idnits 2.17.1 draft-ietf-rtgwg-ni-model-10.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (February 13, 2018) is 2264 days in the past. Is this intentional? -- Found something which looks like a code comment -- if you have code sections in the document, please surround them with '' and '' lines. Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Outdated reference: A later version (-12) exists of draft-ietf-netmod-schema-mount-08 == Outdated reference: A later version (-06) exists of draft-ietf-netmod-yang-tree-diagrams-05 ** Obsolete normative reference: RFC 5246 (Obsoleted by RFC 8446) ** Obsolete normative reference: RFC 6536 (Obsoleted by RFC 8341) == Outdated reference: A later version (-10) exists of draft-ietf-bess-l2vpn-yang-07 == Outdated reference: A later version (-05) exists of draft-ietf-bess-l3vpn-yang-02 == Outdated reference: A later version (-29) exists of draft-ietf-ospf-yang-09 == Outdated reference: A later version (-10) exists of draft-ietf-rtgwg-lne-model-05 -- Obsolete informational reference (is this intentional?): RFC 7223 (Obsoleted by RFC 8343) -- Obsolete informational reference (is this intentional?): RFC 7277 (Obsoleted by RFC 8344) -- Obsolete informational reference (is this intentional?): RFC 8022 (Obsoleted by RFC 8349) Summary: 2 errors (**), 0 flaws (~~), 7 warnings (==), 5 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group L. Berger 3 Internet-Draft LabN Consulting, L.L.C. 4 Intended status: Standards Track C. Hopps 5 Expires: August 17, 2018 Deutsche Telekom 6 A. Lindem 7 Cisco Systems 8 D. Bogdanovic 10 X. Liu 11 Jabil 12 February 13, 2018 14 YANG Model for Network Instances 15 draft-ietf-rtgwg-ni-model-10 17 Abstract 19 This document defines a network instance module. This module can be 20 used to manage the virtual resource partitioning that may be present 21 on a network device. Examples of common industry terms for virtual 22 resource partitioning are Virtual Routing and Forwarding (VRF) 23 instances and Virtual Switch Instances (VSIs). 25 The YANG model in this document conforms to the Network Management 26 Datastore Architecture defined in I-D.ietf-netmod-revised-datastores. 28 Status of This Memo 30 This Internet-Draft is submitted in full conformance with the 31 provisions of BCP 78 and BCP 79. 33 Internet-Drafts are working documents of the Internet Engineering 34 Task Force (IETF). Note that other groups may also distribute 35 working documents as Internet-Drafts. The list of current Internet- 36 Drafts is at http://datatracker.ietf.org/drafts/current/. 38 Internet-Drafts are draft documents valid for a maximum of six months 39 and may be updated, replaced, or obsoleted by other documents at any 40 time. It is inappropriate to use Internet-Drafts as reference 41 material or to cite them other than as "work in progress." 43 This Internet-Draft will expire on August 17, 2018. 45 Copyright Notice 47 Copyright (c) 2018 IETF Trust and the persons identified as the 48 document authors. All rights reserved. 50 This document is subject to BCP 78 and the IETF Trust's Legal 51 Provisions Relating to IETF Documents 52 (http://trustee.ietf.org/license-info) in effect on the date of 53 publication of this document. Please review these documents 54 carefully, as they describe your rights and restrictions with respect 55 to this document. Code Components extracted from this document must 56 include Simplified BSD License text as described in Section 4.e of 57 the Trust Legal Provisions and are provided without warranty as 58 described in the Simplified BSD License. 60 Table of Contents 62 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 63 1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 3 64 2. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 4 65 3. Network Instances . . . . . . . . . . . . . . . . . . . . . . 5 66 3.1. NI Types and Mount Points . . . . . . . . . . . . . . . . 6 67 3.1.1. Well Known Mount Points . . . . . . . . . . . . . . . 7 68 3.1.2. NI Type Example . . . . . . . . . . . . . . . . . . . 8 69 3.2. NIs and Interfaces . . . . . . . . . . . . . . . . . . . 9 70 3.3. Network Instance Management . . . . . . . . . . . . . . . 10 71 3.4. Network Instance Instantiation . . . . . . . . . . . . . 13 72 4. Security Considerations . . . . . . . . . . . . . . . . . . . 14 73 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 15 74 6. Network Instance Model . . . . . . . . . . . . . . . . . . . 15 75 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 21 76 7.1. Normative References . . . . . . . . . . . . . . . . . . 21 77 7.2. Informative References . . . . . . . . . . . . . . . . . 23 78 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . 24 79 Appendix B. Example NI usage . . . . . . . . . . . . . . . . . . 24 80 B.1. Configuration Data . . . . . . . . . . . . . . . . . . . 24 81 B.2. State Data - Non-NDMA Version . . . . . . . . . . . . . . 28 82 B.3. State Data - NDMA Version . . . . . . . . . . . . . . . . 34 83 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 40 85 1. Introduction 87 This document defines the second of two new modules that are defined 88 to support the configuration and operation of network-devices that 89 allow for the partitioning of resources from both, or either, 90 management and networking perspectives. Both leverage the YANG 91 functionality enabled by YANG Schema Mount 92 [I-D.ietf-netmod-schema-mount]. 94 The YANG model in this document conforms to the Network Management 95 Datastore Architecture defined in the 96 [I-D.ietf-netmod-revised-datastores]. 98 The first form of resource partitioning provides a logical 99 partitioning of a network device where each partition is separately 100 managed as essentially an independent network element which is 101 'hosted' by the base network device. These hosted network elements 102 are referred to as logical network elements, or LNEs, and are 103 supported by the logical-network-element module defined in 104 [I-D.ietf-rtgwg-lne-model]. That module is used to identify LNEs and 105 associate resources from the network-device with each LNE. LNEs 106 themselves are represented in YANG as independent network devices; 107 each accessed independently. Examples of vendor terminology for an 108 LNE include logical system or logical router, and virtual switch, 109 chassis, or fabric. 111 The second form, which is defined in this document, provides support 112 for what is commonly referred to as Virtual Routing and Forwarding 113 (VRF) instances as well as Virtual Switch Instances (VSI), see 114 [RFC4026] and [RFC4664]. In this form of resource partitioning, 115 multiple control plane and forwarding/bridging instances are provided 116 by and managed via a single (physical or logical) network device. 117 This form of resource partitioning is referred to as a Network 118 Instance and is supported by the network-instance module defined 119 below. Configuration and operation of each network-instance is 120 always via the network device and the network-instance module. 122 One notable difference between the LNE model and the NI model is that 123 the NI model provides a framework for VRF and VSI management. This 124 document envisions the separate definition of VRF and VSI, i.e., L3 125 and L2 VPN, technology specific models. An example of such can be 126 found in the emerging L3VPN model defined in 127 [I-D.ietf-bess-l3vpn-yang] and the examples discussed below. 129 1.1. Terminology 131 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 132 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and 133 "OPTIONAL" in this document are to be interpreted as described in BCP 134 14 [RFC2119] [RFC8174] when, and only when, they appear in all 135 capitals, as shown here. 137 Readers are expected to be familiar with terms and concepts of YANG 138 [RFC7950] and YANG Schema Mount [I-D.ietf-netmod-schema-mount]. 140 This document uses the graphical representation of data models 141 defined in [I-D.ietf-netmod-yang-tree-diagrams]. 143 2. Overview 145 In this document, we consider network devices that support protocols 146 and functions defined within the IETF, e.g, routers, firewalls, and 147 hosts. Such devices may be physical or virtual, e.g., a classic 148 router with custom hardware or one residing within a server-based 149 virtual machine implementing a virtual network function (VNF). Each 150 device may sub-divide their resources into logical network elements 151 (LNEs) each of which provides a managed logical device. Examples of 152 vendor terminology for an LNE include logical system or logical 153 router, and virtual switch, chassis, or fabric. Each LNE may also 154 support virtual routing and forwarding (VRF) and virtual switching 155 instance (VSI) functions, which are referred to below as a network 156 instances (NIs). This breakdown is represented in Figure 1. 158 ,''''''''''''''''''''''''''''''''''''''''''''''`. 159 | Network Device (Physical or Virtual) | 160 | ..................... ..................... | 161 | : Logical Network : : Logical Network : | 162 | : Element : : Element : | 163 | :+-----+-----+-----+: :+-----+-----+-----+: | 164 | :| Net | Net | Net |: :| Net | Net | Net |: | 165 | :|Inst.|Inst.|Inst.|: :|Inst.|Inst.|Inst.|: | 166 | :+-----+-----+-----+: :+-----+-----+-----+: | 167 | : | | | | | | : : | | | | | | : | 168 | :..|.|...|.|...|.|..: :..|.|...|.|...|.|..: | 169 | | | | | | | | | | | | | | 170 `'''|'|'''|'|'''|'|'''''''''|'|'''|'|'''|'|''''' 171 | | | | | | | | | | | | 172 Interfaces Interfaces 174 Figure 1: Module Element Relationships 176 A model for LNEs is described in [I-D.ietf-rtgwg-lne-model] and the 177 model for NIs is covered in this document in Section 3. 179 The current interface management model [I-D.ietf-netmod-rfc7223bis] 180 is impacted by the definition of LNEs and NIs. This document and 181 [I-D.ietf-rtgwg-lne-model] define augmentations to the interface 182 module to support LNEs and NIs. 184 The network instance model supports the configuration of VRFs and 185 VSIs. Each instance is supported by information that relates to the 186 device, for example the route target used when advertising VRF routes 187 via the mechanisms defined in [RFC4364], and information that relates 188 to the internal operation of the NI, for example for routing 189 protocols [I-D.ietf-netmod-rfc8022bis] and OSPF [I-D.ietf-ospf-yang]. 191 This document defines the network-instance module that provides a 192 basis for the management of both types of information. 194 NI information that relates to the device, including the assignment 195 of interfaces to NIs, is defined as part of this document. The 196 defined module also provides a placeholder for the definition of NI- 197 technology specific information both at the device level and for NI 198 internal operation. Information related to NI internal operation is 199 supported via schema mount [I-D.ietf-netmod-schema-mount] and 200 mounting appropriate modules under the mount point. Well known mount 201 points are defined for L3VPN, L2VPN, and L2+L3VPN NI types. 203 3. Network Instances 205 The network instance container is used to represent virtual routing 206 and forwarding instances (VRFs) and virtual switching instances 207 (VSIs). VRFs and VSIs are commonly used to isolate routing and 208 switching domains, for example to create virtual private networks, 209 each with their own active protocols and routing/switching policies. 210 The model supports both core/provider and virtual instances. Core/ 211 provider instance information is accessible at the top level of the 212 server, while virtual instance information is accessible under the 213 root schema mount points. 215 module: ietf-network-instance 216 +--rw network-instances 217 +--rw network-instance* [name] 218 +--rw name string 219 +--rw enabled? boolean 220 +--rw description? string 221 +--rw (ni-type)? 222 +--rw (root-type) 223 +--:(vrf-root) 224 | +--mp vrf-root 225 +--:(vsi-root) 226 | +--mp vsi-root 227 +--:(vv-root) 228 +--mp vv-root 229 augment /if:interfaces/if:interface: 230 +--rw bind-ni-name? -> /network-instances/network-instance/name 231 augment /if:interfaces/if:interface/ip:ipv4: 232 +--rw bind-ni-name? -> /network-instances/network-instance/name 233 augment /if:interfaces/if:interface/ip:ipv6: 234 +--rw bind-ni-name? -> /network-instances/network-instance/name 236 notifications: 237 +---n bind-ni-name-failed 238 +--ro name -> /if:interfaces/interface/name 239 +--ro interface 240 | +--ro bind-ni-name? 241 | -> /if:interfaces/interface/ni:bind-ni-name 242 +--ro ipv4 243 | +--ro bind-ni-name? 244 | -> /if:interfaces/interface/ip:ipv4/ni:bind-ni-name 245 +--ro ipv6 246 | +--ro bind-ni-name? 247 | -> /if:interfaces/interface/ip:ipv6/ni:bind-ni-name 248 +--ro error-info? string 250 A network instance is identified by a 'name' string. This string is 251 used both as an index within the network-instance module and to 252 associate resources with a network instance as shown above in the 253 interface augmentation. The ni-type and root-type choice statements 254 are used to support different types of L2 and L3 VPN technologies. 255 The bind-ni-name-failed notification is used in certain failure 256 cases. 258 3.1. NI Types and Mount Points 260 The network-instance module is structured to facilitate the 261 definition of information models for specific types of VRFs and VSIs 262 using augmentations. For example, the information needed to support 263 VPLS, VxLAN and EVPN based L2VPNs are likely to be quite different. 264 Example models under development that could be restructured to take 265 advantage on NIs include, for L3VPNs [I-D.ietf-bess-l3vpn-yang] and 266 for L2VPNs [I-D.ietf-bess-l2vpn-yang]. 268 Documents defining new YANG models for the support of specific types 269 of network instances should augment the network instance module. The 270 basic structure that should be used for such augmentations include a 271 case statement, with containers for configuration and state data and 272 finally, when needed, a type specific mount point. Generally ni 273 types, are expected to not need to define type specific mount points, 274 but rather reuse one of the well known mount point, as defined in the 275 next section. The following is an example type specific 276 augmentation: 278 augment "/ni:network-instances/ni:network-instance/ni:ni-type" { 279 case l3vpn { 280 container l3vpn { 281 ... 282 } 283 container l3vpn-state { 284 ... 285 } 286 } 287 } 289 3.1.1. Well Known Mount Points 291 YANG Schema Mount, [I-D.ietf-netmod-schema-mount], identifies mount 292 points by name within a module. This definition allows for the 293 definition of mount points whose schema can be shared across ni- 294 types. As discussed above, ni-types largely differ in the 295 configuration information needed in the core/top level instance to 296 support the NI, rather than in the information represented within an 297 NI. This allows the use of shared mount points across certain NI 298 types. 300 The expectation is that there are actually very few different schema 301 that need to be defined to support NIs on an implementation. In 302 particular, it is expected that the following three forms of NI 303 schema are needed, and each can be defined with a well known mount 304 point that can be reused by future modules defining ni-types. 306 The three well known mount points are: 308 vrf-root 309 vrf-root is intended for use with L3VPN type ni-types. 311 vsi-root 312 vsi-root is intended for use with L2VPN type ni-types. 314 vv-root 315 vv-root is intended for use with ni-types that simultaneously 316 support L2VPN bridging and L3VPN routing capabilities. 318 Future model definitions should use the above mount points whenever 319 possible. When a well known mount point isn't appropriate, a model 320 may define a type specific mount point via augmentation. 322 3.1.2. NI Type Example 324 The following is an example of an L3VPN VRF using a hypothetical 325 augmentation to the networking instance schema defined in 326 [I-D.ietf-bess-l3vpn-yang]. More detailed examples can be found in 327 Appendix B. 329 module: ietf-network-instance 330 +--rw network-instances 331 +--rw network-instance* [name] 332 +--rw name string 333 +--rw enabled? boolean 334 +--rw description? string 335 +--rw (ni-type)? 336 | +--:(l3vpn) 337 | +--rw l3vpn:l3vpn 338 | | ... // config data 339 | +--ro l3vpn:l3vpn-state 340 | | ... // state data 341 +--rw (root-type) 342 +--:(vrf-root) 343 +--mp vrf-root 344 +--rw rt:routing/ 345 | +--rw router-id? yang:dotted-quad 346 | +--rw control-plane-protocols 347 | +--rw control-plane-protocol* [type name] 348 | +--rw ospf:ospf/ 349 | +--rw instance* [af] 350 | +--rw areas 351 | +--rw area* [area-id] 352 | +--rw interfaces 353 | +--rw interface* [name] 354 | +--rw name if:interface-ref 355 | +--rw cost? uint16 356 +--ro if:interfaces@ 357 | ... 359 This shows YANG Routing Management [I-D.ietf-netmod-rfc8022bis] and 360 YANG OSPF [I-D.ietf-ospf-yang] as mounted modules. The mounted 361 modules can reference interface information via a parent-reference to 362 the containers defined in [I-D.ietf-netmod-rfc7223bis]. 364 3.2. NIs and Interfaces 366 Interfaces are a crucial part of any network device's configuration 367 and operational state. They generally include a combination of raw 368 physical interfaces, link-layer interfaces, addressing configuration, 369 and logical interfaces that may not be tied to any physical 370 interface. Several system services, and layer 2 and layer 3 371 protocols may also associate configuration or operational state data 372 with different types of interfaces (these relationships are not shown 373 for simplicity). The interface management model is defined by 374 [I-D.ietf-netmod-rfc7223bis]. 376 As shown below, the network-instance module augments the existing 377 interface management model by adding a name which is used on 378 interface or sub-interface types to identify an associated network 379 instance. Similarly, this name is also added for IPv4 and IPv6 380 types, as defined in [I-D.ietf-netmod-rfc7277bis]. 382 The following is an example of envisioned usage. The interfaces 383 container includes a number of commonly used components as examples: 385 module: ietf-interfaces 386 +--rw interfaces 387 | +--rw interface* [name] 388 | +--rw name string 389 | +--rw ip:ipv4! 390 | | +--rw ip:enabled? boolean 391 | | +--rw ip:forwarding? boolean 392 | | +--rw ip:mtu? uint16 393 | | +--rw ip:address* [ip] 394 | | | +--rw ip:ip inet:ipv4-address-no-zone 395 | | | +--rw (ip:subnet) 396 | | | +--:(ip:prefix-length) 397 | | | | +--rw ip:prefix-length? uint8 398 | | | +--:(ip:netmask) 399 | | | +--rw ip:netmask? yang:dotted-quad 400 | | +--rw ip:neighbor* [ip] 401 | | | +--rw ip:ip inet:ipv4-address-no-zone 402 | | | +--rw ip:link-layer-address yang:phys-address 403 | | +--rw ni:bind-network-instance-name? string 404 | +--rw ni:bind-network-instance-name? string 406 The [I-D.ietf-netmod-rfc7223bis] defined interface model is 407 structured to include all interfaces in a flat list, without regard 408 to virtual instances (e.g., VRFs) supported on the device. The bind- 409 network-instance-name leaf provides the association between an 410 interface and its associated NI (e.g., VRF or VSI). Note that as 411 currently defined, to assign an interface to both an LNE and NI, the 412 interface would first be assigned to the LNE using the mechanisms 413 defined in [I-D.ietf-rtgwg-lne-model] and then within that LNE's 414 interface module, the LNE's representation of that interface would be 415 assigned to an NI. 417 3.3. Network Instance Management 419 Modules that may be used to represent network instance information 420 will be available under the ni-type specific 'root' mount point. The 421 use-schema mechanism defined as part of the Schema Mount module 422 [I-D.ietf-netmod-schema-mount] MUST be used with the module defined 423 in this document to identify accessible modules. A future version of 424 this document could relax this requirement. Mounted modules in the 425 non-inline case SHOULD be defined with access, via the appropriate 426 schema mount parent-references [I-D.ietf-netmod-schema-mount], to 427 device resources such as interfaces. An implementation MAY choose to 428 restrict parent referenced information to information related to a 429 specific instance, e.g., only allowing references to interfaces that 430 have a "bind-network-instance-name" which is identical to the 431 instance's "name". 433 All modules that represent control-plane and data-plane information 434 may be present at the 'root' mount point, and be accessible via paths 435 modified per [I-D.ietf-netmod-schema-mount]. The list of available 436 modules is expected to be implementation dependent, as is the method 437 used by an implementation to support NIs. 439 For example, the following could be used to define the data 440 organization of the example NI shown in Section 3.1.2: 442 "ietf-yang-schema-mount:schema-mounts": { 443 "mount-point": [ 444 { 445 "module": "ietf-network-instance", 446 "label": "vrf-root", 447 "use-schema": [ 448 { 449 "name": "ni-schema", 450 "parent-reference": [ 451 "/*[namespace-uri() = 'urn:ietf:...:ietf-interfaces']" 452 ] 453 } 454 ] 455 } 456 ], 457 "schema": [ 458 { 459 "name": "ni-schema", 460 "module": [ 461 { 462 "name": "ietf-routing", 463 "revision": "2018-01-25", 464 "namespace": 465 "urn:ietf:params:xml:ns:yang:ietf-routing", 466 "conformance-type": "implement" 467 }, 468 { 469 "name": "ietf-ospf", 470 "revision": "2017-10-30", 471 "namespace": 472 "urn:ietf:params:xml:ns:yang:ietf-ospf", 473 "conformance-type": "implement" 474 } 475 ] 476 } 477 ] 478 } 480 Module data identified under "schema" will be instantiated under the 481 mount point identified under "mount-point". These modules will be 482 able to reference information for nodes belonging to top-level 483 modules that are identified under "parent-reference". Parent 484 referenced information is available to clients via their top level 485 paths only, and not under the associated mount point. 487 To allow a client to understand the previously mentioned instance 488 restrictions on parent referenced information, an implementation MAY 489 represent such restrictions in the "parent-reference" leaf-list. For 490 example: 492 "namespace": [ 493 { 494 "prefix": "if", 495 "uri": "urn:ietf:params:xml:ns:yang:ietf-interfaces" 496 }, 497 { 498 "prefix": "ni", 499 "uri": "urn:ietf:params:xml:ns:yang:ietf-network-instance" 500 } 501 ], 502 "mount-point": [ 503 { 504 "parent-reference": [ 505 "/if:interfaces/if:interface 506 [ni:bind-network-instance-name = current()/../ni:name]", 507 "/if:interfaces/if:interface/ip:ipv4 508 [ni:bind-network-instance-name = current()/../ni:name]", 509 "/if:interfaces/if:interface/ip:ipv6 510 [ni:bind-network-instance-name = current()/../ni:name]", 511 } 512 ], 514 The same such "parent-reference" restrictions for non-NDMA 515 implementations can be represented based on the [RFC7223] and 516 [RFC7277] as: 518 "namespace": [ 519 { 520 "prefix": "if", 521 "uri": "urn:ietf:params:xml:ns:yang:ietf-interfaces" 522 }, 523 { 524 "prefix": "ni", 525 "uri": "urn:ietf:params:xml:ns:yang:ietf-network-instance" 526 } 527 ], 528 "mount-point": [ 529 { 530 "parent-reference": [ 531 "/if:interfaces/if:interface 532 [ni:bind-network-instance-name = current()/../ni:name]", 533 "/if:interfaces-state/if:interface 534 [if:name = /if:interfaces/if:interface 535 [ni:bind-ni-name = current()/../ni:name]/if:name]", 536 "/if:interfaces/if:interface/ip:ipv4 537 [ni:bind-network-instance-name = current()/../ni:name]", 538 "/if:interfaces-state/if:interface/ip:ipv4 539 [if:name = /if:interfaces/if:interface/ip:ipv4 540 [ni:bind-ni-name = current()/../ni:name]/if:name]", 541 "/if:interfaces/if:interface/ip:ipv6 542 [ni:bind-network-instance-name = current()/../ni:name]", 543 "/if:interfaces-state/if:interface/ip:ipv6 544 [if:name = /if:interfaces/if:interface/ip:ipv4 545 [ni:bind-ni-name = current()/../ni:name]/if:name]", 546 ] 547 } 548 ], 550 3.4. Network Instance Instantiation 552 Network instances may be controlled by clients using existing list 553 operations. When a list entry is created, a new instance is 554 instantiated. The models mounted under an NI root are expected to be 555 dependent on the server implementation. When a list entry is 556 deleted, an existing network instance is destroyed. For more 557 information, see [RFC7950] Section 7.8.6. 559 Once instantiated, host network device resources can be associated 560 with the new NI. As previously mentioned, this document augments 561 ietf-interfaces with the bind-ni-name leaf to support such 562 associations for interfaces. When a bind-ni-name is set to a valid 563 NI name, an implementation MUST take whatever steps are internally 564 necessary to assign the interface to the NI or provide an error 565 message (defined below) with an indication of why the assignment 566 failed. It is possible for the assignment to fail while processing 567 the set operation, or after asynchronous processing. Error 568 notification in the latter case is supported via a notification. 570 4. Security Considerations 572 The YANG modules specified in this document define a schema for data 573 that is designed to be accessed via network management protocols such 574 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer 575 is the secure transport layer, and the mandatory-to-implement secure 576 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer 577 is HTTPS, and the mandatory-to-implement secure transport is TLS 578 [RFC5246]. 580 The NETCONF access control model [RFC6536] provides the means to 581 restrict access for particular NETCONF or RESTCONF users to a 582 preconfigured subset of all available NETCONF or RESTCONF protocol 583 operations and content. 585 There are two different sets of security considerations to consider 586 in the context of this document. One set is security related to 587 information contained within mounted modules. The security 588 considerations for mounted modules are not substantively changed 589 based on the information being accessible within the context of an 590 NI. For example, when considering the modules defined in 591 [I-D.ietf-netmod-rfc8022bis], the security considerations identified 592 in that document are equally applicable, whether those modules are 593 accessed at a server's root or under an NI instance's root node. 595 The second area for consideration is information contained in the NI 596 module itself. NI information represents network configuration and 597 route distribution policy information. As such, the security of this 598 information is important, but it is fundamentally no different than 599 any other interface or routing configuration information that has 600 already been covered in [I-D.ietf-netmod-rfc7223bis] and 601 [I-D.ietf-netmod-rfc8022bis]. 603 The vulnerable "config true" parameters and subtrees are the 604 following: 606 /network-instances/network-instance: This list specifies the network 607 instances and the related control plane protocols configured on a 608 device. 610 /if:interfaces/if:interface/*/bind-network-instance-name: This leaf 611 indicates the NI instance to which an interface is assigned. 613 Unauthorized access to any of these lists can adversely affect the 614 routing subsystem of both the local device and the network. This may 615 lead to network malfunctions, delivery of packets to inappropriate 616 destinations and other problems. 618 5. IANA Considerations 620 This document registers a URI in the IETF XML registry [RFC3688]. 621 Following the format in RFC 3688, the following registration is 622 requested to be made. 624 URI: urn:ietf:params:xml:ns:yang:ietf-network-instance 626 Registrant Contact: The IESG. 628 XML: N/A, the requested URI is an XML namespace. 630 This document registers a YANG module in the YANG Module Names 631 registry [RFC6020]. 633 name: ietf-network-instance 634 namespace: urn:ietf:params:xml:ns:yang:ietf-network-instance 635 prefix: ni 636 reference: RFC XXXX 638 6. Network Instance Model 640 The structure of the model defined in this document is described by 641 the YANG module below. 643 file "ietf-network-instance@2018-02-03.yang" 644 module ietf-network-instance { 645 yang-version 1.1; 646 namespace "urn:ietf:params:xml:ns:yang:ietf-network-instance"; 647 prefix ni; 649 // import some basic types 651 import ietf-interfaces { 652 prefix if; 653 reference "draft-ietf-netmod-rfc7223bis: A YANG Data Model 654 for Interface Management"; 655 } 656 import ietf-ip { 657 prefix ip; 658 reference "draft-ietf-netmod-rfc7277bis: A YANG Data Model 659 for IP Management"; 660 } 661 import ietf-yang-schema-mount { 662 prefix yangmnt; 663 reference "draft-ietf-netmod-schema-mount: YANG Schema Mount"; 664 // RFC Ed.: Please replace this draft name with the 665 // corresponding RFC number 666 } 668 organization 669 "IETF Routing Area (rtgwg) Working Group"; 670 contact 671 "WG Web: 672 WG List: 674 Author: Lou Berger 675 676 Author: Christan Hopps 677 678 Author: Acee Lindem 679 680 Author: Dean Bogdanovic 681 "; 682 description 683 "This module is used to support multiple network instances 684 within a single physical or virtual device. Network 685 instances are commonly known as VRFs (virtual routing 686 and forwarding) and VSIs (virtual switching instances). 688 Copyright (c) 2017 IETF Trust and the persons 689 identified as authors of the code. All rights reserved. 691 Redistribution and use in source and binary forms, with or 692 without modification, is permitted pursuant to, and subject 693 to the license terms contained in, the Simplified BSD License 694 set forth in Section 4.c of the IETF Trust's Legal Provisions 695 Relating to IETF Documents 696 (http://trustee.ietf.org/license-info). 698 This version of this YANG module is part of RFC XXXX; see 699 the RFC itself for full legal notices."; 701 // RFC Ed.: replace XXXX with actual RFC number and remove 702 // this note 703 // RFC Ed.: please update TBD 705 revision 2018-02-03 { 706 description 707 "Initial revision."; 708 reference "RFC TBD"; 710 } 712 // top level device definition statements 714 container network-instances { 715 description 716 "Network instances each of which consists of a 717 VRFs (virtual routing and forwarding) and/or 718 VSIs (virtual switching instances)."; 719 reference "draft-ietf-rtgwg-rfc8022bis - A YANG Data Model 720 for Routing Management"; 721 list network-instance { 722 key "name"; 723 description 724 "List of network-instances."; 725 leaf name { 726 type string; 727 mandatory true; 728 description 729 "device scoped identifier for the network 730 instance."; 731 } 732 leaf enabled { 733 type boolean; 734 default "true"; 735 description 736 "Flag indicating whether or not the network 737 instance is enabled."; 738 } 739 leaf description { 740 type string; 741 description 742 "Description of the network instance 743 and its intended purpose."; 744 } 745 choice ni-type { 746 description 747 "This node serves as an anchor point for different types 748 of network instances. Each 'case' is expected to 749 differ in terms of the information needed in the 750 parent/core to support the NI, and may differ in their 751 mounted schema definition. When the mounted schema is 752 not expected to be the same for a specific type of NI 753 a mount point should be defined."; 754 } 755 choice root-type { 756 mandatory true; 757 description 758 "Well known mount points."; 759 container vrf-root { 760 description 761 "Container for mount point."; 762 yangmnt:mount-point "vrf-root" { 763 description 764 "Root for L3VPN type models. This will typically 765 not be an inline type mount point."; 766 } 767 } 768 container vsi-root { 769 description 770 "Container for mount point."; 771 yangmnt:mount-point "vsi-root" { 772 description 773 "Root for L2VPN type models. This will typically 774 not be an inline type mount point."; 775 } 776 } 777 container vv-root { 778 description 779 "Container for mount point."; 780 yangmnt:mount-point "vv-root" { 781 description 782 "Root models that support both L2VPN type bridging 783 and L3VPN type routing. This will typically 784 not be an inline type mount point."; 785 } 786 } 787 } 788 } 789 } 791 // augment statements 793 augment "/if:interfaces/if:interface" { 794 description 795 "Add a node for the identification of the network 796 instance associated with the information configured 797 on a interface. 799 Note that a standard error will be returned if the 800 identified leafref isn't present. If an interfaces cannot 801 be assigned for any other reason, the operation SHALL fail 802 with an error-tag of 'operation-failed' and an 803 error-app-tag of 'ni-assignment-failed'. A meaningful 804 error-info that indicates the source of the assignment 805 failure SHOULD also be provided."; 807 leaf bind-ni-name { 808 type leafref { 809 path "/network-instances/network-instance/name"; 810 } 811 description 812 "Network Instance to which an interface is bound."; 813 } 814 } 815 augment "/if:interfaces/if:interface/ip:ipv4" { 816 description 817 "Add a node for the identification of the network 818 instance associated with the information configured 819 on an IPv4 interface. 821 Note that a standard error will be returned if the 822 identified leafref isn't present. If an interfaces cannot 823 be assigned for any other reason, the operation SHALL fail 824 with an error-tag of 'operation-failed' and an 825 error-app-tag of 'ni-assignment-failed'. A meaningful 826 error-info that indicates the source of the assignment 827 failure SHOULD also be provided."; 828 leaf bind-ni-name { 829 type leafref { 830 path "/network-instances/network-instance/name"; 831 } 832 description 833 "Network Instance to which IPv4 interface is bound."; 834 } 835 } 836 augment "/if:interfaces/if:interface/ip:ipv6" { 837 description 838 "Add a node for the identification of the network 839 instance associated with the information configured 840 on an IPv6 interface. 842 Note that a standard error will be returned if the 843 identified leafref isn't present. If an interfaces cannot 844 be assigned for any other reason, the operation SHALL fail 845 with an error-tag of 'operation-failed' and an 846 error-app-tag of 'ni-assignment-failed'. A meaningful 847 error-info that indicates the source of the assignment 848 failure SHOULD also be provided."; 849 leaf bind-ni-name { 850 type leafref { 851 path "/network-instances/network-instance/name"; 852 } 853 description 854 "Network Instance to which IPv6 interface is bound."; 856 } 857 } 859 // notification statements 861 notification bind-ni-name-failed { 862 description 863 "Indicates an error in the association of an interface to an 864 NI. Only generated after success is initially returned when 865 bind-ni-name is set. 867 Note: some errors may need to be reported for multiple 868 associations, e.g., a single error may need to be reported 869 for an IPv4 and an IPv6 bind-ni-name. 871 At least one container with a bind-ni-name leaf MUST be 872 included in this notification."; 873 leaf name { 874 type leafref { 875 path "/if:interfaces/if:interface/if:name"; 876 } 877 mandatory true; 878 description 879 "Contains the interface name associated with the 880 failure."; 881 } 882 container interface { 883 description 884 "Generic interface type."; 885 leaf bind-ni-name { 886 type leafref { 887 path "/if:interfaces/if:interface/ni:bind-ni-name"; 888 } 889 description 890 "Contains the bind-ni-name associated with the 891 failure."; 892 } 893 } 894 container ipv4 { 895 description 896 "IPv4 interface type."; 897 leaf bind-ni-name { 898 type leafref { 899 path "/if:interfaces/if:interface" 900 + "/ip:ipv4/ni:bind-ni-name"; 901 } 902 description 903 "Contains the bind-ni-name associated with the 904 failure."; 905 } 906 } 907 container ipv6 { 908 description 909 "IPv6 interface type."; 910 leaf bind-ni-name { 911 type leafref { 912 path "/if:interfaces/if:interface" 913 + "/ip:ipv6/ni:bind-ni-name"; 914 } 915 description 916 "Contains the bind-ni-name associated with the 917 failure."; 918 } 919 } 920 leaf error-info { 921 type string; 922 description 923 "Optionally, indicates the source of the assignment 924 failure."; 925 } 926 } 927 } 928 930 7. References 932 7.1. Normative References 934 [I-D.ietf-netmod-revised-datastores] 935 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., 936 and R. Wilton, "Network Management Datastore 937 Architecture", draft-ietf-netmod-revised-datastores-10 938 (work in progress), January 2018. 940 [I-D.ietf-netmod-rfc7223bis] 941 Bjorklund, M., "A YANG Data Model for Interface 942 Management", draft-ietf-netmod-rfc7223bis-03 (work in 943 progress), January 2018. 945 [I-D.ietf-netmod-rfc7277bis] 946 Bjorklund, M., "A YANG Data Model for IP Management", 947 draft-ietf-netmod-rfc7277bis-03 (work in progress), 948 January 2018. 950 [I-D.ietf-netmod-schema-mount] 951 Bjorklund, M. and L. Lhotka, "YANG Schema Mount", draft- 952 ietf-netmod-schema-mount-08 (work in progress), October 953 2017. 955 [I-D.ietf-netmod-yang-tree-diagrams] 956 Bjorklund, M. and L. Berger, "YANG Tree Diagrams", draft- 957 ietf-netmod-yang-tree-diagrams-05 (work in progress), 958 January 2018. 960 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 961 Requirement Levels", BCP 14, RFC 2119, 962 DOI 10.17487/RFC2119, March 1997, . 965 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, 966 DOI 10.17487/RFC3688, January 2004, . 969 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security 970 (TLS) Protocol Version 1.2", RFC 5246, 971 DOI 10.17487/RFC5246, August 2008, . 974 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for 975 the Network Configuration Protocol (NETCONF)", RFC 6020, 976 DOI 10.17487/RFC6020, October 2010, . 979 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., 980 and A. Bierman, Ed., "Network Configuration Protocol 981 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, 982 . 984 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure 985 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, 986 . 988 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration 989 Protocol (NETCONF) Access Control Model", RFC 6536, 990 DOI 10.17487/RFC6536, March 2012, . 993 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF 994 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, 995 . 997 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 998 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 999 May 2017, . 1001 7.2. Informative References 1003 [I-D.ietf-bess-l2vpn-yang] 1004 Shah, H., Brissette, P., Chen, I., Hussain, I., Wen, B., 1005 and K. Tiruveedhula, "YANG Data Model for MPLS-based 1006 L2VPN", draft-ietf-bess-l2vpn-yang-07 (work in progress), 1007 October 2017. 1009 [I-D.ietf-bess-l3vpn-yang] 1010 Jain, D., Patel, K., Brissette, P., Li, Z., Zhuang, S., 1011 Liu, X., Haas, J., Esale, S., and B. Wen, "Yang Data Model 1012 for BGP/MPLS L3 VPNs", draft-ietf-bess-l3vpn-yang-02 (work 1013 in progress), October 2017. 1015 [I-D.ietf-netmod-rfc8022bis] 1016 Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for 1017 Routing Management (NMDA Version)", draft-ietf-netmod- 1018 rfc8022bis-11 (work in progress), January 2018. 1020 [I-D.ietf-ospf-yang] 1021 Yeung, D., Qu, Y., Zhang, Z., Chen, I., and A. Lindem, 1022 "Yang Data Model for OSPF Protocol", draft-ietf-ospf- 1023 yang-09 (work in progress), October 2017. 1025 [I-D.ietf-rtgwg-device-model] 1026 Lindem, A., Berger, L., Bogdanovic, D., and C. Hopps, 1027 "Network Device YANG Logical Organization", draft-ietf- 1028 rtgwg-device-model-02 (work in progress), March 2017. 1030 [I-D.ietf-rtgwg-lne-model] 1031 Berger, L., Hopps, C., Lindem, A., Bogdanovic, D., and X. 1032 Liu, "YANG Logical Network Elements", draft-ietf-rtgwg- 1033 lne-model-05 (work in progress), December 2017. 1035 [RFC4026] Andersson, L. and T. Madsen, "Provider Provisioned Virtual 1036 Private Network (VPN) Terminology", RFC 4026, 1037 DOI 10.17487/RFC4026, March 2005, . 1040 [RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private 1041 Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February 1042 2006, . 1044 [RFC4664] Andersson, L., Ed. and E. Rosen, Ed., "Framework for Layer 1045 2 Virtual Private Networks (L2VPNs)", RFC 4664, 1046 DOI 10.17487/RFC4664, September 2006, . 1049 [RFC7223] Bjorklund, M., "A YANG Data Model for Interface 1050 Management", RFC 7223, DOI 10.17487/RFC7223, May 2014, 1051 . 1053 [RFC7277] Bjorklund, M., "A YANG Data Model for IP Management", 1054 RFC 7277, DOI 10.17487/RFC7277, June 2014, 1055 . 1057 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", 1058 RFC 7950, DOI 10.17487/RFC7950, August 2016, 1059 . 1061 [RFC8022] Lhotka, L. and A. Lindem, "A YANG Data Model for Routing 1062 Management", RFC 8022, DOI 10.17487/RFC8022, November 1063 2016, . 1065 Appendix A. Acknowledgments 1067 The Routing Area Yang Architecture design team members included Acee 1068 Lindem, Anees Shaikh, Christian Hopps, Dean Bogdanovic, Lou Berger, 1069 Qin Wu, Rob Shakir, Stephane Litkowski, and Yan Gang. Useful review 1070 comments were also received by Martin Bjorklund and John Scudder. 1072 This document was motivated by, and derived from, 1073 [I-D.ietf-rtgwg-device-model]. 1075 Thanks for AD and IETF last call comments from Alia Atlas, Liang Xia, 1076 Benoit Claise, and Adam Roach. 1078 The RFC text was produced using Marshall Rose's xml2rfc tool. 1080 Appendix B. Example NI usage 1082 The following subsections provide example uses of NIs. 1084 B.1. Configuration Data 1086 The following shows an example where two customer specific network 1087 instances are configured: 1089 { 1090 "ietf-network-instance:network-instances": { 1091 "network-instance": [ 1092 { 1093 "name": "vrf-red", 1094 "vrf-root": { 1095 "ietf-routing:routing": { 1096 "router-id": "192.0.2.1", 1097 "control-plane-protocols": { 1098 "control-plane-protocol": [ 1099 { 1100 "type": "ietf-routing:ospf", 1101 "name": "1", 1102 "ietf-ospf:ospf": { 1103 "af": "ipv4", 1104 "areas": { 1105 "area": [ 1106 { 1107 "area-id": "203.0.113.1", 1108 "interfaces": { 1109 "interface": [ 1110 { 1111 "name": "eth1", 1112 "cost": 10 1113 } 1114 ] 1115 } 1116 } 1117 ] 1118 } 1119 } 1120 } 1121 ] 1122 } 1123 } 1124 } 1125 }, 1126 { 1127 "name": "vrf-blue", 1128 "vrf-root": { 1129 "ietf-routing:routing": { 1130 "router-id": "192.0.2.2", 1131 "control-plane-protocols": { 1132 "control-plane-protocol": [ 1133 { 1134 "type": "ietf-routing:ospf", 1135 "name": "1", 1136 "ietf-ospf:ospf": { 1137 "af": "ipv4", 1138 "areas": { 1139 "area": [ 1140 { 1141 "area-id": "203.0.113.1", 1142 "interfaces": { 1143 "interface": [ 1144 { 1145 "name": "eth2", 1146 "cost": 10 1147 } 1148 ] 1149 } 1150 } 1151 ] 1152 } 1153 } 1154 } 1155 ] 1156 } 1157 } 1158 } 1159 } 1160 ] 1161 }, 1163 "ietf-interfaces:interfaces": { 1164 "interfaces": { 1165 "interface": [ 1166 { 1167 "name": "eth0", 1168 "ip:ipv4": { 1169 "address": [ 1170 { 1171 "ip": "192.0.2.10", 1172 "prefix-length": 24, 1173 } 1174 ] 1175 } 1176 "ip:ipv6": { 1177 "address": [ 1178 { 1179 "ip": "2001:db8:0:2::10", 1180 "prefix-length": 64, 1181 } 1182 ] 1183 } 1184 }, 1185 { 1186 "name": "eth1", 1187 "ip:ipv4": { 1188 "address": [ 1189 { 1190 "ip": "192.0.2.11", 1191 "prefix-length": 24, 1192 } 1193 ] 1194 }, 1195 "ip:ipv6": { 1196 "address": [ 1197 { 1198 "ip": "2001:db8:0:2::11", 1199 "prefix-length": 64, 1200 } 1201 ] 1202 }, 1203 "ni:bind-network-instance-name": "vrf-red" 1204 }, 1205 { 1206 "name": "eth2", 1207 "ip:ipv4": { 1208 "address": [ 1209 { 1210 "ip": "192.0.2.11", 1211 "prefix-length": 24, 1212 } 1213 ] 1214 }, 1215 "ip:ipv6": { 1216 "address": [ 1217 { 1218 "ip": "2001:db8:0:2::11", 1219 "prefix-length": 64, 1220 } 1221 ] 1222 }, 1223 "ni:bind-network-instance-name": "vrf-blue" 1224 } 1225 ] 1226 } 1227 }, 1229 "ietf-system:system": { 1230 "authentication": { 1231 "user": [ 1232 { 1233 "name": "john", 1234 "password": "$0$password" 1235 } 1237 ] 1238 } 1239 } 1240 } 1242 B.2. State Data - Non-NDMA Version 1244 The following shows state data for the configuration example above 1245 based on [RFC7223], [RFC7277], and [RFC8022]. 1247 { 1248 "ietf-network-instance:network-instances": { 1249 "network-instance": [ 1250 { 1251 "name": "vrf-red", 1252 "vrf-root": { 1253 "ietf-routing:routing-state": { 1254 "router-id": "192.0.2.1", 1255 "control-plane-protocols": { 1256 "control-plane-protocol": [ 1257 { 1258 "type": "ietf-routing:ospf", 1259 "name": "1", 1260 "ietf-ospf:ospf": { 1261 "af": "ipv4", 1262 "areas": { 1263 "area": [ 1264 { 1265 "area-id": "203.0.113.1", 1266 "interfaces": { 1267 "interface": [ 1268 { 1269 "name": "eth1", 1270 "cost": 10 1271 } 1272 ] 1273 } 1274 } 1275 ] 1276 } 1277 } 1278 } 1279 ] 1280 } 1281 } 1282 } 1283 }, 1284 { 1285 "name": "vrf-blue", 1286 "vrf-root": { 1287 "ietf-routing:routing-state": { 1288 "router-id": "192.0.2.2", 1289 "control-plane-protocols": { 1290 "control-plane-protocol": [ 1291 { 1292 "type": "ietf-routing:ospf", 1293 "name": "1", 1294 "ietf-ospf:ospf": { 1295 "af": "ipv4", 1296 "areas": { 1297 "area": [ 1298 { 1299 "area-id": "203.0.113.1", 1300 "interfaces": { 1301 "interface": [ 1302 { 1303 "name": "eth2", 1304 "cost": 10 1305 } 1306 ] 1307 } 1308 } 1309 ] 1310 } 1311 } 1312 } 1313 ] 1314 } 1315 } 1316 } 1317 } 1318 ] 1319 }, 1321 "ietf-interfaces:interfaces-state": { 1322 "interfaces": { 1323 "interface": [ 1324 { 1325 "name": "eth0", 1326 "type": "iana-if-type:ethernetCsmacd", 1327 "oper-status": "up", 1328 "phys-address": "00:01:02:A1:B1:C0", 1329 "statistics": { 1330 "discontinuity-time": "2017-06-26T12:34:56-05:00" 1331 }, 1332 "ip:ipv4": { 1333 "address": [ 1334 { 1335 "ip": "192.0.2.10", 1336 "prefix-length": 24, 1337 } 1338 ] 1339 } 1340 "ip:ipv6": { 1341 "address": [ 1342 { 1343 "ip": "2001:db8:0:2::10", 1344 "prefix-length": 64, 1345 } 1346 ] 1347 } 1348 }, 1349 { 1350 "name": "eth1", 1351 "type": "iana-if-type:ethernetCsmacd", 1352 "oper-status": "up", 1353 "phys-address": "00:01:02:A1:B1:C1", 1354 "statistics": { 1355 "discontinuity-time": "2017-06-26T12:34:56-05:00" 1356 }, 1357 "ip:ipv4": { 1358 "address": [ 1359 { 1360 "ip": "192.0.2.11", 1361 "prefix-length": 24, 1362 } 1363 ] 1364 } 1365 "ip:ipv6": { 1366 "address": [ 1367 { 1368 "ip": "2001:db8:0:2::11", 1369 "prefix-length": 64, 1370 } 1371 ] 1372 } 1373 }, 1374 { 1375 "name": "eth2", 1376 "type": "iana-if-type:ethernetCsmacd", 1377 "oper-status": "up", 1378 "phys-address": "00:01:02:A1:B1:C2", 1379 "statistics": { 1380 "discontinuity-time": "2017-06-26T12:34:56-05:00" 1382 }, 1383 "ip:ipv4": { 1384 "address": [ 1385 { 1386 "ip": "192.0.2.11", 1387 "prefix-length": 24, 1388 } 1389 ] 1390 } 1391 "ip:ipv6": { 1392 "address": [ 1393 { 1394 "ip": "2001:db8:0:2::11", 1395 "prefix-length": 64, 1396 } 1397 ] 1398 } 1399 } 1400 ] 1401 } 1402 }, 1404 "ietf-system:system-state": { 1405 "platform": { 1406 "os-name": "NetworkOS" 1407 } 1408 } 1410 "ietf-yang-library:modules-state": { 1411 "module-set-id": "123e4567-e89b-12d3-a456-426655440000", 1412 "module": [ 1413 { 1414 "name": "iana-if-type", 1415 "revision": "2014-05-08", 1416 "namespace": 1417 "urn:ietf:params:xml:ns:yang:iana-if-type", 1418 "conformance-type": "import" 1419 }, 1420 { 1421 "name": "ietf-inet-types", 1422 "revision": "2013-07-15", 1423 "namespace": 1424 "urn:ietf:params:xml:ns:yang:ietf-inet-types", 1425 "conformance-type": "import" 1426 }, 1427 { 1428 "name": "ietf-interfaces", 1429 "revision": "2014-05-08", 1430 "feature": [ 1431 "arbitrary-names", 1432 "pre-provisioning" 1433 ], 1434 "namespace": 1435 "urn:ietf:params:xml:ns:yang:ietf-interfaces", 1436 "conformance-type": "implement" 1437 }, 1438 { 1439 "name": "ietf-ip", 1440 "revision": "2014-06-16", 1441 "namespace": 1442 "urn:ietf:params:xml:ns:yang:ietf-ip", 1443 "conformance-type": "implement" 1444 }, 1445 { 1446 "name": "ietf-network-instance", 1447 "revision": "2018-02-03", 1448 "feature": [ 1449 "bind-network-instance-name" 1450 ], 1451 "namespace": 1452 "urn:ietf:params:xml:ns:yang:ietf-network-instance", 1453 "conformance-type": "implement" 1454 }, 1455 { 1456 "name": "ietf-ospf", 1457 "revision": "2017-03-12", 1458 "namespace": "urn:ietf:params:xml:ns:yang:ietf-ospf", 1459 "conformance-type": "implement" 1460 }, 1461 { 1462 "name": "ietf-routing", 1463 "revision": "2016-11-04", 1464 "namespace": 1465 "urn:ietf:params:xml:ns:yang:ietf-routing", 1466 "conformance-type": "implement" 1467 }, 1468 { 1469 "name": "ietf-system", 1470 "revision": "2014-08-06", 1471 "namespace": 1472 "urn:ietf:params:xml:ns:yang:ietf-system", 1473 "conformance-type": "implement" 1474 }, 1475 { 1476 "name": "ietf-yang-library", 1477 "revision": "2016-06-21", 1478 "namespace": 1479 "urn:ietf:params:xml:ns:yang:ietf-yang-library", 1480 "conformance-type": "implement" 1481 }, 1482 { 1483 "name": "ietf-yang-schema-mount", 1484 "revision": "2017-05-16", 1485 "namespace": 1486 "urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount", 1487 "conformance-type": "implement" 1488 }, 1489 { 1490 "name": "ietf-yang-types", 1491 "revision": "2013-07-15", 1492 "namespace": 1493 "urn:ietf:params:xml:ns:yang:ietf-yang-types", 1494 "conformance-type": "import" 1495 } 1496 ] 1497 }, 1499 "ietf-yang-schema-mount:schema-mounts": { 1500 "mount-point": [ 1501 { 1502 "module": "ietf-network-instance", 1503 "label": "vrf-root", 1504 "use-schema": [ 1505 { 1506 "name": "ni-schema", 1507 "parent-reference": [ 1508 "/*[namespace-uri() = 'urn:ietf:...:ietf-interfaces']" 1509 ] 1510 } 1511 ] 1512 } 1513 ], 1514 "schema": [ 1515 { 1516 "name": "ni-schema", 1517 "module": [ 1518 { 1519 "name": "ietf-routing", 1520 "revision": "2016-11-04", 1521 "namespace": 1522 "urn:ietf:params:xml:ns:yang:ietf-routing", 1523 "conformance-type": "implement" 1524 }, 1525 { 1526 "name": "ietf-ospf", 1527 "revision": "2017-03-12", 1528 "namespace": 1529 "urn:ietf:params:xml:ns:yang:ietf-ospf", 1530 "conformance-type": "implement" 1531 } 1532 ] 1533 } 1534 ] 1535 } 1536 } 1538 B.3. State Data - NDMA Version 1540 The following shows state data for the configuration example above 1541 based on [I-D.ietf-netmod-rfc7223bis], [I-D.ietf-netmod-rfc7277bis], 1542 and [I-D.ietf-netmod-rfc8022bis]. 1544 { 1545 "ietf-network-instance:network-instances": { 1546 "network-instance": [ 1547 { 1548 "name": "vrf-red", 1549 "vrf-root": { 1550 "ietf-routing:routing": { 1551 "router-id": "192.0.2.1", 1552 "control-plane-protocols": { 1553 "control-plane-protocol": [ 1554 { 1555 "type": "ietf-routing:ospf", 1556 "name": "1", 1557 "ietf-ospf:ospf": { 1558 "af": "ipv4", 1559 "areas": { 1560 "area": [ 1561 { 1562 "area-id": "203.0.113.1", 1563 "interfaces": { 1564 "interface": [ 1565 { 1566 "name": "eth1", 1567 "cost": 10 1568 } 1569 ] 1570 } 1571 } 1572 ] 1573 } 1575 } 1576 } 1577 ] 1578 } 1579 } 1580 } 1581 }, 1582 { 1583 "name": "vrf-blue", 1584 "vrf-root": { 1585 "ietf-routing:routing": { 1586 "router-id": "192.0.2.2", 1587 "control-plane-protocols": { 1588 "control-plane-protocol": [ 1589 { 1590 "type": "ietf-routing:ospf", 1591 "name": "1", 1592 "ietf-ospf:ospf": { 1593 "areas": { 1594 "area": [ 1595 { 1596 "area-id": "203.0.113.1", 1597 "interfaces": { 1598 "interface": [ 1599 { 1600 "name": "eth2", 1601 "cost": 10 1602 } 1603 ] 1604 } 1605 } 1606 ] 1607 } 1608 } 1609 } 1610 ] 1611 } 1612 } 1613 } 1614 } 1615 ] 1616 }, 1618 "ietf-interfaces:interfaces": { 1619 "interfaces": { 1620 "interface": [ 1621 { 1622 "name": "eth0", 1623 "type": "iana-if-type:ethernetCsmacd", 1624 "oper-status": "up", 1625 "phys-address": "00:01:02:A1:B1:C0", 1626 "statistics": { 1627 "discontinuity-time": "2017-06-26T12:34:56-05:00" 1628 }, 1629 "ip:ipv4": { 1630 "address": [ 1631 { 1632 "ip": "192.0.2.10", 1633 "prefix-length": 24, 1634 } 1635 ] 1636 } 1637 "ip:ipv6": { 1638 "address": [ 1639 { 1640 "ip": "2001:db8:0:2::10", 1641 "prefix-length": 64, 1642 } 1643 ] 1644 } 1645 }, 1646 { 1647 "name": "eth1", 1648 "type": "iana-if-type:ethernetCsmacd", 1649 "oper-status": "up", 1650 "phys-address": "00:01:02:A1:B1:C1", 1651 "statistics": { 1652 "discontinuity-time": "2017-06-26T12:34:56-05:00" 1653 }, 1654 "ip:ipv4": { 1655 "address": [ 1656 { 1657 "ip": "192.0.2.11", 1658 "prefix-length": 24, 1659 } 1660 ] 1661 } 1662 "ip:ipv6": { 1663 "address": [ 1664 { 1665 "ip": "2001:db8:0:2::11", 1666 "prefix-length": 64, 1667 } 1668 ] 1669 } 1670 }, 1671 { 1672 "name": "eth2", 1673 "type": "iana-if-type:ethernetCsmacd", 1674 "oper-status": "up", 1675 "phys-address": "00:01:02:A1:B1:C2", 1676 "statistics": { 1677 "discontinuity-time": "2017-06-26T12:34:56-05:00" 1678 }, 1679 "ip:ipv4": { 1680 "address": [ 1681 { 1682 "ip": "192.0.2.11", 1683 "prefix-length": 24, 1684 } 1685 ] 1686 } 1687 "ip:ipv6": { 1688 "address": [ 1689 { 1690 "ip": "2001:db8:0:2::11", 1691 "prefix-length": 64, 1692 } 1693 ] 1694 } 1695 } 1696 ] 1697 } 1698 }, 1700 "ietf-system:system-state": { 1701 "platform": { 1702 "os-name": "NetworkOS" 1703 } 1704 } 1706 "ietf-yang-library:modules-state": { 1707 "module-set-id": "123e4567-e89b-12d3-a456-426655440000", 1708 "module": [ 1709 { 1710 "name": "iana-if-type", 1711 "revision": "2014-05-08", 1712 "namespace": 1713 "urn:ietf:params:xml:ns:yang:iana-if-type", 1714 "conformance-type": "import" 1715 }, 1716 { 1717 "name": "ietf-inet-types", 1718 "revision": "2013-07-15", 1719 "namespace": 1720 "urn:ietf:params:xml:ns:yang:ietf-inet-types", 1721 "conformance-type": "import" 1722 }, 1723 { 1724 "name": "ietf-interfaces", 1725 "revision": "2018-01-09", 1726 "feature": [ 1727 "arbitrary-names", 1728 "pre-provisioning" 1729 ], 1730 "namespace": 1731 "urn:ietf:params:xml:ns:yang:ietf-interfaces", 1732 "conformance-type": "implement" 1733 }, 1734 { 1735 "name": "ietf-ip", 1736 "revision": "2018-01-09", 1737 "namespace": 1738 "urn:ietf:params:xml:ns:yang:ietf-ip", 1739 "conformance-type": "implement" 1740 }, 1741 { 1742 "name": "ietf-network-instance", 1743 "revision": "2018-02-03", 1744 "feature": [ 1745 "bind-network-instance-name" 1746 ], 1747 "namespace": 1748 "urn:ietf:params:xml:ns:yang:ietf-network-instance", 1749 "conformance-type": "implement" 1750 }, 1751 { 1752 "name": "ietf-ospf", 1753 "revision": "2017-10-30", 1754 "namespace": "urn:ietf:params:xml:ns:yang:ietf-ospf", 1755 "conformance-type": "implement" 1756 }, 1757 { 1758 "name": "ietf-routing", 1759 "revision": "2018-01-25", 1760 "namespace": 1761 "urn:ietf:params:xml:ns:yang:ietf-routing", 1762 "conformance-type": "implement" 1763 }, 1764 { 1765 "name": "ietf-system", 1766 "revision": "2014-08-06", 1767 "namespace": 1768 "urn:ietf:params:xml:ns:yang:ietf-system", 1769 "conformance-type": "implement" 1770 }, 1771 { 1772 "name": "ietf-yang-library", 1773 "revision": "2016-06-21", 1774 "namespace": 1775 "urn:ietf:params:xml:ns:yang:ietf-yang-library", 1776 "conformance-type": "implement" 1777 }, 1778 { 1779 "name": "ietf-yang-schema-mount", 1780 "revision": "2017-05-16", 1781 "namespace": 1782 "urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount", 1783 "conformance-type": "implement" 1784 }, 1785 { 1786 "name": "ietf-yang-types", 1787 "revision": "2013-07-15", 1788 "namespace": 1789 "urn:ietf:params:xml:ns:yang:ietf-yang-types", 1790 "conformance-type": "import" 1791 } 1792 ] 1793 }, 1795 "ietf-yang-schema-mount:schema-mounts": { 1796 "mount-point": [ 1797 { 1798 "module": "ietf-network-instance", 1799 "label": "vrf-root", 1800 "use-schema": [ 1801 { 1802 "name": "ni-schema", 1803 "parent-reference": [ 1804 "/*[namespace-uri() = 'urn:ietf:...:ietf-interfaces']" 1805 ] 1806 } 1807 ] 1808 } 1809 ], 1810 "schema": [ 1811 { 1812 "name": "ni-schema", 1813 "module": [ 1814 { 1815 "name": "ietf-routing", 1816 "revision": "2018-01-25", 1817 "namespace": 1818 "urn:ietf:params:xml:ns:yang:ietf-routing", 1819 "conformance-type": "implement" 1820 }, 1821 { 1822 "name": "ietf-ospf", 1823 "revision": "2017-10-30", 1824 "namespace": 1825 "urn:ietf:params:xml:ns:yang:ietf-ospf", 1826 "conformance-type": "implement" 1827 } 1828 ] 1829 } 1830 ] 1831 } 1832 } 1834 Authors' Addresses 1836 Lou Berger 1837 LabN Consulting, L.L.C. 1839 Email: lberger@labn.net 1841 Christan Hopps 1842 Deutsche Telekom 1844 Email: chopps@chopps.org 1846 Acee Lindem 1847 Cisco Systems 1848 301 Midenhall Way 1849 Cary, NC 27513 1850 USA 1852 Email: acee@cisco.com 1854 Dean Bogdanovic 1856 Email: ivandean@gmail.com 1857 Xufeng Liu 1858 Jabil 1860 Email: Xufeng_Liu@jabil.com