idnits 2.17.1 draft-ietf-opsawg-capwap-extension-05.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** There are 53 instances of too long lines in the document, the longest one being 15 characters in excess of 72. == There are 1 instance of lines with non-RFC6890-compliant IPv4 addresses in the document. If these are example addresses, they should be changed. -- The draft header indicates that this document updates RFC5416, but the abstract doesn't seem to directly say this. It does mention RFC5416 though, so this could be OK. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == The document seems to lack the recommended RFC 2119 boilerplate, even if it appears to use RFC 2119 keywords -- however, there's a paragraph with a matching beginning. Boilerplate error? (The document does seem to have the reference to RFC 2119 which the ID-Checklist requires). (Using the creation date from RFC5416, updated by this document, for RFC5378 checks: 2006-10-16) -- The document seems to lack a disclaimer for pre-RFC5378 work, but may have content which was first submitted before 10 November 2008. If you have contacted all the original authors and they are all willing to grant the BCP78 rights to the IETF Trust, then this is fine, and you can ignore this comment. If not, you may need to add the pre-RFC5378 disclaimer. (See the Legal Provisions document at https://trustee.ietf.org/license-info for more information.) -- The document date (October 27, 2014) is 3462 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Unused Reference: 'IEEE-802.11.2009' is defined on line 697, but no explicit reference was found in the text == Unused Reference: 'RFC4564' is defined on line 716, but no explicit reference was found in the text == Unused Reference: 'RFC5415' is defined on line 720, but no explicit reference was found in the text -- Possible downref: Non-RFC (?) normative reference: ref. 'IEEE-802.11.2009' -- Possible downref: Non-RFC (?) normative reference: ref. 'IEEE-802.11.2012' ** Downref: Normative reference to an Informational RFC: RFC 4564 Summary: 2 errors (**), 0 flaws (~~), 6 warnings (==), 5 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 OPSAWG Y. Chen 3 Internet-Draft D. Liu 4 Updates: 5416 (if approved) H. Deng 5 Intended status: Standards Track China Mobile 6 Expires: April 26, 2015 Lei. Zhu 7 Huawei 8 October 27, 2014 10 CAPWAP Extension for 802.11n and Power/channel Autoconfiguration 11 draft-ietf-opsawg-capwap-extension-05 13 Abstract 15 The CAPWAP binding for 802.11 is specified by RFC5416 and it was 16 based on IEEE 802-11.2007 standard. Several new amendments of 802.11 17 have been published since RFC5416 was published in 2009. 802.11n is 18 one of those amendments and it has been widely used in real 19 deployment. This document extends the CAPWAP binding for 802.11 to 20 support 802.11n and also defines a power and channel auto 21 configuration extension. 23 Status of This Memo 25 This Internet-Draft is submitted in full conformance with the 26 provisions of BCP 78 and BCP 79. 28 Internet-Drafts are working documents of the Internet Engineering 29 Task Force (IETF). Note that other groups may also distribute 30 working documents as Internet-Drafts. The list of current Internet- 31 Drafts is at http://datatracker.ietf.org/drafts/current/. 33 Internet-Drafts are draft documents valid for a maximum of six months 34 and may be updated, replaced, or obsoleted by other documents at any 35 time. It is inappropriate to use Internet-Drafts as reference 36 material or to cite them other than as "work in progress." 38 This Internet-Draft will expire on April 26, 2015. 40 Copyright Notice 42 Copyright (c) 2014 IETF Trust and the persons identified as the 43 document authors. All rights reserved. 45 This document is subject to BCP 78 and the IETF Trust's Legal 46 Provisions Relating to IETF Documents 47 (http://trustee.ietf.org/license-info) in effect on the date of 48 publication of this document. Please review these documents 49 carefully, as they describe your rights and restrictions with respect 50 to this document. Code Components extracted from this document must 51 include Simplified BSD License text as described in Section 4.e of 52 the Trust Legal Provisions and are provided without warranty as 53 described in the Simplified BSD License. 55 Table of Contents 57 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 58 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3 59 3. CAPWAP 802.11n Support . . . . . . . . . . . . . . . . . . . 3 60 3.1. CAPWAP Extension for 802.11n Support . . . . . . . . . . 4 61 3.1.1. 802.11n Radio Capability Information . . . . . . . . 4 62 3.1.2. 802.11n Radio Configuration Message Element . . . . . 4 63 3.1.3. 802.11n Station Information . . . . . . . . . . . . . 6 64 4. Power and Channel Autoconfiguration . . . . . . . . . . . . . 7 65 4.1. Channel Autoconfiguration When WTP Power On . . . . . . . 7 66 4.2. Power Configuration When WTP Power On . . . . . . . . . . 8 67 4.3. Channel/Power Auto Adjustment . . . . . . . . . . . . . . 8 68 4.3.1. IEEE 802.11 Scan Parameters Message Element . . . . . 9 69 4.3.2. IEEE 802.11 Scan Channel Bind Message Element . . . . 11 70 4.3.3. IEEE 802.11 Channel Scan Report . . . . . . . . . . . 12 71 4.3.4. IEEE 802.11 WTP Neighbor Report . . . . . . . . . . . 14 72 5. Security Considerations . . . . . . . . . . . . . . . . . . . 15 73 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 15 74 7. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 15 75 8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 16 76 9. Normative References . . . . . . . . . . . . . . . . . . . . 16 77 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 17 79 1. Introduction 81 IEEE Std 802.11n[TM]-2009 [IEEE 802.11n.2009] was published in 2009 82 as an amendment to the IEEE 802.11-2007 standard to improve network 83 throughput. The maximum data rate increases to 600Mbps. In the 84 physical layer, 802.11n uses Orthogonal Frequency Division 85 Multiplexing (OFDM) and Multiple Input/Multiple Output (MIMO) to 86 achieve the high throughput. 802.11n uses multiple antennas to form 87 an antenna array which can be dynamically adjusted to improve the 88 signal strength and extend the coverage. 90 Capabilities of 802.11n such as radio capability, radio configuration 91 and station information need to be supported by CAPWAP control 92 messages. The necessary extensions for this purpose are introduced 93 in Section 3 and specified in Section 4. 95 For IEEE 802.11 in general, it is desirable to be able to support 96 power and channel auto reconfiguration. Extensions for this purpose 97 are specified in Section 5. 99 2. Terminology 101 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL","SHALL NOT", 102 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 103 document are to be interpreted as described in [RFC2119]. 105 This document uses the following abbreviations: 107 AC Access Controller 108 A-MSDU Aggregate MAC Service Data Unit 109 A-MPDU Aggregate MAC Protocol Data Unit 110 AC Access Controller 111 GI Guard Interval 112 MCS Maximum Modulation and Coding Scheme 113 MIMO Multiple Input/Multiple Output 114 MPDU MAC Protocol Data Unit 115 MSDU MAC Service Data Unit 116 OFDM Orthogonal Frequency Division Multiplexing 117 TSF timing synchronization function 118 WTP Wireless Termination Point 120 3. CAPWAP 802.11n Support 122 802.11n supports three modes of channel usage: 20MHz mode, 40MHz mode 123 and mixed mode. 802.11n has a new feature called channel binding. It 124 can bind two adjacent 20MHz channel to one 40MHz channel to improve 125 the throughput.If using 40MHz channel configuration there will be 126 only one non-overlapping channel in the 2.4GHz band. In the large 127 scale deployment scenario, the operator needs to use 20MHz channel 128 configuration in the 2.4GHz band to allow more non-overlapping 129 channels. 131 In the MAC layer, a new feature of 802.11n is Short Guard 132 Interval(GI). 802.11a/g uses an 800ns guard interval between the 133 adjacent information symbols. In 802.11n, the GI can be configured 134 to 400nm under good wireless conditions. 136 Another feature in the 802.11 MAC layer is Block ACK. 802.11n can use 137 one ACK frame to acknowledge receipt of several MAC Protocol Data 138 Units (MPDUs). 140 CAPWAP needs to be extended to support the above new 802.11n 141 features. CAPWAP should allow the access controller to know the 142 supported 802.11n features and the access controller should be able 143 to configure the different channel binding modes. This document 144 defines extensions of the CAPWAP 802.11 binding to support 802.11n 145 features. 147 3.1. CAPWAP Extension for 802.11n Support 149 Three 802.11n features need to be supported by CAPWAP 802.11 binding: 150 802.11n radio capability, 802.11n radio configuration and station 151 information. This section defines the extension of the current 152 CAPWAP 802.11 binding to support the 802.11n features. 154 3.1.1. 802.11n Radio Capability Information 156 [RFC5416] defines the IEEE 802.11 binding for the CAPWAP protocol. 157 It defines the IEEE 802.11 Information Element, which is used to 158 communicate any information element (IE) defined in the IEEE 802.11 159 protocol. This document specifies that the IEEE 802.11 Information 160 Element defined in section 6.6 of [RFC5416] SHALL be used to 161 transport the IEEE 802.11 HT information element defined in section 162 8.4.2.58 of [IEEE-802.11.2012]. The HT IE MAY in this way be 163 included in CAPWAP Configuration Status Request/Response messages. 165 3.1.2. 802.11n Radio Configuration Message Element 167 The 802.11n Radio Configuration message element is used by the AC to 168 provide IEEE 802.11n-specific configuration for a Radio on the WTP, 169 and by the WTP to deliver its radio configuration to the AC. This 170 supplements the IEEE 802.11 WTP WLAN Radio Configuration message 171 element defined in [RFC5416]. The format of the 802.11n Radio 172 Configuration message element is shown in Figure 1. The 802.11n 173 Radio Configuration message element MAY be included in the CAPWAP 174 Configuration Update Request/Response message. 176 0 1 2 3 177 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 178 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 179 | Radio ID |S|P|N|G|B| | MaxSup MCS | Max MandMCS | 180 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 181 | TxAntenna | RxAntenna | Reserved | 182 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 184 Figure 1: 802.11n Radio Configuration Message Element 186 Type: TBD1 for 802.11n Radio Configuration Message Element. 188 Length: 16. 190 Radio ID: An 8-bit value representing the radio, whose value is 191 between one (1) and 31. 193 S bit: A-MSDU configuration: Enable/disable Aggregate MAC Service 194 Data Unit (A-MSDU). Set to 0 if disabled. Set to 1 if enabled. 196 P bit: A-MPDU configuration: Enable/disable Aggregate MAC Protocol 197 Data Unit (A-MPDU). Set to 0 if disabled. Set to 1 if enabled. 199 N bit: 11n Only configuration: Whether to allow only 11n user access. 200 Set to 0 if non-802.11n user access is allowed. Set to 1 if non- 201 802.11n user access is not allowed. 203 G bit: Short GI configuration: Set to 0 if Short Guard Interval is 204 disabled. Set to 1 if enabled. 206 B bit: Bandwidth binding mode configuration: Set to 0 if 40MHz 207 binding mode. Set to 1 if 20MHz binding mode. 209 Maximum supported MCS: Maximum Modulation and Coding Scheme (MCS) 210 index. It indicates the maximum MCS index that the WTP or the STA 211 can support. 213 Max Mandatory MCS: Maximum Mandatory Modulation and Coding Scheme 214 (MCS) index. Mandatory rates must be supported by the WTP and the 215 STA that want to associate with the WTP. 217 TxAntenna: Transmitting antenna configuration. Each TxAntenna bit 218 represents a certain number of antennas. Set to 1 if enabled, set to 219 0 if disabled. 221 RxAntenna: Receiving antenna configuration. Each RxAntenna bit 222 represents a certain number of antennas. Set to 1 if enabled, set to 223 0 if disabled. 225 The detail definition of TxAntenna/RxAntenna is as follows: 227 0 1 2 3 4 5 6 7 228 +-+-+-+-+-+-+-+-+ 229 |8|7|6|5|4|3|2|1| 230 +-+-+-+-+-+-+-+-+ 232 Figure 2: Definition of TxAntenna/RxAntenna 233 Each bit when enabled will represent the number of antennas 234 correspondent to that bit. Only one bit is allowed to be set to 1. 235 For example, when the first bit is enabled,it represents 8 antennas. 237 3.1.3. 802.11n Station Information 239 The 802.11n Station Information message element is used to deliver 240 IEEE 802.11n station policy from the AC to the WTP. The definition 241 of the 802.11n Station Information message element is in figure 3. 242 The format of 802.11n Station Information MAY be included in the 243 CAPWAP Station Configuration Request message. 245 0 1 2 3 246 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 247 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 248 | MAC Address | 249 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 250 | MAC Address |S| P |T|F|H|M| | Max RxFactor | 251 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 252 | Min StaSpacing| HiSuppDataRate | AMPDUBufSize | 253 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 254 | AMPDUBufSize | HtcSupp | MCS Set | 255 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 256 | MCS Set | 257 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 258 | MCS Set | 259 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 261 Figure 3: 802.11n Station Information 263 MAC Address: The station's MAC Address. 265 Type: TBD2 for 802.11 Station Information. 267 Length: 24. 269 S bit: Supporting bandwidth mode. 0x00: 20MHz bandwidth mode. 0x01: 270 40MHz bandwidth binding mode. 272 P flag: Power Saving mode: 0x00: Static. 0x01: Dynamic. 0x03: Do 273 not support power saving mode. 275 T bit: Whether to support short GI in 20MHz bandwidth mode. 0x00: Do 276 not support short GI. 0x01: Support short GI. 278 F bit: ShortGi40: Whether to support short GI in 40MHz bandwidth 279 mode. 0x00: Do not support short GI. 0x01: Support short GI. 281 H bit: Whether Block Ack supports delay mode. 0x00: Do not support 282 delay mode. 0x01: Support delay mode. 284 M bit: The maximal A-MSDU length. 0x00: 3839 bytes. 0x01: 7935 285 bytes. 287 Max RxFactor: The maximal receiving A-MPDU factor. 289 Min StaSpacing: Minimum MPDU Start Spacing. 291 HiSuppDataRate: Maximal transmission speed (Mbps). 293 AMPDUBufSize: A-MPDU buffer size (Byte). 295 HtcSupp: Whether to place HT headers on the packets forwarded from 296 this station. 298 MCS Set: The MCS bitmap that the station supports. 300 4. Power and Channel Autoconfiguration 302 Power and channel autoconfiguration could avoid potential radio 303 interference and improve the WLAN performance. In general, the auto- 304 configuration of radio power and channel could occur at two stages: 305 when the WTP power on or during the WTP running time. 307 4.1. Channel Autoconfiguration When WTP Power On 309 Power and channel auto reconfiguration avoids potential radio 310 interference and improves the WLAN performance. In general, the 311 auto- configuration of radio power and channel can occur at two 312 stages: when the WTP powers on or while the WTP is in running state. 313 When the WTP is powered-on, it needs to configure a proper channel. 314 IEEE 802.11 Direct Sequence Control elements or IEEE 802.11 OFDM 315 Control element defined in RFC5416 SHOULD be carried in the Configure 316 Status Response message to offer WTP a channel at this stage. If the 317 channel field of those information element is set to 0, the WTP will 318 need to determine its channel by itself, otherwise the WTP SHOULD be 319 configured according to the provided information element. 321 When the WTP determines its own channel configuration, it should 322 first scan the channel information, then determine which channel it 323 will work on and form a channel quality scan report. As shown in 324 Figure 3, the AC can control the scanning process by sending the IEEE 325 802.11 Scan Parameters message element defined in Section 5.1 to the 326 WTP in a Configure Status Response message or in a WTP Configure 327 Update Request message. The WTP will send the channel quality report 328 to the AC using the WTP Event Request message. 330 AC will determine whether to change the channel configuration based 331 on the received channel quality report. The AC MAY use a IEEE 802.11 332 Direct Sequence Control or IEEE 802.11 OFDM Control message element 333 carried by the configure Update Request message to configure a new 334 channel for the WTP. 336 4.2. Power Configuration When WTP Power On 338 The IEEE 802.11 Tx Power message element defined in section 6.18 of 339 [RFC5416] is used by the AC to control the transmission power of the 340 WTP. The 802.11 Tx Power information element is carried in the 341 Configure Status Response message or in the Configure Update Request 342 message. 344 4.3. Channel/Power Auto Adjustment 346 The Channel Scan Procedure is illustrated by the figure 4. 348 WTP Configure Status Reqest AC 349 -------------------------------------------------------> 350 Configure Status Res(Scan Parameter Message Element, Channel Bind Message Element) 351 <------------------------------------------------------ 352 or 354 WTP AC 355 Configure Update Req(Scan Parameter Message Element, Channel Bind Message Element ) 356 <----------------------------------------------------- 357 Configure Update Response 358 -----------------------------------------------------> 360 Figure 4: Channel Scan Procedure 362 The WTP has two work modes: normal mode and scan only mode. In 363 normal mode, the WTP can provide service for station access and scan 364 channels at the same time. Whether the WTP will scan a given set of 365 channels is determined by the Max Cycles field in the IEEE 802.11 366 Channel Bind message element defined in Section 4.3.2. When this 367 field is set to 0, the WTP will not scan the channel. If this field 368 is set to 255, the WTP will scan the channel continuously. The type 369 of the scan is determined by the Scan Type field. With the passive 370 scan type, the WTP monitors the air interface, using the received 371 beacon frames to determine the nearby WTPs. With the active scan 372 type, the WTP will send a probe message and receive probe response 373 messages. In this case, the WTP may need to operate in station mode 374 which means it is not a WTP function only device, it also has part of 375 station function. 377 In normal mode, the WTP behaviour is controlled by three parameters: 378 PrimeChlSrvTime, OnChannelScanTIme, and OffChannelScnTIme. These are 379 provided by the IEEE 802.11 Scan Parameters message element defined 380 in Section 4.3.1. The WTP will provide access service for stations 381 for the duration given by PrimeChlSrvTime. It then scans the working 382 channel for the duration given by OnChannelScnTime. It returns to 383 servicing station access requests on the working channel for another 384 period of length PrimeChlSrvTime, then moves to a different channel 385 and scans it for duration OffChannelScnTime. It repeats this cycle, 386 scanning a new non-working channel each time, until all the channels 387 have been scanned. 389 When the WTP works in scan only mode, it does not distinguish between 390 the working channel and scan channel. Every channel's scan duration 391 will be OffChannelScnTime and PrimeChlSrvTime and OnChannelScanTime 392 MUST be set to 0. 394 As shown in Figure 4, the AC can control the scan behaviour at the 395 WTP by including the IEEE 802.11 Scan Parameters and IEEE 802.11 396 Channel Bind message elements in a Configure Status Response or WTP 397 Configure Update Request message. 399 Scan Report. After completing its scan, the WTP MAY send the scan 400 report to the AC using a WTP Event Request message. The scan report 401 information is carried in the IEEE 802.11 Channel Scan Report message 402 element (Section 4.3.3) and an instance of the IEEE 802.11 403 Information Element message element carrying a copy of theIEEE 802.11 404 Neighbor WTP Report information element (Section 4.3.4). 406 4.3.1. IEEE 802.11 Scan Parameters Message Element 408 The format of the IEEE 802.11 Scan Parameters Message Element is as 409 shown in Figure 5: 411 0 1 2 3 412 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 413 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 414 | Radio ID |M|S|L|D| | Report Time | 415 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 416 | PrimeChlSrvTime | On Channel ScanTime | 417 +-------------------------------+-------------------------------+ 418 | Off Channel ScanTime | 419 +-------------------------------+ 421 Figure 5: IEEE 802.11 Scan Parameters Message Element 423 Type: TBD3 for IEEE 802.11 Scan Parameters Message Element. 425 Length: 10. 427 Radio ID: An 8-bit value representing the radio, whose value is 428 between one (1) and 31. 430 M bit: Work mode of the WTP. 0:normal mode. 1: scan only mode, no 431 service is provided in this mode. 433 S bit: Scan Type: 0: active scan; 1: passive scan. 435 L bit: L=1: Open Load Balance Scan. L=0: Disable Load Balance Scan. 437 D bit: D=1: Open Rogue WTP detection scan. D=0: Disable Rouge WTP 438 detection scan. 440 Report Time: Channel quality report time (unit: second). 442 PrimeChlSrvTime: Service time (unit: millisecond) on the working scan 443 channel. This segment is invalid(set to 0) when WTP oper mode is set 444 to 1. The maximum value of this segment is 10000, the minimum value 445 of this segment is 5000, the default value is 5000. 447 On Channel ScanTime: The scan time (unit: millisecond) of the working 448 channel. When the M bit is set to 1, this segment is invalid(set to 449 0). The maximum value of this segment is 120, the minimum value of 450 this segment is 60, the default value is 60. 452 Off Channel ScanTime: The scan time (unit: millisecond) of the 453 working channel. When the WTP operating mode is set to 2, this 454 segment MUST be set to 0. The maximum value of this segment is 120, 455 the minimum value of this segment is 60, the default value is 60. 457 4.3.2. IEEE 802.11 Scan Channel Bind Message Element 459 The format of the IEEE 802.11 Scan Channel Bind Message Element is as 460 follows: 462 0 1 2 3 463 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 464 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 465 | Radio ID | Flag | Max Cycles |Channel Count |ScanChannelSet.| 466 +---------------+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 468 Figure 6: IEEE 802.11 Scan Channel Bind Message Element 470 Type: TBD4 for IEEE 802.11 Scan Channel Bind Message Element. 472 Length: variable. 474 Radio ID: An 8-bit value representing the radio, whose value is 475 between one (1) and 31. 477 Flag: reserved. 479 Max Cycles: Number of times the scanning cycle is repeated for the 480 set of channels identified by this message element. 255 means 481 continuous scan. 483 Channel Count: The number of channels will be scanned. 485 Scan Channel Set: identifies the members of the set of channels to 486 which this message element instance applies. The format for each 487 channel is as follows: 489 0 1 2 3 490 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 491 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 492 | Channel ID | Flag | 493 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 495 Figure 7: Channel Information Format 497 Channel ID: the channel ID of the channel which will be scanned. 499 Flag: Bitmap, reserved for future use. 501 4.3.3. IEEE 802.11 Channel Scan Report 503 There are two types of scan report: Channel Scan Report and WTP 504 Neighbor Report. Channel Scan Report is used to channel 505 autoconfiguration while WTP Neighbor Report is used to power 506 autoconfiguration. The WTP send the scan report to the AC through 507 WTP Event Request message. The information element that used to 508 carry the scan report is Channel Scan Report Message Element and WTP 509 Neighbor Report Message Element. 511 The format of the IEEE 802.11 Channel Scan Report message element is 512 in Figure 8. 514 0 1 515 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 516 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 517 | Radio ID | Report Count | Channel Scan Report ... | 518 +---------------------------------------------------------------+ 520 Figure 8: IEEE 802.11 Channel Scan Report Message Element 522 Type: TBD5 for IEEE 802.11 Channel Scan Report message element. 524 Length: >=29. 526 Radio ID: An 8-bit value representing the radio, whose value is 527 between one (1) and 31. 529 Report Count: The number of channels for which a report is provided. 531 Channel Scan Report: The format of each Channel Scan Report is shown 532 in Figure 9. 534 0 1 2 3 535 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 536 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 537 | Channel Number | Radar Statistics | Mean | 538 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 539 | Time | Mean RSSI | Screen Packet Count | 540 +---------------------------------------------------------------+ 541 | NeighborCount| Mean Noise | Interference | WTP Tx Occp | 542 +---------------------------------------------------------------+ 543 | WTP Rx Occp | Unknown Occp | CRC Err Cnt | Decrypt Err Cnt | 544 +---------------------------------------------------------------+ 545 |Phy Err Cnt | Retrans Cnt | 546 +-----------------------------+ 548 Figure 9: Channel Scan Report 550 Channel Number: The channel number. 552 Radar Statistics: Whether detect radar signal in this channel. 0x00: 553 detect radar signal. 0x01: no radar signal is detected. 555 Mean Time: Channel measurement duration (ms). 557 Mean RSSI: The average signal strength of the scanned channel 558 (dBm(2's complement)). 560 Screen Packet Count: Received packet number. 562 Neighbor Count: The neighbor number of this channel. 564 Mean Noise: the average noise on this channel (dBm(2's complement)). 566 Interference: The interference of the channel, including STA 567 interference and WTP interference. 569 WTP Tx Occp: (The WTP transmission time/Monitor time)*255. The WTP 570 transmission time is the total sending time of the WTP during the 571 period of channel scan. 573 WTP Rx Occp: (The WTP receiving duration time/Monitor time)*255. THe 574 WTP receiving duration time is the total receiving time of the WTP 575 during the period of channel scan. 577 Unknown Occp: (All other packet transmission time duration/Monitor 578 time)*255. 580 CRC Err Cnt: CRC err packet number. 582 Decrypt Err Cnt: Decryption err packet number. 584 Phy Err Cnt: Physical err packet number. 586 Retrans Cnt: Retransmission packet number. 588 Note:The values of the above four count fields for a non-operational 589 channel can be ignored 591 4.3.4. IEEE 802.11 WTP Neighbor Report 593 0 1 2 3 594 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 595 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 596 | Radio ID | Reserved | Number of Neighbor Report | 597 +---------------------------------------------------------------+ 598 | Neighbor Infor... | 599 +---------------------------------------------------------------+ 601 Figure 10: WTP Neighbor Report TLV 603 The definition of Neighbor info is as follows: 605 0 1 2 3 606 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 607 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 608 | BSSID | 609 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 610 | BSSID | Channel Number | 611 +---------------------------------------------------------------+ 612 | 2nd Offset | Mean RSSI | Sta Occp | WTP Occp | 613 +---------------------------------------------------------------+ 615 Figure 11: Neighbor info 617 BSSID: The BSSID of this neighbor WTP. 619 Channel Number: The channel number of this WTP neighbor. 621 2nd channel offset: The auxiliary channel offset of this WTP. 623 Mean RSSI: The average signal strength of this WTP (dbm). 625 Sta Occp: (The station air interface occupation time/Monitor 626 time)*255.The station air interface occupation time is the air 627 interface occupation time caused by the stations which are connected 628 to this WTP. 630 WTP Occp: (The WTP air interface occupation time/Monitor time)*255. 631 The WTP air interface occupation time is the air interface occupation 632 time caused by the WTP. 634 5. Security Considerations 636 This document is based on RFC5415/RFC5416 and adds no new security 637 considerations. 639 6. IANA Considerations 641 The extension defined in this document need to extend CAPWAP IEEE 642 802.11 binding message element which is defined in section 6 of 643 [RFC5416]. The following IEEE 802.11 specific message element type 644 need to be defined by IANA. 646 TBD1: 802.11n Radio Configuration Message Element type value 647 described in section 4.1.2. 649 TBD2: 802.11n Station Message Element type value described in section 650 4.1.3. 652 TBD3: 802.11 Scan Parameter Message Element type value described in 653 section 4.3.1. 655 TBD4: 802.11 Channel Bind Message Element type value described in 656 section 4.3.2. 658 TBD5: Channel Scan Report Message Element type value described in 659 section 4.3.3. 661 TBD6 entry for WTP Neighbor Report as descrbed in section 4.3.4 . 663 7. Contributors 665 This draft is a joint effort from the following contributors: 667 Gang Chen: China Mobile chengang@chinamobile.com 668 Naibao Zhou: China Mobile zhounaibao@chinamobile.com 670 Chunju Shao: China Mobile shaochunju@chinamobile.com 672 Hao Wang: Huawei3Come hwang@h3c.com 674 Yakun Liu: AUTELAN liuyk@autelan.com 676 Xiaobo Zhang: GBCOM 678 Xiaolong Yu: Ruijie Networks 680 Song zhao: ZhiDaKang Communications 682 Yiwen Mo: ZhongTai Networks 684 Dorothy Stanley: dstanley1389@gmail.com 686 Tom Taylor: tom.taylor.stds@gmail.com 688 8. Acknowledgements 690 The authors would like to thanks Ronald Bonica,Romascanu Dan, Benoit 691 Claise, Melinda Shore and Margaret Wasserman for their useful 692 suggestions. The authors also thanks Dorothy Stanley and Tom Taylor 693 for their review and useful comments. 695 9. Normative References 697 [IEEE-802.11.2009] 698 "IEEE Standard for Information technology - 699 Telecommunications and information exchange between 700 systems Local and metropolitan area networks - Specific 701 requirements Part 11: Wireless LAN Medium Access Control 702 (MAC) and Physical Layer (PHY) Specifications, 703 Enhancements for Higher Throughput (Amendment 5)", 2009. 705 [IEEE-802.11.2012] 706 "IEEE Standard for Information technology - 707 Telecommunications and information exchange between 708 systems Local and metropolitan area networks - Specific 709 requirements Part 11: Wireless LAN Medium Access Control 710 (MAC) and Physical Layer (PHY) Specifications", March 711 2012. 713 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 714 Requirement Levels", BCP 14, RFC 2119, March 1997. 716 [RFC4564] Govindan, S., Cheng, H., Yao, ZH., Zhou, WH., and L. Yang, 717 "Objectives for Control and Provisioning of Wireless 718 Access Points (CAPWAP)", RFC 4564, July 2006. 720 [RFC5415] Calhoun, P., Montemurro, M., and D. Stanley, "Control And 721 Provisioning of Wireless Access Points (CAPWAP) Protocol 722 Specification", RFC 5415, March 2009. 724 [RFC5416] Calhoun, P., Montemurro, M., and D. Stanley, "Control and 725 Provisioning of Wireless Access Points (CAPWAP) Protocol 726 Binding for IEEE 802.11", RFC 5416, March 2009. 728 Authors' Addresses 730 Yifan Chen 731 China Mobile 732 No.32 Xuanwumen West Street 733 Beijing 100053 734 China 736 Email: chenyifan@chinamobile.com 738 Dapeng Liu 739 China Mobile 740 No.32 Xuanwumen West Street 741 Beijing 100053 742 China 744 Email: liudapeng@chinamobile.com 746 Hui Deng 747 China Mobile 748 No.32 Xuanwumen West Street 749 Beijing 100053 750 China 752 Email: denghui@chinamobile.com 754 Lei Zhu 755 Huawei 756 No. 156, Shi-Chuang-Ke-Ji-Shi-Fan-Yuan Beiqing Road, Haidian District 757 Beijing 100095 758 China 760 Email: lei.zhu@huawei.com