idnits 2.17.1 draft-izh-ccamp-b100g-routing-00.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** The abstract seems to contain references ([RFC7138]), which it shouldn't. Please replace those with straight textual mentions of the documents in question. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (March 7, 2017) is 2600 days in the past. Is this intentional? Checking references for intended status: Informational ---------------------------------------------------------------------------- == Missing Reference: 'TBD' is mentioned on line 150, but not defined Summary: 1 error (**), 0 flaws (~~), 2 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 CCAMP Working Group R. Rao 3 Internet-Draft I. Hussain 4 Intended status: Informational R. Valiveti 5 Expires: September 8, 2017 Infinera Corporation 6 Q. Wang, Ed. 7 Y. Zhang 8 ZTE 9 H. Helvoort 10 Hai Gaoming B.V 11 March 7, 2017 13 Traffic Engineering Extensions to OSPF for GMPLS Control of Beyond-100G 14 G.709 Optical Transport Networks 15 draft-izh-ccamp-b100g-routing-00 17 Abstract 19 This document describes Open Shortest Path First - Traffic 20 Engineering (OSPF-TE) routing protocol extensions to support GMPLS 21 control of Optical Transport Networks (OTNs) specified in ITU-T 22 Recommendation G.709 published in 2016. The 2016 version of G.709 23 [ITU-T_G709_2016] introduces support for higher rate OTU signals, 24 termed OTUCn (which have a nominal rate of 100n Gbps). The newly 25 introduced OTUCn represent a very powerful extension to the OTN 26 capabilities, and one which naturally scales to transport any newer 27 clients with bit rates in excess of 100G, as they are introduced. 28 This document extends the mechanisms defined in [RFC7138]. 30 Status of This Memo 32 This Internet-Draft is submitted in full conformance with the 33 provisions of BCP 78 and BCP 79. 35 Internet-Drafts are working documents of the Internet Engineering 36 Task Force (IETF). Note that other groups may also distribute 37 working documents as Internet-Drafts. The list of current Internet- 38 Drafts is at http://datatracker.ietf.org/drafts/current/. 40 Internet-Drafts are draft documents valid for a maximum of six months 41 and may be updated, replaced, or obsoleted by other documents at any 42 time. It is inappropriate to use Internet-Drafts as reference 43 material or to cite them other than as "work in progress." 45 This Internet-Draft will expire on September 8, 2017. 47 Copyright Notice 49 Copyright (c) 2017 IETF Trust and the persons identified as the 50 document authors. All rights reserved. 52 This document is subject to BCP 78 and the IETF Trust's Legal 53 Provisions Relating to IETF Documents 54 (http://trustee.ietf.org/license-info) in effect on the date of 55 publication of this document. Please review these documents 56 carefully, as they describe your rights and restrictions with respect 57 to this document. Code Components extracted from this document must 58 include Simplified BSD License text as described in Section 4.e of 59 the Trust Legal Provisions and are provided without warranty as 60 described in the Simplified BSD License. 62 Table of Contents 64 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 65 1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 3 66 2. OSPF-TE Extensions . . . . . . . . . . . . . . . . . . . . . 3 67 3. TE-Link Representation . . . . . . . . . . . . . . . . . . . 3 68 4. ISCD Format Extensions . . . . . . . . . . . . . . . . . . . 4 69 4.1. Switching Capability Specific Information . . . . . . . . 5 70 4.1.1. Switching Capability Specific Information for ODUCn 71 containers . . . . . . . . . . . . . . . . . . . . . 5 72 5. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 6 73 5.1. MAX LSP Bandwidth Fields in the ISCD . . . . . . . . . . 7 74 5.2. Example of T, S, and TS Granularity Utilization . . . . . 9 75 5.3. Example of ODUflex Advertisement . . . . . . . . . . . . 9 76 5.4. Example of Single-Stage Muxing . . . . . . . . . . . . . 9 77 5.5. Example of Multi-Stage Muxing -- Unbundled Link . . . . . 11 78 6. Security Considerations . . . . . . . . . . . . . . . . . . . 13 79 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 13 80 8. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 13 81 9. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 13 82 10. References . . . . . . . . . . . . . . . . . . . . . . . . . 13 83 10.1. Normative References . . . . . . . . . . . . . . . . . . 13 84 10.2. Informative References . . . . . . . . . . . . . . . . . 14 85 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 14 87 1. Introduction 89 The current GMPLS routing extensions RFC [RFC7138] includes coverage 90 for all the OTN capabilities that were defined in the 2012 version of 91 G.709 [ITU-T_G709_2012]. The 2016 version of G.709 [ITU-T_G709_2016] 92 introduces the following key extensions: 94 a. OTUCn signals with bandwidth larger than 100G (n*100G) 95 b. ODUCn signals with bandwidth larger than 100G. 97 c. ODUflex signals with bandwidth larger than 100G 99 d. mapping client signals with bandwidth larger than 100G into the 100 corresponding ODUflex containers. 102 e. Tributary Slot Granularity of 5G 104 This document provides extensions required in GMPLS OSPF-TE for B100G 105 OTN technology. For a short overview of OTN evolution and 106 implications of B100G on GMPLS routing, please refer to 107 [I-D.zih-ccamp-otn-b100g-fwk]. 109 1.1. Terminology 111 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 112 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 113 document are to be interpreted as described in [RFC2119]. 115 2. OSPF-TE Extensions 117 As discussed in [I-D.zih-ccamp-otn-b100g-fwk], OSPF-TE must be 118 extended to advertise the termination, Switching and multiplexing 119 Capabilities for ODUCn and OTUCn (Optical Transport Unit) links. 120 These capabilities are carried in the Switching Capability specific 121 information field of the Interface Switching Capability Descriptor 122 (ISCD) using formats defined in this document. 124 3. TE-Link Representation 126 G.709 ODUCn/OTUCn links are represented as TE-Links in GMPLS Traffic 127 Engineering Topology for supporting ODUj layer switching. These TE- 128 Links can be modeled in multiple ways. Figure 1 below provides an 129 illustration of one-hop OTUCn TE-Links. 131 +-------+ +-------+ +-------+ 132 | OTN | | OTN | | OTN | 133 |Switch |<- OTUCn Link ->|Switch |<- OTUCn Link ->|Switch | 134 | A | | B | | C | 135 +-------+ +-------+ +-------+ 137 |<-- TE-Link -->| |<-- TE-Link -->| 139 Figure 1: OTUCn TE-Links 141 4. ISCD Format Extensions 143 The ISCD describes the Switching Capability of an interface and is 144 defined in [RFC4203]. This document resues the switching capability 145 defined in [RFC7138] but introduces a new encoding type (to be 146 assigned) as follows: 148 o G.709-2106 ODUCn (Digital Section): One codepoint (applicable to 149 all values of n) needs to be defined in the signaling extensions 150 [TBD]. The same value is used for advertising fixed rate ODUs, as 151 well as ODUflex signals supported by an ODUCn link. When the 152 Switching Capability and Encoding fields are set to values as 153 stated above, the Interface Switching Capability Descriptor MUST 154 be interpreted as defined in [RFC7138]. 156 The MAX LSP Bandwidth field is used according to [RFC4203], i.e., 0 157 <= MAX LSP Bandwidth <= rate (ODUCn). The bandwidth is expressed in 158 bytes/second and the encoding MUST be in IEEE floating point format. 159 The discrete rates for new ODUs introduced in G709-2016 are shown in 160 Table 1. 162 +-------------+---------------------------------------+-------------+ 163 | ODU Type | ODU Bit Rate | IEEE | 164 | | | encoding of | 165 | | | bw | 166 | | | (bytes/sec) | 167 +-------------+---------------------------------------+-------------+ 168 | ODUflex for | s x 239/238 x 5 156 250 kbit/s: | TBD | 169 | IMP mapped | s=2,8,5*n, n >= 1 | | 170 | packet | | | 171 | traffic | | | 172 | ODUflex for | 103 125 000 x 240/238 x n/20 kbit/s, | TBD | 173 | FlexE aware | where n is total number of available | | 174 | transport | tributary slots among all PHYs which | | 175 | | have been crunched and combined. | | 176 +-------------+---------------------------------------+-------------+ 178 Note that this table doesn't include ODUCn -- since it cannot be 179 generated by mapping a non-OTN signal. An ODUCn is always formed by 180 multiplexing multiple LO-ODUs. 182 Table 1: Types and rates of ODUs usable for client mappings 184 ISCD advertisement and processing rules are exactly as specified in 185 [RFC7138]. 187 4.1. Switching Capability Specific Information 189 The technology-specific part of the OTN-TDM ISCD may include a 190 variable number of sub-TLVs called Bandwidth sub-TLVs. Each sub-TLV 191 is encoded with the sub-TLV header as defined in [RFC7138]. The 192 muxing hierarchy tree MUST be encoded as an order-independent list. 193 In addition to the sub-TLVs of types 1 and 2 defined in [RFC7138], 194 Section 4.1.1 introduces a new sub-TLV type 3 to advertise ODUCn 195 Information. 197 The Switching Capability specific information (SCSI) for OTUCn links 198 MUST include a Type 3 TLV at the beginning, followed by Type 1 and/or 199 Type 2 sub-TLVs as defined in [RFC7138]. 201 With respect to ODUflex, new Signal Types need to be defined for the 202 new ODUflex signals introduced in Table 1: 204 o 23 - ODUflex (IMP) 206 o 24 - ODUflex (FlexE) 208 Each ODUflex signal MUST always be advertised in a separate Type 2 209 sub-TLV as per [RFC7138]. 211 4.1.1. Switching Capability Specific Information for ODUCn containers 213 The format of the Bandwidth sub-TLV for ODUCn signals is depicted in 214 the following figure: 216 0 1 2 3 217 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 218 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 219 | Type = 3 (Unres-ODUC, TBA) | Length | 220 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 221 |Sig Type=ODUCn | N Value |T|S| TSG | Res | Priority | 222 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 224 Figure 2: Bandwidth Sub-TLV -- Type 3 226 The values of the fields in the Bandwidth sub-TLV shown in Figure 2 227 are explained below. 229 o Signal Type (8 bits): Indicates the ODU type being advertised. 230 For this sub-TLV type, a new signal type needs to be defined for 231 ODUCn signals. Rather than define a unique signal type for each 232 value of the parameter 'n', this draft proposes that we allocate a 233 single signal type for the ODUCn signal family, and encode the 234 value of 'n' as a separate field. The first row after Type and 235 Lengh MUST be followed by ODUCn information as shown. 237 o N-Value (8 bits): Indicates the value of 'n' in ODUCn field. The 238 value of this field is an integer in the range 1...256 as per 239 [ITU-T_G709_2016]. 241 o Flags (8 bits): 243 * T Flag (bit 17): Indicates whether the advertised bandwidth can 244 be terminated per [RFC7138]. Since an ODUCn MUST be advertised 245 as non-switchable and terminated, the T field MUST be set to 1. 247 * S Flag (bit 18): Indicates whether the advertised bandwidth can 248 be switched. Since an ODUCn MUST be advertised as non- 249 switchable and terminated, the S field MUST be set to 0. 251 o TSG (3 bits): Tributary Slot Granularity. Used for the 252 advertisement of the supported tributary slot granularity. This 253 document defines a new value for 5 Gbps time slots - which MUST be 254 used when advertising OTUCn links. The values in the range 0-3 255 MUST be interpreted as defined in [RFC7138]. 257 * 0 - Ignored 259 * 1 - 1.25 Gbps / 2.5 Gbps 261 * 2 - 2.5 Gbps only 263 * 3 - 1.25 Gbps only 265 * 4 - 5.0 Gbps only [TBA by IANA] 267 * 5-7 - Reserved 269 o Priority (8 bits): The meaning and usage of priority field MUST 270 same as in [RFC7138]. 272 5. Examples 274 The examples in the following pages are not normative and are not 275 intended to imply or mandate any specific implementation. 277 5.1. MAX LSP Bandwidth Fields in the ISCD 279 This example shows how the MAX LSP Bandwidth fields of the ISCD are 280 filled according to TE-Link bandwidth occupancy. In this example, an 281 OTUC4 link is considered, with (a) supported priorities 0,2,4,7 (b) 282 300G of bandwidth already consumed (c) 100G bandwidth available, and 283 able to support an ODU4 LSP. 285 At time T0, the advertisement would be as shown in Figure 3: 287 0 1 2 3 288 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 289 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 290 | SwCap=OTN_TDM | Encoding = TBA| Reserved (all zeros) | 291 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 292 | MAX LSP Bandwidth at priority 0 = 100 Gpbs + 293 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 294 | MAX LSP Bandwidth at priority 1 = 0 | 295 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 296 | MAX LSP Bandwidth at priority 2 = 100 Gpbs | 297 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 298 | MAX LSP Bandwidth at priority 3 = 0 | 299 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 300 | MAX LSP Bandwidth at priority 4 = 100 Gbps | 301 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 302 | MAX LSP Bandwidth at priority 5 = 0 | 303 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 304 | MAX LSP Bandwidth at priority 6 = 0 | 305 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 306 | MAX LSP Bandwidth at priority 7 = 100 Gbps | 307 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 308 | Switching Capability Specific Information | 309 | (variable length) | 310 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 312 Figure 3: MAX LSP Bandwidth Fields in the ISCD at T0 314 At time T1, an ODU3 at priority 2 is set up. Once the ODU3 is 315 carried over the ODUC4, the unreserved bandwidth reduces to 60G and 316 consequently MAX LSP Bandwidth is advertised as ODU3, since no more 317 ODU4s are available and the next supported ODUj in the hierarchy is 318 ODU3. The updated advertisement is as shown in Figure 4: 320 0 1 2 3 321 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 322 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 323 | SwCap=OTN_TDM | Encoding = TBA| Reserved (all zeros) | 324 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 325 | MAX LSP Bandwidth at priority 0 = 100 Gbps | 326 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 327 | MAX LSP Bandwidth at priority 1 = 0 | 328 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 329 | MAX LSP Bandwidth at priority 2 = 40 Gbps | 330 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 331 | MAX LSP Bandwidth at priority 3 = 0 | 332 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 333 | MAX LSP Bandwidth at priority 4 = 40 Gbps | 334 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 335 | MAX LSP Bandwidth at priority 5 = 0 | 336 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 337 | MAX LSP Bandwidth at priority 6 = 0 | 338 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 339 | MAX LSP Bandwidth at priority 7 = 40 Gbps | 340 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 341 | Switching Capability Specific Information | 342 | (variable length) | 343 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 345 Figure 4: MAX LSP Bandwidth Fields in the ISCD at T1 347 At time T2, an ODU2 at priority 4 is set up. The Max LSP bandwidth 348 is still advertised as ODU3 as in Figure 4 since the remaining 349 bandwidth is 50G. When the available BW drops below 40G, the max LSP 350 BW is advertised as 10G. The advertisement is updated as shown in 351 Figure 5: 353 0 1 2 3 354 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 355 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 356 | SwCap=OTN_TDM | Encoding =TBA | Reserved (all zeros) | 357 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 358 | MAX LSP Bandwidth at priority 0 = 100 Gbps | 359 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 360 | MAX LSP Bandwidth at priority 1 = 0 | 361 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 362 | MAX LSP Bandwidth at priority 2 = 40 Gbps | 363 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 364 | MAX LSP Bandwidth at priority 3 = 0 | 365 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 366 | MAX LSP Bandwidth at priority 4 = 10 Gbps | 367 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 368 | MAX LSP Bandwidth at priority 5 = 0 | 369 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 370 | MAX LSP Bandwidth at priority 6 = 0 | 371 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 372 | MAX LSP Bandwidth at priority 7 = 10 Gbps | 373 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 374 | Switching Capability Specific Information | 375 | (variable length) | 376 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 378 Figure 5: MAX LSP Bandwidth Fields in the ISCD at T2 380 5.2. Example of T, S, and TS Granularity Utilization 382 To be added later. 384 5.3. Example of ODUflex Advertisement 386 To be added later. 388 5.4. Example of Single-Stage Muxing 390 Suppose there is 1 OTUC4 link supporting single-stage muxing of ODU1, 391 ODU2, ODU3, and ODUflex, the supported hierarchy can be summarized in 392 a tree as in the following figure. For the sake of simplicity, we 393 also assume that only priorities 0 and 3 are supported. 395 ODU1 ODU2 ODU3 ODU4 ODUflex 396 \ \ / / / 397 \ \ / / / 398 \ \/ / / 399 ODUC4 401 The related SCSIs are as follows: 403 0 1 2 3 404 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 405 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 406 | Type = 3 (Unres-fix) | Length = 8 | 407 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 408 |Sig type=ODUCn | N-value=4 |1|0| 4 |0 0 0|0|0|0|0|0|0|0|0| 409 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 410 | Type = 1 (Unres-fix) | Length = 12 | 411 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 412 |Sig type=ODU1 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| 413 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 414 | Stage#1=ODUCn | Padding (all zeros) | 415 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 416 | Unres ODU1 at Prio 0 =160 | Unres ODU1 at Prio 3 =160 | 417 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 418 | Type = 1 (Unres-fix) | Length = 12 | 419 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 420 |Sig type=ODU2 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| 421 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 422 | Stage#1=ODUCn | Padding (all zeros) | 423 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 424 | Unres ODU2 at Prio 0 =40 | Unres ODU2 at Prio 3 =40 | 425 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 426 | Type = 1 (Unres-fix) | Length = 12 | 427 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 428 |Sig type=ODU3 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| 429 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 430 | Stage#1=ODUCn | Padding (all zeros) | 431 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 432 | Unres ODU3 at Prio 0 =10 | Unres ODU3 at Prio 3 =10 | 433 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 434 | Type = 2 (Unres/MAX-var) | Length = 24 | 435 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 436 |Sig type=ODUCn | N-value=4 |1|0| 4 |0 0 0|0|0|0|0|0|0|0|0| 437 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 438 |S. type=ODUflex| #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| 439 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 440 | Stage#1=ODUCn| Padding (all zeros) | 441 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 442 | Unreserved Bandwidth at priority 0 =400 Gbps | 443 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 444 | Unreserved Bandwidth at priority 3 =400 Gbps | 445 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 446 | MAX LSP Bandwidth at priority 0 =400 Gbps | 447 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 448 | MAX LSP Bandwidth at priority 3 =400 Gbps | 449 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 451 Figure 6: Single-Stage Muxing 453 5.5. Example of Multi-Stage Muxing -- Unbundled Link 455 Suppose there is 1 OTUC4 link with muxing capabilities as shown in 456 the following figure: 458 ODU2 ODU0 ODUflex ODU0 459 \ / \ / 460 | | 461 ODU3 ODU2 462 \ / 463 \ / 464 \ / 465 \ / 466 ODUC4 468 The ODUC4 is not a switchable entity. It is advertised with zero 469 counts to show TSG information. Considering only supported 470 priorities 0 and 3, the advertisement is composed by the 471 followingBandwidth sub-TLVs: 473 0 1 2 3 474 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 475 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 476 | Type = 3 (Unres-fix) | Length = 8 | 477 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 478 |Sig type=ODUCn | N-value=4 |1|0|4 |0 0 0|0|0|0|0|0|0|0|0| 479 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 480 | Type = 1 (Unres-fix) | Length = 12 | 481 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 482 |Sig type=ODU3 | #stages= 1 |X|X| 1 |0 0 0|1|0|0|1|0|0|0|0| 483 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 484 | Stage#1=ODUCn| Padding (all zeros) | 485 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 486 | Unres ODU3 at Prio 0 =10 | Unres ODU3 at Prio 3 =10 | 487 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 488 | Type = 1 (Unres-fix) | Length = 12 | 489 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 490 |Sig type=ODU2 | #stages= 1 |X|X| 1 |0 0 0|1|0|0|1|0|0|0|0| 491 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 492 | Stage#1=ODUCn | Padding (all zeros) | 493 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 494 | Unres ODU2 at Prio 0 =40 | Unres ODU2 at Prio 3 =40 | 495 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 496 | Type = 1 (Unres-fix) | Length = 12 | 497 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 498 |Sig type=ODU2 | #stages= 2 |X|X| 0 |0 0 0|1|0|0|1|0|0|0|0| 499 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 500 | Stage#1=ODU3 | Stage#2=ODUCn | Padding (all zeros) | 501 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 502 | Unres ODU2 at Prio 0 =40 | Unres ODU2 at Prio 3 =40 | 503 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 504 | Type = 1 (Unres-fix) | Length = 12 | 505 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 506 |Sig type=ODU0 | #stages= 2 |X|X| 0 |0 0 0|1|0|0|1|0|0|0|0| 507 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 508 | Stage#1=ODU3 | Stage#2=ODUCn | Padding (all zeros) | 509 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 510 | Unres ODU0 at Prio 0 =320 | Unres ODU0 at Prio 3 =320 | 511 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 512 | Type = 1 (Unres-fix) | Length = 12 | 513 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 514 |Sig type=ODU0 | #stages= 2 |X|X| 0 |0 0 0|1|0|0|1|0|0|0|0| 515 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 516 | Stage#1=ODU2 | Stage#2=ODUCn | Padding (all zeros) | 517 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 518 | Unres ODU0 at Prio 0 =320 | Unres ODU0 at Prio 3 =320 | 519 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 520 | Type = 2 (Unres/MAX-var) | Length = 24 | 521 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 522 |S.type=ODUflex | #stages= 2 |X|X| 0 |0 0 0|1|0|0|1|0|0|0|0| 523 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 524 | Stage#1=ODU2 | Stage#2=ODUCn | Padding (all zeros) | 525 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 526 | Unreserved Bandwidth at priority 0 =400 Gbps | 527 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 528 | Unreserved Bandwidth at priority 3 =400 Gbps | 529 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 530 | MAX LSP Bandwidth at priority 0 =10 Gbps | 531 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 532 | MAX LSP Bandwidth at priority 3 =10 Gbps | 533 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 535 Figure 7: Multi-Stage Muxing -- Unbundled Link 537 6. Security Considerations 539 Please refer to [RFC5920] for details on security threats; defensive 540 techniques; monitoring, detection, and reporting of security attacks; 541 and requirements. 543 7. IANA Considerations 545 TBD 547 8. Contributors 549 9. Acknowledgements 551 10. References 553 10.1. Normative References 555 [I-D.zih-ccamp-otn-b100g-fwk] 556 Wang, Q., Zhang, Y., Valiveti, R., Hussain, I., Rao, R., 557 and H. Helvoort, "GMPLS Routing and Signaling Framework 558 for B100G", draft-zih-ccamp-otn-b100g-fwk-00 (work in 559 progress), February 2017. 561 [ITU-T_G709_2012] 562 ITU-T, "ITU-T G.709: Optical Transport Network 563 Interfaces", 564 http://www.itu.int/rec/T-REC-G..709-201202-S/en, February 565 2012. 567 [ITU-T_G709_2016] 568 ITU-T, "ITU-T G.709: Optical Transport Network 569 Interfaces", 570 http://www.itu.int/rec/T-REC-G..709-201606-P/en, July 571 2016. 573 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 574 Requirement Levels", BCP 14, RFC 2119, 575 DOI 10.17487/RFC2119, March 1997, 576 . 578 [RFC4203] Kompella, K., Ed. and Y. Rekhter, Ed., "OSPF Extensions in 579 Support of Generalized Multi-Protocol Label Switching 580 (GMPLS)", RFC 4203, DOI 10.17487/RFC4203, October 2005, 581 . 583 [RFC7138] Ceccarelli, D., Ed., Zhang, F., Belotti, S., Rao, R., and 584 J. Drake, "Traffic Engineering Extensions to OSPF for 585 GMPLS Control of Evolving G.709 Optical Transport 586 Networks", RFC 7138, DOI 10.17487/RFC7138, March 2014, 587 . 589 10.2. Informative References 591 [RFC5920] Fang, L., Ed., "Security Framework for MPLS and GMPLS 592 Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010, 593 . 595 Authors' Addresses 597 Rajan Rao 598 Infinera Corporation 599 140 Caspian CT. 600 Sunnyvale, CA-94089 601 USA 603 EMail: rrao@infinera.com 605 Iftekhar Hussain 606 Infinera Corporation 607 140 Caspian CT. 608 Sunnyvale, CA-94089 609 USA 611 EMail: IHussain@infinera.com 613 Radha Valiveti 614 Infinera Corporation 615 140 Caspian CT. 616 Sunnyvale, CA-94089 617 USA 619 EMail: rvaliveti@infinera.com 621 Qilei Wang (editor) 622 ZTE 623 Nanjing 624 CN 626 EMail: wang.qilei@zte.com.cn 627 Yuanbin Zhang 628 ZTE 629 Beijing 630 CN 632 EMail: zhang.yuanbin@zte.com.cn 634 Huub van Helvoort 635 Hai Gaoming B.V 637 EMail: huubatwork@gmail.com