idnits 2.17.1 draft-matsuhira-me6e-fp-05.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == The document doesn't use any RFC 2119 keywords, yet seems to have RFC 2119 boilerplate text. -- The document date (April 19, 2018) is 2171 days in the past. Is this intentional? Checking references for intended status: Informational ---------------------------------------------------------------------------- == Missing Reference: 'RFC3378' is mentioned on line 367, but not defined == Missing Reference: 'RFC2080' is mentioned on line 350, but not defined == Missing Reference: 'RFC2740' is mentioned on line 359, but not defined ** Obsolete undefined reference: RFC 2740 (Obsoleted by RFC 5340) == Missing Reference: 'RFC5308' is mentioned on line 372, but not defined == Missing Reference: 'RFC2893' is mentioned on line 363, but not defined ** Obsolete undefined reference: RFC 2893 (Obsoleted by RFC 4213) == Missing Reference: 'RFC2267' is mentioned on line 354, but not defined ** Obsolete undefined reference: RFC 2267 (Obsoleted by RFC 2827) -- No information found for draft-matsuhira-me6a - is the name correct? Summary: 3 errors (**), 0 flaws (~~), 8 warnings (==), 2 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group N. Matsuhira 3 Internet-Draft Fujitsu Limited 4 Intended status: Informational April 19, 2018 5 Expires: October 21, 2018 7 Multiple Ethernet - IPv6 address mapping encapsulation - fixed prefix 8 draft-matsuhira-me6e-fp-05 10 Abstract 12 This document specifies Multiple Ethernet - IPv6 address mapping 13 encapsulation - fixed prefix (ME6E-FP) base specification. ME6E-FP 14 makes expantion ethernet network over IPv6 backbone network with 15 encapsuation technoogy. And also, E6ME-FP can stack multiple 16 Ethernet networks. ME6E-FP work on own routing domain. 18 Requirements Language 20 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 21 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 22 document are to be interpreted as described in RFC 2119 [RFC2119]. 24 Status of this Memo 26 This Internet-Draft is submitted in full conformance with the 27 provisions of BCP 78 and BCP 79. 29 Internet-Drafts are working documents of the Internet Engineering 30 Task Force (IETF). Note that other groups may also distribute 31 working documents as Internet-Drafts. The list of current Internet- 32 Drafts is at http://datatracker.ietf.org/drafts/current/. 34 Internet-Drafts are draft documents valid for a maximum of six months 35 and may be updated, replaced, or obsoleted by other documents at any 36 time. It is inappropriate to use Internet-Drafts as reference 37 material or to cite them other than as "work in progress." 39 This Internet-Draft will expire on October 21, 2018. 41 Copyright Notice 43 Copyright (c) 2018 IETF Trust and the persons identified as the 44 document authors. All rights reserved. 46 This document is subject to BCP 78 and the IETF Trust's Legal 47 Provisions Relating to IETF Documents 48 (http://trustee.ietf.org/license-info) in effect on the date of 49 publication of this document. Please review these documents 50 carefully, as they describe your rights and restrictions with respect 51 to this document. Code Components extracted from this document must 52 include Simplified BSD License text as described in Section 4.e of 53 the Trust Legal Provisions and are provided without warranty as 54 described in the Simplified BSD License. 56 Table of Contents 58 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 59 2. Basic Network Configuration . . . . . . . . . . . . . . . . . . 3 60 3. Basic Function of ME6E-FP . . . . . . . . . . . . . . . . . . . 4 61 3.1. Ethernet over IPv6 Encapsulation . . . . . . . . . . . . . 4 62 3.2. Multiple Ethernet - IPv6 mapped address (ME6A) 63 architecture . . . . . . . . . . . . . . . . . . . . . . . 4 64 3.3. Route Advertisement . . . . . . . . . . . . . . . . . . . . 5 65 4. ME6E-FP address format . . . . . . . . . . . . . . . . . . . . 5 66 4.1. IPv6 Global Unicast Address . . . . . . . . . . . . . . . . 6 67 4.2. 16bits plane ID ME6 address . . . . . . . . . . . . . . . . 6 68 4.3. 32bits plane ID ME6 address . . . . . . . . . . . . . . . . 7 69 4.4. mixture and renumbering of ME6 address . . . . . . . . . . 7 70 5. Configuration of ME6E-FP . . . . . . . . . . . . . . . . . . . 8 71 6. Characteristic . . . . . . . . . . . . . . . . . . . . . . . . 8 72 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . . 8 73 8. Security Considerations . . . . . . . . . . . . . . . . . . . . 8 74 9. References . . . . . . . . . . . . . . . . . . . . . . . . . . 8 75 9.1. Normative References . . . . . . . . . . . . . . . . . . . 8 76 9.2. References . . . . . . . . . . . . . . . . . . . . . . . . 9 77 Author's Address . . . . . . . . . . . . . . . . . . . . . . . . . 9 79 1. Introduction 81 This document provides Multiple Ethernet - IPv6 address mapping 82 encapsulation - fixed prefix (ME6E-FP) base specification. 84 ME6E-FP make many virtual ethernet network over IPv6 network with 85 unicast base technology. 87 ME6E-FP can use on own routing domain, i.e. can advertise routes to 88 the network. 90 2. Basic Network Configuration 92 Figure 1 shows network configuration with ME6E-FP. The network 93 consists of three parts. IPv6 network, Nodes (Host or Router) , and 94 ME6E-FP. 96 Backbone network is operated with Dual Stack or IPv6 only. Node may 97 physical node or virtual node, and have Ethernet Interface. 99 ME6E-FP connects IPv6 network and nodes. ME6E-FP connect to node 100 with Ethernet (Layer2), and ME6E-FP connect to IPv6 network with IPv6 101 (Layer3). 103 /---------------------------------------------------\ 104 | | 105 | IPv6 Network | 106 | (Dual stack or IPv6 only) | 107 | | 108 \---------------------------------------------------/ 109 | | 110 +-------+ +------------------------+ 111 |E6ME-FP| | E6ME-FP | 112 +-------+ +------------------------+ 113 | | | 114 /--------------\ /--------------\ /--------------\ 115 | | | | | | 116 | Node | | Node | | Node | 117 |(Host/Router) | |(Host/Router) | |(Host/Router) | 118 | | | | | | 119 \--------------/ \--------------/ \--------------/ 121 Figure 1 123 3. Basic Function of ME6E-FP 125 ME6E-FP has mainly two function. One is encapsulate from Ethernet 126 frame to IPv6 packet, and decapsulate from IPv6 packet to Ethernet 127 frame. Another is advertise route corresponding to Ethernet MAC 128 address. 130 3.1. Ethernet over IPv6 Encapsulation 132 ME6E-FP encapsulates ethernet frame to IPv6 packet from node to IPv6 133 network, and decapsulates IPv6 packet to ethernet frame from IPv6 134 network to node. Figure 2 shows encapsulation and decapsulation of 135 Ethernet frame and IPv6 packet 137 +--------+------------+ +----------+--------+------------+ 138 |Ethr Hdr| Data | --> | IPv6 Hdr |Ethr Hdr| Data | 139 +--------+------------+ +----------+--------+------------+ 141 +--------+------------+ +----------+--------+------------+ 142 |Ethr Hdr| Data | <-- | IPv6 Hdr |Ethr Hdr| Data | 143 +--------+------------+ +----------+--------+------------+ 145 /-------------------\ +-------+ /-----------------------------\ 146 | Node |--|ME6E-FP|--| IPv6 Network | 147 | (Host or Router) | +-------+ | (Dual Stack or IPv6 only) | 148 \-------------------/ \-----------------------------/ 150 Figure 2 152 The value of next header field of IPv6 header is TBD. The value of 153 EtherIP [RFC3378] may used, however new value for this protocol may 154 assigned. 156 When encapsulated IPv6 Packet size exceed path MTU , ME6E-FP fragment 157 Ethernet frame, and then send them. 159 3.2. Multiple Ethernet - IPv6 mapped address (ME6A) architecture 161 ME6A[I-D.matsuhira-me6a] is a IPv6 address used in outer IPv6 header 162 which encapsulate ethernet frame by ME6E-FP. 164 Figure 3 shows ME6A architecture 165 | 80 - m - n bits | m bits | n bits | 166 +-----------------------+--------------------------+----------------+ 167 | ME6 address prefix | Multiple net plane ID |Ethernet address| 168 +-----------------------+--------------------------+----------------+ 170 Figure 3 172 ME6 address consists of three parts as follows. 174 ME6 address prefix 176 ME6 address prefix . This value is preconfigured to all ME6E-FP 177 in the IPv6 networks. 179 Multiple network plane ID 181 Multiple network plane ID is an identifier of Ethernet network 182 over IPv6 backbone network. This value is preconfigured depend on 183 the ME6E-FP belong which ethernet network plane. This value is 184 just like VLAN-ID of IEEE802.1Q, tag VLAN. 186 Ethernet address 188 Ethernet MAC address in inner Ethernet frame. EUI-48 address or 189 EUI-64 address. 191 ME6 address is resolved by copying ethernet MAC address in inner 192 ethernet frame, and preconfigured values, ME6 prefix and multiple 193 network plane ID. 195 3.3. Route Advertisement 197 ME6E-FP advertises ME6 address host route to the IPv6 network. The 198 number of the route of ME6 addresses is the same as the number of MAC 199 address table. 201 In the IPv6 network, usual dynamic routing protocol for IPv6 can be 202 used such as RIPng [RFC2080], OSPFv3 [RFC2740] and IS-IS [RFC5308] . 204 4. ME6E-FP address format 206 ME6E-FP can be used closely in the IPv6 network, so ME6 address does 207 not be advertised outside of the IPv6 network, and IPv6 packet which 208 contains ME6 address does not be forwarded outside of the backbone 209 network. 211 So, ME6 address format and ME6 address prefix can be decided each 212 IPv6 network. Some example are shown as follows. These address is 213 based on EUI-48 MAC address. EUI-64 address is the future study. 215 4.1. IPv6 Global Unicast Address 217 This example is based on IPv6 Global Unicast Address Format 218 [RFC3587]. 220 Figure 4 shows IPv6 Global Unicast Address Format. 222 | 3 | 45bits | 16bits | 64bits | 223 +---+-----------------------+-----------+--------------------------+ 224 |001| Global routing prefix | subnet id | Interface ID | 225 +---+-----------------------+-----------+--------------------------+ 227 Figure 4 229 4.2. 16bits plane ID ME6 address 231 Figure 5 shows ME6 address format with 16bits multiple network plane 232 ID using part of IPv6 Global Unicast Address. 234 | 3 | 45bits | 16bits | 16bits | 48bits | 235 +---+-----------------------+-----------+--------------------------+ 236 |001| Global routing prefix | subnet id | plane ID |EUI-48 address| 237 +---+-----------------------+-----------+--------------------------+ 238 <---ME6 address prefix---------------> 240 Figure 5 242 Where: 244 Global routing prefix 246 global routing prefix 248 subnet id 250 indication for ME6 prefix. 252 multiple network plane id 254 ethernet network plane ID. 256 EUI-48 address 258 EUI-48 MAC address of inner ethernet frame. 260 16bits plane ID can represent 65535 ethernet network plane. 262 4.3. 32bits plane ID ME6 address 264 Figure 6shows ME6 address format with 32bits plane ID using part of 265 IPv6 Global Unicast Address. 267 | 3 | 45bits | 32bits | 48bits | 268 +---+-----------------------+--------------------------------------+ 269 |001| Global routing prefix | plane ID |EUI-48 address| 270 +---+-----------------------+--------------------------------------+ 271 <---ME6 address prefix-----> 273 Figure 6 275 Where: 277 Global routing prefix 279 global routing prefix 281 multiple network plane id 283 ethernet network plane ID. 285 EUI-48 address 287 EUI-48 MAC address of inner ethernet frame 289 32bits plane ID can represent about 4.3 billion ethernet network 290 plane. 292 4.4. mixture and renumbering of ME6 address 294 If ME6 address prefix does not overlap, ME6 address can co-existing. 295 And also, ME6 address prefix may renumber, that mean, small start 296 with 16bits plane ID ME6 address, then renumber to 32bits plane ID 297 ME6 address. 299 ME6E-FP provide flexible operation for scalability of multiple 300 network plane id. 302 5. Configuration of ME6E-FP 304 Configuration of ME6E-FP require just three information, ME6 address 305 prefix, multiple Network plane ID, and prefix length of ME6E-FP 306 route. These information could explain just only one line, "/ prefix length of ME6E-FP 308 route". 310 6. Characteristic 312 ME6E-FP has following useful characteristics. 314 o can operate unicast routing domain 316 o TBD 318 7. IANA Considerations 320 This document makes no request of IANA if using EtherIP Header. 322 Note to RFC Editor: this section may be removed on publication as an 323 RFC. 325 8. Security Considerations 327 ME6E-FP use automatic tunneling technologies. Security consideration 328 related tunneling technologies are discussed in RFC2893 [RFC2893], 329 RFC2267 [RFC2267], etc. 331 9. References 333 9.1. Normative References 335 [I-D.matsuhira-me6a] 336 Matsuhira, N., "Multiple Ethernet - IPv6 mapped IPv6 337 address (ME6A)", April 2017. 339 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 340 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/ 341 RFC2119, March 1997, 342 . 344 [RFC3587] Hinden, R., Deering, S., and E. Nordmark, "IPv6 Global 345 Unicast Address Format", RFC 3587, DOI 10.17487/RFC3587, 346 August 2003, . 348 9.2. References 350 [RFC2080] Malkin, G. and R. Minnear, "RIPng for IPv6", RFC 2080, 351 DOI 10.17487/RFC2080, January 1997, 352 . 354 [RFC2267] Ferguson, P. and D. Senie, "Network Ingress Filtering: 355 Defeating Denial of Service Attacks which employ IP Source 356 Address Spoofing", RFC 2267, DOI 10.17487/RFC2267, 357 January 1998, . 359 [RFC2740] Coltun, R., Ferguson, D., and J. Moy, "OSPF for IPv6", 360 RFC 2740, DOI 10.17487/RFC2740, December 1999, 361 . 363 [RFC2893] Gilligan, R. and E. Nordmark, "Transition Mechanisms for 364 IPv6 Hosts and Routers", RFC 2893, DOI 10.17487/RFC2893, 365 August 2000, . 367 [RFC3378] Housley, R. and S. Hollenbeck, "EtherIP: Tunneling 368 Ethernet Frames in IP Datagrams", RFC 3378, DOI 10.17487/ 369 RFC3378, September 2002, 370 . 372 [RFC5308] Hopps, C., "Routing IPv6 with IS-IS", RFC 5308, 373 DOI 10.17487/RFC5308, October 2008, 374 . 376 Author's Address 378 Naoki Matsuhira 379 Fujitsu Limited 380 17-25, Shinkamata 1-chome, Ota-ku 381 Tokyo, 144-8588 382 Japan 384 Phone: +81-3-3735-1111 385 Fax: 386 Email: matsuhira@jp.fujitsu.com