 192 systems, or some other configuration. A fileserver provides access 193 to a federated filesystem via NFSv4, NFSv4.1, or some other file- 194 access protocol. 196 2.4. Referral 198 A referral is a mechanism by which a fileserver redirects a file- 199 access protocol client to a different fileserver. The exact 200 information contained in a referral varies from one file-access 201 protocol to another. The NFSv4 protocol defines the fs_locations 202 attribute for referral information. The NFSv4.1 protocol defines the 203 fs_locations_info attribute for referral information. 205 2.5. Namespace 207 The goal of a unified namespace is to make all managed data available 208 to all clients via the same path in a common filesystem-like 209 namespace. This should be achieved with minimal or zero client 210 configuration. In particular, updates to the common namespace should 211 not require configuration changes at the client. Filesets, which are 212 the unit of data management, are a set of files and directories. 213 From the perspective of the clients, the common namespace is 214 constructed by mounting filesets that are physically located on 215 different fileservers. The namespace, which is defined in terms of 216 fileset definitions, fileset identifiers, the location of each 217 fileset in the namespace, and the physical location of the 218 implementation(s) of each fileset, is stored in a set of namespace 219 repositories, each managed by an administrative entity. The 220 namespace schema defines the model used for populating, modifying, 221 and querying the namespace repositories. It is not required by the 222 federation that the namespace be common across all fileservers. It 223 should be possible to have several independently rooted namespaces. 225 2.6. Fileset 227 A fileset is defined to be a container of data and is the basic unit 228 of data management. Depending on the configuration, they may be 229 anything between an individual directory of an exported filesystem to 230 an entire exported filesystem at a fileserver. 232 2.7. Fileset Name (FSN) 234 A fileset is uniquely represented by its fileset name (FSN). An FSN 235 is considered unique across the federation. After an FSN is created, 236 it is associated with one or more fileset locations (FSLs) on a 237 fileserver. 239 The attributes of an FSN are: 241 NsdbName: the network location of the NSDB node that contains 242 authoritative information for this FSN. 244 FsnUuid: a 128-bit UUID (universally unique identifier), 245 conforming to [RFC4122], that is used to uniquely identify an 246 FSN. 248 2.8. Fileset Location (FSL) 250 An FSL describes the location where the fileset data resides. An FSL 251 contains generic and type specific information which together 252 describe how to access the fileset. An FSL's type indicates which 253 protocol(s) may be used to access its data. An FSL's attributes can 254 be used by a fileserver to decide which locations it will return to a 255 client. 257 All FSLs have the following attributes: 259 FslUuid: a 128-bit UUID, conforming to [RFC4122], that is used to 260 uniquely identify an FSL. 262 FsnUuid: the 128-bit UUID of the FSL's FSN. 264 NsdbName: the network location of the NSDB node that contains 265 authoritative information for this FSL. 267 FslHost: the network location of the host fileserver storing the 268 physical data 270 FslTTL: the time in seconds during which the FSL may be cached 272 Annotations: optional name/value pairs that can be interpreted by 273 a fileserver. The semantics of this field are not defined by 274 this document. These tuples are intended to be used by higher- 275 level protocols. 277 Descriptions: optional text descriptions. The semantics of this 278 field are not defined by this document. 280 This document defines an FSL subtype for NFS. An NFS FSL contains 281 information suitable for use in an NFSv4 fs_locations [3530bis] or 282 NFSv4.1 fs_locations_info attribute [RFC5661]. 284 A fileset MAY be accessible by protocols other than NFS. For each 285 such protocol, a corresponding FSL subtype SHOULD be defined. The 286 contents and format of such FSL subtypes are not defined in this 287 document. 289 2.8.1. Mutual Consistency across Fileset Locations 291 All of the FSLs that have the same FSN (and thereby reference the 292 same fileset) are equivalent from the point of view of client access; 293 the different locations of a fileset represent the same data, though 294 potentially at different points in time. Fileset locations are 295 equivalent but not identical. Locations may either be read-only or 296 read-write. Typically, multiple read-write locations are backed by a 297 clustered filesystem while read-only locations are replicas created 298 by a federation-initiated or external replication operation. Read- 299 only locations may represent consistent point-in-time copies of a 300 read-write location. The federation protocols, however, cannot 301 prevent subsequent changes to a read-only location nor guarantee 302 point-in-time consistency of a read-only location if the read-write 303 location is changing. 305 Regardless of the type, all locations exist at the same mount point 306 in the namespace and, thus, one client may be referred to one 307 location while another is directed to a different location. Since 308 updates to each fileset location are not controlled by the federation 309 protocol, it is the responsibility of administrators to guarantee the 310 functional equivalence of the data. 312 The federation protocol does not guarantee that the different 313 locations are mutually consistent in terms of the currency of the 314 data. It relies on the client file-access protocol (e.g., NFSv4) to 315 contain sufficient information to help the clients determine the 316 currency of the data at each location in order to ensure that the 317 clients do not revert back in time when switching locations. 319 2.8.2. Caching of Fileset Locations 321 To resolve an FSN to a set of FSL records, the fileserver queries the 322 appropriate NSDB for the FSL records. A fileserver MAY cache these 323 FSL records for a limited period of time. The period of time, if 324 any, during which FSL records MAY be cached is indicated by the FSL's 325 TTL field. 327 The combination of FSL caching and FSL migration presents a 328 challenge. For example, suppose there are three fileservers named A, 329 B, and C and fileserver A contains a junction to fileset X stored on 330 fileserver B. Now suppose that fileset X is migrated from fileserver 331 B to fileserver C and the corresponding FSL information for fileset X 332 in the appropriate NSDB is updated. If fileserver A has a cached FSL 333 for fileset X, a user traversing the junction on fileserver A will be 334 referred to fileserver B even though fileset X has migrated to 335 fileserver C. If fileserver A had not cached the FSL record, it would 336 have queried the NSDB and obtained the correct location of fileset X. 338 Administrators are advised to be aware of FSL caching when performing 339 a migration. When migrating a fileset, administrators SHOULD create 340 a junction at the fileset's old location referring back to the NSDB 341 entry for the fileset. This junction will redirect any users who 342 follow stale FSL information to the correct location. Thus, in the 343 above example, fileserver A would direct clients to fileserver B, but 344 fileserver B would in turn direct clients to fileserver C. 346 Such supplemental junctions (on fileserver B in the example) would 347 not be required to be in place forever. They need to stay in place 348 only until cached FSL entries for the target fileset are invalidated. 349 Each FSL contains a TTL field, a count in seconds of the time 350 interval the FSL MAY be cached. This is an upper bound for the 351 lifetime of the cached information and a lower bound for the lifetime 352 of the supplemental junctions. For example, suppose this field 353 contains the value 3600 seconds (one hour). In such a case, 354 administrators MUST keep the supplemental junctions in place for at 355 least one hour after the fileset move has taken place, and FSL data 356 MUST NOT be cached by a referring fileserver for more than one hour 357 without a refresh. 359 2.8.3. Generating A Referral from Fileset Locations 361 After resolving an FSN to a set of FSL records, the fileserver can 362 generate a referral to redirect the client to one or more of the 363 FSLs. The fileserver will convert the FSL records to a referral 364 format understood by the client, such as an NFSv4 fs_locations 365 attribute or NFSv4.1 fs_locations_info attribute. 367 In order to give the client as many options as possible, the 368 fileserver SHOULD include the maximum possible number of FSL records 369 in a referral. However, the fileserver MAY omit some of the FSL 370 records from the referral. For example, the fileserver might omit an 371 FSL record with a different file access protocol from the one in use 372 between the fileserver and client, or the fileserver might omit an 373 FSL record because of limitations in the file access protocol's 374 referral format, or the fileserver might omit an FSL record based on 375 some other criteria. 377 For a given FSL record, the fileserver MAY convert or reduce the FSL 378 record's contents in a manner appropriate to the referral format. 379 For example, an NFS FSL record contains all the data necessary to 380 construct an NFSv4.1 fs_locations_info attribute, but an NFSv4.1 381 fs_locations_info attribute contains several pieces of information 382 that are not found in an NFSv4 fs_locations attribute. A fileserver 383 will construct entries in an NFSv4 fs_locations attribute using the 384 relevant contents of an NFS FSL record. Whenever the fileserver 385 converts or reduces FSL data, the fileserver SHOULD attempt to 386 maintain the original meaning where possible. For example, an NFS 387 FSL record contains the rank and order information that is included 388 in an NFSv4.1 fs_locations_info attribute (see NFSv4.1's 389 FSLI4BX_READRANK, FSLI4BX_READORDER, FSLI4BX_WRITERANK, and 390 FSLI4BX_WRITEORDER). While this rank and order information is not 391 explicitly expressible in an NFSv4 fs_locations attribute, the 392 fileserver can arrange the NFSv4 fs_locations attribute's locations 393 list base on the rank and order values. 395 2.9. Namespace Database (NSDB) 397 The NSDB service is a federation-wide service that provides 398 interfaces to define, update, and query FSN information, FSL 399 information, and FSN to FSL mapping information. An individual 400 repository of namespace information is called an NSDB node. Each 401 NSDB node is managed by a single administrative entity. A single 402 admin entity can manage multiple NSDB nodes. 404 The difference between the NSDB service and an NSDB node is analogous 405 to that between the DNS service and a particular DNS server. 407 Each NSDB node stores the definition of the FSNs for which it is 408 authoritative. It also stores the definitions of the FSLs associated 409 with those FSNs. An NSDB node is authoritative for the filesets that 410 it defines. An NSDB node can cache information from a peer NSDB 411 node. The fileserver can always contact a local NSDB node (if it has 412 been defined) or directly contact any NSDB node to resolve a 413 junction. Each NSDB node supports an LDAP [RFC4510] interface and 414 can be accessed by an LDAP client. 416 An NSDB MAY be replicated throughout the federation. If an NSDB is 417 replicated, the NSDB MUST exhibit loose, converging consistency as 418 defined in [RFC3254]. The mechanism by which this is achieved is 419 outside the scope of this document. Many LDAP implementations 420 support replication. These features MAY be used to replicate the 421 NSDB. 423 2.10. Mount Points, Junctions and Referrals 425 A mount point is a directory in a parent fileset where a target 426 fileset may be attached. If a client traverses the path leading from 427 the root of the namespace to the mount point of a target fileset it 428 should be able to access the data in that target fileset (assuming 429 appropriate permissions). 431 The directory where a fileset is mounted is represented by a junction 432 in the underlying filesystem. In other words, a junction can be 433 viewed as a reference from a directory in one fileset to the root of 434 the target fileset. A junction can be implemented as a special 435 marker on a directory that is interpreted by the fileserver as a 436 mount point, or by some other mechanism in the underlying filesystem. 438 What data is used by the underlying filesystem to represent the 439 junction is not defined by this protocol. The essential property is 440 that the server must be able to find, given the junction, the FSN for 441 the target fileset. The mechanism by which the server maps a 442 junction to an FSN is outside the scope of this document. The FSN 443 (as described earlier) contains the authoritative NSDB node, the 444 optional NSDB search base if one is defined, and the FsnUuid (a UUID 445 for the fileset). 447 When a client traversal reaches a junction, the client is referred to 448 a list of FSLs associated with the FSN targeted by the junction. The 449 client can then redirect its connection to one of the FSLs. This act 450 is called a referral. For NFSv4 and NFSv4.1 clients, the FSL 451 information is returned in the fs_locations and fs_locations_info 452 attributes respectively. 454 The federation protocols do not limit where and how many times a 455 fileset is mounted in the namespace. Filesets can be nested; a 456 fileset can be mounted under another fileset. 458 2.11. Unified Namespace and the Root Fileset 460 The root fileset, when defined, is the top-level fileset of the 461 federation-wide namespace. The root of the unified namespace is the 462 top level directory of this fileset. A set of designated fileservers 463 in the federation can export the root fileset to render the 464 federation-wide unified namespace. When a client mounts the root 465 fileset from any of these designated fileservers it can view a common 466 federation-wide namespace. The root fileset could be implemented 467 either as an exported NFS file system or as data in the NSDB itself. 468 The properties and schema definition of an NSDB-based root fileset 469 and the protocol details that describe how to configure and replicate 470 the root fileset are not defined in this document. 472 3. Examples 474 In this section we provide examples and discussion of the basic 475 operations facilitated by the federated filesystem protocol: creating 476 a fileset, adding a replica of a fileset, resolving a junction, and 477 creating a junction. 479 3.1. Creating a Fileset and its FSL(s) 481 A fileset is the abstraction of a set of files and the directory tree 482 that contains them. The fileset abstraction is the fundamental unit 483 of data management in the federation. This abstraction is 484 implemented by an actual directory tree whose root location is 485 specified by a fileset location (FSL). 487 In this section, we describe the basic requirements for starting with 488 a directory tree and creating a fileset that can be used in the 489 federation protocols. Note that we do not assume that the process of 490 creating a fileset requires any transformation of the files or the 491 directory hierarchy. The only thing that is required by this process 492 is assigning the fileset a fileset name (FSN) and expressing the 493 location of the implementation of the fileset as an FSL. 495 There are many possible variations to this procedure, depending on 496 how the FSN that binds the FSL is created, and whether other replicas 497 of the fileset exist, are known to the federation, and need to be 498 bound to the same FSN. 500 It is easiest to describe this in terms of how to create the initial 501 implementation of the fileset, and then describe how to add replicas. 503 3.1.1. Creating a Fileset and an FSN 505 1. Choose the NSDB node that will keep track of the FSL(s) and 506 related information for the fileset. 508 2. Create an FSN in the NSDB node. 510 The FSN UUID is chosen by the administrator or generated 511 automatically by administration software. The former case is 512 used if the fileset is being restored, perhaps as part of 513 disaster recovery, and the administrator wishes to specify the 514 FSN UUID in order to permit existing junctions that reference 515 that FSN to work again. 517 At this point, the FSN exists, but its fileset locations are 518 unspecified. 520 3. For the FSN created above, create an FSL with the appropriate 521 information in the NSDB node. 523 3.1.2. Adding a Replica of a Fileset 525 Adding a replica is straightforward: the NSDB node and the FSN are 526 already known. The only remaining step is to add another FSL. 528 Note that the federation protocols only provide the mechanisms to 529 register and unregister replicas of a fileset. Fileserver-to- 530 fileserver replication protocols are not defined. 532 3.2. Junction Resolution 534 A fileset may contain references to other filesets. These references 535 are represented by junctions. If a client requests access to a 536 fileset object that is a junction, the fileserver resolves the 537 junction to discover one or more FSLs that implement the referenced 538 fileset. 540 There are many possible variations to this procedure, depending on 541 how the junctions are represented by the fileserver and how the 542 fileserver performs junction resolution. 544 Step 4 is the only step that interacts directly with the federation 545 protocols. The rest of the steps may use platform-specific 546 interfaces. 548 1. The fileserver determines that the object being accessed is a 549 junction. 551 2. The fileserver does a local lookup to find the FSN of the target 552 fileset. 554 3. Using the FSN, the fileserver finds the NSDB node responsible for 555 the target FSN. 557 4. The fileserver contacts that NSDB node and asks for the set of 558 FSLs that implement the target FSN. The NSDB node responds with 559 a (possibly empty) set of FSLs. 561 5. The fileserver converts one or more of the FSLs to the location 562 type used by the client (e.g., a Network File System (NFSv4) 563 fs_location, as described in [3530bis]). 565 6. The fileserver redirects (in whatever manner is appropriate for 566 the client) the client to the location(s). 568 3.3. Example Use Cases for Fileset Annotations 570 Fileset annotations MAY be used to convey additional attributes of a 571 fileset 573 For example, fileset annotations can be used to define relationships 574 between filesets that can be used by an auxiliary replication 575 protocol. Consider the scenario where a fileset is created and 576 mounted at some point in the namespace. A snapshot of the read-write 577 FSL of that fileset is taken periodically at different frequencies 578 say a daily snapshot or a weekly snapshot. The different snapshots 579 are mounted at different locations in the namespace. The daily 580 snapshots are considered as a different fileset from the weekly ones 581 but both are related to the source fileset. For this we can define 582 an annotation labeling the filesets as source and replica. The 583 replication protocol can use this information to copy data from one 584 or more FSLs of the source fileset to all the FSLs of the replica 585 fileset. The replica filesets are read-only while the source fileset 586 is read-write. 588 This follows the traditional Andrew File System (AFS) model of 589 mounting the read-only volume at a path in the namespace different 590 from that of the read-write volume [AFS]. 592 The federation protocol does not control or manage the relationship 593 among filesets. It merely enables annotating the filesets with user- 594 defined relationships. 596 Another potential use for annotations is recording references to an 597 FSN. A single annotation containing the number of references could 598 be defined or multiple annotations, one per reference, could be used 599 to store detailed information on the location of each reference. As 600 with the replication annotation described above, the maintenance of 601 reference information would not be controlled by the federation 602 protocol. The information would mostly likely be non-authoritative 603 because the the ability to create a junction does not require the 604 authority to update the FSN record. In any event, such annotations 605 could be useful to administrators for determining if an FSN is 606 referenced by a junction. 608 4. NSDB Configuration and Schema 610 This section describes how an NSDB is constructed using an LDAP 611 Version 3 [RFC4510] Directory. Section 4.1 describes the basic 612 properties of the LDAP configuration that MUST be used in order to 613 ensure compatibility between different implementations. Section 4.2 614 defines the new LDAP attribute types, the new object types, and 615 specifies how the distinguished name (DN) of each object instance 616 MUST be constructed. 618 4.1. LDAP Configuration 620 An NSDB is constructed using an LDAP Directory. This LDAP Directory 621 MAY have multiple naming contexts. For each naming context, the LDAP 622 Directory's root DSE will have a namingContext attribute. Each 623 namingContext attribute contains the DN of the naming context's root 624 entry. For each naming context that contains federation entries 625 (e.g. FSNs and FSLs): 627 1. There MUST be an LDAP entry that is superior to all of the naming 628 context's federation entries in the Directory Information Tree 629 (DIT) This entry is termed the NSDB Container Entry (NCE). The 630 NCE's children are FSNs. An FSNs children are FSLs. 632 2. The naming context's root entry MUST include the 633 fedfsNsdbContainerInfo (defined below) as one of its object 634 classes. The fedfsNsdbContainerInfo's fedfsNcePrefix attribute 635 is used to locate the naming context's NCE. 637 If a naming context does not contain federation entries, it will not 638 contain an NCE and its root entry will not include a 639 fedfsNsdbContainerInfo as one of its object classes. 641 A fedfsNsdbContainerInfo's fedfsNcePrefix attribute contains a 642 string. Prepending this string to the namingContext value produces 643 the Distinguished Name (DN) of the NSDB Container Entry. An empty 644 fedfsNcePrefix string value indicates that the NSDB Container Entry 645 is the namingContext's root entry. 647 For example, an LDAP directory might have the following entries: 649 -+ [root DSE] 650 | namingContext: o=fedfs 651 | namingContext: dc=example,dc=com 652 | namingContext: ou=system 653 | 654 | 655 +---- [o=fedfs] 656 | fedfsNcePrefix: 657 | 658 | 659 +---- [dc=example,dc=com] 660 | fedfsNcePrefix: ou=fedfs,ou=corp-it 661 | 662 | 663 +---- [ou=system] 665 In this case, the o=fedfs namingContext has an NSBD Container Entry 666 at o=fedfs, the dc=example,dc=com namingContext has an NSDB Container 667 Entry at ou=fedfs,ou=corp-it,dc=example,dc=com, and the ou=system 668 namingContext has no NSDB Container Entry. 670 The NSDB SHOULD be configured with one or more privileged LDAP users. 671 These users are able to modify the contents of the LDAP database. An 672 administrator that performs the operations described in Section 5.1 673 SHOULD authenticate using the DN of a privileged LDAP user. 675 It MUST be possible for an unprivileged (unauthenticated) user to 676 perform LDAP queries that access the NSDB data. A fileserver 677 performs the operations described in Section 5.2 as an unprivileged 678 user. 680 All implementations SHOULD use the same schema, or, at minimum, a 681 schema that includes all of the objects, with each of the attributes, 682 named in the following sections. 684 Given the above configuration guidelines, an NSDB SHOULD be 685 constructed using a dedicated LDAP directory. Separate LDAP 686 directories are RECOMMENDED for other purposes, such as storing user 687 account information. By using an LDAP directory dedicated to storing 688 NSDB records, there is no need to disturb the configuration of any 689 other LDAP directories that store information unrelated to an NSDB. 691 4.2. LDAP Schema 693 The schema definitions provided in this document use the LDAP schema 694 syntax defined in [RFC4512]. The definitions are formatted to allow 695 the reader to easily extract them from the document. The reader can 696 use the following shell script to extract the definitions: 698 700 #!/bin/sh 701 grep '^ *///' | sed 's?^ */// ??' | sed 's?^ *///$??' 703 705 If the above script is stored in a file called "extract.sh", and this 706 document is in a file called "spec.txt", then the reader can do: 708 710 sh extract.sh < spec.txt > fedfs.schema 712 714 The effect of the script is to remove leading white space from each 715 line, plus a sentinel sequence of "///". 717 4.2.1. LDAP Attributes 719 This section describes the required attributes of the NSDB LDAP 720 schema. The following definitions are used below: 722 o The "name" attribute described in [RFC4519]. 724 o The Integer syntax (1.3.6.1.4.1.1466.115.121.1.27) described in 725 [RFC4517]. 727 o The "integerMatch" rule described in [RFC4517]. 729 o The Octet String syntax (1.3.6.1.4.1.1466.115.121.1.40) described 730 in [RFC4517]. 732 o The "octetStringMatch" rule described in [RFC4517]. 734 o The Boolean syntax (1.3.6.1.4.1.1466.115.121.1.7) described in 735 [RFC4517]. 737 o The "booleanMatch" rule described in [RFC4517]. 739 o The "distinguishedNameMatch" rule described in [RFC4517]. 741 o The DN syntax (1.3.6.1.4.1.1466.115.121.1.12) described in 742 [RFC4517]. 744 4.2.1.1. fedfsUuid 746 A fedfsUuid is the base type for all of the universally unique 747 identifiers (UUIDs) used by the federated filesystem protocols. 749 To minimize the probability of two UUIDs colliding, a consistent 750 procedure for generating UUIDs SHOULD be used throughout a 751 federation. Within a federation, UUIDs SHOULD be generated using the 752 procedure described for version 1 of the UUID variant specified in 753 [RFC4122]. 755 The UUID's text representation (as defined in [RFC4122]) SHOULD be 756 encoded as a UTF-8 string. 758 It MAY also be useful, for purposes of debugging or annotation, to 759 permit a fedfsUuid to include members of a more general class of 760 strings. 762 A fedfsUuid is a single-valued LDAP attribute. 764 766 /// 767 /// attributetype ( 768 /// 1.3.6.1.4.1.31103.1.1 NAME 'fedfsUuid' 769 /// DESC 'A UUID used by NSDB' 770 /// SUP name 771 /// SINGLE-VALUE 772 /// ) 773 /// 775 777 4.2.1.2. fedfsNetAddr 779 A fedfsNetAddr is the locative name of a network service in either 780 IPv4, IPv6, or DNS name notation. It MUST be a UTF-8 string and 781 SHOULD be prepared using the server4 rules defined in Chapter 12 782 "Internationalization" of [3530bis]. 784 An IPv4 address MUST be represented using the standard dotted decimal 785 format defined by the IPv4address rule in Section 3.2.2 of RFC 3986 786 [RFC3986]. An IPv6 address MUST be represented using the format 787 defined in Section 2.2 of RFC 4291 [RFC4291]. 789 A DNS name MUST be represented using a fully qualified domain name. 790 A system (i.e. fileserver or administrative host) SHOULD resolve the 791 fully qualified domain name to a network address using the system's 792 standard resolution mechanisms. 794 This attribute is single-valued. 796 798 /// 799 /// attributetype ( 800 /// 1.3.6.1.4.1.31103.1.2 NAME 'fedfsNetAddr' 801 /// DESC 'The network name of a host or service' 802 /// SUP name 803 /// SINGLE-VALUE 804 /// ) 805 /// 807 809 4.2.1.3. fedfsNetPort 811 A fedfsNetPort is the decimal representation of a transport service's 812 port number. A fedfsNetPort MUST be encoded as an Integer syntax 813 value [RFC4517]. 815 This attribute is single-valued. 817 819 /// 820 /// attributetype ( 821 /// 1.3.6.1.4.1.31103.1.3 NAME 'fedfsNetPort' 822 /// DESC 'A transport port number of a service' 823 /// EQUALITY integerMatch 824 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 825 /// SINGLE-VALUE 826 /// ) 827 /// 829 831 4.2.1.4. fedfsFsnUuid 833 A fedfsFsnUuid represents the UUID component of an FSN. An NSDB 834 SHOULD ensure that no two FSNs it stores have the same fedfsFsnUuid. 836 The fedfsFsnUuid is a subclass of fedfsUuid, with the same encoding 837 rules. 839 This attribute is single-valued. 841 843 /// 844 /// attributetype ( 845 /// 1.3.6.1.4.1.31103.1.4 NAME 'fedfsFsnUuid' 846 /// DESC 'The FSN UUID component of an FSN' 847 /// SUP fedfsUuid 848 /// SINGLE-VALUE 849 /// ) 850 /// 852 854 4.2.1.5. fedfsNsdbName 856 A fedfsNsdbName is the NSDB component of an FSN. 858 It MUST be a UTF-8 string containing a DNS name. The DNS name MUST 859 be represented using a fully qualified domain name. A system (i.e. 860 fileserver or administrative host) SHOULD resolve the fully qualified 861 domain name to a network address using the system's standard 862 resolution mechanisms. 864 FSNs are immutable and invariant. The attributes of an FSN, 865 including the fedfsNsdbName, are expected to remain constant. 866 Therefore, a fedfsNsdbName SHOULD NOT contain a network address, such 867 as an IPv4 or IPv6 address, as this would indefinitely assign the 868 network address. 870 This attribute is single-valued. 872 874 /// 875 /// attributetype ( 876 /// 1.3.6.1.4.1.31103.1.5 NAME 'fedfsNsdbName' 877 /// DESC 'The NSDB node component of an FSN' 878 /// SUP name 879 /// SINGLE-VALUE 880 /// ) 881 /// 883 885 4.2.1.6. fedfsNsdbPort 887 A fedfsNsdbPort is the decimal representation of an NSDB's port 888 number. The fedfsNsdbPort attribute is a subclass of fedfsNetPort, 889 with the same encoding rules. 891 This attribute is single-valued. 893 895 /// 896 /// attributetype ( 897 /// 1.3.6.1.4.1.31103.1.6 NAME 'fedfsNsdbPort' 898 /// DESC 'The transport port number of an NSDB' 899 /// SUP fedfsNetPort 900 /// SINGLE-VALUE 901 /// ) 902 /// 904 906 4.2.1.7. fedfsNcePrefix 908 A fedfsNcePrefix stores a distinguished name (DN) prefix. 910 This attribute is single-valued. 912 914 /// 915 /// attributetype ( 916 /// 1.3.6.1.4.1.31103.1.7 NAME 'fedfsNcePrefix' 917 /// DESC 'NCE prefix' 918 /// EQUALITY distinguishedNameMatch 919 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 920 /// SINGLE-VALUE 921 /// ) 922 /// 924 926 OID 1.3.6.1.4.1.1466.115.121.1.12 is the DN syntax [RFC4517]. 928 4.2.1.8. fedfsFslUuid 930 A fedfsFslUuid represents the UUID of an FSL. An NSDB SHOULD ensure 931 that no two FSLs it stores have the same fedfsFslUuid. 933 The fedfsFslUuid attribute is a subclass of fedfsUuid, with the same 934 encoding rules. 936 This attribute is single-valued. 938 940 /// 941 /// attributetype ( 942 /// 1.3.6.1.4.1.31103.1.8 NAME 'fedfsFslUuid' 943 /// DESC 'UUID of an FSL' 944 /// SUP fedfsUuid 945 /// SINGLE-VALUE 946 /// ) 947 /// 949 951 4.2.1.9. fedfsFslHost 953 A fedfsFslHost is the host component of an FSL. The fedfsFslHost 954 attribute is a subclass of fedfsNetAddr, with the same encoding 955 rules. 957 This attribute is single-valued. 959 961 /// 962 /// attributetype ( 963 /// 1.3.6.1.4.1.31103.1.9 NAME 'fedfsFslHost' 964 /// DESC 'Service location for a fileserver' 965 /// SUP fedfsNetAddr 966 /// SINGLE-VALUE 967 /// ) 968 /// 970 972 4.2.1.10. fedfsFslPort 974 A fedfsFslPort is the decimal representation of a file service's port 975 number. The fedfsFslPort attribute is a subclass of fedfsNetPort, 976 with the same encoding rules. 978 This attribute is single-valued. 980 981 /// 982 /// attributetype ( 983 /// 1.3.6.1.4.1.31103.1.10 NAME 'fedfsFslPort' 984 /// DESC 'The file service transport port number' 985 /// SUP fedfsNetPort 986 /// SINGLE-VALUE 987 /// ) 988 /// 990 992 4.2.1.11. fedfsFslTTL 994 A fedfsFslTTL is the amount of time in seconds an FSL SHOULD be 995 cached by a fileserver. A fedfsFslTTL MUST be encoded as an Integer 996 syntax value [RFC4517]. 998 This attribute is single-valued. 1000 1002 /// 1003 /// attributetype ( 1004 /// 1.3.6.1.4.1.31103.1.11 NAME 'fedfsFslTTL' 1005 /// DESC 'Time to live of an FSL' 1006 /// EQUALITY integerMatch 1007 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1008 /// SINGLE-VALUE 1009 /// ) 1010 /// 1012 1014 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1016 4.2.1.12. fedfsAnnotation 1018 A fedfsAnnotation contains an object annotation. 1020 This attribute is multi-valued; an object type that permits 1021 annotations may have any number of annotations per instance. 1023 A fedfsAnnotation attribute MUST be an UTF-8 string formatted as 1024 follows: 1026 "KEY" = "VAL" 1028 White space, defined as space, form-feed ('\f'), newline ('\n'), 1029 carriage return ('\r'), horizontal tab ('\t'), and vertical tab 1030 ('\v') characters, is ignored. 1032 KEY and VAL MAY may contain any UTF-8 characters. The following 1033 escape sequences are allowed: 1035 +-----------------+-------------+ 1036 | escape sequence | replacement | 1037 +-----------------+-------------+ 1038 | \\ | \ | 1039 | \" | " | 1040 +-----------------+-------------+ 1042 A fedfsAnnotation attribute that does not adhere to this format 1043 SHOULD be ignored. 1045 The following are examples of valid fedfsAnnotation attributes: 1047 "key1" = "foo" 1048 "another key" = "x=3" 1049 "key-2" = "A string with \" and \\ characters." 1051 which correspond to the following key/value pairs: 1053 +-------------+-----------------------------------+ 1054 | key | value | 1055 +-------------+-----------------------------------+ 1056 | key1 | foo | 1057 | another key | x=3 | 1058 | key-2 | A string with " and \ characters. | 1059 +-------------+-----------------------------------+ 1061 1063 /// 1064 /// attributetype ( 1065 /// 1.3.6.1.4.1.31103.1.12 NAME 'fedfsAnnotation' 1066 /// DESC 'Annotation of an object' 1067 /// SUP name 1068 /// ) 1069 /// 1071 1073 4.2.1.13. fedfsDescr 1075 A fedfsDescr stores an object description. The description MUST be 1076 encoded as a UTF-8 string. 1078 This attribute is multi-valued which permits any number of 1079 descriptions per entry. 1081 1083 /// 1084 /// attributetype ( 1085 /// 1.3.6.1.4.1.31103.1.13 NAME 'fedfsDescr' 1086 /// DESC 'Description of an object' 1087 /// SUP name 1088 /// ) 1089 /// 1091 1093 4.2.1.14. fedfsNfsPath 1095 A fedfsNfsPath is the path attribute of an FSL. The path MUST be the 1096 XDR encoded NFS path as defined by the NFS pathname4 XDR type of the 1097 fs_location's rootpath [3530bis] and the fs_locations_item's 1098 fli_rootpath [RFC5661]. The NFS pathname4 XDR type is a variable 1099 length array of component4 elements. The NFS component4 XDR type is 1100 a variable length array of opaque data. A fedfsNfsPath attribute's 1101 component4 elements SHOULD be prepared using the component4 rules 1102 defined in Chapter 12 "Internationalization" of [3530bis]. 1104 This attribute is single-valued. 1106 1108 /// 1109 /// attributetype ( 1110 /// 1.3.6.1.4.1.31103.1.100 NAME 'fedfsNfsPath' 1111 /// DESC 'Server-local path to a fileset' 1112 /// EQUALITY octetStringMatch 1113 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.40 1114 /// SINGLE-VALUE 1115 /// ) 1116 /// 1118 1120 OID 1.3.6.1.4.1.1466.115.121.1.40 is the Octet String syntax 1121 [RFC4517]. 1123 4.2.1.15. fedfsNfsMajorVer 1125 A fedfsNfsMajorVer contains the NFS major version of the associated 1126 NFS FSL. A fedfsNfsMajorVer MUST be encoded as an Integer syntax 1127 value [RFC4517]. 1129 For example if the FSL was exported via NFS 4.1, the contents of this 1130 attribute would be the value 4. 1132 This attribute is single-valued. 1134 1136 /// 1137 /// attributetype ( 1138 /// 1.3.6.1.4.1.31103.1.101 NAME 'fedfsNfsMajorVer' 1139 /// DESC 'NFS major version' 1140 /// EQUALITY integerMatch 1141 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1142 /// SINGLE-VALUE 1143 /// ) 1144 /// 1146 1148 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1150 4.2.1.16. fedfsNfsMinorVer 1152 A fedfsNfsMinorVer contain the NFS minor version of the associated 1153 NFS FSL. A fedfsNfsMinorVer MUST be encoded as an Integer syntax 1154 value [RFC4517]. 1156 For example if the FSL was exported via NFS 4.1, the contents of this 1157 attribute would be the value 1. 1159 This attribute is single-valued. 1161 1163 /// 1164 /// attributetype ( 1165 /// 1.3.6.1.4.1.31103.1.102 NAME 'fedfsNfsMinorVer' 1166 /// DESC 'NFS minor version' 1167 /// EQUALITY integerMatch 1168 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1169 /// SINGLE-VALUE 1170 /// ) 1171 /// 1173 1175 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1177 4.2.1.17. fedfsNfsCurrency 1179 A fedfsNfsCurrency stores the NFSv4.1 fs_locations_server's 1180 fls_currency value [RFC5661]. A fedfsNfsCurrency MUST be encoded as 1181 an Integer syntax value [RFC4517] in the range [-2147483648, 1182 2147483647]. 1184 This attribute is single-valued. 1186 1188 /// 1189 /// attributetype ( 1190 /// 1.3.6.1.4.1.31103.1.103 NAME 'fedfsNfsCurrency' 1191 /// DESC 'up-to-date measure of the data' 1192 /// EQUALITY integerMatch 1193 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1194 /// SINGLE-VALUE 1195 /// ) 1196 /// 1198 1200 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1202 4.2.1.18. fedfsNfsGenFlagWritable 1204 A fedfsNfsGenFlagWritable stores the value of an FSL's NFSv4.1 1205 FSLI4GF_WRITABLE bit [RFC5661]. A value of "TRUE" indicates the bit 1206 is true. A value of "FALSE" indicates the bit is false. 1208 1210 /// 1211 /// attributetype ( 1212 /// 1.3.6.1.4.1.31103.1.104 NAME 'fedfsNfsGenFlagWritable' 1213 /// DESC 'Indicates if the filesystem is writable' 1214 /// EQUALITY booleanMatch 1215 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 1216 /// SINGLE-VALUE 1217 /// ) 1218 /// 1220 1222 OID 1.3.6.1.4.1.1466.115.121.1.7 is the Boolean syntax [RFC4517]. 1224 4.2.1.19. fedfsNfsGenFlagGoing 1226 A fedfsNfsGenFlagGoing stores the value of an FSL's NFSv4.1 1227 FSLI4GF_GOING bit [RFC5661]. A value of "TRUE" indicates the bit is 1228 true. A value of "FALSE" indicates the bit is false. 1230 1232 /// 1233 /// attributetype ( 1234 /// 1.3.6.1.4.1.31103.1.105 NAME 'fedfsNfsGenFlagGoing' 1235 /// DESC 'Indicates if the filesystem is going' 1236 /// EQUALITY booleanMatch 1237 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 1238 /// SINGLE-VALUE 1239 /// ) 1240 /// 1242 1244 OID 1.3.6.1.4.1.1466.115.121.1.7 is the Boolean syntax [RFC4517]. 1246 4.2.1.20. fedfsNfsGenFlagSplit 1248 A fedfsNfsGenFlagSplit stores the value of an FSL's NFSv4.1 1249 FSLI4GF_SPLIT bit [RFC5661]. A value of "TRUE" indicates the bit is 1250 true. A value of "FALSE" indicates the bit is false. 1252 1254 /// 1255 /// attributetype ( 1256 /// 1.3.6.1.4.1.31103.1.106 NAME 'fedfsNfsGenFlagSplit' 1257 /// DESC 'Indicates if there are multiple filesystems' 1258 /// EQUALITY booleanMatch 1259 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 1260 /// SINGLE-VALUE 1261 /// ) 1262 /// 1264 1266 OID 1.3.6.1.4.1.1466.115.121.1.7 is the Boolean syntax [RFC4517]. 1268 4.2.1.21. fedfsNfsTransFlagRdma 1270 A fedfsNfsTransFlagRdma stores the value of an FSL's NFSv4.1 1271 FSLI4TF_RDMA bit [RFC5661]. A value of "TRUE" indicates the bit is 1272 true. A value of "FALSE" indicates the bit is false. 1274 1276 /// 1277 /// attributetype ( 1278 /// 1.3.6.1.4.1.31103.1.107 NAME 'fedfsNfsTransFlagRdma' 1279 /// DESC 'Indicates if the transport supports RDMA' 1280 /// EQUALITY booleanMatch 1281 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 1282 /// SINGLE-VALUE 1283 /// ) 1284 /// 1286 1288 OID 1.3.6.1.4.1.1466.115.121.1.7 is the Boolean syntax [RFC4517]. 1290 4.2.1.22. fedfsNfsClassSimul 1292 A fedfsNfsClassSimul contains the FSL's NFSv4.1 FSLI4BX_CLSIMUL 1293 [RFC5661] value. A fedfsNfsClassSimul MUST be encoded as an Integer 1294 syntax value [RFC4517] in the range [0, 255]. 1296 1298 /// 1299 /// attributetype ( 1300 /// 1.3.6.1.4.1.31103.1.108 NAME 'fedfsNfsClassSimul' 1301 /// DESC 'The simultaneous-use class of the filesystem' 1302 /// EQUALITY integerMatch 1303 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1304 /// SINGLE-VALUE 1305 /// ) 1306 /// 1308 1310 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1312 4.2.1.23. fedfsNfsClassHandle 1314 A fedfsNfsClassHandle contains the FSL's NFSv4.1 FSLI4BX_CLHANDLE 1315 [RFC5661] value. A fedfsNfsClassHandle MUST be encoded as an Integer 1316 syntax value [RFC4517] in the range [0, 255]. 1318 1320 /// 1321 /// attributetype ( 1322 /// 1.3.6.1.4.1.31103.1.109 NAME 'fedfsNfsClassHandle' 1323 /// DESC 'The handle class of the filesystem' 1324 /// EQUALITY integerMatch 1325 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1326 /// SINGLE-VALUE 1327 /// ) 1328 /// 1330 1332 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1334 4.2.1.24. fedfsNfsClassFileid 1336 A fedfsNfsClassFileid contains the FSL's NFSv4.1 FSLI4BX_CLFILEID 1337 [RFC5661] value. A fedfsNfsClassFileid MUST be encoded as an Integer 1338 syntax value [RFC4517] in the range [0, 255]. 1340 1342 /// 1343 /// attributetype ( 1344 /// 1.3.6.1.4.1.31103.1.110 NAME 'fedfsNfsClassFileid' 1345 /// DESC 'The fileid class of the filesystem' 1346 /// EQUALITY integerMatch 1347 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1348 /// SINGLE-VALUE 1349 /// ) 1350 /// 1352 1354 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1356 4.2.1.25. fedfsNfsClassWritever 1358 A fedfsNfsClassWritever contains the FSL's NFSv4.1 FSLI4BX_CLWRITEVER 1359 [RFC5661] value. A fedfsNfsClassWritever MUST be encoded as an 1360 Integer syntax value [RFC4517] in the range [0, 255]. 1362 1363 /// 1364 /// attributetype ( 1365 /// 1.3.6.1.4.1.31103.1.111 NAME 'fedfsNfsClassWritever' 1366 /// DESC 'The write-verifier class of the filesystem' 1367 /// EQUALITY integerMatch 1368 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1369 /// SINGLE-VALUE 1370 /// ) 1371 /// 1373 1375 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1377 4.2.1.26. fedfsNfsClassChange 1379 A fedfsNfsClassChange contains the FSL's NFSv4.1 FSLI4BX_CLCHANGE 1380 [RFC5661] value. A fedfsNfsClassChange MUST be encoded as an Integer 1381 syntax value [RFC4517] in the range [0, 255]. 1383 1385 /// 1386 /// attributetype ( 1387 /// 1.3.6.1.4.1.31103.1.112 NAME 'fedfsNfsClassChange' 1388 /// DESC 'The change class of the filesystem' 1389 /// EQUALITY integerMatch 1390 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1391 /// SINGLE-VALUE 1392 /// ) 1393 /// 1395 1397 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1399 4.2.1.27. fedfsNfsClassReaddir 1401 A fedfsNfsClassReaddir contains the FSL's NFSv4.1 FSLI4BX_CLREADDIR 1402 [RFC5661] value. A fedfsNfsClassReaddir MUST be encoded as an 1403 Integer syntax value [RFC4517] in the range [0, 255]. 1405 1406 /// 1407 /// attributetype ( 1408 /// 1.3.6.1.4.1.31103.1.113 NAME 'fedfsNfsClassReaddir' 1409 /// DESC 'The readdir class of the filesystem' 1410 /// EQUALITY integerMatch 1411 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1412 /// SINGLE-VALUE 1413 /// ) 1414 /// 1416 1418 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1420 4.2.1.28. fedfsNfsReadRank 1422 A fedfsNfsReadRank contains the FSL's NFSv4.1 FSLI4BX_READRANK 1423 [RFC5661] value. A fedfsNfsReadRank MUST be encoded as an Integer 1424 syntax value [RFC4517] in the range [0, 255]. 1426 1428 /// 1429 /// attributetype ( 1430 /// 1.3.6.1.4.1.31103.1.114 NAME 'fedfsNfsReadRank' 1431 /// DESC 'The read rank of the filesystem' 1432 /// EQUALITY integerMatch 1433 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1434 /// SINGLE-VALUE 1435 /// ) 1436 /// 1438 1440 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1442 4.2.1.29. fedfsNfsReadOrder 1444 A fedfsNfsReadOrder contains the FSL's NFSv4.1 FSLI4BX_READORDER 1445 [RFC5661] value. A fedfsNfsReadOrder MUST be encoded as an Integer 1446 syntax value [RFC4517] in the range [0, 255]. 1448 1449 /// 1450 /// attributetype ( 1451 /// 1.3.6.1.4.1.31103.1.115 NAME 'fedfsNfsReadOrder' 1452 /// DESC 'The read order of the filesystem' 1453 /// EQUALITY integerMatch 1454 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1455 /// SINGLE-VALUE 1456 /// ) 1457 /// 1459 1461 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1463 4.2.1.30. fedfsNfsWriteRank 1465 A fedfsNfsWriteRank contains the FSL's FSLI4BX_WRITERANK [RFC5661] 1466 value. A fedfsNfsWriteRank MUST be encoded as an Integer syntax 1467 value [RFC4517] in the range [0, 255]. 1469 1471 /// 1472 /// attributetype ( 1473 /// 1.3.6.1.4.1.31103.1.116 NAME 'fedfsNfsWriteRank' 1474 /// DESC 'The write rank of the filesystem' 1475 /// EQUALITY integerMatch 1476 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1477 /// SINGLE-VALUE 1478 /// ) 1479 /// 1481 1483 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1485 4.2.1.31. fedfsNfsWriteOrder 1487 A fedfsNfsWriteOrder contains the FSL's FSLI4BX_WRITEORDER [RFC5661] 1488 value. A fedfsNfsWriteOrder MUST be encoded as an Integer syntax 1489 value [RFC4517] in the range [0, 255]. 1491 1492 /// 1493 /// attributetype ( 1494 /// 1.3.6.1.4.1.31103.1.117 NAME 'fedfsNfsWriteOrder' 1495 /// DESC 'The write order of the filesystem' 1496 /// EQUALITY integerMatch 1497 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1498 /// SINGLE-VALUE 1499 /// ) 1500 /// 1502 1504 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1506 4.2.1.32. fedfsNfsVarSub 1508 A fedfsNfsVarSub stores the value of an FSL's NFSv4.1 FSLI4F_VAR_SUB 1509 bit [RFC5661]. A value of "TRUE" indicates the bit is true. A value 1510 of "FALSE" indicates the bit is false. 1512 1514 /// 1515 /// attributetype ( 1516 /// 1.3.6.1.4.1.31103.1.118 NAME 'fedfsNfsVarSub' 1517 /// DESC 'Indicates if variable substitution is present' 1518 /// EQUALITY booleanMatch 1519 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 1520 /// SINGLE-VALUE 1521 /// ) 1522 /// 1524 1526 OID 1.3.6.1.4.1.1466.115.121.1.7 is the Boolean syntax [RFC4517]. 1528 4.2.1.33. fedfsNfsValidFor 1530 A fedfsNfsValidFor stores an FSL's NFSv4.1 fs_locations_info 1531 fli_valid_for value [RFC5661]. A fedfsNfsValidFor MUST be encoded as 1532 an Integer syntax value [RFC4517] in the range [-2147483648, 1533 2147483647]. 1535 An FSL's fedfsFslTTL value and fedfsNfsValidFor value MAY be 1536 different. 1538 This attribute is single-valued. 1540 1542 /// 1543 /// attributetype ( 1544 /// 1.3.6.1.4.1.31103.1.19 NAME 'fedfsNfsValidFor' 1545 /// DESC 'Valid for time' 1546 /// EQUALITY integerMatch 1547 /// SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 1548 /// SINGLE-VALUE 1549 /// ) 1550 /// 1552 OID 1.3.6.1.4.1.1466.115.121.1.27 is the Integer syntax [RFC4517]. 1554 1556 4.2.2. LDAP Objects 1558 4.2.2.1. fedfsNsdbContainerInfo 1560 A fedfsNsdbContainerInfo describes the location of the NCE. 1562 A fedfsFsn's fedfsNcePrefix attribute is REQUIRED. 1564 A fedfsFsn's fedfsAnnotation and fedfsDescr attributes are OPTIONAL. 1566 1568 /// 1569 /// objectclass ( 1570 /// 1.3.6.1.4.1.31103.1.1001 NAME 'fedfsNsdbContainerInfo' 1571 /// DESC 'Describes NCE location' 1572 /// SUP top AUXILIARY 1573 /// MUST ( 1574 /// fedfsNcePrefix 1575 /// ) 1576 /// MAY ( 1577 /// fedfsAnnotation 1578 /// $ fedfsDescr 1579 /// )) 1580 /// 1582 1584 4.2.2.2. fedfsFsn 1586 A fedfsFsn represents an FSN. 1588 A fedfsFsn's fedfsNsdbName and fedfsFsnUuid attributes are REQUIRED. 1590 A fedfsFsn's fedfsNsdbPort, fedfsAnnotation, and fedfsDescr 1591 attributes are OPTIONAL. 1593 If the fedfsNsdbPort is omitted, the standard LDAP port number, 389, 1594 SHOULD be assumed. 1596 The DN of an FSN is REQUIRED to take the following form: 1597 "fedfsFsnUuid=$FSNUUID,$NCE", where $FSNUUID is the UUID of the FSN 1598 and $NCE is the DN of the NCE ("o=fedfs" by default). Since LDAP 1599 requires a DN to be unique, this ensures that each FSN entry has a 1600 unique UUID value within the LDAP directory. 1602 A fedfsFsn MAY also have additional attributes, but these attributes 1603 MUST NOT be referenced by any part of this document. 1605 1607 /// 1608 /// objectclass ( 1609 /// 1.3.6.1.4.1.31103.1.1002 NAME 'fedfsFsn' 1610 /// DESC 'Represents a fileset' 1611 /// SUP top STRUCTURAL 1612 /// MUST ( 1613 /// fedfsFsnUuid 1614 /// $ fedfsNsdbName 1615 /// ) 1616 /// MAY ( 1617 /// fedfsNsdbPort 1618 /// $ fedfsAnnotation 1619 /// $ fedfsDescr 1620 /// )) 1621 /// 1623 1625 4.2.2.3. fedfsFsl 1627 The fedfsFsl object class represents an FSL. 1629 The fedfsFsl is an abstract object class. Protocol specific subtypes 1630 of this object class are used to store FSL information. The 1631 fedfsNfsFsl object class defined below is used to record an NFS FSL's 1632 location. Other subtypes MAY be defined for other protocols (e.g. 1633 CIFS). 1635 A fedfsFsl's fedfsFslUuid, fedfsFsnUuid, fedfsNsdbName, fedfsFslHost, 1636 and fedfsFslTTL attributes are REQUIRED. 1638 A fedfsFsl's fedfsNsdbPort, fedfsFslPort, fedfsAnnotation, and 1639 fedfsDescr attributes are OPTIONAL. 1641 If the fedfsNsdbPort is omitted, the standard LDAP port number, 389, 1642 SHOULD be assumed. 1644 If the fedfsFslPort is omitted, a standard port number based on the 1645 type of FSL should be assumed. For an NFS FSL, the standard NFS port 1646 number, 2049, SHOULD be assumed. 1648 The DN of an FSL is REQUIRED to take the following form: 1649 "fedfsFslUuid=$FSLUUID,fedfsFsnUuid=$FSNUUID,$NCE" where $FSLUUID is 1650 the FSL's UUID, $FSNUUID is the FSN's UUID, and $NCE is the DN of the 1651 NCE ("o=fedfs" by default). Since LDAP requires a DN to be unique, 1652 this ensures that each FSL entry has a unique UUID value within the 1653 LDAP directory. 1655 1657 /// 1658 /// objectclass ( 1659 /// 1.3.6.1.4.1.31103.1.1003 NAME 'fedfsFsl' 1660 /// DESC 'A physical location of a fileset' 1661 /// SUP top ABSTRACT 1662 /// MUST ( 1663 /// fedfsFslUuid 1664 /// $ fedfsFsnUuid 1665 /// $ fedfsNsdbName 1666 /// $ fedfsFslHost 1667 /// $ fedfsFslTTL 1668 /// ) 1669 /// MAY ( 1670 /// fedfsNsdbPort 1671 /// $ fedfsFslPort 1672 /// $ fedfsAnnotation 1673 /// $ fedfsDescr 1674 /// )) 1675 /// 1677 1679 4.2.2.4. fedfsNfsFsl 1681 A fedfsNfsFsl is used to represent an NFS FSL. The fedfsNfsFsl 1682 inherits all of the attributes of the fedfsFsl and extends the 1683 fedfsFsl with information specific to the NFS protocol. 1685 The DN of an NFS FSL is REQUIRED to take the following form: 1686 "fedfsFslUuid=$FSLUUID,fedfsFsnUuid=$FSNUUID,$NCE" where $FSLUUID is 1687 the FSL's UUID, $FSNUUID is the FSN's UUID, and $NCE is the DN of the 1688 NCE ("o=fedfs" by default). Since LDAP requires a DN to be unique, 1689 this ensures that each NFS FSL entry has a unique UUID value within 1690 the LDAP directory. 1692 1694 /// 1695 /// objectclass ( 1696 /// 1.3.6.1.4.1.31103.1.1004 NAME 'fedfsNfsFsl' 1697 /// DESC 'An NFS location of a fileset' 1698 /// SUP fedfsFsl STRUCTURAL 1699 /// MUST ( 1700 /// fedfsNfsPath 1701 /// $ fedfsNfsMajorVer 1702 /// $ fedfsNfsMinorVer 1703 /// $ fedfsNfsCurrency 1704 /// $ fedfsNfsGenFlagWritable 1705 /// $ fedfsNfsGenFlagGoing 1706 /// $ fedfsNfsGenFlagSplit 1707 /// $ fedfsNfsTransFlagRdma 1708 /// $ fedfsNfsClassSimul 1709 /// $ fedfsNfsClassHandle 1710 /// $ fedfsNfsClassFileid 1711 /// $ fedfsNfsClassWritever 1712 /// $ fedfsNfsClassChange 1713 /// $ fedfsNfsClassReaddir 1714 /// $ fedfsNfsReadRank 1715 /// $ fedfsNfsReadOrder 1716 /// $ fedfsNfsWriteRank 1717 /// $ fedfsNfsWriteOrder 1718 /// $ fedfsNfsVarSub 1719 /// $ fedfsNfsValidFor 1720 /// )) 1721 /// 1723 1725 5. NSDB Operations 1727 The operations defined by the protocol can be described as several 1728 sub-protocols that are used by entities within the federation to 1729 perform different roles. 1731 The first of these sub-protocols defines how the state of an NSDB 1732 node can be initialized and updated. The primary use of this sub- 1733 protocol is by an administrator to add, edit, or delete filesets, 1734 their properties, and their fileset locations. 1736 The second of these sub-protocols defines the queries that are sent 1737 to an NSDB node in order to perform resolution (or to find other 1738 information about the data stored within that NSDB node) and the 1739 responses returned by the NSDB node. The primary use of this sub- 1740 protocol is by a fileserver in order to perform resolution, but it 1741 may also be used by an administrator to query the state of the 1742 system. 1744 The first and second sub-protocols are defined as LDAP operations, 1745 using the schema defined in the previous section. If each NSDB node 1746 is a standard LDAP server, then, in theory, it is unnecessary to 1747 describe the LDAP operations in detail, because the operations are 1748 ordinary LDAP operations to query and update records. However, we do 1749 not require that an NSDB node implement a complete LDAP service, and 1750 therefore we define in these sections the minimum level of LDAP 1751 functionality required to implement an NSDB node. 1753 The NSDB sub-protocols are defined in the next two sub-sections. The 1754 descriptions of LDAP messages in these sections use the LDAP Data 1755 Interchange Format (LDIF) [RFC2849]. In order to differentiate 1756 constant and variable strings in the LDIF specifications, variables 1757 are prefixed by a $ character and use all upper case characters. For 1758 example, a variable named FOO would be specified as $FOO. 1760 This document uses the term NSDB client to refer to an LDAP client 1761 that uses either of the NSDB sub-protocols 1763 The third sub-protocol defines the queries and other requests that 1764 are sent to a fileserver in order to get information from it or to 1765 modify the state of the fileserver in a manner related to the 1766 federation protocols. The primary purpose of this protocol is for an 1767 administrator to create or delete a junction or discover related 1768 information about a particular fileserver. 1770 The third sub-protocol is defined as an ONC RPC protocols. The 1771 reason for using ONC RPC instead of LDAP is that all fileservers 1772 support ONC RPC but some do not support an LDAP Directory server. 1774 The ONC RPC administration protocol is defined in [FEDFS-ADMIN]. 1776 5.1. NSDB Operations for Administrators 1778 The admin entity initiates and controls the commands to manage 1779 fileset and namespace information. The admin entity, however, is 1780 stateless. All state is maintained at the NSDB nodes or at the 1781 fileserver. 1783 We require that each NSDB node be able to act as an LDAP server and 1784 that the protocol used for communicating between the admin entity and 1785 each NSDB node is LDAP. 1787 The names we assign to these operations are entirely for the purpose 1788 of exposition in this document, and are not part of the LDAP dialogs. 1790 5.1.1. Create an FSN 1792 This operation creates a new FSN in the NSDB by adding a new fedfsFsn 1793 entry in the NSDB's LDAP directory. 1795 A fedfsFsn entry contains a fedfsFsnUuid and fedfsNsdbName. The 1796 administrator chooses the fedfsFsnUuid and fedfsNsdbName. The 1797 process for choosing the fedfsFsnUuid is described in 1798 Section 4.2.1.1). The fedfsNsdbName is the name of the NSDB node 1799 that will serve as the source of definitive information about the FSN 1800 for the life of the FSN. 1802 The NSDB node that receives the request SHOULD check that 1803 fedfsNsdbName value matches its own value and return an error if it 1804 does not. This is to ensure that an FSN is always created by the 1805 NSDB node encoded within the FSN as its owner. 1807 The NSDB node that receives the request SHOULD check all of the 1808 attributes for validity and consistency, but this is not generally 1809 possible for LDAP servers because the consistency requirements cannot 1810 be expressed in the LDAP schema (although many LDAP servers can be 1811 extended, via plug-ins or other mechanisms, to add functionality 1812 beyond the strict definition of LDAP). 1814 5.1.1.1. LDAP Request 1816 This operation is implemented using the LDAP ADD request described by 1817 the LDIF below. 1819 dn: fedfsFsnUuid=$FSNUUID,$NCE 1820 changeType: add 1821 objectClass: fedfsFsn 1822 fedfsFsnUuid: $FSNUUID 1823 fedfsNsdbName: $NSDBNAME 1825 For example, if the $FSNUUID is "f81d4fae-7dec-11d0-a765- 1826 00a0c91e6bf6", the $NSDBNAME is "nsdb.example.com", and the $NCE is 1827 "o=fedfs" the operation would be: 1829 dn: fedfsFsnUuid=f81d4fae-7dec-11d0-a765-00a0c91e6bf6,o=fedfs 1830 changeType: add 1831 objectClass: fedfsFsn 1832 fedfsFsnUuid: f81d4fae-7dec-11d0-a765-00a0c91e6bf6 1833 fedfsNsdbName: nsdb.example.com 1835 5.1.2. Delete an FSN 1837 This operation deletes an FSN by removing a fedfsFsn entry in the 1838 NSDB's LDAP directory. 1840 If the FSN entry being deleted has child FSL entries, this function 1841 MUST return an error. This ensures that the NSDB will not contain 1842 any orphaned FSL entries. A compliant LDAP implementation will meet 1843 this requirement since Section 4.8 of [RFC4511] defines the LDAP 1844 delete operation to only be capable of removing leaf entries. 1846 Note that the FSN delete function only removes the fileset from the 1847 namespace (by removing the records for that FSN from the NSDB node 1848 that receives this request). The fileset and its data are not 1849 deleted. Any junction that has this FSN as its target may continue 1850 to point to this non-existent FSN. A dangling reference may be 1851 detected when a client tries to resolve the target of a junction that 1852 refers to the deleted FSN and the NSDB returns an error. 1854 5.1.2.1. LDAP Request 1856 This operation is implemented using the LDAP DELETE request described 1857 by the LDIF below. 1859 dn: fedfsFsnUuid=$FSNUUID,$NCE 1860 changeType: delete 1862 For example, if the $FSNUUID is "f81d4fae-7dec-11d0-a765- 1863 00a0c91e6bf6" and $NCE is "o=fedfs", the operation would be: 1865 dn: fedfsFsnUuid=f81d4fae-7dec-11d0-a765-00a0c91e6bf6,o=fedfs 1866 changeType: delete 1868 5.1.3. Create an FSL 1870 This operation creates a new FSL for the given FSN by adding a new 1871 fedfsFsl entry in the NSDB's LDAP directory. 1873 A fedfsFsl entry contains a fedfsFslUuid, fedfsFsnUuid, 1874 fedfsNsdbName, fedfsFslHost, and fedfsFslTTL. The administrator 1875 chooses the fedfsFslUuid. The process for choosing the fedfsFslUuid 1876 is described in Section 4.2.1.1. The fedfsFsnUuid is the UUID of the 1877 FSL's FSN. The fedfsNsdbName is the name of the NSDB node that 1878 stores definitive information about the FSL's FSN. The fedfsFslHost 1879 value is the network location of the fileserver that stores the FSL. 1880 The fedfsFslTTL is chosen by the administrator as described in 1881 Section 2.8.2. 1883 The administrator will also set additional attributes depending on 1884 the FSL type. 1886 5.1.3.1. LDAP Request 1888 This operation is implemented using the LDAP ADD request described by 1889 the LDIF below (NOTE: the LDIF shows the creation of an NFS FSL) 1891 dn:fedfsFslUuid=$FSLUUID,fedfsFsnUuid=$FSNUUID,$NCE 1892 changeType: add 1893 objectClass: fedfsNfsFsl 1894 fedfsFslUuid: $FSLUUID 1895 fedfsFsnUuid: $FSNUUID 1896 fedfsNsdbName: $NSDBNAME 1897 fedfsFslHost: $HOST 1898 fedfsFslPort: $PORT 1899 fedfsFslTTL: $TTL 1900 fedfsNfsPath: $PATH 1901 fedfsNfsMajorVer: $MAJOR 1902 fedfsNfsMinorVer: $MINOR 1903 fedfsNfsCurrency: $CURRENCY 1904 fedfsNfsGenFlagWritable: $WRITABLE 1905 fedfsNfsGenFlagGoing: $GOING 1906 fedfsNfsGenFlagSplit: $SPLIT 1907 fedfsNfsTransFlagRdma: $RDMA 1908 fedfsNfsClassSimul: $CLASS_SIMUL 1909 fedfsNfsClassHandle:$CLASS_HANDLE 1910 fedfsNfsClassFileid:$CLASS_FILEID 1911 fedfsNfsClassWritever:$CLASS_WRITEVER 1912 fedfsNfsClassChange: $CLASS_CHANGE 1913 fedfsNfsClassReaddir: $CLASS_READDIR 1914 fedfsNfsReadRank: $READ_RANK 1915 fedfsNfsReadOrder: $READ_ORDER 1916 fedfsNfsWriteRank: $WRITE_RANK 1917 fedfsNfsWriteOrder: $WRITE_ORDER 1918 fedfsNfsVarSub: $VAR_SUB 1919 fedfsNfsValidFor: $TIME 1920 fedfsAnnotation: $ANNOTATION 1921 fedfsDescr: $DESCR 1923 For example, if the $FSNUUID is "f81d4fae-7dec-11d0-a765- 1924 00a0c91e6bf6", the $FSLUUID is "84f775a7-8e31-14ae-b39d- 1925 10eeee060d2c", the $NSDBNAME is "nsdb.example.com", the $HOST is 1926 "server.example.com", $PORT is "2049", the $TTL is "300" seconds, the 1927 $PATH is stored in the file "/tmp/fsl_path", fileset is exported via 1928 NFSv4.1 ($MAJOR is "4" and $MINOR is "1"), $CURRENCY is "0" (an up to 1929 date copy), the FSL is writable, but not going, split, or accessible 1930 via RDMA, the simultaneous-use class is "1", the handle class is "0", 1931 the fileid class is "1", the write-verifier class is "1", the change 1932 class is "1", the readdir class is "9", the read rank is "7", the 1933 read order is "8", the write rank is "5", the write order is "6", 1934 variable substitution is false, $TIME is "300" seconds, $ANNOTATION 1935 is ""foo" = "bar"", $DESC is "This is a description.", and the $NCE 1936 is "o=fedfs", the operation would be (for readability the DN is split 1937 into two lines): 1939 dn:fedfsFslUuid=84f775a7-8e31-14ae-b39d-10eeee060d2c, 1940 fedfsFsnUuid=f81d4fae-7dec-11d0-a765-00a0c91e6bf6,o=fedfs 1941 changeType: add 1942 objectClass: fedfsNfsFsl 1943 fedfsFslUuid: 84f775a7-8e31-14ae-b39d-10eeee060d2c 1944 fedfsFsnUuid: f81d4fae-7dec-11d0-a765-00a0c91e6bf6 1945 fedfsNsdbName: nsdb.example.com 1946 fedfsFslHost: server.example.com 1947 fedfsFslPort: 2049 1948 fedfsFslTTL: 300 1949 fedfsNfsPath:< file:///tmp/fsl_path 1950 fedfsNfsMajorVer: 4 1951 fedfsNfsMinorVer: 1 1952 fedfsNfsCurrency: 0 1953 fedfsNfsGenFlagWritable: TRUE 1954 fedfsNfsGenFlagGoing: FALSE 1955 fedfsNfsGenFlagSplit: FALSE 1956 fedfsNfsTransFlagRdma: FALSE 1957 fedfsNfsClassSimul: 1 1958 fedfsNfsClassHandle: 0 1959 fedfsNfsClassFileid: 1 1960 fedfsNfsClassWritever: 1 1961 fedfsNfsClassChange: 1 1962 fedfsNfsClassReaddir: 9 1963 fedfsNfsReadRank: 7 1964 fedfsNfsReadOrder: 8 1965 fedfsNfsWriteRank: 5 1966 fedfsNfsWriteOrder: 6 1967 fedfsNfsVarSub: FALSE 1968 fedfsNfsValidFor: 300 1969 fedfsAnnotation: "foo" = "bar" 1970 fedfsDescr: This is a description. 1972 5.1.3.2. Selecting fedfsNfsFsl Values 1974 The fedfsNfsFSl object class is used to describe NFSv4 and NFSv4.1 1975 accessible filesets. For the reasons described in Section 2.8.3, 1976 administrators SHOULD choose reasonable values for all LDAP 1977 attributes of an NFSv4 accessible fedfsNfsFsl even though some of 1978 these LDAP attributes are not explicitly contained in the NFSv4 1979 fs_locations attribute returned to an NFSv4 client. 1981 When the administrator is unable to choose reasonable values for the 1982 LDAP attributes not explicitly contained in a NFSv4 fs_locations 1983 attribute, the values in the following table are RECOMMENDED. 1985 +-------------------------+----------+------------------------------+ 1986 | LDAP attribute | LDAP | Notes | 1987 | | value | | 1988 +-------------------------+----------+------------------------------+ 1989 | fedfsNfsCurrency | negative | Indicates that the server | 1990 | | value | does not know the currency | 1991 | | | (see 11.10.1 of [RFC5661]). | 1992 | fedfsNfsGenFlagWritable | FALSE | Leaving unset is not harmful | 1993 | | | (see 11.10.1 of [RFC5661]). | 1994 | fedfsNfsGenFlagGoing | FALSE | NFS client will detect a | 1995 | | | migration event if the FSL | 1996 | | | becomes unavailable. | 1997 | fedfsNfsGenFlagSplit | TRUE | Safe to assume that the FSL | 1998 | | | is split. | 1999 | fedfsNfsTransFlagRdma | TRUE | NFS client will detect if | 2000 | | | RDMA access is available. | 2001 | fedfsNfsClassSimul | 0 | 0 (zero) is treated as | 2002 | | | non-matching (see 11.10.1 of | 2003 | | | [RFC5661]). | 2004 | fedfsNfsClassHandle | 0 | See fedfsNfsClassSimul note. | 2005 | fedfsNfsClassFileid | 0 | See fedfsNfsClassSimul note. | 2006 | fedfsNfsClassWritever | 0 | See fedfsNfsClassSimul note. | 2007 | fedfsNfsClassChange | 0 | See fedfsNfsClassSimul note. | 2008 | fedfsNfsClassReaddir | 0 | See fedfsNfsClassSimul note. | 2009 | fedfsNfsReadRank | 0 | Highest value ensures FSL | 2010 | | | will be tried. | 2011 | fedfsNfsReadOrder | 0 | See fedfsNfsReadRank note. | 2012 | fedfsNfsWriteRank | 0 | See fedfsNfsReadRank note. | 2013 | fedfsNfsWriteOrder | 0 | See fedfsNfsReadRank note. | 2014 | fedfsNfsVarSub | FALSE | NFSv4 does not define | 2015 | | | variable substituion in | 2016 | | | paths. | 2017 | fedfsNfsValidFor | 0 | Indicates no appropriate | 2018 | | | refetch interval (see | 2019 | | | 11.10.2 of [RFC5661]). | 2020 +-------------------------+----------+------------------------------+ 2022 5.1.4. Delete an FSL 2024 This operation deletes the given Fileset location. The admin 2025 requests the NSDB node storing the fedfsFsl to delete it from its 2026 database. This operation does not result in the fileset location's 2027 data being deleted at the fileserver. 2029 5.1.4.1. LDAP Request 2031 The admin sends an LDAP DELETE request to the NSDB node to remove the 2032 FSL. 2034 dn: fedfsFslUuid=$FSLUUID,fedfsFsnUuid=$FSNUUID,$NCE 2035 changeType: delete 2037 For example, if the $FSNUUID is "f81d4fae-7dec-11d0-a765- 2038 00a0c91e6bf6", the $FSLUUID is "84f775a7-8e31-14ae-b39d- 2039 10eeee060d2c", and the $NCE is "o=fedfs", the operation would be (for 2040 readability the DN is split into two lines): 2042 dn: fedfsFslUuid=84f775a7-8e31-14ae-b39d-10eeee060d2c, 2043 fedfsFsnUuid=f81d4fae-7dec-11d0-a765-00a0c91e6bf6,o=fedfs 2044 changeType: delete 2046 5.1.5. Update an FSL 2048 This operation updates the attributes of a given FSL. This command 2049 results in a change in the attributes of the fedfsFsl at the NSDB 2050 node maintaining this FSL. The attributes that must not change are 2051 the fedfsFslUuid and the fedfsFsnUuid of the fileset this FSL 2052 implements. 2054 5.1.5.1. LDAP Request 2056 The admin sends an LDAP MODIFY request to the NSDB node to update the 2057 FSL. 2059 dn: fedfsFslUuid=$FSLUUID,fedfsFsnUuid=$FSNUUID,$NCE 2060 changeType: modify 2061 replace: $ATTRIBUTE-TYPE 2063 For example, if the $FSNUUID is "f81d4fae-7dec-11d0-a765- 2064 00a0c91e6bf6", the $FSLUUID is "84f775a7-8e31-14ae-b39d- 2065 10eeee060d2c", the $NCE is "o=fedfs", and the administrator wished to 2066 change the TTL to 10 minutes, the operation would be (for readability 2067 the DN is split into two lines): 2069 dn: fedfsFslUuid=84f775a7-8e31-14ae-b39d-10eeee060d2c, 2070 fedfsFsnUuid=f81d4fae-7dec-11d0-a765-00a0c91e6bf6,o=fedfs 2071 changeType: modify 2072 replace: fedfsFslTTL 2073 fedfsFslTTL: 600 2075 5.2. NSDB Operations for Fileservers 2077 5.2.1. NSDB Container Entry (NCE) Enumeration 2079 To find the NCEs for the NSDB foo.example.com, a fileserver would do 2080 the following: 2082 nce_list = empty 2083 connect to the LDAP directory at foo.example.com 2084 for each namingContext value $BAR in the root DSE 2085 /* $BAR is a DN */ 2086 query for a fedfsNcePrefix value at $BAR 2087 /* 2088 * The LDAP URL for this search would be 2089 * 2090 * ldap://foo.example.com:389/$BAR?fedfsNcePrefix?? 2091 * (objectClass=fedfsNsdbContainerInfo) 2092 * 2093 */ 2094 if a fedfsNcePrefix value is found 2095 nce = prepend the fedfsNcePrefix value to $BAR 2096 add nce to the nce_list 2098 5.2.2. Lookup FSLs for an FSN 2100 Using an LDAP search, the fileserver can obtain all of the FSLs for a 2101 given FSN. The FSN's fedfsFsnUuid is used as the search key. The 2102 following examples use the LDAP Universal Resource Identifier (URI) 2103 format defined in [RFC4516]. 2105 To obtain a list of all FSLs for $FSNUUID on the NSDB named 2106 $NSDBNAME, the following search can be used (for readability the URI 2107 is split into two lines): 2109 for each $NCE in nce_list 2110 ldap://$NSDBNAME/fsnUuid=$FSNUUID,$NCE??one? 2111 (objectClass=fedfsFsl) 2113 This search is for the children of the object with DN 2114 "fedfsFsnUuid=$FSNUUID,$NCE" with a filter for 2115 "objectClass=fedfsFsl". The scope value of "one" restricts the 2116 search to the entry's children (rather than the entire subtree below 2117 the entry) and the filter ensures that only FSL entries are returned. 2119 For example if $NSDBNAME is "nsdb.example.com", $FSNUUID is 2120 "f81d4fae-7dec-11d0-a765-00a0c91e6bf6", and $NCE is "o=fedfs", the 2121 search would be (for readability the URI is split into three lines): 2123 ldap://nsdb.example.com/ 2124 fsnUuid=f81d4fae-7dec-11d0-a765-00a0c91e6bf6,o=fedfs 2125 ??one?(objectClass=fedfsFsl) 2127 The following search can be used to obtain only the NFS FSLs for 2128 $FSNUUID on the NSDB named $NSDBNAME (for readability the URI is 2129 split into two lines): 2131 for each $NCE in nce_list 2132 ldap://$NSDBNAME/fsnUuid=$FSNUUID,$NCE??one? 2133 (objectClass=fedfsNfsFsl) 2135 This also searches for the children of the object with DN 2136 "fedfsFsnUuid=$FSNUUID,$NCE", but the filter for "objectClass = 2137 fedfsNfsFsl" restricts the results to only NFS FSLs. 2139 For example if $NSDBNAME is nsdb.example.com, $FSNUUID is f81d4fae- 2140 7dec-11d0-a765-00a0c91e6bf6, and $NCE is "o=fedfs",the search would 2141 be (for readability the URI is split into three lines): 2143 ldap://nsdb.example.com/ 2144 fsnUuid=f81d4fae-7dec-11d0-a765-00a0c91e6bf6,o=fedfs 2145 ??one?(objectClass=fedfsNfsFsl) 2147 The fileserver will generate a referral based on the set of FSLs 2148 returned by these queries using the process described in 2149 Section 2.8.3. 2151 5.3. NSDB Operations and LDAP Referrals 2153 The LDAPv3 protocol defines an LDAP referral mechanism that allows an 2154 LDAP server to redirect an LDAP client. LDAPv3 defines two types of 2155 LDAP referrals: the Referral type defined in Section 4.1.10 of 2156 [RFC4511] and the SearchResultReference type defined in Section 4.5.3 2157 of [RFC4511]. In both cases, the LDAP referral lists one or more 2158 URIs for services that can be used to complete the operation. In the 2159 remainder of this document, the term LDAP referral is used to 2160 indicate either of these types. 2162 If an NSDB operation results in an LDAP referral, the NSDB client MAY 2163 follow the LDAP referral. An NSDB client's decision to follow an 2164 LDAP referral is implementation and configuration dependent. For 2165 example, an NSDB client might be configured to follow only those LDAP 2166 referrals that were received over a secure channel, or only those 2167 that target an NSDB that supports encrypted communication. If an 2168 NSDB client chooses to follow an LDAP referral, the NSDB client MUST 2169 process the LDAP referral and prevent looping as described in Section 2170 4.1.10 of [RFC4511]. 2172 6. Security Considerations 2174 Both NFSv4/NFSv4.1 and LDAP provide security mechanisms. When used 2175 in conjunction with the federated filesystem protocols described in 2176 this document, the use of these mechanisms is RECOMMENDED. 2177 Specifically, the use of RPCSEC_GSS [RFC2203], which is built on the 2178 GSS-API [RFC2743], is RECOMMENDED on all NFS connections between a 2179 client and fileserver. The "Security Considerations" sections of the 2180 the NFSv4 [3530bis] and NFSv4.1 [RFC5661] specifications contain 2181 special considerations for the handling of GETATTR operations for the 2182 fs_locations and fs_locations_info attributes. For all LDAP 2183 connections established by the federated filesystem protocols, the 2184 use of TLS [RFC5246], as described in [RFC4513], is RECOMMENDED. 2186 If an NSDB client chooses to follow an LDAP referral, the NSDB client 2187 SHOULD authenticate the LDAP referral's target NSDB using the target 2188 NSDB's credentials (not the credentials of the NSDB that generated 2189 the LDAP referral). The NSDB client SHOULD NOT follow an LDAP 2190 referral that targets an NSDB for which it does not know the NSDB's 2191 credentials. 2193 Within a federation, there are two types of components an attacker 2194 may compromise: a fileserver and an NSDB. 2196 If an attacker compromises a fileserver, the attacker can interfere 2197 with the client's filesystem I/O operations (e.g. by returning 2198 fictitious data in the response to a read request) or fabricating a 2199 referral. The attacker's abilities are the same regardless of 2200 whether or not the federation protocols are in use. While the 2201 federation protocols do not give the attacker additional 2202 capabilities, they are additional targets for attack. The LDAP 2203 protocol described in Section 5.2 SHOULD be secured using the methods 2204 described above to defeat attacks on a fileserver via this channel. 2206 If an attacker compromises an NSDB, the attacker will be able to 2207 forge FSL information and thus poison the fileserver's referral 2208 information. Therefore an NSDB should be as secure as the 2209 fileservers which query it. The LDAP operations described in 2210 Section 5 SHOULD be secured using the methods described above to 2211 defeat attacks on an NSDB via this channel. 2213 It should be noted that the federation protocols do not directly 2214 provide access to filesystem data. The federation protocols only 2215 provide a mechanism for building a namespace. All data transfers 2216 occur between a client and server just as they would if the 2217 federation protocols were not in use. As a result, the federation 2218 protocols do not require new user authentication and authorization 2219 mechanisms or require a fileserver to act as a proxy for a client. 2221 7. IANA Considerations 2223 Using the process described in [RFC2578], one of the authors was 2224 assigned the Internet Private Enterprise Numbers range 2225 1.3.6.1.4.1.31103.x. Within this range, the subrange 2226 1.3.6.1.4.1.31103.1.x is permanently dedicated for use by the 2227 federated file system protocols. All of the LDAP attributes and 2228 object classes defined in this document are assigned object 2229 identifier (OID) values within the range 1.3.6.1.4.1.31103.1.x. 2231 In accordance with Section 3.4 and Section 4 of [RFC4520], the object 2232 identifier descriptors defined in this document (listed below) will 2233 be registered via the Expert Review process. 2235 7.1. LDAP Descriptor Registration 2236 Subject: Request for LDAP Descriptor Registration 2237 Person & email address to contact for further information: See 2238 "Author/Change Controller" 2239 Specification: draft-ietf-nfsv4-federated-fs-protocol 2240 Author/Change Controller: [document authors] 2242 Object Identifier: 1.3.6.1.4.1.31103.1.1 2243 Descriptor (short name): fedfsUuid 2244 Usage: attribute type 2246 Object Identifier: 1.3.6.1.4.1.31103.1.2 2247 Descriptor (short name): fedfsNetAddr 2248 Usage: attribute type 2250 Object Identifier: 1.3.6.1.4.1.31103.1.3 2251 Descriptor (short name): fedfsNetPort 2252 Usage: attribute type 2254 Object Identifier: 1.3.6.1.4.1.31103.1.4 2255 Descriptor (short name): fedfsFsnUuid 2256 Usage: attribute type 2258 Object Identifier: 1.3.6.1.4.1.31103.1.5 2259 Descriptor (short name): fedfsNsdbName 2260 Usage: attribute type 2262 Object Identifier: 1.3.6.1.4.1.31103.1.6 2263 Descriptor (short name): fedfsNsdbPort 2264 Usage: attribute type 2266 Object Identifier: 1.3.6.1.4.1.31103.1.7 2267 Descriptor (short name): fedfsNcePrefix 2268 Usage: attribute type 2270 Object Identifier: 1.3.6.1.4.1.31103.1.8 2271 Descriptor (short name): fedfsFslUuid 2272 Usage: attribute type 2274 Object Identifier: 1.3.6.1.4.1.31103.1.9 2275 Descriptor (short name): fedfsFslHost 2276 Usage: attribute type 2278 Object Identifier: 1.3.6.1.4.1.31103.1.10 2279 Descriptor (short name): fedfsFslPort 2280 Usage: attribute type 2282 Object Identifier: 1.3.6.1.4.1.31103.1.11 2283 Descriptor (short name): fedfsFslTTL 2284 Usage: attribute type 2286 Object Identifier: 1.3.6.1.4.1.31103.1.12 2287 Descriptor (short name): fedfsAnnotation 2288 Usage: attribute type 2290 Object Identifier: 1.3.6.1.4.1.31103.1.13 2291 Descriptor (short name): fedfsDescr 2292 Usage: attribute type 2294 Object Identifier: 1.3.6.1.4.1.31103.1.100 2295 Descriptor (short name): fedfsNfsPath 2296 Usage: attribute type 2298 Object Identifier: 1.3.6.1.4.1.31103.1.101 2299 Descriptor (short name): fedfsNfsMajorVer 2300 Usage: attribute type 2302 Object Identifier: 1.3.6.1.4.1.31103.1.102 2303 Descriptor (short name): fedfsNfsMinorVer 2304 Usage: attribute type 2306 Object Identifier: 1.3.6.1.4.1.31103.1.103 2307 Descriptor (short name): fedfsNfsCurrency 2308 Usage: attribute type 2310 Object Identifier: 1.3.6.1.4.1.31103.1.104 2311 Descriptor (short name): fedfsNfsGenFlagWritable 2312 Usage: attribute type 2314 Object Identifier: 1.3.6.1.4.1.31103.1.105 2315 Descriptor (short name): fedfsNfsGenFlagGoing 2316 Usage: attribute type 2318 Object Identifier: 1.3.6.1.4.1.31103.1.106 2319 Descriptor (short name): fedfsNfsGenFlagSplit 2320 Usage: attribute type 2322 Object Identifier: 1.3.6.1.4.1.31103.1.107 2323 Descriptor (short name): fedfsNfsTransFlagRdma 2324 Usage: attribute type 2326 Object Identifier: 1.3.6.1.4.1.31103.1.108 2327 Descriptor (short name): fedfsNfsClassSimul 2328 Usage: attribute type 2330 Object Identifier: 1.3.6.1.4.1.31103.1.109 2331 Descriptor (short name): fedfsNfsClassHandle 2332 Usage: attribute type 2334 Object Identifier: 1.3.6.1.4.1.31103.1.110 2335 Descriptor (short name): fedfsNfsClassFileid 2336 Usage: attribute type 2338 Object Identifier: 1.3.6.1.4.1.31103.1.111 2339 Descriptor (short name): fedfsNfsClassWritever 2340 Usage: attribute type 2342 Object Identifier: 1.3.6.1.4.1.31103.1.112 2343 Descriptor (short name): fedfsNfsClassChange 2344 Usage: attribute type 2346 Object Identifier: 1.3.6.1.4.1.31103.1.113 2347 Descriptor (short name): fedfsNfsClassReaddir 2348 Usage: attribute type 2350 Object Identifier: 1.3.6.1.4.1.31103.1.114 2351 Descriptor (short name): fedfsNfsReadRank 2352 Usage: attribute type 2354 Object Identifier: 1.3.6.1.4.1.31103.1.115 2355 Descriptor (short name): fedfsNfsReadOrder 2356 Usage: attribute type 2358 Object Identifier: 1.3.6.1.4.1.31103.1.116 2359 Descriptor (short name): fedfsNfsWriteRank 2360 Usage: attribute type 2362 Object Identifier: 1.3.6.1.4.1.31103.1.117 2363 Descriptor (short name): fedfsNfsWriteOrder 2364 Usage: attribute type 2366 Object Identifier: 1.3.6.1.4.1.31103.1.118 2367 Descriptor (short name): fedfsNfsVarSub 2368 Usage: attribute type 2370 Object Identifier: 1.3.6.1.4.1.31103.1.119 2371 Descriptor (short name): fedfsNfsValidFor 2372 Usage: attribute type 2374 Object Identifier: 1.3.6.1.4.1.31103.1.1001 2375 Descriptor (short name): fedfsNsdbContainerInfo 2376 Usage: object class 2378 Object Identifier: 1.3.6.1.4.1.31103.1.1002 2379 Descriptor (short name): fedfsFsn 2380 Usage: object class 2382 Object Identifier: 1.3.6.1.4.1.31103.1.1003 2383 Descriptor (short name): fedfsFsl 2384 Usage: object class 2386 Object Identifier: 1.3.6.1.4.1.31103.1.1004 2387 Descriptor (short name): fedfsNfsFsl 2388 Usage: object class 2390 8. Glossary 2392 Administrator: user with the necessary authority to initiate 2393 administrative tasks on one or more servers. 2395 Admin Entity: A server or agent that administers a collection of 2396 fileservers and persistently stores the namespace information. 2398 Client: Any client that accesses the fileserver data using a 2399 supported filesystem access protocol. 2401 Federation: A set of server collections and singleton servers that 2402 use a common set of interfaces and protocols in order to provide 2403 to their clients a federated namespace accessible through a 2404 filesystem access protocol. 2406 Fileserver: A server exporting a filesystem via a network filesystem 2407 access protocol. 2409 Fileset: The abstraction of a set of files and the directory tree 2410 that contains them. A fileset is the fundamental unit of data 2411 management in the federation. 2413 Note that all files within a fileset are descendants of one 2414 directory, and that filesets do not span filesystems. 2416 Filesystem: A self-contained unit of export for a fileserver, and 2417 the mechanism used to implement filesets. The fileset does not 2418 need to be rooted at the root of the filesystem, nor at the export 2419 point for the filesystem. 2421 A single filesystem MAY implement more than one fileset, if the 2422 client protocol and the fileserver permit this. 2424 Filesystem Access Protocol: A network filesystem access protocol 2425 such as NFSv2 [RFC1094], NFSv3 [RFC1813], NFSv4 [3530bis], or CIFS 2426 (Common Internet File System) [MS-SMB] [MS-SMB2] [MS-CIFS]. 2428 FSL (Fileset Location): The location of the implementation of a 2429 fileset at a particular moment in time. An FSL MUST be something 2430 that can be translated into a protocol-specific description of a 2431 resource that a client can access directly, such as an fs_location 2432 (for NFSv4), or share name (for CIFS). Note that not all FSLs 2433 need to be explicitly exported as long as they are contained 2434 within an exported path on the fileserver. 2436 FSN (Fileset Name): A platform-independent and globally unique name 2437 for a fileset. Two FSLs that implement replicas of the same 2438 fileset MUST have the same FSN, and if a fileset is migrated from 2439 one location to another, the FSN of that fileset MUST remain the 2440 same. 2442 Junction: A filesystem object used to link a directory name in the 2443 current fileset with an object within another fileset. The 2444 server-side "link" from a leaf node in one fileset to the root of 2445 another fileset. 2447 Namespace: A filename/directory tree that a sufficiently authorized 2448 client can observe. 2450 NSDB (Namespace Database) Service: A service that maps FSNs to FSLs. 2451 The NSDB may also be used to store other information, such as 2452 annotations for these mappings and their components. 2454 NSDB Node: The name or location of a server that implements part of 2455 the NSDB service and is responsible for keeping track of the FSLs 2456 (and related info) that implement a given partition of the FSNs. 2458 Referral: A server response to a client access that directs the 2459 client to evaluate the current object as a reference to an object 2460 at a different location (specified by an FSL) in another fileset, 2461 and possibly hosted on another fileserver. The client re-attempts 2462 the access to the object at the new location. 2464 Replica: A replica is a redundant implementation of a fileset. Each 2465 replica shares the same FSN, but has a different FSL. 2467 Replicas may be used to increase availability or performance. 2468 Updates to replicas of the same fileset MUST appear to occur in 2469 the same order, and therefore each replica is self-consistent at 2470 any moment. 2472 We do not assume that updates to each replica occur 2473 simultaneously. If a replica is offline or unreachable, the other 2474 replicas may be updated. 2476 Server Collection: A set of fileservers administered as a unit. A 2477 server collection may be administered with vendor-specific 2478 software. 2480 The namespace provided by a server collection could be part of the 2481 federated namespace. 2483 Singleton Server: A server collection containing only one server; a 2484 stand-alone fileserver. 2486 9. References 2488 9.1. Normative References 2490 [3530bis] Haynes, T. and D. Noveck, "NFS Version 4 Protocol", 2491 draft-ietf-nfsv4-rfc3530bis (Work In Progress), 2010. 2493 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 2494 Requirement Levels", BCP 14, RFC 2119, March 1997. 2496 [RFC2203] Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol 2497 Specification", RFC 2203, September 1997. 2499 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J. 2500 Schoenwaelder, Ed., "Structure of Management Information 2501 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999. 2503 [RFC2743] Linn, J., "Generic Security Service Application Program 2504 Interface Version 2, Update 1", RFC 2743, January 2000. 2506 [RFC2849] Good, G., "The LDAP Data Interchange Format (LDIF) - 2507 Technical Specification", RFC 2849, June 2000. 2509 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform 2510 Resource Identifier (URI): Generic Syntax", STD 66, 2511 RFC 3986, January 2005. 2513 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally 2514 Unique IDentifier (UUID) URN Namespace", RFC 4122, 2515 July 2005. 2517 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing 2518 Architecture", RFC 4291, February 2006. 2520 [RFC4510] Zeilenga, K., "Lightweight Directory Access Protocol 2521 (LDAP): Technical Specification Road Map", RFC 4510, 2522 June 2006. 2524 [RFC4511] Sermersheim, J., "Lightweight Directory Access Protocol 2525 (LDAP): The Protocol", RFC 4511, June 2006. 2527 [RFC4512] Zeilenga, K., "Lightweight Directory Access Protocol 2528 (LDAP): Directory Information Models", RFC 4512, 2529 June 2006. 2531 [RFC4513] Harrison, R., "Lightweight Directory Access Protocol 2532 (LDAP): Authentication Methods and Security Mechanisms", 2533 RFC 4513, June 2006. 2535 [RFC4516] Smith, M. and T. Howes, "Lightweight Directory Access 2536 Protocol (LDAP): Uniform Resource Locator", RFC 4516, 2537 June 2006. 2539 [RFC4517] Legg, S., "Lightweight Directory Access Protocol (LDAP): 2540 Syntaxes and Matching Rules", RFC 4517, June 2006. 2542 [RFC4519] Sciberras, A., "Lightweight Directory Access Protocol 2543 (LDAP): Schema for User Applications", RFC 4519, 2544 June 2006. 2546 [RFC4520] Zeilenga, K., "Internet Assigned Numbers Authority (IANA) 2547 Considerations for the Lightweight Directory Access 2548 Protocol (LDAP)", BCP 64, RFC 4520, June 2006. 2550 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security 2551 (TLS) Protocol Version 1.2", RFC 5246, August 2008. 2553 [RFC5661] Shepler, S., Eisler, M., and D. Noveck, "Network File 2554 System (NFS) Version 4 Minor Version 1 Protocol", 2555 RFC 5661, January 2010. 2557 9.2. Informative References 2559 [AFS] Howard, J., "An Overview of the Andrew File System", 2560 Proceeding of the USENIX Winter Technical Conference , 2561 1988. 2563 [FEDFS-ADMIN] 2564 Lentini, J., Everhart, C., Ellard, D., Tewari, R., and M. 2565 Naik, "Administration Protocol for Federated Filesystems", 2566 draft-ietf-nfsv4-federated-fs-admin (Work In Progress), 2567 2010. 2569 [FEDFS-DNS-SRV] 2570 Everhart, C., Adamson, W., and J. Zhang, "Using DNS SRV to 2571 Specify a Global File Name Space with NFS version 4", 2572 draft-ietf-nfsv4-federated-fs-dns-srv-namespace (Work In 2573 Progress), 2010. 2575 [MS-CIFS] Microsoft Corporation, "Common Internet File System (CIFS) 2576 Protocol Specification", MS-CIFS 2.0, November 2009. 2578 [MS-SMB] Microsoft Corporation, "Server Message Block (SMB) 2579 Protocol Specification", MS-SMB 17.0, November 2009. 2581 [MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Version 2582 2 Protocol Specification", MS-SMB2 19.0, November 2009. 2584 [RFC1094] Nowicki, B., "NFS: Network File System Protocol 2585 specification", RFC 1094, March 1989. 2587 [RFC1813] Callaghan, B., Pawlowski, B., and P. Staubach, "NFS 2588 Version 3 Protocol Specification", RFC 1813, June 1995. 2590 [RFC3254] Alvestrand, H., "Definitions for talking about 2591 directories", RFC 3254, April 2002. 2593 [RFC5662] Shepler, S., Eisler, M., and D. Noveck, "Network File 2594 System (NFS) Version 4 Minor Version 1 External Data 2595 Representation Standard (XDR) Description", RFC 5662, 2596 January 2010. 2598 [RFC5716] Lentini, J., Everhart, C., Ellard, D., Tewari, R., and M. 2599 Naik, "Requirements for Federated File Systems", RFC 5716, 2600 January 2010. 2602 Appendix A. Acknowledgments 2604 We would like to thank Andy Adamson of NetApp, Paul Lemahieu of EMC, 2605 Robert Thurlow of Sun Microsystems, and Mario Wurzl of EMC for 2606 helping to author this document. 2608 We would also like to thank George Amvrosiadis, Chuck Lever, Trond 2609 Myklebust, and Nicolas Williams for their comments. 2611 The extract.sh shell script and formatting conventions were first 2612 described by the authors of the NFSv4.1 XDR specification [RFC5662]. 2614 Authors' Addresses 2616 James Lentini 2617 NetApp 2618 1601 Trapelo Rd, Suite 16 2619 Waltham, MA 02451 2620 US 2622 Phone: +1 781-768-5359 2623 Email: jlentini@netapp.com 2625 Craig Everhart 2626 NetApp 2627 800 Cranberry Woods Drive 2628 Cranberry Township, PA 16066 2629 US 2631 Phone: +1 724-741-5101 2632 Email: Craig.Everhart@netapp.com 2634 Daniel Ellard 2635 Raytheon BBN Technologies 2636 10 Moulton Street 2637 Cambridge, MA 02138 2638 US 2640 Phone: +1 617-873-8004 2641 Email: dellard@bbn.com 2642 Renu Tewari 2643 IBM Almaden 2644 650 Harry Rd 2645 San Jose, CA 95120 2646 US 2648 Email: tewarir@us.ibm.com 2650 Manoj Naik 2651 IBM Almaden 2652 650 Harry Rd 2653 San Jose, CA 95120 2654 US 2656 Email: manoj@almaden.ibm.com