idnits 2.17.1 draft-ietf-pce-pcep-extension-native-ip-06.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** The abstract seems to contain references ([RFC8735], [I-D.ietf-teas-pce-native-ip]), which it shouldn't. Please replace those with straight textual mentions of the documents in question. == There are 2 instances of lines with private range IPv4 addresses in the document. If these are generic example addresses, they should be changed to use any of the ranges defined in RFC 6890 (or successor): 192.0.2.x, 198.51.100.x or 203.0.113.x. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == The document doesn't use any RFC 2119 keywords, yet seems to have RFC 2119 boilerplate text. -- The document date (August 18, 2020) is 1337 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'RFC2119' is mentioned on line 100, but not defined == Outdated reference: A later version (-17) exists of draft-ietf-teas-pce-native-ip-10 ** Downref: Normative reference to an Informational draft: draft-ietf-teas-pce-native-ip (ref. 'I-D.ietf-teas-pce-native-ip') ** Downref: Normative reference to an Informational RFC: RFC 8283 ** Downref: Normative reference to an Informational RFC: RFC 8735 Summary: 4 errors (**), 0 flaws (~~), 5 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 PCE Working Group A. Wang 3 Internet-Draft China Telecom 4 Intended status: Standards Track B. Khasanov 5 Expires: February 19, 2021 S. Fang 6 Huawei 7 C. Zhu 8 ZTE Corporation 9 August 18, 2020 11 PCEP Extension for Native IP Network 12 draft-ietf-pce-pcep-extension-native-ip-06 14 Abstract 16 This document defines the Path Computation Element Communication 17 Protocol (PCEP) extension for Central Control Dynamic Routing (CCDR) 18 based application in Native IP network. The scenario and framework 19 of CCDR in native IP is described in [RFC8735] and 20 [I-D.ietf-teas-pce-native-ip]. This draft describes the key 21 information that is transferred between Path Computation Element 22 (PCE) and Path Computation Clients (PCC) to accomplish the End to End 23 (E2E) traffic assurance in Native IP network under central control 24 mode. 26 Status of This Memo 28 This Internet-Draft is submitted in full conformance with the 29 provisions of BCP 78 and BCP 79. 31 Internet-Drafts are working documents of the Internet Engineering 32 Task Force (IETF). Note that other groups may also distribute 33 working documents as Internet-Drafts. The list of current Internet- 34 Drafts is at https://datatracker.ietf.org/drafts/current/. 36 Internet-Drafts are draft documents valid for a maximum of six months 37 and may be updated, replaced, or obsoleted by other documents at any 38 time. It is inappropriate to use Internet-Drafts as reference 39 material or to cite them other than as "work in progress." 41 This Internet-Draft will expire on February 19, 2021. 43 Copyright Notice 45 Copyright (c) 2020 IETF Trust and the persons identified as the 46 document authors. All rights reserved. 48 This document is subject to BCP 78 and the IETF Trust's Legal 49 Provisions Relating to IETF Documents 50 (https://trustee.ietf.org/license-info) in effect on the date of 51 publication of this document. Please review these documents 52 carefully, as they describe your rights and restrictions with respect 53 to this document. Code Components extracted from this document must 54 include Simplified BSD License text as described in Section 4.e of 55 the Trust Legal Provisions and are provided without warranty as 56 described in the Simplified BSD License. 58 Table of Contents 60 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 61 2. Conventions used in this document . . . . . . . . . . . . . . 3 62 3. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3 63 4. New Objects Extension . . . . . . . . . . . . . . . . . . . . 3 64 5. Objects Formats . . . . . . . . . . . . . . . . . . . . . . . 3 65 5.1. Peer Address List Object . . . . . . . . . . . . . . . . 4 66 5.2. Peer Prefix Association Object . . . . . . . . . . . . . 6 67 5.3. Explicit Peer Route Object . . . . . . . . . . . . . . . 7 68 6. Management Consideration . . . . . . . . . . . . . . . . . . 8 69 7. Security Considerations . . . . . . . . . . . . . . . . . . . 8 70 8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 8 71 8.1. PCEP Object Types . . . . . . . . . . . . . . . . . . . . 8 72 9. Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . 9 73 10. Normative References . . . . . . . . . . . . . . . . . . . . 9 74 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 10 76 1. Introduction 78 Traditionally, Multiprotocol Label Switching Traffic Engineering 79 (MPLS-TE) traffic assurance requires the corresponding network 80 devices support Multiprotocol Label Switching (MPLS) or the complex 81 Resource ReSerVation Protocol (RSVP)/Label Distribution Protocol 82 (LDP) /Segment Routing etc. technologies to assure the End-to-End 83 (E2E) traffic performance. But in native IP network, there will be 84 no such signaling protocol to synchronize the action among different 85 network devices. It is necessary to use the central control mode 86 that described in [RFC8283] to correlate the forwarding behavior 87 among different network devices. Draft [I-D.ietf-teas-pce-native-ip] 88 describes the architecture and solution philosophy for the E2E 89 traffic assurance in Native IP network via Dual/Multi Border Gateway 90 Protocol (BGP) solution. This draft describes the corresponding Path 91 Computation Element Communication Protocol (PCEP) extensions to 92 transfer the key information about peer address list, peer prefix 93 association and the explicit peer route on on-path router. 95 2. Conventions used in this document 97 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 98 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 99 document are to be interpreted as described in RFC 2119 [RFC2119]. 101 3. Terminology 103 .This document uses the following terms defined in [RFC5440]: PCE, 104 PCEP 106 The following terms are defined in this document: 108 o CCDR: Central Control Dynamic Routing 110 o E2E: End to End 112 o EPR: Explicit Peer Route 114 o PAL: Peer Address List 116 o PPA: Peer Prefix Association 118 o QoS: Quality of Service 120 4. New Objects Extension 122 Three new objects are defined in this draft: 124 o PAL Object: Peer Address List Object, used to tell the network 125 device which peer it should be peered with dynamically. 127 o PPA Object: Peer Prefix Association Object, used to tell which 128 prefixes should be advertised via the corresponding peer. 130 o EPR Object: Explicit Peer Route object, used to point out which 131 route should be taken into to arrive to the peer. 133 5. Objects Formats 135 Each extension object takes the similar format, that is to say, it 136 began with the common object header defined in [RFC5440] as the 137 following: 139 0 1 2 3 140 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 141 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 142 | Object-Class | OT |Res|P|I| Object Length(bytes) | 143 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 144 | (Object body) | 145 // // 146 | | 147 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 148 Figure 1: PCEP Object Format 150 Different object-class, object type and the corresponding object body 151 is defined separately in the following section . 153 5.1. Peer Address List Object 155 The Peer Address List object is used in a PCE Initiate message 156 [RFC8281] defined to specify the IP address of peer that the received 157 network device should establish the BGP relationship with. This 158 Object should only be included and sent to the head and end router of 159 the E2E path in case there is no Route Reflection (RR) involved. If 160 the RR is used between the head and end routers, then such 161 information should be sent to head router, RR and end router 162 respectively. 164 Peer Address List Object-Class is TBD 166 Peer Address List Object-Type is 1 for IPv4 and 2 for IPv6 168 The format of the Peer Address List object body for IPv4(Object- 169 Type=1) is as follows: 171 0 1 2 3 172 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 173 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 174 | Peer Num | Peer Id | 175 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 176 | Local AS Number | 177 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 178 | Peer AS Number | 179 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 180 | ETTL | Peer Cookie | 181 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 182 | Local IP Address | 183 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 184 | Peer IP Address | 185 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 186 | Additional Peer Info. | 187 // (From Peer ID to Peer IP Address) // 188 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 189 Figure 2: Peer Address List Object Body Format for IPv4 191 The format of the Peer Address List object body for IPv6(Object- 192 Type=2) is as follows: 194 0 1 2 3 195 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 196 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 197 | Peer Num | Peer ID | 198 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 199 | Local AS Number | 200 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 201 | Peer AS Number | 202 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 203 | ETTL | Peer Cookie | 204 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 205 | Local IP Address (16 bytes) | 206 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 207 | Peer IP Address (16 bytes) | 208 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 209 | Additional Peer Info. | 210 // (From Peer ID to Peer IP Address) // 211 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 212 Figure 3: Peer Address List Object Body Format for IPv6 214 Peer Num : 2 Bytes, Peer Address Number on the advertised router. 216 Peer-ID: 2 Bytes, to distinguish the different peer pair, will be 217 referenced in Peer Prefix Association, if the PCE use multi-BGP 218 solution for different QoS assurance requirement. 220 Local AS Number: 4 Bytes, to indicate the AS number of the Local 221 Peer. 223 Peer AS Number: 4 Bytes, to indicate the AS number of Remote Peer. 225 ETTL: 1 Bytes, to indicate the multi hop count for EBGP session. It 226 should be 0 and ignored when Local AS and Peer AS is same. 228 Peer Cookie: Used for establishing the secure BGP session between two 229 peers. The PCEP client should use the MD5 algorithm to generate the 230 encrypted message. 232 Local IP Address(4/16 Bytes): IP address of the local router, used to 233 peer with other end router. When Object-Type is 1, length is 4 234 bytes; when Object-Type is 2, length is 16 bytes. 236 Peer IP Address(4/16 Bytes): IP address of the peer router, used to 237 peer with the local router. When Object-Type is 1, length is 4 238 bytes; when Object-Type is 2, length is 16 bytes; 240 5.2. Peer Prefix Association Object 242 The Peer Prefix Association object is defined to specify the IP 243 prefixes that should be advertised by the corresponding Peer. This 244 object should only be included and sent to the head/end router of the 245 end2end path in case there is no RR involved. If the RR is used 246 between the head and end routers, then such information should be 247 sent to head router,RR and end router respectively. 249 Peer Prefix Association Object-Class is TBD 251 Peer Prefix Association Object-Type is 1 for IPv4 and 2 for IPv6 253 The format of the Peer Prefix Association object body is as follows: 255 0 1 2 3 256 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 257 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 258 | Peer ID | Prefixes Num | 259 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 260 | Prefix Length | Prefix Value | 261 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 262 | Prefix Value | 263 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 264 Figure 4: Peer Prefix Association Object Body Format 266 Peer-ID: 2 Bytes, to indicate which peer should be used to advertise 267 the following IP Prefix TLV. This value is assigned in the Peer 268 Address List object and is referred in this object. 270 Prefixes Num: 2 Bytes, number of prefixes that advertised by the 271 corresponding Peer. It should be equal to number of the following IP 272 prefix sub TLV. 274 Prefix Length: 2 Bytes, the prefix length. For example, for 275 10.0.0.0/8, this field will be equal to 8; for 2001:DB8::/32, this 276 field will be equal to 32. 278 Prefix Value: Variable length, the value of the prefix. For example, 279 for 10.0.0.0/8, this field will be 10.0.0.0; for 2001:DB8::/32, this 280 field will be equal to 2001:DB8::. 282 5.3. Explicit Peer Route Object 284 The Explicit Peer Route object is defined to specify the explicit 285 peer route to the corresponding peer address on each device that is 286 on the E2E assurance path. This Object should be sent to all the 287 devices that locates on the E2E assurance path that calculated by 288 PCE. 290 Explicit Peer Route Object-Class is TBD. 292 Explicit Peer Route Object-Type is 1 for IPv4 and 2 for IPv6 294 The format of Explicit Peer Route object body for IPv4(Object-Type=1) 295 is as follows: 297 0 1 2 3 298 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 299 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 300 | Route Priority | Path Identifier | 301 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 302 | Peer Address | 303 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 304 | Next Hop Address to the Peer | 305 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 306 Figure 6: Explicit Peer Route Object Body Format for IPv4 308 The format of Explicit Peer Route object body for IPv6(Object-Type=2) 309 is as follows: 311 0 1 2 3 312 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 313 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 314 | Route Priority | Path Identifier | 315 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 316 | Peer Address (16 bytes) | 317 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 318 | Next Hop Address to the Peer(16 bytes) | 319 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 320 Figure 6: Explicit Peer Route Object Body Format for IPv4 322 Route Priority: 2 Bytes, The priority of this explicit route. The 323 higher priority should be preferred by the device. 325 Path Identifier: To indicate the path to peer address, especially for 326 the same peer. 328 Peer Address: To indicate the peer address. 330 Next Hop Address to the Peer: To indicate the next hop address to the 331 corresponding peer. 333 6. Management Consideration 335 The information transferred in this draft is mainly used for the 336 light weight BGP session setup, the prefix distribution and the 337 explicit route deployment. The planning, allocation and distribution 338 of the peer addresses within IGP should be accomplished in advanced 339 and they are out of the scope of this draft. 341 7. Security Considerations 343 Service provider should consider the protection of PCE and their 344 communication with the underlay devices, which is described in 345 document [RFC5440] and [RFC8253] 347 8. IANA Considerations 349 8.1. PCEP Object Types 351 IANA is requested to allocate new registry for the PCEP Object Type: 353 Object-Type Value Name Reference 354 TBD Peer Address List This document 355 Object-Type 356 1: IPv4 address 357 2: IPv6 address 359 TBD Peer Prefix Association This document 360 Object-Type 361 1: IPv4 address 362 2: IPv6 address 364 TBD Explicit Peer Route This document 365 Object-Type 366 1: IPv4 address 367 2: IPv6 address 369 9. Acknowledgement 371 Thanks Dhruv Dhody for his valuable suggestions and comments. 373 10. Normative References 375 [I-D.ietf-teas-pce-native-ip] 376 Wang, A., Khasanov, B., Zhao, Q., and H. Chen, "PCE in 377 Native IP Network", draft-ietf-teas-pce-native-ip-10 (work 378 in progress), August 2020. 380 [RFC5440] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation 381 Element (PCE) Communication Protocol (PCEP)", RFC 5440, 382 DOI 10.17487/RFC5440, March 2009, 383 . 385 [RFC8253] Lopez, D., Gonzalez de Dios, O., Wu, Q., and D. Dhody, 386 "PCEPS: Usage of TLS to Provide a Secure Transport for the 387 Path Computation Element Communication Protocol (PCEP)", 388 RFC 8253, DOI 10.17487/RFC8253, October 2017, 389 . 391 [RFC8281] Crabbe, E., Minei, I., Sivabalan, S., and R. Varga, "Path 392 Computation Element Communication Protocol (PCEP) 393 Extensions for PCE-Initiated LSP Setup in a Stateful PCE 394 Model", RFC 8281, DOI 10.17487/RFC8281, December 2017, 395 . 397 [RFC8283] Farrel, A., Ed., Zhao, Q., Ed., Li, Z., and C. Zhou, "An 398 Architecture for Use of PCE and the PCE Communication 399 Protocol (PCEP) in a Network with Central Control", 400 RFC 8283, DOI 10.17487/RFC8283, December 2017, 401 . 403 [RFC8735] Wang, A., Huang, X., Kou, C., Li, Z., and P. Mi, 404 "Scenarios and Simulation Results of PCE in a Native IP 405 Network", RFC 8735, DOI 10.17487/RFC8735, February 2020, 406 . 408 Authors' Addresses 410 Aijun Wang 411 China Telecom 412 Beiqijia Town, Changping District 413 Beijing, Beijing 102209 414 China 416 Email: wangaj3@chinatelecom.cn 418 Boris Khasanov 419 Huawei Technologies,Co.,Ltd 420 Moskovskiy Prospekt 97A 421 St.Petersburg 196084 422 Russia 424 Email: khasanov.boris@huawei.com 426 Sheng Fang 427 Huawei Technologies, Co., 428 Ltd 429 Huawei Bld., No.156 Beiqing Rd. 430 Beijing 431 China 433 Email: fsheng@huawei.com 435 Chun Zhu 436 ZTE Corporation 437 50 Software Avenue, Yuhua District 438 Nanjing, Jiangsu 210012 439 China 441 Email: zhu.chun1@zte.com.cn