idnits 2.17.1 draft-ietf-rtgwg-ni-model-11.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (March 1, 2018) is 2248 days in the past. Is this intentional? -- Found something which looks like a code comment -- if you have code sections in the document, please surround them with '' and '' lines. Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Outdated reference: A later version (-12) exists of draft-ietf-netmod-schema-mount-08 ** Obsolete normative reference: RFC 5246 (Obsoleted by RFC 8446) ** Obsolete normative reference: RFC 6536 (Obsoleted by RFC 8341) == Outdated reference: A later version (-10) exists of draft-ietf-bess-l2vpn-yang-08 == Outdated reference: A later version (-05) exists of draft-ietf-bess-l3vpn-yang-02 == Outdated reference: A later version (-29) exists of draft-ietf-ospf-yang-09 == Outdated reference: A later version (-10) exists of draft-ietf-rtgwg-lne-model-07 -- Obsolete informational reference (is this intentional?): RFC 7223 (Obsoleted by RFC 8343) -- Obsolete informational reference (is this intentional?): RFC 7277 (Obsoleted by RFC 8344) -- Obsolete informational reference (is this intentional?): RFC 8022 (Obsoleted by RFC 8349) Summary: 2 errors (**), 0 flaws (~~), 6 warnings (==), 5 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group L. Berger 3 Internet-Draft LabN Consulting, L.L.C. 4 Intended status: Standards Track C. Hopps 5 Expires: September 2, 2018 Deutsche Telekom 6 A. Lindem 7 Cisco Systems 8 D. Bogdanovic 10 X. Liu 11 Jabil 12 March 1, 2018 14 YANG Model for Network Instances 15 draft-ietf-rtgwg-ni-model-11 17 Abstract 19 This document defines a network instance module. This module can be 20 used to manage the virtual resource partitioning that may be present 21 on a network device. Examples of common industry terms for virtual 22 resource partitioning are Virtual Routing and Forwarding (VRF) 23 instances and Virtual Switch Instances (VSIs). 25 The YANG model in this document conforms to the Network Management 26 Datastore Architecture defined in I-D.ietf-netmod-revised-datastores. 28 Status of This Memo 30 This Internet-Draft is submitted in full conformance with the 31 provisions of BCP 78 and BCP 79. 33 Internet-Drafts are working documents of the Internet Engineering 34 Task Force (IETF). Note that other groups may also distribute 35 working documents as Internet-Drafts. The list of current Internet- 36 Drafts is at http://datatracker.ietf.org/drafts/current/. 38 Internet-Drafts are draft documents valid for a maximum of six months 39 and may be updated, replaced, or obsoleted by other documents at any 40 time. It is inappropriate to use Internet-Drafts as reference 41 material or to cite them other than as "work in progress." 43 This Internet-Draft will expire on September 2, 2018. 45 Copyright Notice 47 Copyright (c) 2018 IETF Trust and the persons identified as the 48 document authors. All rights reserved. 50 This document is subject to BCP 78 and the IETF Trust's Legal 51 Provisions Relating to IETF Documents 52 (http://trustee.ietf.org/license-info) in effect on the date of 53 publication of this document. Please review these documents 54 carefully, as they describe your rights and restrictions with respect 55 to this document. Code Components extracted from this document must 56 include Simplified BSD License text as described in Section 4.e of 57 the Trust Legal Provisions and are provided without warranty as 58 described in the Simplified BSD License. 60 Table of Contents 62 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 63 1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 3 64 2. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 4 65 3. Network Instances . . . . . . . . . . . . . . . . . . . . . . 5 66 3.1. NI Types and Mount Points . . . . . . . . . . . . . . . . 6 67 3.1.1. Well Known Mount Points . . . . . . . . . . . . . . . 7 68 3.1.2. NI Type Example . . . . . . . . . . . . . . . . . . . 8 69 3.2. NIs and Interfaces . . . . . . . . . . . . . . . . . . . 9 70 3.3. Network Instance Management . . . . . . . . . . . . . . . 10 71 3.4. Network Instance Instantiation . . . . . . . . . . . . . 13 72 4. Security Considerations . . . . . . . . . . . . . . . . . . . 14 73 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 15 74 6. Network Instance Model . . . . . . . . . . . . . . . . . . . 15 75 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 21 76 7.1. Normative References . . . . . . . . . . . . . . . . . . 21 77 7.2. Informative References . . . . . . . . . . . . . . . . . 23 78 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . 24 79 Appendix B. Example NI usage . . . . . . . . . . . . . . . . . . 24 80 B.1. Configuration Data . . . . . . . . . . . . . . . . . . . 24 81 B.2. State Data - Non-NDMA Version . . . . . . . . . . . . . . 28 82 B.3. State Data - NDMA Version . . . . . . . . . . . . . . . . 34 83 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 40 85 1. Introduction 87 This document defines the second of two new modules that are defined 88 to support the configuration and operation of network-devices that 89 allow for the partitioning of resources from both, or either, 90 management and networking perspectives. Both leverage the YANG 91 functionality enabled by YANG Schema Mount 92 [I-D.ietf-netmod-schema-mount]. 94 The YANG model in this document conforms to the Network Management 95 Datastore Architecture defined in the 96 [I-D.ietf-netmod-revised-datastores]. 98 The first form of resource partitioning provides a logical 99 partitioning of a network device where each partition is separately 100 managed as essentially an independent network element which is 101 'hosted' by the base network device. These hosted network elements 102 are referred to as logical network elements, or LNEs, and are 103 supported by the logical-network-element module defined in 104 [I-D.ietf-rtgwg-lne-model]. That module is used to identify LNEs and 105 associate resources from the network-device with each LNE. LNEs 106 themselves are represented in YANG as independent network devices; 107 each accessed independently. Examples of vendor terminology for an 108 LNE include logical system or logical router, and virtual switch, 109 chassis, or fabric. 111 The second form, which is defined in this document, provides support 112 for what is commonly referred to as Virtual Routing and Forwarding 113 (VRF) instances as well as Virtual Switch Instances (VSI), see 114 [RFC4026] and [RFC4664]. In this form of resource partitioning, 115 multiple control plane and forwarding/bridging instances are provided 116 by and managed via a single (physical or logical) network device. 117 This form of resource partitioning is referred to as a Network 118 Instance and is supported by the network-instance module defined 119 below. Configuration and operation of each network-instance is 120 always via the network device and the network-instance module. 122 One notable difference between the LNE model and the NI model is that 123 the NI model provides a framework for VRF and VSI management. This 124 document envisions the separate definition of VRF and VSI, i.e., L3 125 and L2 VPN, technology specific models. An example of such can be 126 found in the emerging L3VPN model defined in 127 [I-D.ietf-bess-l3vpn-yang] and the examples discussed below. 129 1.1. Terminology 131 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 132 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and 133 "OPTIONAL" in this document are to be interpreted as described in BCP 134 14 [RFC2119] [RFC8174] when, and only when, they appear in all 135 capitals, as shown here. 137 Readers are expected to be familiar with terms and concepts of YANG 138 [RFC7950] and YANG Schema Mount [I-D.ietf-netmod-schema-mount]. 140 This document uses the graphical representation of data models 141 defined in [I-D.ietf-netmod-yang-tree-diagrams]. 143 2. Overview 145 In this document, we consider network devices that support protocols 146 and functions defined within the IETF, e.g, routers, firewalls, and 147 hosts. Such devices may be physical or virtual, e.g., a classic 148 router with custom hardware or one residing within a server-based 149 virtual machine implementing a virtual network function (VNF). Each 150 device may sub-divide their resources into logical network elements 151 (LNEs) each of which provides a managed logical device. Examples of 152 vendor terminology for an LNE include logical system or logical 153 router, and virtual switch, chassis, or fabric. Each LNE may also 154 support virtual routing and forwarding (VRF) and virtual switching 155 instance (VSI) functions, which are referred to below as a network 156 instances (NIs). This breakdown is represented in Figure 1. 158 ,''''''''''''''''''''''''''''''''''''''''''''''`. 159 | Network Device (Physical or Virtual) | 160 | ..................... ..................... | 161 | : Logical Network : : Logical Network : | 162 | : Element : : Element : | 163 | :+-----+-----+-----+: :+-----+-----+-----+: | 164 | :| Net | Net | Net |: :| Net | Net | Net |: | 165 | :|Inst.|Inst.|Inst.|: :|Inst.|Inst.|Inst.|: | 166 | :+-----+-----+-----+: :+-----+-----+-----+: | 167 | : | | | | | | : : | | | | | | : | 168 | :..|.|...|.|...|.|..: :..|.|...|.|...|.|..: | 169 | | | | | | | | | | | | | | 170 `'''|'|'''|'|'''|'|'''''''''|'|'''|'|'''|'|''''' 171 | | | | | | | | | | | | 172 Interfaces Interfaces 174 Figure 1: Module Element Relationships 176 A model for LNEs is described in [I-D.ietf-rtgwg-lne-model] and the 177 model for NIs is covered in this document in Section 3. 179 The current interface management model [I-D.ietf-netmod-rfc7223bis] 180 is impacted by the definition of LNEs and NIs. This document and 181 [I-D.ietf-rtgwg-lne-model] define augmentations to the interface 182 module to support LNEs and NIs. 184 The network instance model supports the configuration of VRFs and 185 VSIs. Each instance is supported by information that relates to the 186 device, for example the route target used when advertising VRF routes 187 via the mechanisms defined in [RFC4364], and information that relates 188 to the internal operation of the NI, for example for routing 189 protocols [I-D.ietf-netmod-rfc8022bis] and OSPF [I-D.ietf-ospf-yang]. 191 This document defines the network-instance module that provides a 192 basis for the management of both types of information. 194 NI information that relates to the device, including the assignment 195 of interfaces to NIs, is defined as part of this document. The 196 defined module also provides a placeholder for the definition of NI- 197 technology specific information both at the device level and for NI 198 internal operation. Information related to NI internal operation is 199 supported via schema mount [I-D.ietf-netmod-schema-mount] and 200 mounting appropriate modules under the mount point. Well known mount 201 points are defined for L3VPN, L2VPN, and L2+L3VPN NI types. 203 3. Network Instances 205 The network instance container is used to represent virtual routing 206 and forwarding instances (VRFs) and virtual switching instances 207 (VSIs). VRFs and VSIs are commonly used to isolate routing and 208 switching domains, for example to create virtual private networks, 209 each with their own active protocols and routing/switching policies. 210 The model supports both core/provider and virtual instances. Core/ 211 provider instance information is accessible at the top level of the 212 server, while virtual instance information is accessible under the 213 root schema mount points. 215 module: ietf-network-instance 216 +--rw network-instances 217 +--rw network-instance* [name] 218 +--rw name string 219 +--rw enabled? boolean 220 +--rw description? string 221 +--rw (ni-type)? 222 +--rw (root-type) 223 +--:(vrf-root) 224 | +--mp vrf-root 225 +--:(vsi-root) 226 | +--mp vsi-root 227 +--:(vv-root) 228 +--mp vv-root 229 augment /if:interfaces/if:interface: 230 +--rw bind-ni-name? -> /network-instances/network-instance/name 231 augment /if:interfaces/if:interface/ip:ipv4: 232 +--rw bind-ni-name? -> /network-instances/network-instance/name 233 augment /if:interfaces/if:interface/ip:ipv6: 234 +--rw bind-ni-name? -> /network-instances/network-instance/name 236 notifications: 237 +---n bind-ni-name-failed 238 +--ro name -> /if:interfaces/interface/name 239 +--ro interface 240 | +--ro bind-ni-name? 241 | -> /if:interfaces/interface/ni:bind-ni-name 242 +--ro ipv4 243 | +--ro bind-ni-name? 244 | -> /if:interfaces/interface/ip:ipv4/ni:bind-ni-name 245 +--ro ipv6 246 | +--ro bind-ni-name? 247 | -> /if:interfaces/interface/ip:ipv6/ni:bind-ni-name 248 +--ro error-info? string 250 A network instance is identified by a 'name' string. This string is 251 used both as an index within the network-instance module and to 252 associate resources with a network instance as shown above in the 253 interface augmentation. The ni-type and root-type choice statements 254 are used to support different types of L2 and L3 VPN technologies. 255 The bind-ni-name-failed notification is used in certain failure 256 cases. 258 3.1. NI Types and Mount Points 260 The network-instance module is structured to facilitate the 261 definition of information models for specific types of VRFs and VSIs 262 using augmentations. For example, the information needed to support 263 VPLS, VxLAN and EVPN based L2VPNs are likely to be quite different. 264 Example models under development that could be restructured to take 265 advantage on NIs include, for L3VPNs [I-D.ietf-bess-l3vpn-yang] and 266 for L2VPNs [I-D.ietf-bess-l2vpn-yang]. 268 Documents defining new YANG models for the support of specific types 269 of network instances should augment the network instance module. The 270 basic structure that should be used for such augmentations include a 271 case statement, with containers for configuration and state data and 272 finally, when needed, a type specific mount point. Generally ni 273 types, are expected to not need to define type specific mount points, 274 but rather reuse one of the well known mount point, as defined in the 275 next section. The following is an example type specific 276 augmentation: 278 augment "/ni:network-instances/ni:network-instance/ni:ni-type" { 279 case l3vpn { 280 container l3vpn { 281 ... 282 } 283 container l3vpn-state { 284 ... 285 } 286 } 287 } 289 3.1.1. Well Known Mount Points 291 YANG Schema Mount, [I-D.ietf-netmod-schema-mount], identifies mount 292 points by name within a module. This definition allows for the 293 definition of mount points whose schema can be shared across ni- 294 types. As discussed above, ni-types largely differ in the 295 configuration information needed in the core/top level instance to 296 support the NI, rather than in the information represented within an 297 NI. This allows the use of shared mount points across certain NI 298 types. 300 The expectation is that there are actually very few different schema 301 that need to be defined to support NIs on an implementation. In 302 particular, it is expected that the following three forms of NI 303 schema are needed, and each can be defined with a well known mount 304 point that can be reused by future modules defining ni-types. 306 The three well known mount points are: 308 vrf-root 309 vrf-root is intended for use with L3VPN type ni-types. 311 vsi-root 312 vsi-root is intended for use with L2VPN type ni-types. 314 vv-root 315 vv-root is intended for use with ni-types that simultaneously 316 support L2VPN bridging and L3VPN routing capabilities. 318 Future model definitions should use the above mount points whenever 319 possible. When a well known mount point isn't appropriate, a model 320 may define a type specific mount point via augmentation. 322 3.1.2. NI Type Example 324 The following is an example of an L3VPN VRF using a hypothetical 325 augmentation to the networking instance schema defined in 326 [I-D.ietf-bess-l3vpn-yang]. More detailed examples can be found in 327 Appendix B. 329 module: ietf-network-instance 330 +--rw network-instances 331 +--rw network-instance* [name] 332 +--rw name string 333 +--rw enabled? boolean 334 +--rw description? string 335 +--rw (ni-type)? 336 | +--:(l3vpn) 337 | +--rw l3vpn:l3vpn 338 | | ... // config data 339 | +--ro l3vpn:l3vpn-state 340 | | ... // state data 341 +--rw (root-type) 342 +--:(vrf-root) 343 +--mp vrf-root 344 +--rw rt:routing/ 345 | +--rw router-id? yang:dotted-quad 346 | +--rw control-plane-protocols 347 | +--rw control-plane-protocol* [type name] 348 | +--rw ospf:ospf/ 349 | +--rw area* [area-id] 350 | +--rw interfaces 351 | +--rw interface* [name] 352 | +--rw name if:interface-ref 353 | +--rw cost? uint16 354 +--ro if:interfaces@ 355 | ... 357 This shows YANG Routing Management [I-D.ietf-netmod-rfc8022bis] and 358 YANG OSPF [I-D.ietf-ospf-yang] as mounted modules. The mounted 359 modules can reference interface information via a parent-reference to 360 the containers defined in [I-D.ietf-netmod-rfc7223bis]. 362 3.2. NIs and Interfaces 364 Interfaces are a crucial part of any network device's configuration 365 and operational state. They generally include a combination of raw 366 physical interfaces, link-layer interfaces, addressing configuration, 367 and logical interfaces that may not be tied to any physical 368 interface. Several system services, and layer 2 and layer 3 369 protocols may also associate configuration or operational state data 370 with different types of interfaces (these relationships are not shown 371 for simplicity). The interface management model is defined by 372 [I-D.ietf-netmod-rfc7223bis]. 374 As shown below, the network-instance module augments the existing 375 interface management model by adding a name which is used on 376 interface or sub-interface types to identify an associated network 377 instance. Similarly, this name is also added for IPv4 and IPv6 378 types, as defined in [I-D.ietf-netmod-rfc7277bis]. 380 The following is an example of envisioned usage. The interfaces 381 container includes a number of commonly used components as examples: 383 module: ietf-interfaces 384 +--rw interfaces 385 | +--rw interface* [name] 386 | +--rw name string 387 | +--rw ip:ipv4! 388 | | +--rw ip:enabled? boolean 389 | | +--rw ip:forwarding? boolean 390 | | +--rw ip:mtu? uint16 391 | | +--rw ip:address* [ip] 392 | | | +--rw ip:ip inet:ipv4-address-no-zone 393 | | | +--rw (ip:subnet) 394 | | | +--:(ip:prefix-length) 395 | | | | +--rw ip:prefix-length? uint8 396 | | | +--:(ip:netmask) 397 | | | +--rw ip:netmask? yang:dotted-quad 398 | | +--rw ip:neighbor* [ip] 399 | | | +--rw ip:ip inet:ipv4-address-no-zone 400 | | | +--rw ip:link-layer-address yang:phys-address 401 | | +--rw ni:bind-network-instance-name? string 402 | +--rw ni:bind-network-instance-name? string 404 The [I-D.ietf-netmod-rfc7223bis] defined interface model is 405 structured to include all interfaces in a flat list, without regard 406 to virtual instances (e.g., VRFs) supported on the device. The bind- 407 network-instance-name leaf provides the association between an 408 interface and its associated NI (e.g., VRF or VSI). Note that as 409 currently defined, to assign an interface to both an LNE and NI, the 410 interface would first be assigned to the LNE using the mechanisms 411 defined in [I-D.ietf-rtgwg-lne-model] and then within that LNE's 412 interface module, the LNE's representation of that interface would be 413 assigned to an NI. 415 3.3. Network Instance Management 417 Modules that may be used to represent network instance information 418 will be available under the ni-type specific 'root' mount point. The 419 use-schema mechanism defined as part of the Schema Mount module 420 [I-D.ietf-netmod-schema-mount] MUST be used with the module defined 421 in this document to identify accessible modules. A future version of 422 this document could relax this requirement. Mounted modules in the 423 non-inline case SHOULD be defined with access, via the appropriate 424 schema mount parent-references [I-D.ietf-netmod-schema-mount], to 425 device resources such as interfaces. An implementation MAY choose to 426 restrict parent referenced information to information related to a 427 specific instance, e.g., only allowing references to interfaces that 428 have a "bind-network-instance-name" which is identical to the 429 instance's "name". 431 All modules that represent control-plane and data-plane information 432 may be present at the 'root' mount point, and be accessible via paths 433 modified per [I-D.ietf-netmod-schema-mount]. The list of available 434 modules is expected to be implementation dependent, as is the method 435 used by an implementation to support NIs. 437 For example, the following could be used to define the data 438 organization of the example NI shown in Section 3.1.2: 440 "ietf-yang-schema-mount:schema-mounts": { 441 "mount-point": [ 442 { 443 "module": "ietf-network-instance", 444 "label": "vrf-root", 445 "use-schema": [ 446 { 447 "name": "ni-schema", 448 "parent-reference": [ 449 "/*[namespace-uri() = 'urn:ietf:...:ietf-interfaces']" 450 ] 451 } 452 ] 453 } 454 ], 455 "schema": [ 456 { 457 "name": "ni-schema", 458 "module": [ 459 { 460 "name": "ietf-routing", 461 "revision": "2018-01-25", 462 "namespace": 463 "urn:ietf:params:xml:ns:yang:ietf-routing", 464 "conformance-type": "implement" 465 }, 466 { 467 "name": "ietf-ospf", 468 "revision": "2017-10-30", 469 "namespace": 470 "urn:ietf:params:xml:ns:yang:ietf-ospf", 471 "conformance-type": "implement" 472 } 473 ] 474 } 475 ] 476 } 478 Module data identified under "schema" will be instantiated under the 479 mount point identified under "mount-point". These modules will be 480 able to reference information for nodes belonging to top-level 481 modules that are identified under "parent-reference". Parent 482 referenced information is available to clients via their top level 483 paths only, and not under the associated mount point. 485 To allow a client to understand the previously mentioned instance 486 restrictions on parent referenced information, an implementation MAY 487 represent such restrictions in the "parent-reference" leaf-list. For 488 example: 490 "namespace": [ 491 { 492 "prefix": "if", 493 "uri": "urn:ietf:params:xml:ns:yang:ietf-interfaces" 494 }, 495 { 496 "prefix": "ni", 497 "uri": "urn:ietf:params:xml:ns:yang:ietf-network-instance" 498 } 499 ], 500 "mount-point": [ 501 { 502 "parent-reference": [ 503 "/if:interfaces/if:interface 504 [ni:bind-network-instance-name = current()/../ni:name]", 505 "/if:interfaces/if:interface/ip:ipv4 506 [ni:bind-network-instance-name = current()/../ni:name]", 507 "/if:interfaces/if:interface/ip:ipv6 508 [ni:bind-network-instance-name = current()/../ni:name]", 509 } 510 ], 512 The same such "parent-reference" restrictions for non-NDMA 513 implementations can be represented based on the [RFC7223] and 514 [RFC7277] as: 516 "namespace": [ 517 { 518 "prefix": "if", 519 "uri": "urn:ietf:params:xml:ns:yang:ietf-interfaces" 520 }, 521 { 522 "prefix": "ni", 523 "uri": "urn:ietf:params:xml:ns:yang:ietf-network-instance" 524 } 525 ], 526 "mount-point": [ 527 { 528 "parent-reference": [ 529 "/if:interfaces/if:interface 530 [ni:bind-network-instance-name = current()/../ni:name]", 531 "/if:interfaces-state/if:interface 532 [if:name = /if:interfaces/if:interface 533 [ni:bind-ni-name = current()/../ni:name]/if:name]", 534 "/if:interfaces/if:interface/ip:ipv4 535 [ni:bind-network-instance-name = current()/../ni:name]", 536 "/if:interfaces-state/if:interface/ip:ipv4 537 [if:name = /if:interfaces/if:interface/ip:ipv4 538 [ni:bind-ni-name = current()/../ni:name]/if:name]", 539 "/if:interfaces/if:interface/ip:ipv6 540 [ni:bind-network-instance-name = current()/../ni:name]", 541 "/if:interfaces-state/if:interface/ip:ipv6 542 [if:name = /if:interfaces/if:interface/ip:ipv4 543 [ni:bind-ni-name = current()/../ni:name]/if:name]", 544 ] 545 } 546 ], 548 3.4. Network Instance Instantiation 550 Network instances may be controlled by clients using existing list 551 operations. When a list entry is created, a new instance is 552 instantiated. The models mounted under an NI root are expected to be 553 dependent on the server implementation. When a list entry is 554 deleted, an existing network instance is destroyed. For more 555 information, see [RFC7950] Section 7.8.6. 557 Once instantiated, host network device resources can be associated 558 with the new NI. As previously mentioned, this document augments 559 ietf-interfaces with the bind-ni-name leaf to support such 560 associations for interfaces. When a bind-ni-name is set to a valid 561 NI name, an implementation MUST take whatever steps are internally 562 necessary to assign the interface to the NI or provide an error 563 message (defined below) with an indication of why the assignment 564 failed. It is possible for the assignment to fail while processing 565 the set operation, or after asynchronous processing. Error 566 notification in the latter case is supported via a notification. 568 4. Security Considerations 570 The YANG modules specified in this document define a schema for data 571 that is designed to be accessed via network management protocols such 572 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer 573 is the secure transport layer, and the mandatory-to-implement secure 574 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer 575 is HTTPS, and the mandatory-to-implement secure transport is TLS 576 [RFC5246]. 578 The NETCONF access control model [RFC6536] provides the means to 579 restrict access for particular NETCONF or RESTCONF users to a 580 preconfigured subset of all available NETCONF or RESTCONF protocol 581 operations and content. 583 There are two different sets of security considerations to consider 584 in the context of this document. One set is security related to 585 information contained within mounted modules. The security 586 considerations for mounted modules are not substantively changed 587 based on the information being accessible within the context of an 588 NI. For example, when considering the modules defined in 589 [I-D.ietf-netmod-rfc8022bis], the security considerations identified 590 in that document are equally applicable, whether those modules are 591 accessed at a server's root or under an NI instance's root node. 593 The second area for consideration is information contained in the NI 594 module itself. NI information represents network configuration and 595 route distribution policy information. As such, the security of this 596 information is important, but it is fundamentally no different than 597 any other interface or routing configuration information that has 598 already been covered in [I-D.ietf-netmod-rfc7223bis] and 599 [I-D.ietf-netmod-rfc8022bis]. 601 The vulnerable "config true" parameters and subtrees are the 602 following: 604 /network-instances/network-instance: This list specifies the network 605 instances and the related control plane protocols configured on a 606 device. 608 /if:interfaces/if:interface/*/bind-network-instance-name: This leaf 609 indicates the NI instance to which an interface is assigned. 611 Unauthorized access to any of these lists can adversely affect the 612 routing subsystem of both the local device and the network. This may 613 lead to network malfunctions, delivery of packets to inappropriate 614 destinations and other problems. 616 5. IANA Considerations 618 This document registers a URI in the IETF XML registry [RFC3688]. 619 Following the format in RFC 3688, the following registration is 620 requested to be made. 622 URI: urn:ietf:params:xml:ns:yang:ietf-network-instance 624 Registrant Contact: The IESG. 626 XML: N/A, the requested URI is an XML namespace. 628 This document registers a YANG module in the YANG Module Names 629 registry [RFC6020]. 631 name: ietf-network-instance 632 namespace: urn:ietf:params:xml:ns:yang:ietf-network-instance 633 prefix: ni 634 reference: RFC XXXX 636 6. Network Instance Model 638 The structure of the model defined in this document is described by 639 the YANG module below. 641 file "ietf-network-instance@2018-02-03.yang" 642 module ietf-network-instance { 643 yang-version 1.1; 644 namespace "urn:ietf:params:xml:ns:yang:ietf-network-instance"; 645 prefix ni; 647 // import some basic types 649 import ietf-interfaces { 650 prefix if; 651 reference "draft-ietf-netmod-rfc7223bis: A YANG Data Model 652 for Interface Management"; 653 } 654 import ietf-ip { 655 prefix ip; 656 reference "draft-ietf-netmod-rfc7277bis: A YANG Data Model 657 for IP Management"; 658 } 659 import ietf-yang-schema-mount { 660 prefix yangmnt; 661 reference "draft-ietf-netmod-schema-mount: YANG Schema Mount"; 662 // RFC Ed.: Please replace this draft name with the 663 // corresponding RFC number 664 } 666 organization 667 "IETF Routing Area (rtgwg) Working Group"; 668 contact 669 "WG Web: 670 WG List: 672 Author: Lou Berger 673 674 Author: Christan Hopps 675 676 Author: Acee Lindem 677 678 Author: Dean Bogdanovic 679 "; 680 description 681 "This module is used to support multiple network instances 682 within a single physical or virtual device. Network 683 instances are commonly known as VRFs (virtual routing 684 and forwarding) and VSIs (virtual switching instances). 686 Copyright (c) 2017 IETF Trust and the persons 687 identified as authors of the code. All rights reserved. 689 Redistribution and use in source and binary forms, with or 690 without modification, is permitted pursuant to, and subject 691 to the license terms contained in, the Simplified BSD License 692 set forth in Section 4.c of the IETF Trust's Legal Provisions 693 Relating to IETF Documents 694 (http://trustee.ietf.org/license-info). 696 This version of this YANG module is part of RFC XXXX; see 697 the RFC itself for full legal notices."; 699 // RFC Ed.: replace XXXX with actual RFC number and remove 700 // this note 701 // RFC Ed.: please update TBD 703 revision 2018-02-03 { 704 description 705 "Initial revision."; 706 reference "RFC TBD"; 708 } 710 // top level device definition statements 712 container network-instances { 713 description 714 "Network instances each of which consists of a 715 VRFs (virtual routing and forwarding) and/or 716 VSIs (virtual switching instances)."; 717 reference "draft-ietf-rtgwg-rfc8022bis - A YANG Data Model 718 for Routing Management"; 719 list network-instance { 720 key "name"; 721 description 722 "List of network-instances."; 723 leaf name { 724 type string; 725 mandatory true; 726 description 727 "device scoped identifier for the network 728 instance."; 729 } 730 leaf enabled { 731 type boolean; 732 default "true"; 733 description 734 "Flag indicating whether or not the network 735 instance is enabled."; 736 } 737 leaf description { 738 type string; 739 description 740 "Description of the network instance 741 and its intended purpose."; 742 } 743 choice ni-type { 744 description 745 "This node serves as an anchor point for different types 746 of network instances. Each 'case' is expected to 747 differ in terms of the information needed in the 748 parent/core to support the NI, and may differ in their 749 mounted schema definition. When the mounted schema is 750 not expected to be the same for a specific type of NI 751 a mount point should be defined."; 752 } 753 choice root-type { 754 mandatory true; 755 description 756 "Well known mount points."; 757 container vrf-root { 758 description 759 "Container for mount point."; 760 yangmnt:mount-point "vrf-root" { 761 description 762 "Root for L3VPN type models. This will typically 763 not be an inline type mount point."; 764 } 765 } 766 container vsi-root { 767 description 768 "Container for mount point."; 769 yangmnt:mount-point "vsi-root" { 770 description 771 "Root for L2VPN type models. This will typically 772 not be an inline type mount point."; 773 } 774 } 775 container vv-root { 776 description 777 "Container for mount point."; 778 yangmnt:mount-point "vv-root" { 779 description 780 "Root models that support both L2VPN type bridging 781 and L3VPN type routing. This will typically 782 not be an inline type mount point."; 783 } 784 } 785 } 786 } 787 } 789 // augment statements 791 augment "/if:interfaces/if:interface" { 792 description 793 "Add a node for the identification of the network 794 instance associated with the information configured 795 on a interface. 797 Note that a standard error will be returned if the 798 identified leafref isn't present. If an interfaces cannot 799 be assigned for any other reason, the operation SHALL fail 800 with an error-tag of 'operation-failed' and an 801 error-app-tag of 'ni-assignment-failed'. A meaningful 802 error-info that indicates the source of the assignment 803 failure SHOULD also be provided."; 805 leaf bind-ni-name { 806 type leafref { 807 path "/network-instances/network-instance/name"; 808 } 809 description 810 "Network Instance to which an interface is bound."; 811 } 812 } 813 augment "/if:interfaces/if:interface/ip:ipv4" { 814 description 815 "Add a node for the identification of the network 816 instance associated with the information configured 817 on an IPv4 interface. 819 Note that a standard error will be returned if the 820 identified leafref isn't present. If an interfaces cannot 821 be assigned for any other reason, the operation SHALL fail 822 with an error-tag of 'operation-failed' and an 823 error-app-tag of 'ni-assignment-failed'. A meaningful 824 error-info that indicates the source of the assignment 825 failure SHOULD also be provided."; 826 leaf bind-ni-name { 827 type leafref { 828 path "/network-instances/network-instance/name"; 829 } 830 description 831 "Network Instance to which IPv4 interface is bound."; 832 } 833 } 834 augment "/if:interfaces/if:interface/ip:ipv6" { 835 description 836 "Add a node for the identification of the network 837 instance associated with the information configured 838 on an IPv6 interface. 840 Note that a standard error will be returned if the 841 identified leafref isn't present. If an interfaces cannot 842 be assigned for any other reason, the operation SHALL fail 843 with an error-tag of 'operation-failed' and an 844 error-app-tag of 'ni-assignment-failed'. A meaningful 845 error-info that indicates the source of the assignment 846 failure SHOULD also be provided."; 847 leaf bind-ni-name { 848 type leafref { 849 path "/network-instances/network-instance/name"; 850 } 851 description 852 "Network Instance to which IPv6 interface is bound."; 854 } 855 } 857 // notification statements 859 notification bind-ni-name-failed { 860 description 861 "Indicates an error in the association of an interface to an 862 NI. Only generated after success is initially returned when 863 bind-ni-name is set. 865 Note: some errors may need to be reported for multiple 866 associations, e.g., a single error may need to be reported 867 for an IPv4 and an IPv6 bind-ni-name. 869 At least one container with a bind-ni-name leaf MUST be 870 included in this notification."; 871 leaf name { 872 type leafref { 873 path "/if:interfaces/if:interface/if:name"; 874 } 875 mandatory true; 876 description 877 "Contains the interface name associated with the 878 failure."; 879 } 880 container interface { 881 description 882 "Generic interface type."; 883 leaf bind-ni-name { 884 type leafref { 885 path "/if:interfaces/if:interface/ni:bind-ni-name"; 886 } 887 description 888 "Contains the bind-ni-name associated with the 889 failure."; 890 } 891 } 892 container ipv4 { 893 description 894 "IPv4 interface type."; 895 leaf bind-ni-name { 896 type leafref { 897 path "/if:interfaces/if:interface" 898 + "/ip:ipv4/ni:bind-ni-name"; 899 } 900 description 901 "Contains the bind-ni-name associated with the 902 failure."; 903 } 904 } 905 container ipv6 { 906 description 907 "IPv6 interface type."; 908 leaf bind-ni-name { 909 type leafref { 910 path "/if:interfaces/if:interface" 911 + "/ip:ipv6/ni:bind-ni-name"; 912 } 913 description 914 "Contains the bind-ni-name associated with the 915 failure."; 916 } 917 } 918 leaf error-info { 919 type string; 920 description 921 "Optionally, indicates the source of the assignment 922 failure."; 923 } 924 } 925 } 926 928 7. References 930 7.1. Normative References 932 [I-D.ietf-netmod-revised-datastores] 933 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., 934 and R. Wilton, "Network Management Datastore 935 Architecture", draft-ietf-netmod-revised-datastores-10 936 (work in progress), January 2018. 938 [I-D.ietf-netmod-rfc7223bis] 939 Bjorklund, M., "A YANG Data Model for Interface 940 Management", draft-ietf-netmod-rfc7223bis-03 (work in 941 progress), January 2018. 943 [I-D.ietf-netmod-rfc7277bis] 944 Bjorklund, M., "A YANG Data Model for IP Management", 945 draft-ietf-netmod-rfc7277bis-03 (work in progress), 946 January 2018. 948 [I-D.ietf-netmod-schema-mount] 949 Bjorklund, M. and L. Lhotka, "YANG Schema Mount", draft- 950 ietf-netmod-schema-mount-08 (work in progress), October 951 2017. 953 [I-D.ietf-netmod-yang-tree-diagrams] 954 Bjorklund, M. and L. Berger, "YANG Tree Diagrams", draft- 955 ietf-netmod-yang-tree-diagrams-06 (work in progress), 956 February 2018. 958 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 959 Requirement Levels", BCP 14, RFC 2119, 960 DOI 10.17487/RFC2119, March 1997, . 963 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, 964 DOI 10.17487/RFC3688, January 2004, . 967 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security 968 (TLS) Protocol Version 1.2", RFC 5246, 969 DOI 10.17487/RFC5246, August 2008, . 972 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for 973 the Network Configuration Protocol (NETCONF)", RFC 6020, 974 DOI 10.17487/RFC6020, October 2010, . 977 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., 978 and A. Bierman, Ed., "Network Configuration Protocol 979 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, 980 . 982 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure 983 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, 984 . 986 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration 987 Protocol (NETCONF) Access Control Model", RFC 6536, 988 DOI 10.17487/RFC6536, March 2012, . 991 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF 992 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, 993 . 995 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 996 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 997 May 2017, . 999 7.2. Informative References 1001 [I-D.ietf-bess-l2vpn-yang] 1002 Shah, H., Brissette, P., Chen, I., Hussain, I., Wen, B., 1003 and K. Tiruveedhula, "YANG Data Model for MPLS-based 1004 L2VPN", draft-ietf-bess-l2vpn-yang-08 (work in progress), 1005 February 2018. 1007 [I-D.ietf-bess-l3vpn-yang] 1008 Jain, D., Patel, K., Brissette, P., Li, Z., Zhuang, S., 1009 Liu, X., Haas, J., Esale, S., and B. Wen, "Yang Data Model 1010 for BGP/MPLS L3 VPNs", draft-ietf-bess-l3vpn-yang-02 (work 1011 in progress), October 2017. 1013 [I-D.ietf-netmod-rfc8022bis] 1014 Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for 1015 Routing Management (NMDA Version)", draft-ietf-netmod- 1016 rfc8022bis-11 (work in progress), January 2018. 1018 [I-D.ietf-ospf-yang] 1019 Yeung, D., Qu, Y., Zhang, Z., Chen, I., and A. Lindem, 1020 "Yang Data Model for OSPF Protocol", draft-ietf-ospf- 1021 yang-09 (work in progress), October 2017. 1023 [I-D.ietf-rtgwg-device-model] 1024 Lindem, A., Berger, L., Bogdanovic, D., and C. Hopps, 1025 "Network Device YANG Logical Organization", draft-ietf- 1026 rtgwg-device-model-02 (work in progress), March 2017. 1028 [I-D.ietf-rtgwg-lne-model] 1029 Berger, L., Hopps, C., Lindem, A., Bogdanovic, D., and X. 1030 Liu, "YANG Model for Logical Network Elements", draft- 1031 ietf-rtgwg-lne-model-07 (work in progress), February 2018. 1033 [RFC4026] Andersson, L. and T. Madsen, "Provider Provisioned Virtual 1034 Private Network (VPN) Terminology", RFC 4026, 1035 DOI 10.17487/RFC4026, March 2005, . 1038 [RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private 1039 Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February 1040 2006, . 1042 [RFC4664] Andersson, L., Ed. and E. Rosen, Ed., "Framework for Layer 1043 2 Virtual Private Networks (L2VPNs)", RFC 4664, 1044 DOI 10.17487/RFC4664, September 2006, . 1047 [RFC7223] Bjorklund, M., "A YANG Data Model for Interface 1048 Management", RFC 7223, DOI 10.17487/RFC7223, May 2014, 1049 . 1051 [RFC7277] Bjorklund, M., "A YANG Data Model for IP Management", 1052 RFC 7277, DOI 10.17487/RFC7277, June 2014, 1053 . 1055 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", 1056 RFC 7950, DOI 10.17487/RFC7950, August 2016, 1057 . 1059 [RFC8022] Lhotka, L. and A. Lindem, "A YANG Data Model for Routing 1060 Management", RFC 8022, DOI 10.17487/RFC8022, November 1061 2016, . 1063 Appendix A. Acknowledgments 1065 The Routing Area Yang Architecture design team members included Acee 1066 Lindem, Anees Shaikh, Christian Hopps, Dean Bogdanovic, Lou Berger, 1067 Qin Wu, Rob Shakir, Stephane Litkowski, and Yan Gang. Useful review 1068 comments were also received by Martin Bjorklund and John Scudder. 1070 This document was motivated by, and derived from, 1071 [I-D.ietf-rtgwg-device-model]. 1073 Thanks for AD and IETF last call comments from Alia Atlas, Liang Xia, 1074 Benoit Claise, and Adam Roach. 1076 The RFC text was produced using Marshall Rose's xml2rfc tool. 1078 Appendix B. Example NI usage 1080 The following subsections provide example uses of NIs. 1082 B.1. Configuration Data 1084 The following shows an example where two customer specific network 1085 instances are configured: 1087 { 1088 "ietf-network-instance:network-instances": { 1089 "network-instance": [ 1090 { 1091 "name": "vrf-red", 1092 "vrf-root": { 1093 "ietf-routing:routing": { 1094 "router-id": "192.0.2.1", 1095 "control-plane-protocols": { 1096 "control-plane-protocol": [ 1097 { 1098 "type": "ietf-routing:ospf", 1099 "name": "1", 1100 "ietf-ospf:ospf": { 1101 "af": "ipv4", 1102 "areas": { 1103 "area": [ 1104 { 1105 "area-id": "203.0.113.1", 1106 "interfaces": { 1107 "interface": [ 1108 { 1109 "name": "eth1", 1110 "cost": 10 1111 } 1112 ] 1113 } 1114 } 1115 ] 1116 } 1117 } 1118 } 1119 ] 1120 } 1121 } 1122 } 1123 }, 1124 { 1125 "name": "vrf-blue", 1126 "vrf-root": { 1127 "ietf-routing:routing": { 1128 "router-id": "192.0.2.2", 1129 "control-plane-protocols": { 1130 "control-plane-protocol": [ 1131 { 1132 "type": "ietf-routing:ospf", 1133 "name": "1", 1134 "ietf-ospf:ospf": { 1135 "af": "ipv4", 1136 "areas": { 1137 "area": [ 1138 { 1139 "area-id": "203.0.113.1", 1140 "interfaces": { 1141 "interface": [ 1142 { 1143 "name": "eth2", 1144 "cost": 10 1145 } 1146 ] 1147 } 1148 } 1149 ] 1150 } 1151 } 1152 } 1153 ] 1154 } 1155 } 1156 } 1157 } 1158 ] 1159 }, 1161 "ietf-interfaces:interfaces": { 1162 "interfaces": { 1163 "interface": [ 1164 { 1165 "name": "eth0", 1166 "ip:ipv4": { 1167 "address": [ 1168 { 1169 "ip": "192.0.2.10", 1170 "prefix-length": 24, 1171 } 1172 ] 1173 }, 1174 "ip:ipv6": { 1175 "address": [ 1176 { 1177 "ip": "2001:db8:0:2::10", 1178 "prefix-length": 64, 1179 } 1180 ] 1181 } 1182 }, 1183 { 1184 "name": "eth1", 1185 "ip:ipv4": { 1186 "address": [ 1187 { 1188 "ip": "192.0.2.11", 1189 "prefix-length": 24, 1190 } 1191 ] 1192 }, 1193 "ip:ipv6": { 1194 "address": [ 1195 { 1196 "ip": "2001:db8:0:2::11", 1197 "prefix-length": 64, 1198 } 1199 ] 1200 }, 1201 "ni:bind-network-instance-name": "vrf-red" 1202 }, 1203 { 1204 "name": "eth2", 1205 "ip:ipv4": { 1206 "address": [ 1207 { 1208 "ip": "192.0.2.11", 1209 "prefix-length": 24, 1210 } 1211 ] 1212 }, 1213 "ip:ipv6": { 1214 "address": [ 1215 { 1216 "ip": "2001:db8:0:2::11", 1217 "prefix-length": 64, 1218 } 1219 ] 1220 }, 1221 "ni:bind-network-instance-name": "vrf-blue" 1222 } 1223 ] 1224 } 1225 }, 1227 "ietf-system:system": { 1228 "authentication": { 1229 "user": [ 1230 { 1231 "name": "john", 1232 "password": "$0$password" 1233 } 1235 ] 1236 } 1237 } 1238 } 1240 B.2. State Data - Non-NDMA Version 1242 The following shows state data for the configuration example above 1243 based on [RFC7223], [RFC7277], and [RFC8022]. 1245 { 1246 "ietf-network-instance:network-instances": { 1247 "network-instance": [ 1248 { 1249 "name": "vrf-red", 1250 "vrf-root": { 1251 "ietf-routing:routing-state": { 1252 "router-id": "192.0.2.1", 1253 "control-plane-protocols": { 1254 "control-plane-protocol": [ 1255 { 1256 "type": "ietf-routing:ospf", 1257 "name": "1", 1258 "ietf-ospf:ospf": { 1259 "af": "ipv4", 1260 "areas": { 1261 "area": [ 1262 { 1263 "area-id": "203.0.113.1", 1264 "interfaces": { 1265 "interface": [ 1266 { 1267 "name": "eth1", 1268 "cost": 10 1269 } 1270 ] 1271 } 1272 } 1273 ] 1274 } 1275 } 1276 } 1277 ] 1278 } 1279 } 1280 } 1281 }, 1282 { 1283 "name": "vrf-blue", 1284 "vrf-root": { 1285 "ietf-routing:routing-state": { 1286 "router-id": "192.0.2.2", 1287 "control-plane-protocols": { 1288 "control-plane-protocol": [ 1289 { 1290 "type": "ietf-routing:ospf", 1291 "name": "1", 1292 "ietf-ospf:ospf": { 1293 "af": "ipv4", 1294 "areas": { 1295 "area": [ 1296 { 1297 "area-id": "203.0.113.1", 1298 "interfaces": { 1299 "interface": [ 1300 { 1301 "name": "eth2", 1302 "cost": 10 1303 } 1304 ] 1305 } 1306 } 1307 ] 1308 } 1309 } 1310 } 1311 ] 1312 } 1313 } 1314 } 1315 } 1316 ] 1317 }, 1319 "ietf-interfaces:interfaces-state": { 1320 "interfaces": { 1321 "interface": [ 1322 { 1323 "name": "eth0", 1324 "type": "iana-if-type:ethernetCsmacd", 1325 "oper-status": "up", 1326 "phys-address": "00:01:02:A1:B1:C0", 1327 "statistics": { 1328 "discontinuity-time": "2017-06-26T12:34:56-05:00" 1329 }, 1330 "ip:ipv4": { 1331 "address": [ 1332 { 1333 "ip": "192.0.2.10", 1334 "prefix-length": 24, 1335 } 1336 ] 1337 } 1338 "ip:ipv6": { 1339 "address": [ 1340 { 1341 "ip": "2001:db8:0:2::10", 1342 "prefix-length": 64, 1343 } 1344 ] 1345 } 1346 }, 1347 { 1348 "name": "eth1", 1349 "type": "iana-if-type:ethernetCsmacd", 1350 "oper-status": "up", 1351 "phys-address": "00:01:02:A1:B1:C1", 1352 "statistics": { 1353 "discontinuity-time": "2017-06-26T12:34:56-05:00" 1354 }, 1355 "ip:ipv4": { 1356 "address": [ 1357 { 1358 "ip": "192.0.2.11", 1359 "prefix-length": 24, 1360 } 1361 ] 1362 } 1363 "ip:ipv6": { 1364 "address": [ 1365 { 1366 "ip": "2001:db8:0:2::11", 1367 "prefix-length": 64, 1368 } 1369 ] 1370 } 1371 }, 1372 { 1373 "name": "eth2", 1374 "type": "iana-if-type:ethernetCsmacd", 1375 "oper-status": "up", 1376 "phys-address": "00:01:02:A1:B1:C2", 1377 "statistics": { 1378 "discontinuity-time": "2017-06-26T12:34:56-05:00" 1380 }, 1381 "ip:ipv4": { 1382 "address": [ 1383 { 1384 "ip": "192.0.2.11", 1385 "prefix-length": 24, 1386 } 1387 ] 1388 } 1389 "ip:ipv6": { 1390 "address": [ 1391 { 1392 "ip": "2001:db8:0:2::11", 1393 "prefix-length": 64, 1394 } 1395 ] 1396 } 1397 } 1398 ] 1399 } 1400 }, 1402 "ietf-system:system-state": { 1403 "platform": { 1404 "os-name": "NetworkOS" 1405 } 1406 } 1408 "ietf-yang-library:modules-state": { 1409 "module-set-id": "123e4567-e89b-12d3-a456-426655440000", 1410 "module": [ 1411 { 1412 "name": "iana-if-type", 1413 "revision": "2014-05-08", 1414 "namespace": 1415 "urn:ietf:params:xml:ns:yang:iana-if-type", 1416 "conformance-type": "import" 1417 }, 1418 { 1419 "name": "ietf-inet-types", 1420 "revision": "2013-07-15", 1421 "namespace": 1422 "urn:ietf:params:xml:ns:yang:ietf-inet-types", 1423 "conformance-type": "import" 1424 }, 1425 { 1426 "name": "ietf-interfaces", 1427 "revision": "2014-05-08", 1428 "feature": [ 1429 "arbitrary-names", 1430 "pre-provisioning" 1431 ], 1432 "namespace": 1433 "urn:ietf:params:xml:ns:yang:ietf-interfaces", 1434 "conformance-type": "implement" 1435 }, 1436 { 1437 "name": "ietf-ip", 1438 "revision": "2014-06-16", 1439 "namespace": 1440 "urn:ietf:params:xml:ns:yang:ietf-ip", 1441 "conformance-type": "implement" 1442 }, 1443 { 1444 "name": "ietf-network-instance", 1445 "revision": "2018-02-03", 1446 "feature": [ 1447 "bind-network-instance-name" 1448 ], 1449 "namespace": 1450 "urn:ietf:params:xml:ns:yang:ietf-network-instance", 1451 "conformance-type": "implement" 1452 }, 1453 { 1454 "name": "ietf-ospf", 1455 "revision": "2017-03-12", 1456 "namespace": "urn:ietf:params:xml:ns:yang:ietf-ospf", 1457 "conformance-type": "implement" 1458 }, 1459 { 1460 "name": "ietf-routing", 1461 "revision": "2016-11-04", 1462 "namespace": 1463 "urn:ietf:params:xml:ns:yang:ietf-routing", 1464 "conformance-type": "implement" 1465 }, 1466 { 1467 "name": "ietf-system", 1468 "revision": "2014-08-06", 1469 "namespace": 1470 "urn:ietf:params:xml:ns:yang:ietf-system", 1471 "conformance-type": "implement" 1472 }, 1473 { 1474 "name": "ietf-yang-library", 1475 "revision": "2016-06-21", 1476 "namespace": 1477 "urn:ietf:params:xml:ns:yang:ietf-yang-library", 1478 "conformance-type": "implement" 1479 }, 1480 { 1481 "name": "ietf-yang-schema-mount", 1482 "revision": "2017-05-16", 1483 "namespace": 1484 "urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount", 1485 "conformance-type": "implement" 1486 }, 1487 { 1488 "name": "ietf-yang-types", 1489 "revision": "2013-07-15", 1490 "namespace": 1491 "urn:ietf:params:xml:ns:yang:ietf-yang-types", 1492 "conformance-type": "import" 1493 } 1494 ] 1495 }, 1497 "ietf-yang-schema-mount:schema-mounts": { 1498 "mount-point": [ 1499 { 1500 "module": "ietf-network-instance", 1501 "label": "vrf-root", 1502 "use-schema": [ 1503 { 1504 "name": "ni-schema", 1505 "parent-reference": [ 1506 "/*[namespace-uri() = 'urn:ietf:...:ietf-interfaces']" 1507 ] 1508 } 1509 ] 1510 } 1511 ], 1512 "schema": [ 1513 { 1514 "name": "ni-schema", 1515 "module": [ 1516 { 1517 "name": "ietf-routing", 1518 "revision": "2016-11-04", 1519 "namespace": 1520 "urn:ietf:params:xml:ns:yang:ietf-routing", 1521 "conformance-type": "implement" 1522 }, 1523 { 1524 "name": "ietf-ospf", 1525 "revision": "2017-03-12", 1526 "namespace": 1527 "urn:ietf:params:xml:ns:yang:ietf-ospf", 1528 "conformance-type": "implement" 1529 } 1530 ] 1531 } 1532 ] 1533 } 1534 } 1536 B.3. State Data - NDMA Version 1538 The following shows state data for the configuration example above 1539 based on [I-D.ietf-netmod-rfc7223bis], [I-D.ietf-netmod-rfc7277bis], 1540 and [I-D.ietf-netmod-rfc8022bis]. 1542 { 1543 "ietf-network-instance:network-instances": { 1544 "network-instance": [ 1545 { 1546 "name": "vrf-red", 1547 "vrf-root": { 1548 "ietf-routing:routing": { 1549 "router-id": "192.0.2.1", 1550 "control-plane-protocols": { 1551 "control-plane-protocol": [ 1552 { 1553 "type": "ietf-routing:ospf", 1554 "name": "1", 1555 "ietf-ospf:ospf": { 1556 "af": "ipv4", 1557 "areas": { 1558 "area": [ 1559 { 1560 "area-id": "203.0.113.1", 1561 "interfaces": { 1562 "interface": [ 1563 { 1564 "name": "eth1", 1565 "cost": 10 1566 } 1567 ] 1568 } 1569 } 1570 ] 1571 } 1573 } 1574 } 1575 ] 1576 } 1577 } 1578 } 1579 }, 1580 { 1581 "name": "vrf-blue", 1582 "vrf-root": { 1583 "ietf-routing:routing": { 1584 "router-id": "192.0.2.2", 1585 "control-plane-protocols": { 1586 "control-plane-protocol": [ 1587 { 1588 "type": "ietf-routing:ospf", 1589 "name": "1", 1590 "ietf-ospf:ospf": { 1591 "af": "ipv4", 1592 "areas": { 1593 "area": [ 1594 { 1595 "area-id": "203.0.113.1", 1596 "interfaces": { 1597 "interface": [ 1598 { 1599 "name": "eth2", 1600 "cost": 10 1601 } 1602 ] 1603 } 1604 } 1605 ] 1606 } 1607 } 1608 } 1609 ] 1610 } 1611 } 1612 } 1613 } 1614 ] 1615 }, 1617 "ietf-interfaces:interfaces": { 1618 "interfaces": { 1619 "interface": [ 1620 { 1621 "name": "eth0", 1622 "type": "iana-if-type:ethernetCsmacd", 1623 "oper-status": "up", 1624 "phys-address": "00:01:02:A1:B1:C0", 1625 "statistics": { 1626 "discontinuity-time": "2017-06-26T12:34:56-05:00" 1627 }, 1628 "ip:ipv4": { 1629 "address": [ 1630 { 1631 "ip": "192.0.2.10", 1632 "prefix-length": 24, 1633 } 1634 ] 1635 } 1636 "ip:ipv6": { 1637 "address": [ 1638 { 1639 "ip": "2001:db8:0:2::10", 1640 "prefix-length": 64, 1641 } 1642 ] 1643 } 1644 }, 1645 { 1646 "name": "eth1", 1647 "type": "iana-if-type:ethernetCsmacd", 1648 "oper-status": "up", 1649 "phys-address": "00:01:02:A1:B1:C1", 1650 "statistics": { 1651 "discontinuity-time": "2017-06-26T12:34:56-05:00" 1652 }, 1653 "ip:ipv4": { 1654 "address": [ 1655 { 1656 "ip": "192.0.2.11", 1657 "prefix-length": 24, 1658 } 1659 ] 1660 } 1661 "ip:ipv6": { 1662 "address": [ 1663 { 1664 "ip": "2001:db8:0:2::11", 1665 "prefix-length": 64, 1666 } 1667 ] 1668 } 1670 }, 1671 { 1672 "name": "eth2", 1673 "type": "iana-if-type:ethernetCsmacd", 1674 "oper-status": "up", 1675 "phys-address": "00:01:02:A1:B1:C2", 1676 "statistics": { 1677 "discontinuity-time": "2017-06-26T12:34:56-05:00" 1678 }, 1679 "ip:ipv4": { 1680 "address": [ 1681 { 1682 "ip": "192.0.2.11", 1683 "prefix-length": 24, 1684 } 1685 ] 1686 } 1687 "ip:ipv6": { 1688 "address": [ 1689 { 1690 "ip": "2001:db8:0:2::11", 1691 "prefix-length": 64, 1692 } 1693 ] 1694 } 1695 } 1696 ] 1697 } 1698 }, 1700 "ietf-system:system-state": { 1701 "platform": { 1702 "os-name": "NetworkOS" 1703 } 1704 } 1706 "ietf-yang-library:modules-state": { 1707 "module-set-id": "123e4567-e89b-12d3-a456-426655440000", 1708 "module": [ 1709 { 1710 "name": "iana-if-type", 1711 "revision": "2014-05-08", 1712 "namespace": 1713 "urn:ietf:params:xml:ns:yang:iana-if-type", 1714 "conformance-type": "import" 1715 }, 1716 { 1717 "name": "ietf-inet-types", 1718 "revision": "2013-07-15", 1719 "namespace": 1720 "urn:ietf:params:xml:ns:yang:ietf-inet-types", 1721 "conformance-type": "import" 1722 }, 1723 { 1724 "name": "ietf-interfaces", 1725 "revision": "2018-01-09", 1726 "feature": [ 1727 "arbitrary-names", 1728 "pre-provisioning" 1729 ], 1730 "namespace": 1731 "urn:ietf:params:xml:ns:yang:ietf-interfaces", 1732 "conformance-type": "implement" 1733 }, 1734 { 1735 "name": "ietf-ip", 1736 "revision": "2018-01-09", 1737 "namespace": 1738 "urn:ietf:params:xml:ns:yang:ietf-ip", 1739 "conformance-type": "implement" 1740 }, 1741 { 1742 "name": "ietf-network-instance", 1743 "revision": "2018-02-03", 1744 "feature": [ 1745 "bind-network-instance-name" 1746 ], 1747 "namespace": 1748 "urn:ietf:params:xml:ns:yang:ietf-network-instance", 1749 "conformance-type": "implement" 1750 }, 1751 { 1752 "name": "ietf-ospf", 1753 "revision": "2017-10-30", 1754 "namespace": "urn:ietf:params:xml:ns:yang:ietf-ospf", 1755 "conformance-type": "implement" 1756 }, 1757 { 1758 "name": "ietf-routing", 1759 "revision": "2018-01-25", 1760 "namespace": 1761 "urn:ietf:params:xml:ns:yang:ietf-routing", 1762 "conformance-type": "implement" 1763 }, 1764 { 1765 "name": "ietf-system", 1766 "revision": "2014-08-06", 1767 "namespace": 1768 "urn:ietf:params:xml:ns:yang:ietf-system", 1769 "conformance-type": "implement" 1770 }, 1771 { 1772 "name": "ietf-yang-library", 1773 "revision": "2016-06-21", 1774 "namespace": 1775 "urn:ietf:params:xml:ns:yang:ietf-yang-library", 1776 "conformance-type": "implement" 1777 }, 1778 { 1779 "name": "ietf-yang-schema-mount", 1780 "revision": "2017-05-16", 1781 "namespace": 1782 "urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount", 1783 "conformance-type": "implement" 1784 }, 1785 { 1786 "name": "ietf-yang-types", 1787 "revision": "2013-07-15", 1788 "namespace": 1789 "urn:ietf:params:xml:ns:yang:ietf-yang-types", 1790 "conformance-type": "import" 1791 } 1792 ] 1793 }, 1795 "ietf-yang-schema-mount:schema-mounts": { 1796 "mount-point": [ 1797 { 1798 "module": "ietf-network-instance", 1799 "label": "vrf-root", 1800 "use-schema": [ 1801 { 1802 "name": "ni-schema", 1803 "parent-reference": [ 1804 "/*[namespace-uri() = 'urn:ietf:...:ietf-interfaces']" 1805 ] 1806 } 1807 ] 1808 } 1809 ], 1810 "schema": [ 1811 { 1812 "name": "ni-schema", 1813 "module": [ 1814 { 1815 "name": "ietf-routing", 1816 "revision": "2018-01-25", 1817 "namespace": 1818 "urn:ietf:params:xml:ns:yang:ietf-routing", 1819 "conformance-type": "implement" 1820 }, 1821 { 1822 "name": "ietf-ospf", 1823 "revision": "2017-10-30", 1824 "namespace": 1825 "urn:ietf:params:xml:ns:yang:ietf-ospf", 1826 "conformance-type": "implement" 1827 } 1828 ] 1829 } 1830 ] 1831 } 1832 } 1834 Authors' Addresses 1836 Lou Berger 1837 LabN Consulting, L.L.C. 1839 Email: lberger@labn.net 1841 Christan Hopps 1842 Deutsche Telekom 1844 Email: chopps@chopps.org 1846 Acee Lindem 1847 Cisco Systems 1848 301 Midenhall Way 1849 Cary, NC 27513 1850 USA 1852 Email: acee@cisco.com 1854 Dean Bogdanovic 1856 Email: ivandean@gmail.com 1857 Xufeng Liu 1858 Jabil 1860 Email: Xufeng_Liu@jabil.com