idnits 2.17.1 draft-ietf-ospf-encapsulation-cap-00.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (October 13, 2015) is 3111 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Unused Reference: 'RFC1700' is defined on line 350, but no explicit reference was found in the text == Unused Reference: 'IANA-OSPFv2' is defined on line 414, but no explicit reference was found in the text ** Obsolete normative reference: RFC 1700 (Obsoleted by RFC 3232) ** Obsolete normative reference: RFC 4970 (Obsoleted by RFC 7770) ** Obsolete normative reference: RFC 5226 (Obsoleted by RFC 8126) == Outdated reference: A later version (-08) exists of draft-ietf-bier-architecture-02 == Outdated reference: A later version (-12) exists of draft-ietf-bier-mpls-encapsulation-02 == Outdated reference: A later version (-13) exists of draft-ietf-nvo3-vxlan-gpe-00 == Outdated reference: A later version (-05) exists of draft-xu-spring-islands-connection-over-ip-04 -- Obsolete informational reference (is this intentional?): RFC 5512 (Obsoleted by RFC 9012) -- Obsolete informational reference (is this intentional?): RFC 5566 (Obsoleted by RFC 9012) Summary: 3 errors (**), 0 flaws (~~), 7 warnings (==), 3 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group X. Xu, Ed. 3 Internet-Draft Huawei 4 Intended status: Standards Track B. Decraene, Ed. 5 Expires: April 15, 2016 Orange 6 R. Raszuk 7 Mirantis Inc. 8 U. Chunduri 9 Ericsson 10 L. Contreras 11 Telefonica I+D 12 L. Jalil 13 Verizon 14 October 13, 2015 16 Advertising Tunnelling Capability in OSPF 17 draft-ietf-ospf-encapsulation-cap-00 19 Abstract 21 Some networks use tunnels for a variety of reasons. A large variety 22 of tunnel types are defined and the ingress needs to select a type of 23 tunnel which is supported by the egress. This document defines how 24 to advertise egress tunnel capabilities in OSPF Router Information. 26 Status of This Memo 28 This Internet-Draft is submitted in full conformance with the 29 provisions of BCP 78 and BCP 79. 31 Internet-Drafts are working documents of the Internet Engineering 32 Task Force (IETF). Note that other groups may also distribute 33 working documents as Internet-Drafts. The list of current Internet- 34 Drafts is at http://datatracker.ietf.org/drafts/current/. 36 Internet-Drafts are draft documents valid for a maximum of six months 37 and may be updated, replaced, or obsoleted by other documents at any 38 time. It is inappropriate to use Internet-Drafts as reference 39 material or to cite them other than as "work in progress." 41 This Internet-Draft will expire on April 15, 2016. 43 Copyright Notice 45 Copyright (c) 2015 IETF Trust and the persons identified as the 46 document authors. All rights reserved. 48 This document is subject to BCP 78 and the IETF Trust's Legal 49 Provisions Relating to IETF Documents 50 (http://trustee.ietf.org/license-info) in effect on the date of 51 publication of this document. Please review these documents 52 carefully, as they describe your rights and restrictions with respect 53 to this document. Code Components extracted from this document must 54 include Simplified BSD License text as described in Section 4.e of 55 the Trust Legal Provisions and are provided without warranty as 56 described in the Simplified BSD License. 58 Table of Contents 60 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 61 1.1. Requirements Language . . . . . . . . . . . . . . . . . . 3 62 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3 63 3. Advertising Encapsulation Capability . . . . . . . . . . . . 3 64 4. Tunnel Encapsulation Type . . . . . . . . . . . . . . . . . . 3 65 5. Tunnel Encapsulation Attribute . . . . . . . . . . . . . . . 5 66 5.1. Tunnel Parameters sub-TLV . . . . . . . . . . . . . . . . 6 67 5.2. Encapsulated Protocol sub-TLV . . . . . . . . . . . . . . 6 68 5.3. End Point sub-TLV . . . . . . . . . . . . . . . . . . . . 6 69 5.4. Color sub-TLV . . . . . . . . . . . . . . . . . . . . . . 6 70 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 6 71 6.1. OSPF Router Information . . . . . . . . . . . . . . . . . 6 72 6.2. IGP Tunnel Encapsulation Types Registry . . . . . . . . . 6 73 6.3. IGP Tunnel Encapsulation Attribute Types Registry . . . . 7 74 7. Security Considerations . . . . . . . . . . . . . . . . . . . 8 75 8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 8 76 9. References . . . . . . . . . . . . . . . . . . . . . . . . . 8 77 9.1. Normative References . . . . . . . . . . . . . . . . . . 8 78 9.2. Informative References . . . . . . . . . . . . . . . . . 9 79 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 11 81 1. Introduction 83 Some networks use tunnels for a variety of reasons, such as: 85 o Partial deployment of MPLS-SPRING as described in 86 [I-D.xu-spring-islands-connection-over-ip], where IP tunnels are 87 used between MPLS-SPRING-enabled routers so as to traverse non- 88 MPLS routers. 90 o Partial deployment of MPLS-BIER as described in Section 6.9 of 91 [I-D.ietf-bier-architecture], where IP tunnels are used between 92 MPLS-BIER-capable routers so as to traverse non MPLS-BIER 93 [I-D.ietf-bier-mpls-encapsulation] routers. 95 o Partial deployment of IPv6 (resp. IPv4) in IPv4 (resp. IPv6) 96 networks as described in [RFC5565], where IPvx tunnels are used 97 between IPvx-enabled routers so as to traverse non-IPvx routers. 99 o Remote Loop Free Alternate repair tunnels as described in 100 [RFC7490], where tunnels are used between the Point of Local 101 Repair and the selected PQ node. 103 The ingress needs to select a type of tunnel which is supported by 104 the egress. This document describes how to use OSPF Router 105 Information to advertise the egress tunnelling capabilities of nodes. 106 In this document, OSPF means both OSPFv2 and OSPFv3. 108 1.1. Requirements Language 110 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 111 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 112 document are to be interpreted as described in RFC 2119 [RFC2119]. 114 2. Terminology 116 This memo makes use of the terms defined in [RFC4970]. 118 3. Advertising Encapsulation Capability 120 Routers advertises their supported encapsulation type(s) by 121 advertising a new TLV of the OSPF Router Information (RI) Opaque LSA 122 [RFC4970], referred to as Encapsulation Capability TLV. This TLV is 123 applicable to both OSPFv2 and OSPFv3. The Encapsulation Capability 124 TLV SHOULD NOT appear more than once within a given OSPF Router 125 Information (RI) Opaque LSA. The scope of the advertisement depends 126 on the application but it is recommended that it SHOULD be domain- 127 wide. The Type code of the Encapsulation Capability TLV is TBD1, the 128 Length value is variable, and the Value field contains one or more 129 Tunnel Encapsulation Type sub-TLVs. Each Encapsulation Type sub-TLVs 130 indicates a particular encapsulation format that the advertising 131 router supports. 133 4. Tunnel Encapsulation Type 135 The Tunnel Encapsulation Type sub-TLV is structured as follows: 137 0 1 2 3 138 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 139 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 140 | Tunnel Type (2 Octets) | Length (2 Octets) | 141 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 142 | | 143 | Value | 144 | | 145 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 147 * Tunnel Type (2 octets): identifies the type of tunneling technology 148 being signaled. This document defines the following types: 150 1. L2TPv3 over IP [RFC3931] : Type code=1; 152 2. GRE [RFC2784] : Type code=2; 154 3. Transmit tunnel endpoint [RFC5566] : Type code=3; 156 4. IPsec in Tunnel-mode [RFC5566] : Type code=4; 158 5. IP in IP tunnel with IPsec Transport Mode [RFC5566] : Type 159 code=5; 161 6. MPLS-in-IP tunnel with IPsec Transport Mode [RFC5566] : Type 162 code=6; 164 7. IP in IP [RFC2003] [RFC4213]: Type code=7; 166 8. VXLAN [RFC7348]: Type code=8; 168 9. NVGRE [RFC7637]: Type code=9; 170 10. MPLS [RFC3032]: Type code=10; 172 11. MPLS-in-GRE [RFC4023]: Type code=11; 174 12. VXLAN GPE [I-D.ietf-nvo3-vxlan-gpe]: Type code=12; 176 13. MPLS-in-UDP [RFC7510]: Type code=13; 178 14. MPLS-in-UDP-with-DTLS [RFC7510]: Type code=14; 180 15. MPLS-in-L2TPv3 [RFC4817]: Type code=15; 182 16. GTP: Type code=16; 183 Unknown types are to be ignored and skipped upon receipt. 185 * Length (2 octets): unsigned integer indicating the total number of 186 octets of the value field. 188 * Value (variable): zero or more Tunnel Encapsulation Attribute sub- 189 TLVs as defined in Section 5. 191 5. Tunnel Encapsulation Attribute 193 The Tunnel Encapsulation Attribute sub-TLV is structured as as 194 follows: 196 +-----------------------------------+ 197 | Sub-TLV Type (1 Octet) | 198 +-----------------------------------+ 199 | Sub-TLV Length (1 Octet) | 200 +-----------------------------------+ 201 | Sub-TLV Value (Variable) | 202 | | 203 +-----------------------------------+ 205 * Sub-TLV Type (1 octet): each sub-TLV type defines a certain 206 property about the tunnel TLV that contains this sub-TLV. The 207 following are the types defined in this document: 209 1. Encapsulation Parameters: sub-TLV type = 1; (See Section 5.1) 211 2. Encapsulated Protocol: sub-TLV type = 2; (See Section 5.2) 213 3. End Point: sub-TLV type = 3; (See Section 5.3) 215 4. Color: sub-TLV type = 4; (See Section 5.4) 217 * Sub-TLV Length (1 octet): unsigned integer indicating the total 218 number of octets of the sub-TLV value field. 220 * Sub-TLV Value (variable): encodings of the value field depend on 221 the sub-TLV type as enumerated above. The following sub-sections 222 define the encoding in detail. 224 Any unknown sub-TLVs MUST be ignored and skipped. However, if the 225 TLV is understood, the entire TLV MUST NOT be ignored just because it 226 contains an unknown sub-TLV. 228 If a sub-TLV is erroneous, this specific Tunnel Encapsulation MUST be 229 ignored and skipped. However, others Tunnel Encapsulations MUST be 230 considered. 232 5.1. Tunnel Parameters sub-TLV 234 This sub-TLV has its format defined in [RFC5512] under the name 235 Encapsulation sub-TLV. 237 5.2. Encapsulated Protocol sub-TLV 239 This sub-TLV has its format defined in [RFC5512] under the name 240 Protocol Type. 242 5.3. End Point sub-TLV 244 The value field carries the Network Address to be used as tunnel 245 destination address. 247 If length is 4, the Address Family (AFI) is IPv4. 249 If length is 16, the Address Family (AFI) is IPv6. 251 5.4. Color sub-TLV 253 The valued field is a 4 octets opaque unsigned integer. 255 The color value is user defined and configured locally on the 256 routers. It may be used by the service providers to define policies. 258 6. IANA Considerations 260 6.1. OSPF Router Information 262 This document requests IANA to allocate a new code point from 263 registry OSPF Router Information (RI). 265 Value TLV Name Reference 266 ----- ------------------------------------ ------------- 267 TBD1 Tunnel Capabilities This document 269 6.2. IGP Tunnel Encapsulation Types Registry 271 This document requests IANA to create a new registry "IGP Tunnel 272 Encapsulation Types" with the following registration procedure: 274 Registry Name: IGP Tunnel Encapsulation Type. 276 Value Name Reference 277 ------- ------------------------------------------ ------------- 278 0 Reserved This document 279 1 L2TPv3 over IP This document 280 2 GRE This document 281 3 Transmit tunnel endpoint This document 282 4 IPsec in Tunnel-mode This document 283 5 IP in IP tunnel with IPsec Transport Mode This document 284 6 MPLS-in-IP tunnel with IPsec Transport Mode This document 285 7 IP in IP This document 286 8 VXLAN This document 287 9 NVGRE This document 288 10 MPLS This document 289 11 MPLS-in-GRE This document 290 12 VXLAN-GPE This document 291 13 MPLS-in-UDP This document 292 14 MPLS-in-UDP-with-DTLS This document 293 15 MPLS-in-L2TPv3 This document 294 16 GTP This document 295 17-250 Unassigned 296 251-254 Experimental This document 297 255 Reserved This document 299 Assignments of Encapsulation Types are via Standards Action 300 [RFC5226]. 302 6.3. IGP Tunnel Encapsulation Attribute Types Registry 304 This document requests IANA to create a new registry "IGP Tunnel 305 Encapsulation Attribute Types" with the following registration 306 procedure: 308 Registry Name: IGP Tunnel Encapsulation Attribute Types. 310 Value Name Reference 311 ------- ------------------------------------ ------------- 312 0 Reserved This document 313 1 Encapsulation parameters This document 314 2 Protocol This document 315 3 End Point This document 316 4 Color This document 317 5-250 Unassigned 318 251-254 Experimental This document 319 255 Reserved This document 321 Assignments of Encapsulation Types are via Standards Action 322 [RFC5226]. 324 7. Security Considerations 326 Security considerations applicable to softwires can be found in the 327 mesh framework [RFC5565]. In general, security issues of the tunnel 328 protocols signaled through this IGP capability extension are 329 inherited. 331 If a third party is able to modify any of the information that is 332 used to form encapsulation headers, to choose a tunnel type, or to 333 choose a particular tunnel for a particular payload type, user data 334 packets may end up getting misrouted, misdelivered, and/or dropped. 336 Security considerations for the base OSPF protocol are covered in 337 [RFC2328] and [RFC5340]. 339 8. Acknowledgements 341 This document is partially inspired by [RFC5512]. 343 The authors would like to thank Carlos Pignataro and Karsten Thomann 344 for their valuable comments on this draft. 346 9. References 348 9.1. Normative References 350 [RFC1700] Reynolds, J. and J. Postel, "Assigned Numbers", RFC 1700, 351 DOI 10.17487/RFC1700, October 1994, 352 . 354 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003, 355 DOI 10.17487/RFC2003, October 1996, 356 . 358 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 359 Requirement Levels", BCP 14, RFC 2119, 360 DOI 10.17487/RFC2119, March 1997, 361 . 363 [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P. 364 Traina, "Generic Routing Encapsulation (GRE)", RFC 2784, 365 DOI 10.17487/RFC2784, March 2000, 366 . 368 [RFC3931] Lau, J., Ed., Townsley, M., Ed., and I. Goyret, Ed., 369 "Layer Two Tunneling Protocol - Version 3 (L2TPv3)", 370 RFC 3931, DOI 10.17487/RFC3931, March 2005, 371 . 373 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms 374 for IPv6 Hosts and Routers", RFC 4213, 375 DOI 10.17487/RFC4213, October 2005, 376 . 378 [RFC4970] Lindem, A., Ed., Shen, N., Vasseur, JP., Aggarwal, R., and 379 S. Shaffer, "Extensions to OSPF for Advertising Optional 380 Router Capabilities", RFC 4970, DOI 10.17487/RFC4970, July 381 2007, . 383 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an 384 IANA Considerations Section in RFCs", BCP 26, RFC 5226, 385 DOI 10.17487/RFC5226, May 2008, 386 . 388 9.2. Informative References 390 [I-D.ietf-bier-architecture] 391 Wijnands, I., Rosen, E., Dolganow, A., Przygienda, T., and 392 S. Aldrin, "Multicast using Bit Index Explicit 393 Replication", draft-ietf-bier-architecture-02 (work in 394 progress), July 2015. 396 [I-D.ietf-bier-mpls-encapsulation] 397 Wijnands, I., Rosen, E., Dolganow, A., Tantsura, J., and 398 S. Aldrin, "Encapsulation for Bit Index Explicit 399 Replication in MPLS Networks", draft-ietf-bier-mpls- 400 encapsulation-02 (work in progress), August 2015. 402 [I-D.ietf-nvo3-vxlan-gpe] 403 Quinn, P., Manur, R., Kreeger, L., Lewis, D., Maino, F., 404 Smith, M., Agarwal, P., Yong, L., Xu, X., Elzur, U., Garg, 405 P., and D. Melman, "Generic Protocol Extension for VXLAN", 406 draft-ietf-nvo3-vxlan-gpe-00 (work in progress), May 2015. 408 [I-D.xu-spring-islands-connection-over-ip] 409 Xu, X., Raszuk, R., Chunduri, U., and L. Contreras, 410 "Connecting MPLS-SPRING Islands over IP Networks", draft- 411 xu-spring-islands-connection-over-ip-04 (work in 412 progress), March 2015. 414 [IANA-OSPFv2] 415 IANA, "Open Shortest Path First v2 (OSPFv2) Parameters", 416 . 419 [RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, 420 DOI 10.17487/RFC2328, April 1998, 421 . 423 [RFC3032] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y., 424 Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack 425 Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001, 426 . 428 [RFC4023] Worster, T., Rekhter, Y., and E. Rosen, Ed., 429 "Encapsulating MPLS in IP or Generic Routing Encapsulation 430 (GRE)", RFC 4023, DOI 10.17487/RFC4023, March 2005, 431 . 433 [RFC4817] Townsley, M., Pignataro, C., Wainner, S., Seely, T., and 434 J. Young, "Encapsulation of MPLS over Layer 2 Tunneling 435 Protocol Version 3", RFC 4817, DOI 10.17487/RFC4817, March 436 2007, . 438 [RFC5340] Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF 439 for IPv6", RFC 5340, DOI 10.17487/RFC5340, July 2008, 440 . 442 [RFC5512] Mohapatra, P. and E. Rosen, "The BGP Encapsulation 443 Subsequent Address Family Identifier (SAFI) and the BGP 444 Tunnel Encapsulation Attribute", RFC 5512, 445 DOI 10.17487/RFC5512, April 2009, 446 . 448 [RFC5565] Wu, J., Cui, Y., Metz, C., and E. Rosen, "Softwire Mesh 449 Framework", RFC 5565, DOI 10.17487/RFC5565, June 2009, 450 . 452 [RFC5566] Berger, L., White, R., and E. Rosen, "BGP IPsec Tunnel 453 Encapsulation Attribute", RFC 5566, DOI 10.17487/RFC5566, 454 June 2009, . 456 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, 457 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual 458 eXtensible Local Area Network (VXLAN): A Framework for 459 Overlaying Virtualized Layer 2 Networks over Layer 3 460 Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014, 461 . 463 [RFC7490] Bryant, S., Filsfils, C., Previdi, S., Shand, M., and N. 464 So, "Remote Loop-Free Alternate (LFA) Fast Reroute (FRR)", 465 RFC 7490, DOI 10.17487/RFC7490, April 2015, 466 . 468 [RFC7510] Xu, X., Sheth, N., Yong, L., Callon, R., and D. Black, 469 "Encapsulating MPLS in UDP", RFC 7510, 470 DOI 10.17487/RFC7510, April 2015, 471 . 473 [RFC7637] Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network 474 Virtualization Using Generic Routing Encapsulation", 475 RFC 7637, DOI 10.17487/RFC7637, September 2015, 476 . 478 Authors' Addresses 480 Xiaohu Xu (editor) 481 Huawei 483 Email: xuxiaohu@huawei.com 485 Bruno Decraene (editor) 486 Orange 488 Email: bruno.decraene@orange.com 490 Robert Raszuk 491 Mirantis Inc. 493 Email: robert@raszuk.net 495 Uma Chunduri 496 Ericsson 498 Email: uma.chunduri@ericsson.com 499 Luis M. Contreras 500 Telefonica I+D 501 Ronda de la Comunicacion, s/n 502 Sur-3 building, 3rd floor 503 Madrid, 28050 504 Spain 506 Email: luismiguel.contrerasmurillo@telefonica.com 507 URI: http://people.tid.es/LuisM.Contreras/ 509 Luay Jalil 510 Verizon 512 Email: luay.jalil@one.verizon.com