idnits 2.17.1 draft-ietf-ospf-encapsulation-cap-04.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (June 23, 2017) is 2499 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Outdated reference: A later version (-22) exists of draft-ietf-idr-tunnel-encaps-06 ** Obsolete normative reference: RFC 5226 (Obsoleted by RFC 8126) == Outdated reference: A later version (-08) exists of draft-ietf-bier-architecture-07 == Outdated reference: A later version (-12) exists of draft-ietf-bier-mpls-encapsulation-07 == Outdated reference: A later version (-04) exists of draft-xu-mpls-unified-source-routing-instruction-01 -- Obsolete informational reference (is this intentional?): RFC 5512 (Obsoleted by RFC 9012) Summary: 1 error (**), 0 flaws (~~), 5 warnings (==), 2 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 OSPF Working Group X. Xu, Ed. 3 Internet-Draft Huawei 4 Intended status: Standards Track B. Decraene, Ed. 5 Expires: December 25, 2017 Orange 6 R. Raszuk 7 Bloomberg LP 8 L. Contreras 9 Telefonica I+D 10 L. Jalil 11 Verizon 12 June 23, 2017 14 Advertising Tunneling Capability in OSPF 15 draft-ietf-ospf-encapsulation-cap-04 17 Abstract 19 Networks use tunnels for a variety of reasons. A large variety of 20 tunnel types are defined and the ingress needs to select a type of 21 tunnel which is supported by the egress and itself. This document 22 defines how to advertise egress tunnel capabilities in OSPF Router 23 Information Link State Advertisement (LSAs). 25 Requirements Language 27 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 28 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 29 document are to be interpreted as described in RFC 2119 [RFC2119]. 31 Status of This Memo 33 This Internet-Draft is submitted in full conformance with the 34 provisions of BCP 78 and BCP 79. 36 Internet-Drafts are working documents of the Internet Engineering 37 Task Force (IETF). Note that other groups may also distribute 38 working documents as Internet-Drafts. The list of current Internet- 39 Drafts is at http://datatracker.ietf.org/drafts/current/. 41 Internet-Drafts are draft documents valid for a maximum of six months 42 and may be updated, replaced, or obsoleted by other documents at any 43 time. It is inappropriate to use Internet-Drafts as reference 44 material or to cite them other than as "work in progress." 46 This Internet-Draft will expire on December 25, 2017. 48 Copyright Notice 50 Copyright (c) 2017 IETF Trust and the persons identified as the 51 document authors. All rights reserved. 53 This document is subject to BCP 78 and the IETF Trust's Legal 54 Provisions Relating to IETF Documents 55 (http://trustee.ietf.org/license-info) in effect on the date of 56 publication of this document. Please review these documents 57 carefully, as they describe your rights and restrictions with respect 58 to this document. Code Components extracted from this document must 59 include Simplified BSD License text as described in Section 4.e of 60 the Trust Legal Provisions and are provided without warranty as 61 described in the Simplified BSD License. 63 Table of Contents 65 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 66 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3 67 3. Advertising Encapsulation Capability . . . . . . . . . . . . 3 68 4. Tunnel Encapsulation Type . . . . . . . . . . . . . . . . . . 4 69 5. Tunnel Encapsulation Attribute . . . . . . . . . . . . . . . 4 70 6. Tunnel Encapsulation Attribute Sub-TLVs . . . . . . . . . . . 5 71 6.1. Encapsulation Sub-TLV . . . . . . . . . . . . . . . . . . 5 72 6.2. Protocol Type Sub-TLV . . . . . . . . . . . . . . . . . . 5 73 6.3. Endpoint Sub-TLV . . . . . . . . . . . . . . . . . . . . 5 74 6.4. Color Sub-TLV . . . . . . . . . . . . . . . . . . . . . . 5 75 6.5. IP QoS Field . . . . . . . . . . . . . . . . . . . . . . 6 76 6.6. UDP Destination Port . . . . . . . . . . . . . . . . . . 6 77 7. Usage of the Tunnel Encapsulation attribute . . . . . . . . . 6 78 8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 6 79 8.1. OSPF Router Information . . . . . . . . . . . . . . . . . 6 80 8.2. IGP Tunnel Encapsulation Attribute Types Registry . . . . 6 81 9. Security Considerations . . . . . . . . . . . . . . . . . . . 7 82 10. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 7 83 11. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 7 84 12. References . . . . . . . . . . . . . . . . . . . . . . . . . 8 85 12.1. Normative References . . . . . . . . . . . . . . . . . . 8 86 12.2. Informative References . . . . . . . . . . . . . . . . . 8 87 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 9 89 1. Introduction 91 Networks use tunnels for a variety of reasons, such as: 93 o Partial deployment of MPLS-SPRING as described in 94 [I-D.xu-mpls-unified-source-routing-instruction], where IP tunnels 95 are used between MPLS-SPRING-enabled routers to traverse non-MPLS 96 routers. 98 o Partial deployment of MPLS-BIER as described in 99 [I-D.ietf-bier-architecture], where IP tunnels are used between 100 MPLS-BIER-capable routers to traverse non MPLS-BIER 101 [I-D.ietf-bier-mpls-encapsulation] routers. 103 o Partial deployment of IPv6 in IPv4 networks or IPv4 in IPv6 104 networks as described in [RFC5565], where IPvx tunnels are used 105 between IPvx-enabled routers so as to traverse non-IPvx routers. 107 o Remote Loop-Free Alternate (RLFA) repair tunnels as described in 108 [RFC7490], where tunnels are used between the Point of Local 109 Repair and the selected PQ node. 111 The ingress needs to select a type of tunnel which is supported by 112 the egress and itself. This document describes how to use OSPF 113 Router Information Link State Advertisements (LSAs) to advertise the 114 egress tunneling capabilities of OSPF routers. In this document, 115 OSPF refers to both OSPFv2 [RFC2328] and OSPFv3 [RFC5340]. 117 2. Terminology 119 This memo makes use of the terms defined in [RFC7770]. 121 3. Advertising Encapsulation Capability 123 Routers advertise their supported encapsulation type(s) by 124 advertising a new TLV of the OSPF Router Information (RI) Opaque LSA 125 [RFC7770], referred to as the Encapsulation Capability TLV. This TLV 126 is applicable to both OSPFv2 and OSPFv3. The Encapsulation 127 Capability TLV SHOULD NOT appear more than once within a given OSPF 128 Router Information (RI) Opaque LSA. If the Encapsulation Capability 129 TLV appears more than once in an OSPF Router Information LSA, only 130 the first occurrence MUST be processed and others MUST be ignored. 131 The scope of the advertisement depends on the application but it is 132 recommended that it SHOULD be domain- wide. The Type code of the 133 Encapsulation Capability TLV is TBD1, the Length value is variable, 134 and the Value field contains one or more Tunnel Encapsulation Type 135 Sub-TLVs. Each Encapsulation Type Sub-TLVs indicates a particular 136 encapsulation format that the advertising router supports along with 137 the parameters to be used for the tunnel. 139 4. Tunnel Encapsulation Type 141 The Tunnel Encapsulation Type Sub-TLV is structured as follows: 143 0 1 2 3 144 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 145 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 146 | Tunnel Type (2 Octets) | Length (2 Octets) | 147 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 148 | | 149 | Sub-TLVs | 150 | | 151 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 153 Tunnel Type (2 octets): Identifies the type of tunneling 154 technology being signaled. Tunnel types are shared with the BGP 155 extension [RFC5512] and hence are defined in the IANA registry 156 "BGP Tunnel Encapsulation Attribute Tunnel Types". Unknown types 157 are to be ignored and skipped upon receipt. 159 Length (2 octets): Unsigned 16-bit integer indicating the total 160 number of octets of the value field. 162 Value (variable): Zero or more Tunnel Encapsulation Attribute Sub- 163 TLVs as defined in Section 5. 165 5. Tunnel Encapsulation Attribute 167 The Tunnel Encapsulation Attribute Sub-TLV is structured as follows: 169 +-----------------------------------+ 170 | Sub-TLV Type (1 Octet) | 171 +-----------------------------------+ 172 | Sub-TLV Length (1 Octet) | 173 +-----------------------------------+ 174 | Sub-TLV Value (Variable) | 175 | | 176 +-----------------------------------+ 178 Sub-TLV Type (1 octet): Each Sub-TLV type defines a certain 179 property of the tunnel TLV that contains this Sub-TLV. This 180 document defines such types Section 6 ) 182 Sub-TLV Length (1 octet): Unsigned 8-bit integer indicating the 183 total number of octets of the Sub-TLV value field. 185 Sub-TLV Value (variable): Encodings of the value field depend on 186 the Sub-TLV type as enumerated above. The following sub-sections 187 define the encoding in detail. 189 Any unknown Sub-TLVs MUST be ignored and skipped upon receipt. 190 However, if the TLV is understood, the entire TLV MUST NOT be ignored 191 just because it contains an unknown Sub-TLV. 193 If a Sub-TLV is invalid, this specific Tunnel Encapsulation MUST be 194 ignored and skipped. However, other Tunnel Encapsulations MUST be 195 considered. 197 6. Tunnel Encapsulation Attribute Sub-TLVs 199 6.1. Encapsulation Sub-TLV 201 This Sub-TLV is defined in section 3.2 "Encapsulation Sub-TLVs for 202 Particular Tunnel Types" of [I-D.ietf-idr-tunnel-encaps] from both a 203 syntax and semantic standpoint. Usage is defined in Section 7. 205 6.2. Protocol Type Sub-TLV 207 This Sub-TLV is defined in section 3.4.1 "Protocol Type sub-TLV" of 208 [I-D.ietf-idr-tunnel-encaps] from a syntax, semantic and usage 209 standpoint. 211 6.3. Endpoint Sub-TLV 213 The value field carries the Network Address to be used as tunnel 214 destination address. 216 If length is 4, the tunnel endpoint is an IPv4 address. 218 If length is 16, the tunnel endpoint is an IPv6 address. 220 6.4. Color Sub-TLV 222 The valued field is a 4-octet opaque unsigned integer. 224 The color value is user defined and configured locally on the 225 advertising routers. It may be used by service providers to define 226 policies on the ingress routers, for example to control the selection 227 of the tunnel to use. 229 This color value can be referenced by BGP routes carrying Color 230 Extended Community [I-D.ietf-idr-tunnel-encaps]. If the tunnel is 231 used to reach the BGP Next-Hop of BGP routes, then attaching a Color 232 Extended Community attached to those routes, express the willing of 233 the BGP speaker to use a tunnel of the same color. 235 6.5. IP QoS Field 237 This Sub-TLV is defined in section 3.3.1 "IPv4 DS Field" of 238 [I-D.ietf-idr-tunnel-encaps] from a syntax, semantic and usage 239 standpoint. 241 6.6. UDP Destination Port 243 This Sub-TLV is defined in section 3.3.2 "IPv4 DS Field" of 244 [I-D.ietf-idr-tunnel-encaps] from a syntax, semantic and usage 245 standpoint. 247 7. Usage of the Tunnel Encapsulation attribute 249 The advertisement of a Encapsulation Type Sub-TLVs indicates that the 250 advertising router support a particular tunnel encapsulation along 251 with the parameters to be used for the tunnel. The decision to use 252 that tunnel, is driven by policy on the ingress router. The color 253 sub-TLV may be used as an input to this policy. Note that some 254 tunnel types may require the execution of an explicit tunnel setup 255 protocol before they can be used to carry data. 257 A tunnel MUST NOT be used if there is no route toward the IP address 258 specified in the Endpoint Sub-TLV or if the route is not advertised 259 by the router advertising the Tunnel Encapsulation attribute 260 advertising this tunnel. 262 8. IANA Considerations 264 8.1. OSPF Router Information 266 This document requests IANA to allocate a new code point from the 267 OSPF Router Information (RI) registry. 269 Value TLV Name Reference 270 ----- ------------------------------------ ------------- 271 TBD1 Tunnel Capabilities This document 273 8.2. IGP Tunnel Encapsulation Attribute Types Registry 275 This document requests IANA to create a new registry "IGP Tunnel 276 Encapsulation Attribute Types" with the following registration 277 procedure: 279 Registry Name: IGP Tunnel Encapsulation Attribute Types 281 Value Name Reference 282 ------- ------------------------------------ ------------- 283 0 Reserved This document 284 1 Encapsulation This document 285 2 Protocol Type This document 286 3 Endpoint This document 287 4 Color This document 288 5 Unassigned 289 6 IP QoS This document 290 7 UDP Destination Port This document 291 8-250 Unassigned 292 251-254 Experimental This document 293 255 Reserved This document 295 Assignments of Encapsulation Attribute Types are via Standards Action 296 [RFC5226]. 298 9. Security Considerations 300 Security considerations applicable to softwires can be found in the 301 mesh framework [RFC5565]. In general, security issues of the tunnel 302 protocols signaled through this OSPF capability extension are 303 inherited. 305 If a third-party is able to modify any of the information that is 306 used to form encapsulation headers, to choose a tunnel type, or to 307 choose a particular tunnel for a particular payload type, user data 308 packets may end up getting misrouted, misdelivered, and/or dropped. 310 Security considerations for the base OSPF protocol are covered in 311 [RFC2328] and [RFC5340]. 313 10. Contributors 315 Uma Chunduri 316 Huawei 317 Email: uma.chunduri@gmail.com 319 11. Acknowledgements 321 This document is partially inspired by [RFC5512]. 323 The authors would like to thank Greg Mirsky, John E Drake, Carlos 324 Pignataro and Karsten Thomann for their valuable comments on this 325 document. Special thanks should be given to Acee Lindem for his 326 detailed review of this document. 328 12. References 330 12.1. Normative References 332 [I-D.ietf-idr-tunnel-encaps] 333 Rosen, E., Patel, K., and G. Velde, "The BGP Tunnel 334 Encapsulation Attribute", draft-ietf-idr-tunnel-encaps-06 335 (work in progress), June 2017. 337 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 338 Requirement Levels", BCP 14, RFC 2119, 339 DOI 10.17487/RFC2119, March 1997, 340 . 342 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an 343 IANA Considerations Section in RFCs", RFC 5226, 344 DOI 10.17487/RFC5226, May 2008, 345 . 347 [RFC7770] Lindem, A., Ed., Shen, N., Vasseur, JP., Aggarwal, R., and 348 S. Shaffer, "Extensions to OSPF for Advertising Optional 349 Router Capabilities", RFC 7770, DOI 10.17487/RFC7770, 350 February 2016, . 352 12.2. Informative References 354 [I-D.ietf-bier-architecture] 355 Wijnands, I., Rosen, E., Dolganow, A., Przygienda, T., and 356 S. Aldrin, "Multicast using Bit Index Explicit 357 Replication", draft-ietf-bier-architecture-07 (work in 358 progress), June 2017. 360 [I-D.ietf-bier-mpls-encapsulation] 361 Wijnands, I., Rosen, E., Dolganow, A., Tantsura, J., 362 Aldrin, S., and I. Meilik, "Encapsulation for Bit Index 363 Explicit Replication in MPLS and non-MPLS Networks", 364 draft-ietf-bier-mpls-encapsulation-07 (work in progress), 365 June 2017. 367 [I-D.xu-mpls-unified-source-routing-instruction] 368 Xu, X., Bryant, S., Raszuk, R., Chunduri, U., Contreras, 369 L., Jalil, L., Assarpour, H., Velde, G., Tantsura, J., and 370 S. Ma, "Unified Source Routing Instruction using MPLS 371 Label Stack", draft-xu-mpls-unified-source-routing- 372 instruction-01 (work in progress), June 2017. 374 [RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, 375 DOI 10.17487/RFC2328, April 1998, 376 . 378 [RFC5340] Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF 379 for IPv6", RFC 5340, DOI 10.17487/RFC5340, July 2008, 380 . 382 [RFC5512] Mohapatra, P. and E. Rosen, "The BGP Encapsulation 383 Subsequent Address Family Identifier (SAFI) and the BGP 384 Tunnel Encapsulation Attribute", RFC 5512, 385 DOI 10.17487/RFC5512, April 2009, 386 . 388 [RFC5565] Wu, J., Cui, Y., Metz, C., and E. Rosen, "Softwire Mesh 389 Framework", RFC 5565, DOI 10.17487/RFC5565, June 2009, 390 . 392 [RFC7490] Bryant, S., Filsfils, C., Previdi, S., Shand, M., and N. 393 So, "Remote Loop-Free Alternate (LFA) Fast Reroute (FRR)", 394 RFC 7490, DOI 10.17487/RFC7490, April 2015, 395 . 397 Authors' Addresses 399 Xiaohu Xu (editor) 400 Huawei 402 Email: xuxiaohu@huawei.com 404 Bruno Decraene (editor) 405 Orange 407 Email: bruno.decraene@orange.com 409 Robert Raszuk 410 Bloomberg LP 412 Email: robert@raszuk.net 414 Luis M. Contreras 415 Telefonica I+D 417 Email: luismiguel.contrerasmurillo@telefonica.com 418 Luay Jalil 419 Verizon 421 Email: luay.jalil@verizon.com