idnits 2.17.1 draft-pthubert-detnet-ipv6-hbh-02.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** The document seems to lack a both a reference to RFC 2119 and the recommended RFC 2119 boilerplate, even if it appears to use RFC 2119 keywords. RFC 2119 keyword, line 169: '...e representation MUST be large enough ...' RFC 2119 keyword, line 178: '...uilds the option MUST be fine enough t...' RFC 2119 keyword, line 189: '...n of the counter MUST be large enough ...' RFC 2119 keyword, line 261: '... path. In that case, the Projected-Route 'P' flag [RPL-PDAO] MUST be...' RFC 2119 keyword, line 263: '... MUST be set to 0 by the originator,...' Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (9 June 2021) is 1051 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) ** Downref: Normative reference to an Informational RFC: RFC 8877 == Outdated reference: A later version (-01) exists of draft-hinden-6man-hbh-processing-00 ** Downref: Normative reference to an Informational RFC: RFC 9030 (ref. '6TiSCH-ARCHI') == Outdated reference: A later version (-09) exists of draft-pthubert-raw-architecture-05 ** Downref: Normative reference to an Informational draft: draft-pthubert-raw-architecture (ref. 'RAW-ARCHI') == Outdated reference: A later version (-34) exists of draft-ietf-roll-dao-projection-16 -- Obsolete informational reference (is this intentional?): RFC 3272 (Obsoleted by RFC 9522) Summary: 4 errors (**), 0 flaws (~~), 4 warnings (==), 2 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 DetNet P. Thubert, Ed. 3 Internet-Draft Cisco Systems 4 Intended status: Standards Track 9 June 2021 5 Expires: 11 December 2021 7 IPv6 Hop-by-Hop Options for DetNet 8 draft-pthubert-detnet-ipv6-hbh-02 10 Abstract 12 RFC 8938, the Deterministic Networking Data Plane Framework relies on 13 the 6-tuple to identify an IPv6 flow. But the full DetNet operations 14 require also the capabilities to signal meta-information such as a 15 sequence within that flow, and to transport different types of 16 packets along the same path with the same treatment, e.g., 17 Operations, Administration, and Maintenance packets and/or multiple 18 flows with fate and resource sharing. This document introduces new 19 Hop-by-Hop header options that can signal that information to the 20 intermediate relays. 22 Status of This Memo 24 This Internet-Draft is submitted in full conformance with the 25 provisions of BCP 78 and BCP 79. 27 Internet-Drafts are working documents of the Internet Engineering 28 Task Force (IETF). Note that other groups may also distribute 29 working documents as Internet-Drafts. The list of current Internet- 30 Drafts is at https://datatracker.ietf.org/drafts/current/. 32 Internet-Drafts are draft documents valid for a maximum of six months 33 and may be updated, replaced, or obsoleted by other documents at any 34 time. It is inappropriate to use Internet-Drafts as reference 35 material or to cite them other than as "work in progress." 37 This Internet-Draft will expire on 11 December 2021. 39 Copyright Notice 41 Copyright (c) 2021 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents (https://trustee.ietf.org/ 46 license-info) in effect on the date of publication of this document. 47 Please review these documents carefully, as they describe your rights 48 and restrictions with respect to this document. Code Components 49 extracted from this document must include Simplified BSD License text 50 as described in Section 4.e of the Trust Legal Provisions and are 51 provided without warranty as described in the Simplified BSD License. 53 Table of Contents 55 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 56 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 4 57 3. The DetNet Options . . . . . . . . . . . . . . . . . . . . . 4 58 3.1. DetNet Sequencing Option . . . . . . . . . . . . . . . . 4 59 3.2. RPL Packet Information . . . . . . . . . . . . . . . . . 6 60 3.3. DetNet Local Path Option . . . . . . . . . . . . . . . . 7 61 3.4. DetNet Global Path Option . . . . . . . . . . . . . . . . 7 62 4. Security Considerations . . . . . . . . . . . . . . . . . . . 8 63 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 8 64 5.1. New Subregistry for the Sequencing Type . . . . . . . . . 8 65 5.2. New Hop-by-Hop Options . . . . . . . . . . . . . . . . . 9 66 6. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 9 67 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 9 68 7.1. Normative References . . . . . . . . . . . . . . . . . . 9 69 7.2. Informative References . . . . . . . . . . . . . . . . . 10 70 Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 11 72 1. Introduction 74 Section 2 of the Deterministic Networking Problem Statement 75 [DetNet-PS] introduces the concept of Deterministic Networking 76 (DetNet) to the IETF. DetNet extends the reach of lower layer 77 technologies such as Time-Sensitive Networking (TSN) [IEEE 802.1 TSN] 78 and Timeslotted Channel Hopping (TSCH) [IEEE Std. 802.15.4] over IPv6 79 and MPLS [RFC8938]. 81 The "Deterministic Networking Architecture" [DetNet-ARCHI] details 82 the contribution of layer-3 protocols, and defines three planes: the 83 Application (User) Plane, the Controller Plane, and the Network 84 Plane. [DetNet-ARCHI] places an emphasis on the centralized model 85 whereby a controller instantiates per-flow state in the routers to 86 perform adequate forwading operations so as to provide end-to-end 87 reliability and bounded latency guarantees. 89 The "6TiSCH Architecture" [6TiSCH-ARCHI] leverages RPL, the "Routing 90 Protocol for Low Power and Lossy Networks" [RFC6550] and introduces 91 concept of a Track as a highly redundant RPL Destination Oriented 92 Directed Acyclic Graph (DODAG) rooted at the Track Ingress node, that 93 can be installed using so-called projected routes [RPL-PDAO]. In 94 that case, the TrackId is an index from a namespace associated to one 95 IPv6 address of the Track Ingress node, and the Track that an IPv6 96 packet follows is signaled by the combination of the source address 97 (of the Track Ingress node), and the TrackID placed in a RPL Option 98 [RFC6553] located in an IPv6 Hop-by-Hop (HbH) Options Header [IPv6] 99 in the IPv6 packet. 101 The "Reliable and Available Wireless (RAW) Architecture/Framework" 102 [RAW-ARCHI], extends the DetNet Network Plane to accomodate one or 103 multiple hops of homogeneous or heterogeneous wireless technologies, 104 e.g. a Wi-Fi6 Mesh or parallel radio access links combining Wi-Fi and 105 5G. The RAW Architecture reuses the concept of Track and introduces 106 a new dataplane component, the Path Selection Engine (PSE), to 107 dynamically select a subpath and maintain the required quality of 108 service within a Track in the face of the rapid evolution of the 109 medium properties. 111 With [IPv6], the behavior of a router upon an IPv6 packet with a HbH 112 Options Header has evolved, making the examination of the header by 113 routers along the path optional, as opposed to previously mandatory. 114 Additionally, the Option Type for any option in a HbH Options Header 115 encodes in the leftmost bits whether a router that inspects the 116 header should drop the packet or ignore the option when encountering 117 an unknown option. Combined, these capabilities enable a larger use 118 of the header beyond the boundaries of a limited domain, as 119 examplified by the change of behavior of the RPL data plane, that was 120 changed to allow a packet with a RPL option to escape the RPL domain 121 in the larger Internet [RFC9008]. 123 "IPv6 Hop-by-Hop Options Processing Procedures" [HbH-PROCESS] further 124 specifies the procedures for how IPv6 Hop-by-Hop options are 125 processed to make their processing even more practical and increase 126 their use in the Internet. In that context, it makes sense to 127 consider Hop-by-Hop Options to transport the information that is 128 relevant to DetNet. 130 The "Deterministic Networking Data Plane Framework" [RFC8938] relies 131 on the 6-tuple to identify an IPv6 flow. But the full DetNet 132 operations require also the capabilities to signal meta-information 133 such as a sequence within that flow, and to transport different types 134 of packets along the same path with the same treatment. For 135 instance, it is required that Operations, Administration, and 136 Maintenance (OAM) [RFC6291] packets and/or multiple flows share the 137 same fate and resource sharing over the same Track or the same 138 Traffic Engineered (TE) [RFC3272] DetNet path. 140 This document introduces new Hop-by-Hop options that can signal 141 DetNet path and sequencing information to the intermediate relays in 142 an abstract form that is independent of the transport layer. 143 Transported in IPv6 HbH Options, the DetNet information is available 144 early in the header chain of the packet and presented and added as 145 part of a service instance encapsulation by the Ingress of the DetNet 146 path and accessed by the intermediate DetNet relay nodes. 148 2. Terminology 150 Timestamp semantics and timestamp formats used in this document are 151 defined in "Guidelines for Defining Packet Timestamps" [RFC8877]. 153 The Deterministic Networking terms used in this document are defined 154 in the "Deterministic Networking Architecture" [DetNet-ARCHI]. 156 The terms Track and TrackID are defined in the "6TiSCH Architecture" 157 [6TiSCH-ARCHI]. 159 3. The DetNet Options 161 This document defines a number of IPv6 options to be placed in a HbH 162 Options Header; the format of these options follow the generic 163 definition in section 4.2 of [IPv6]. 165 3.1. DetNet Sequencing Option 167 A typical packet sequence can be expressed uniquely as a wrapping 168 counter, represented as an unsigned integer in the option. In that 169 case, the size of the representation MUST be large enough to cover at 170 least 3 times the upper bound on out-of-order packet delivery in 171 terms of number of packets. 173 This specification also allows to use a time stamp for the packet 174 sequencing following the recommendations in [RFC8877]. This can be 175 accomplished by utilizing the Precision Time Protocol (PTP) format 176 defined in IEEE Std. 1588 [IEEE Std. 1588] or Network Time Protocol 177 (NTP) [RFC5905] formats. In that case, the timestamp resolution at 178 the origin node that builds the option MUST be fine enough to ensure 179 that two consecutive packets are never stamped with the same value. 180 There is no requirement for this particular stamping function that 181 the sense of time at the origin node is synchronized with the rest of 182 the DetNet network. 184 This specification also allows for an hybrid model with a coarse 185 grained packet sequence within a coarse grained time stamp. In that 186 case, both a time stamp option and a wrapping counter options are 187 found, and the counter is used to compare packets with the same time 188 stamp and ignored otherwise In that case, the size of the 189 representation of the counter MUST be large enough to cover at least 190 3 times the number of packets that may be sent with the same value of 191 time stamp. 193 0 1 2 3 194 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 195 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 196 | Option Type | Opt Data Len | Seq. Type | Reserved | 197 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 198 | | 199 . . 200 . Sequencing Information (variable Size) . 201 . . 202 | | 203 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 205 Figure 1: Sequencing Option Format 207 Sequencing Option fields: 209 Option Type: 8-bit identifier of the type of option. Value TBD by 210 IANA. 212 Opt Data Len: 8-bit length of the option data. 214 Reserved: 8-bit field, set to 0 and ignored on reception. 216 Sequence Type: 8-bit identifier of the type of sequencing 217 information. Value to be confirmed by IANA. 219 +=======+==========+===============+===========================+ 220 | Seq. | Category | Common Name | Sequencing Information | 221 | Type | | | Format | 222 | Value | | | | 223 +=======+==========+===============+===========================+ 224 | 1 | Wrapping | Basic | 32-bit unsigned integer | 225 | | Counter | Sequence | | 226 | | | Counter | | 227 +-------+==========+---------------+---------------------------+ 228 | 2 | Wrapping | Zero-avoiding | 32-bit unsigned integer, | 229 | | Counter | Sequence | wraps to 1 | 230 | | | Counter | | 231 +-------+==========+---------------+---------------------------+ 232 | 3 | Wrapping | RPL Sequence | 8-bit RPL sequence, see | 233 | | Counter | Counter | section 7. of [RFC6550] | 234 +-------+==========+---------------+---------------------------+ 235 | 11 | Time | Fractional | NTP 64-bit Timestamp | 236 | | Stamp | NTP | Format, see section | 237 | | | | 4.2.1. of [RFC8877] | 238 +-------+==========+---------------+---------------------------+ 239 | 12 | Time | Short NTP | NTP 32-bit Timestamp | 240 | | Stamp | | Format, see section | 241 | | | | 4.2.2. of [RFC8877] | 242 +-------+==========+---------------+---------------------------+ 243 | 13 | Time | PTP | PTP 80-bit Timestamp | 244 | | Stamp | | Format, see [IEEE Std. | 245 | | | | 1588] | 246 +-------+==========+---------------+---------------------------+ 247 | 14 | Time | Short PTP | PTP 64-bit Truncated | 248 | | Stamp | | Timestamp Format, see | 249 | | | | section 4.3. of [RFC8877] | 250 +-------+==========+---------------+---------------------------+ 252 Table 1: Sequence Type values (suggested) 254 Sequencing Information: Variable size, as indicated in Table 1. 256 3.2. RPL Packet Information 258 6TiSCH [6TiSCH-ARCHI] and RAW [RAW-ARCHI] signal a Track using a RPL 259 Option [RFC6553] with a RPLInstanceID used as TrackID. This 260 specification reuses the RPL option as a method to signal a DetNet 261 path. In that case, the Projected-Route 'P' flag [RPL-PDAO] MUST be 262 set to 1, and the O, R, F flags, as well as the Sender Rank field, 263 MUST be set to 0 by the originator, forwarded as-is, and ignored on 264 reception. 266 3.3. DetNet Local Path Option 268 In complement to the RPL option, this specification defines a 269 protocol-independent Local Path Identifier, which is also taken from 270 a namespace indicated by the IPv6 source address of the packet. 272 0 1 2 3 273 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 274 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 275 | Option Type | Opt Data Len | Local Path ID | 276 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 278 Figure 2: DetNet Local Path Option Format 280 Sequencing Option fields: 282 Option Type: 8-bit identifier of the type of option. Value TBD by 283 IANA. 285 Opt Data Len: 8-bit length of the option data, set to 2. 287 Local Path ID: 16-bit identifier of the DetNet Path, taken from a 288 local namespace associated with the IPv6 source address of the 289 packet. 291 3.4. DetNet Global Path Option 293 The DetNet Global Path Option transports a global path identifier 294 which is taken from a namespace indicated by the Origin Autonomous 295 System (AS). When the DetNet path is contained within a single AS, 296 the Origin Autonomous System field can be left to 0 indicating local 297 AS. 299 0 1 2 3 300 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 301 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 302 | Option Type | Opt Data Len | Origin Autonomous System | 303 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 304 | Global Path ID | 305 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 307 Figure 3: DetNet Glocal Path Option Format 309 Sequencing Option fields: 311 Option Type: 8-bit identifier of the type of option. Value TBD by 312 IANA. 314 Opt Data Len: 8-bit length of the option data, set to 6. 316 Origin Autonomous System: 16-bit identifier of the Autonomous 317 Systems (AS) that originates the path. 319 Global Path ID: 32-bit identifier of the DetNet Path, taken from a 320 local namespace associated with the origin AS of the DetNet path. 321 The value of 0 signals a DetNet path that is constrained within 322 the local AS or the local administrative DetNet domain. 324 4. Security Considerations 326 5. IANA Considerations 328 5.1. New Subregistry for the Sequencing Type 330 This specification creates a new Subregistry for the "Sequencing Type 331 of the Sequencing Option" under the "Internet Protocol Version 6 332 (IPv6) Parameters" registry. 334 * Possible values are 8-bit unsigned integers (0..255). 336 * Registration procedure is "IETF Review" [RFC8126]. 338 * Initial allocation is as Suggested in Table 2: 340 +-----------------+--------------------------------+-----------+ 341 | Suggested Value | Meaning | Reference | 342 +-----------------+--------------------------------+-----------+ 343 | 1 | Basic Sequence Counter | THIS RFC | 344 +-----------------+--------------------------------+-----------+ 345 | 2 | Zero-avoiding Sequence Counter | THIS RFC | 346 +-----------------+--------------------------------+-----------+ 347 | 3 | RPL Sequence Counter | THIS RFC | 348 +-----------------+--------------------------------+-----------+ 349 | 11 | Fractional NTP time stamp | THIS RFC | 350 +-----------------+--------------------------------+-----------+ 351 | 12 | Short NTP time stamp | THIS RFC | 352 +-----------------+--------------------------------+-----------+ 353 | 13 | PTP time stamp | THIS RFC | 354 +-----------------+--------------------------------+-----------+ 355 | 14 | Short PTP time stamp | THIS RFC | 356 +-----------------+--------------------------------+-----------+ 358 Table 2: Sequence Type values 360 5.2. New Hop-by-Hop Options 362 This specification updates the "Destination Options and Hop-by-Hop 363 Options" under the "Internet Protocol Version 6 (IPv6) Parameters" 364 registry with the (suggested) values below: 366 +------+-----+-----+-------+---------------------------+-----------+ 367 | Hexa | act | chg | rest | Description | Reference | 368 +------+-----+-----+-------+---------------------------+-----------+ 369 | 0x12 | 00 | 0 | 10010 | DetNet Sequencing Option | THIS RFC | 370 +------+-----+-----+-------+---------------------------+-----------+ 371 | 0x13 | 00 | 0 | 10011 | DetNet Local Path Option | THIS RFC | 372 +------+-----+-----+-------+---------------------------+-----------+ 373 | 0x14 | 00 | 0 | 10100 | DetNet Global Path Option | THIS RFC | 374 +------+-----+-----+-------+---------------------------+-----------+ 376 Table 3: DetNet Hop-by-Hop Options 378 6. Acknowledgments 380 TBD 382 7. References 384 7.1. Normative References 386 [IPv6] Deering, S. and R. Hinden, "Internet Protocol, Version 6 387 (IPv6) Specification", STD 86, RFC 8200, 388 DOI 10.17487/RFC8200, July 2017, 389 . 391 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for 392 Writing an IANA Considerations Section in RFCs", BCP 26, 393 RFC 8126, DOI 10.17487/RFC8126, June 2017, 394 . 396 [RFC8877] Mizrahi, T., Fabini, J., and A. Morton, "Guidelines for 397 Defining Packet Timestamps", RFC 8877, 398 DOI 10.17487/RFC8877, September 2020, 399 . 401 [HbH-PROCESS] 402 Hinden, R. M. and G. Fairhurst, "IPv6 Hop-by-Hop Options 403 Processing Procedures", Work in Progress, Internet-Draft, 404 draft-hinden-6man-hbh-processing-00, 3 December 2020, 405 . 408 [DetNet-ARCHI] 409 Finn, N., Thubert, P., Varga, B., and J. Farkas, 410 "Deterministic Networking Architecture", RFC 8655, 411 DOI 10.17487/RFC8655, October 2019, 412 . 414 [6TiSCH-ARCHI] 415 Thubert, P., Ed., "An Architecture for IPv6 over the Time- 416 Slotted Channel Hopping Mode of IEEE 802.15.4 (6TiSCH)", 417 RFC 9030, DOI 10.17487/RFC9030, May 2021, 418 . 420 [RAW-ARCHI] 421 Thubert, P., Papadopoulos, G. Z., and R. Buddenberg, 422 "Reliable and Available Wireless Architecture/Framework", 423 Work in Progress, Internet-Draft, draft-pthubert-raw- 424 architecture-05, 15 November 2020, 425 . 428 7.2. Informative References 430 [RPL-PDAO] Thubert, P., Jadhav, R. A., and M. Gillmore, "Root 431 initiated routing state in RPL", Work in Progress, 432 Internet-Draft, draft-ietf-roll-dao-projection-16, 15 433 January 2021, . 436 [RFC6291] Andersson, L., van Helvoort, H., Bonica, R., Romascanu, 437 D., and S. Mansfield, "Guidelines for the Use of the "OAM" 438 Acronym in the IETF", BCP 161, RFC 6291, 439 DOI 10.17487/RFC6291, June 2011, 440 . 442 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch, 443 "Network Time Protocol Version 4: Protocol and Algorithms 444 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010, 445 . 447 [RFC6550] Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J., 448 Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, 449 JP., and R. Alexander, "RPL: IPv6 Routing Protocol for 450 Low-Power and Lossy Networks", RFC 6550, 451 DOI 10.17487/RFC6550, March 2012, 452 . 454 [RFC6553] Hui, J. and JP. Vasseur, "The Routing Protocol for Low- 455 Power and Lossy Networks (RPL) Option for Carrying RPL 456 Information in Data-Plane Datagrams", RFC 6553, 457 DOI 10.17487/RFC6553, March 2012, 458 . 460 [DetNet-PS] 461 Finn, N. and P. Thubert, "Deterministic Networking Problem 462 Statement", RFC 8557, DOI 10.17487/RFC8557, May 2019, 463 . 465 [RFC9008] Robles, M.I., Richardson, M., and P. Thubert, "Using RPI 466 Option Type, Routing Header for Source Routes, and IPv6- 467 in-IPv6 Encapsulation in the RPL Data Plane", RFC 9008, 468 DOI 10.17487/RFC9008, April 2021, 469 . 471 [RFC3272] Awduche, D., Chiu, A., Elwalid, A., Widjaja, I., and X. 472 Xiao, "Overview and Principles of Internet Traffic 473 Engineering", RFC 3272, DOI 10.17487/RFC3272, May 2002, 474 . 476 [RFC8938] Varga, B., Ed., Farkas, J., Berger, L., Malis, A., and S. 477 Bryant, "Deterministic Networking (DetNet) Data Plane 478 Framework", RFC 8938, DOI 10.17487/RFC8938, November 2020, 479 . 481 [IEEE Std. 802.15.4] 482 IEEE standard for Information Technology, "IEEE Std. 483 802.15.4, Part. 15.4: Wireless Medium Access Control (MAC) 484 and Physical Layer (PHY) Specifications for Low-Rate 485 Wireless Personal Area Networks". 487 [IEEE 802.1 TSN] 488 IEEE 802.1, "Time-Sensitive Networking (TSN) Task Group", 489 . 491 [IEEE Std. 1588] 492 IEEE, "IEEE Standard for a Precision Clock Synchronization 493 Protocol for Networked Measurement and Control Systems", 494 IEEE Standard 1588, 495 . 497 Author's Address 498 Pascal Thubert (editor) 499 Cisco Systems, Inc 500 France 502 Phone: +33 497 23 26 34 503 Email: pthubert@cisco.com