idnits 2.17.1 draft-wangl-ccamp-ospf-ext-constraint-flexi-grid-00.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (February 15, 2012) is 4425 days in the past. Is this intentional? -- Found something which looks like a code comment -- if you have code sections in the document, please surround them with '' and '' lines. Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Unused Reference: 'I-D.hussain-ccamp-super-channel-label' is defined on line 838, but no explicit reference was found in the text == Unused Reference: 'I-D.zhang-ccamp-flexible-grid-rsvp-te-ext' is defined on line 867, but no explicit reference was found in the text -- Possible downref: Non-RFC (?) normative reference: ref. 'G.694.1' ** Downref: Normative reference to an Informational RFC: RFC 6163 -- No information found for draft-farrkingel-ccamp-flexigrid-lambda-label - is the name correct? -- No information found for draft-li-ccamp-flexible-grid-label - is the name correct? -- No information found for draft-zhang-ccamp-flexible-grid-ospf-ext - is the name correct? -- No information found for draft-zhang-ccamp-flexible-grid-requirements - is the name correct? -- No information found for draft-zhang-ccamp-flexible-grid-rsvp-te-ext - is the name correct? -- No information found for draft-zhangj-ccamp-flexi-grid-ospf-te-ext - is the name correct? Summary: 1 error (**), 0 flaws (~~), 3 warnings (==), 9 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group L. Wang 3 Internet-Draft Y. Li 4 Intended status: Standards Track ZTE 5 Expires: August 18, 2012 February 15, 2012 7 OSPF Extensions for Routing Constraint Encoding in Flexible-Grid 8 Networks 9 draft-wangl-ccamp-ospf-ext-constraint-flexi-grid-00 11 Abstract 13 In Flexible-Grid networks, network elements and links may impose 14 additional routing constraints, which cannot be ignored in Routing 15 and Spectrum Assignment (RSA) process. This document describes the 16 requirements of such constraints, and then provides efficient 17 encodings to specify how the information is carried. 19 Status of this Memo 21 This Internet-Draft is submitted in full conformance with the 22 provisions of BCP 78 and BCP 79. 24 Internet-Drafts are working documents of the Internet Engineering 25 Task Force (IETF). Note that other groups may also distribute 26 working documents as Internet-Drafts. The list of current Internet- 27 Drafts is at http://datatracker.ietf.org/drafts/current/. 29 Internet-Drafts are draft documents valid for a maximum of six months 30 and may be updated, replaced, or obsoleted by other documents at any 31 time. It is inappropriate to use Internet-Drafts as reference 32 material or to cite them other than as "work in progress." 34 This Internet-Draft will expire on August 18, 2012. 36 Copyright Notice 38 Copyright (c) 2012 IETF Trust and the persons identified as the 39 document authors. All rights reserved. 41 This document is subject to BCP 78 and the IETF Trust's Legal 42 Provisions Relating to IETF Documents 43 (http://trustee.ietf.org/license-info) in effect on the date of 44 publication of this document. Please review these documents 45 carefully, as they describe your rights and restrictions with respect 46 to this document. Code Components extracted from this document must 47 include Simplified BSD License text as described in Section 4.e of 48 the Trust Legal Provisions and are provided without warranty as 49 described in the Simplified BSD License. 51 Table of Contents 53 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 54 2. Conventions Used in This Document . . . . . . . . . . . . . . 3 55 3. Terminologies . . . . . . . . . . . . . . . . . . . . . . . . 3 56 4. Requirements of Routing Constraint for RSA in 57 Flexible-Grid Networks . . . . . . . . . . . . . . . . . . . . 4 58 4.1. Label set . . . . . . . . . . . . . . . . . . . . . . . . 7 59 4.2. Port Flexible-Grid Supporting Ability Constraint . . . . . 7 60 4.3. Optical Signal Compatibility Constraint . . . . . . . . . 8 61 5. Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 62 5.1. Label Set . . . . . . . . . . . . . . . . . . . . . . . . 9 63 5.2. Port Flexible-Grid Supporting Ability Constraint . . . . . 13 64 5.3. Optical Signal Compatibility Constraint . . . . . . . . . 15 65 6. Encoding Example . . . . . . . . . . . . . . . . . . . . . . . 16 66 6.1. Example of Label Set Encoding . . . . . . . . . . . . . . 16 67 6.2. Example of Port Flexible-Grid Supporting Ability 68 Constraint Encoding . . . . . . . . . . . . . . . . . . . 19 69 6.3. Example of Signal Compatibility Encoding . . . . . . . . . 19 70 7. Security Considerations . . . . . . . . . . . . . . . . . . . 20 71 8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 20 72 9. References . . . . . . . . . . . . . . . . . . . . . . . . . . 20 73 9.1. Normative References . . . . . . . . . . . . . . . . . . . 20 74 9.2. Informative References . . . . . . . . . . . . . . . . . . 20 75 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 21 77 1. Introduction 79 Flexible-Grid technique breaks the rigid nature of traditional DWDM 80 wavelength Grid, and enables flexible allocation of optical spectrum 81 resources to accommodate ultra-high data rate traffic. Currently, 82 there are several IETF draft addressing GMPLS routing and signaling 83 extension to support Flexible-Grid DWDM Networks, such as 84 [I-D.farrkingel-ccamp-flexigrid-lambda-label][I-D.li-ccamp-flexible-g 85 rid-label][I-D.zhang-ccamp-flexible-grid-requirements][I-D.zhang-ccam 86 p-flexible-grid-rsvp-te-ext][I-D.zhang-ccamp-flexible-grid-ospf-ext][ 87 I-D.hussain-ccamp-super-channel-label][I-D.dhillon-ccamp-super-channe 88 l-ospfte-ext][I-D.zhangj-ccamp-flexi-grid-ospf-te-ext]. However, all 89 these documents mainly focus on Label/Label-set extensions and 90 spectrum consecutiveness/continuity constraints in Flexible-Grid 91 Networks, but ignore other aspects of RSA problem. In fact, Network 92 elements (such as nodes and Optical-to-Electronic/ 93 Electronic-to-Optical sub-systems) and links may impose additional 94 routing constraints such as flexible-grid ability/range limitations 95 on ports, asymmetric switch connectivity, and signal processing 96 limitations of each OE/EO system. Without considering these 97 constraints, it cannot be guaranteed to obtain available results in 98 RSA process especially for network scenarios with various Flexible- 99 Grid and Fixed-Grid elements, which leads to inefficient routing and 100 high blocking probability of end-to-end paths. 102 This document describes and encodes the constraints imposed by 103 network elements and links, which could be carried in OSPF Messages 104 to flood to each node for efficient RSA. In addition, such 105 information could be conveyed by other mechanisms to a Path 106 Computation Element (PCE). Note that, impairment-related constraints 107 are not considered here. 109 2. Conventions Used in This Document 111 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 112 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 113 document are to be interpreted as described in [RFC2119]. 115 3. Terminologies 117 GMPLS: Generalized Multi-Protocol Label Switching 119 LSP: Label Switched Path 121 ROADM: Reconfigurable Optical Add-Drop Multiplexer 122 RSA: Routing and spectrum assignment 124 Slice: the basic slot unit, and the slot width of one slice is equal 125 to slot width granularity 127 WSON: Wavelength Switched Optical Networks [RFC6163] 129 WSS: Wavelength Selective Switch 131 4. Requirements of Routing Constraint for RSA in Flexible-Grid Networks 133 In Flexible-Grid network, there is one key problem: how to route and 134 allocate spectrum resources for each end-to end optical channel, so 135 to fulfill their requirements in an efficient way? To address this 136 problem, some constraints must be taken into consideration, which are 137 listed as follows. 139 -Spectrum availability constraint. 141 -Flexible-Grid supporting ability constraint. 143 -Asymmetric switch connectivity constraint. 145 -Optical signal compatibility constraint. 147 -Other constraints. 149 The asymmetric switch connectivity constraint in Flexible-Grid 150 network could be well addressed by Connectivity matrix sub-TLV used 151 in Wavelength Switched Optical Networks (WSON) 152 [I-D.ietf-ccamp-general-constraint-encode]. The spectrum 153 availability constraint is studied in several drafts, and could be 154 represented by Label-set extensions of 155 [I-D.li-ccamp-flexible-grid-label][I-D.zhang-ccamp-flexible-grid-ospf 156 -ext][I-D.dhillon-ccamp-super-channel-ospfte-ext]. However, these 157 extensions are not complete, so we reorganize the Flexible-Grid 158 label-set according to WSON definition. In addition, this document 159 also takes the constraints imposed by network ports and OE/EO 160 subsystems into consideration. 162 Here a general use scenario of Flexible-Grid Network is given to 163 illustrate these requirements. 165 +----+A-E2 B-I1+----+B-E2 C-I1+----+ 166 | A |----------->| B |----------->| C | 167 | |<-----------| |<-----------| | 168 +----+A-I2 B-E1+----+B-I2 C-E1+----+ 169 O| O| O| 170 A-I1||A-E1 B-I3||B-E3 C-I2||C-E2 171 || || || 172 || || || 173 || || || 174 || || || 175 D-E1||D-I1 E-E3||E-I3 F-E2||F-I2 176 |O |O |O 177 +----+D-E2 E-I1+----+E-E2 F-I1+----+ 178 | D |----------->| E |----------->| F | 179 | |<-----------| |<-----------| | 180 +----+D-I2 E-E1+----+E-I2 F-E1+----+ 182 Figure 1. A sample network with both Fixed-Grid and Flexible-Grid 183 elements 185 Tributary Side: E5 I5 E6 I6 186 O | O | 187 | | | | 188 | O | O 189 +-----------------------+ 190 |+-----+ +-----+| 191 Line side-1 --->||Split| |WSS-2||---> Line side-2 192 Input (I1) |+-----+ +-----+| Output (E2) 193 Line side-1 <---||WSS-1| |Split||<--- Line side-2 194 Output (E1) |+-----+ +-----+| Input (I2) 195 | ROADM | 196 |+-----+ +-----+| 197 Line side-3 --->||Split| |WSS-4||---> Line side-4 198 Input (I3) |+-----+ +-----+| Output (E4) 199 Line side-3 <---||WSS-3| |Split||<--- Line side-4 200 Output (E3) |+-----+ +-----+| Input (I4) 201 +-----------------------+ 202 | O | O 203 | | | | 204 O | O | 205 Tributary Side: E7 I7 E8 I8 207 Figure 2. A ROADM Composed of WSSs and splitters (Internal 208 connections are not presented) 210 Figure 1 shows the network topology, while Figure 2 shows the 211 architecture of nodes. The ROADM of Figure 2 is composed of WSSs and 212 splitters. I1~4/E1~4 are line-side input/output ports, while I5~8/ 213 E5~8 are tributary-side add/drop ports to/from line-side 1~4 214 respectively. The configuration of each line-side output port is 215 shown as follows: 217 +----+---------+-----+------+-----------+---------+---------+ 218 |Node|Node-Type|Ports| Type |Granularity|Min width|Max width| 219 +----+---------+-----+------+-----------+---------+---------+ 220 | | |A-E1 | Flex | 25GHz | 50GHz | 300GHz | 221 | A | Flex |-----+------+-----------+---------+---------+ 222 | | |A-E2 | Flex | 12.5GHz | 50GHz | 300GHz | 223 +----+---------+-----+------+-----------+---------+---------+ 224 | | |B-E1 | Flex | 12.5GHz | 50GHz | 200GHz | 225 | | |-----+------+-----------+---------+---------+ 226 | B | Mixed |B-E2 | Fixed| 50GHz | 50GHz | 50GHz | 227 | | |-----+------+-----------+---------+---------+ 228 | | |B-E3 | Flex | 12.5GHz | 50GHz | 200GHz | 229 +----+---------+-----+------+-----------+---------+---------+ 230 | | |C-E1 | Fixed| 50GHz | 50GHz | 50GHz | 231 | C | Fixed |-----+------+-----------+---------+---------+ 232 | | |C-E2 | Fixed| 50GHz | 50GHz | 50GHz | 233 +----+---------+-----+------+-----------+---------+---------+ 234 | | |D-E1 | Flex | 25GHz | 50GHz | 300GHz | 235 | D | Flex |-----+------+-----------+---------+---------+ 236 | | |D-E2 | Flex | 25GHz | 50GHz | 300GHz | 237 +----+---------+-----+------+-----------+---------+---------+ 238 | | |E-E1 | Flex | 25GHz | 50GHz | 300GHz | 239 | | |-----+------+-----------+---------+---------+ 240 | E | Flex |E-E2 | Flex | 12.5Ghz | 50GHz | 200GHz | 241 | | |-----+------+-----------+---------+---------+ 242 | | |E-E3 | Flex | 12.5GHz | 50GHz | 200GHz | 243 +----+---------+-----+------+-----------+---------+---------+ 244 | | |F-E1 | Flex | 12.5GHz | 50GHz | 200GHz | 245 | F | Mixed |-----+------+-----------+---------+---------+ 246 | | |F-E2 | Fixed| 50GHz | 50GHz | 50GHz | 247 +----+---------+-----+------+-----------+---------+---------+ 249 The granularity denotes the slot width granularity. The Min-width 250 and Max-width denote the slot width range. There are three types of 251 nodes: Node A, node D and node E are Flexible-Grid ROADMs, which only 252 consist of Flexible-Grid elements; Node C is a Fixed-Grid ROADM, 253 which only consists of Fixed-Grid elements; Node B and Node F are 254 Mixed-Grid ROADMs, which consist of both Flexible-Grid and Fixed-Grid 255 Elements. Both Flexible-Grid ROADM and Mixed-Grid ROADM can support 256 Flexible-Grid LSPs to accommodate ultra-high data rate traffic such 257 as beyond 100G. In addition, the Fixed-Grid ROADM can be smoothly 258 updated to Mixed-Grid ROADM by adding Flexible-Grid ports. With 259 appropriate RSA, the network is able to support both Fixed-Grid 260 services and Flexible-Grid services in an efficient way. 262 4.1. Label set 264 In Flexible-Grid networks, the spectrum assignment is not a local 265 matter due to spectral consecutiveness and continuity constraints, so 266 it is needed to get the information of which slice may or may not be 267 used on each link and node port along the path in RSA process. For 268 example, in the network of Figure 1, when a LSP request from node A 269 to node E with 50GHz slot width and route A->B->E arrives, the label 270 restriction of input port A-I6, output port E-E7, switch port A-E2, 271 B-I1, B-E3, E-I3 and spectrum availability of link AB, BE must be got 272 for the spectrum assignment. All the information is described by the 273 label set objects which is decided by the label format. The 274 generalized label for the flexible grid can be referred to 275 [I-D.farrkingel-ccamp-flexigrid-lambda-label] including central 276 frequency and slot width information. 278 As specified in [I-D.li-ccamp-flexible-grid-label] in section 4.1, 279 this kind of label format is backward compatible to support the 280 traditional 5 ways of wavelength label set encoding 281 [I-D.ietf-ccamp-general-constraint-encode]. 283 o 1. Inclusive list 285 o 2. Exclusive list 287 o 3. Inclusive range 289 o 4. Exclusive range 291 o 5. Bitmap set 293 It can be seen that these 5 types of representations can be easily 294 inherited by incorporating the new flexible label into the object. 295 Note that in the procedure of flooding, any combination of the 5 296 types of label sets is feasible. 298 4.2. Port Flexible-Grid Supporting Ability Constraint 300 Flexible-Grid supporting ability may include the type (Fixed-Grid or 301 Flexible-Grid), center frequency granularity and slot width range. 302 This information can be seen as the attribution of network ports with 303 relations to links or nodes. The RSA requirements of such fields are 304 listed as follows: 306 Firstly, Flexible-Grid WSSs of different companies or product-types 307 may have different slot width granularity and range, which may be a 308 subset of possible values specified by ITU-T [G.694.1], so it should 309 be taken into consideration in RSA process to avoid invalid route 310 selection. For example, in the network of Figure 1, when a LSP 311 request from node A to node E with 250GHz slot width arrives, only 312 the optical channel with a route A->D->E is able to carry the traffic 313 due to the slot width range limitations on other ports. 315 Secondly, Fixed-Grid ports/links cannot support Flexible-Grid LSPs 316 with high slot width requirements, so it is necessary to distinguish 317 Fixed-Grid ports/links from Flexible-Grid ports/links. For example, 318 in the network of Figure 1, when a LSP request from node B to Node F 319 with 150GHz slot width arrives, the route B->C->F may be selected 320 without considering Flexible-Grid Supporting Ability constraints. 321 Even if there are free consecutive and continuous spectrum resources 322 along the route, the optical channel cannot be setup successfully due 323 to the limitation of Fixed-Grid ports/links. 325 Thirdly, Although Flexible-Grid technology may offer full backwards 326 compatibility with the standard ITU-T DWDM grids, it is a cost- 327 efficient way to consider port Flexible-Grid Supporting Ability 328 constraints in RSA process for Fixed-Grid requirements. For example, 329 in the network of figure 1, when a LSP request from node B to node F 330 with 50GHz slot width arrives, it is a better route of B->C->F than 331 the route B->E->F, because that flexible-Grid WSSs are more expensive 332 than fixed-grid ones, and routing fixed-Grid requests on fixed-Grid 333 elements could leave the Flexible-Grid elements and related spectrum 334 resources to subsequent high data rate traffic. 336 4.3. Optical Signal Compatibility Constraint 338 Optical Signal Compatibility Constraint includes the signal 339 processing ability (for example, data rate, FEC and modulation 340 format) and modulation-related minimum slot width for each Optical- 341 to-Electronic (OE)/Electronic-to-Optical (EO) subsystem. The RSA 342 requirements of such fields are listed as follows: 344 Firstly, as described in [I-D.ietf-ccamp-rwa-wson-encode], OE/EO 345 subsystems may be limited to process only certain types of optical 346 signal in WSON or Flexible-Grid networks, so it is needed to get 347 sufficient information characterizing OE/EO elements in RSA process 348 to determine the signal compatibility along the path. Examples of 349 such subsystems include transponders, regenerators and so on. 351 Secondly, for each Label Switch Path, the required slot width is 352 determined by the attribution of optical signal. Generally, a client 353 requests "data rate" as its traffic parameter but not "slot width", 354 so it is needed to establish the mapping relations between data-rate/ 355 modulation-format and slot width, which should be reflected in 356 optical signal compatibility constraint. For example, in the network 357 of Figure 1, when a LSP request from node A to Node E with 100Gbit/s 358 data rate arrives, and both the transmitter of node A and the 359 responder of node E support optical tributary signal class DP-QPSK 360 100G with the same FEC and corresponding slot width 50GHz, the 361 minimum slot width required by this connection should be 50GHz 362 (without the consideration of impairments and regeneration). 364 5. Encoding 366 5.1. Label Set 368 The general format for a label set is in accordance with that in 369 [I-D.ietf-ccamp-general-constraint-encode],with a new flag G (1bit) 370 representing the grid type of label sets(1~Flexible-Grid DWDM; 371 0~Fixed-Grid DWDM): 373 0 1 2 3 374 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 375 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 376 |G| Act.| Num Labels | Length | 377 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 378 | start Label | 379 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 380 | start Label(continue) | 381 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 382 : Additional fields as necessary per action : 383 : : 384 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 386 the label format is in accordance with that in 387 [I-D.farrkingel-ccamp-flexigrid-lambda-label]. 389 In the case of Inclusive/Exclusive label lists (0/1), the label set 390 format is given as follows: 392 0 1 2 3 393 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 394 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 395 |1| 0or1| Num Labels (not used) | Length | 396 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 397 | First Label | 398 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 399 | First Label(continue) | 400 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 401 : : 402 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 403 | Last Label | 404 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 405 | Last Label(continue) | 406 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 408 Note that one label set may contain multiple labels. The lowest/ 409 highest frequency of the K-th label is calculated as follows: 411 Lowest frequency_k = (central frequency_k) - (slot width_k)/2 413 = (193.1 + n_k * C.S.) - (2 * C.S. * m_k)/2 415 = (193.1 + (n_k - m_k) * C.S.) THz; 417 Highest frequency_k = Lowest frequency_k + slot width_k 419 = (193.1 + (n_k + m_k) * C.S.) THz; 421 In the case of Inclusive/Exclusive label ranges (2/3), the label set 422 format is given as follows: 424 0 1 2 3 425 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 426 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 427 |1| 2or3| Num Labels(not used) | Length | 428 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 429 | Start Label #1 | 430 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 431 | Start Label #1(continue) | 432 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 433 | End Label #1 | 434 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 435 | End Label #1(continue) | 436 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 437 : : 438 : : 439 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 440 | Start Label #n | 441 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 442 | Start Label #n(continue) | 443 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 444 | End Label #n | 445 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 446 | End Label #n(continue) | 447 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 449 Note that one label set may contain multiple label ranges. The value 450 of m in start/end label has no effect on the label set, however, in 451 order to keep the integrity of labels and avoid misunderstanding, it 452 is set to default value: m = (slot width granularity)/12.5GHz. 454 The lowest/highest frequency of the K-th label range is calculated as 455 follows: 457 Lowest frequency_k = (central frequency_kstart) - (slot width 458 granularity)/2 460 = (193.1 + n_kstart * C.S.) - C.S. 462 = (193.1 + (n_kstart - 1) * C.S.) THz; 464 Highest frequency_k = (central frequency_kend) + (slot width 465 granularity)/2 467 = (193.1 + n_kend * C.S.) + C.S. 469 = (193.1 + (n_kend + 1) * C.S.) THz; 470 In the case of bitmap (4), the label set format is given as follows: 472 0 1 2 3 473 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 474 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 475 |1| 4 | Num Labels | Length | 476 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 477 | Start Label | 478 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 479 | Start Label(continue) | 480 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 481 | Bit Map Word #1 (Lowest numerical labels) | 482 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 483 : : 484 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 485 | Bit Map Word #N (Highest numerical labels) | 486 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 488 Based on [I-D.ietf-ccamp-general-constraint-encode], Num labels 489 denote the number of slices represented by the bit map; where the 490 slice denotes the basic slot unit, and the slot width of one slice is 491 equal to the slot width granularity. As there may exist some 492 situations that the unused bandwidth between two occupied bandwidth 493 is odd times of the central frequency granularity (not integral times 494 of the slot with granularity), two bits are needed to represent a 495 single slice. Each bit in the bit map represents a particular label 496 of half a slice with a value of 1/0 indicating whether the part is in 497 the set or not. Bit position zero and one represent the lowest slice 498 and corresponds to the start label. The lowest/highest frequency of 499 label range represented by bit position K is calculated as follows: 501 Lowest frequency_k = (central frequency_start) + (K - 1) * (slot 502 width granularity)/2 504 = (193.1 + n_start * C.S.) + (K - 1) * C.S. 506 = 193.1 + (n_start + K -1) * C.S.; 508 Highest frequency_k = Low frequency_k + C.S. 510 = 193.1 + (n_start + K) * C.S. 512 The size of the bit map is (2 * Num Label) bits, but the bit map is 513 padded out to a full multiple of 32 bits so that the TLV is a 514 multiple of four bytes. "Bits that do not represent labels (i.e., 515 those in positions) and beyond SHOULD be set to zero and MUST be 516 ignored" [I-D.ietf-ccamp-general-constraint-encode]. 518 5.2. Port Flexible-Grid Supporting Ability Constraint 520 To accommodate the feature of port Flexible-Grid Supporting Ability 521 constraint, we extend the Port Label Restriction sub-TLV defined in 522 [I-D.ietf-ccamp-general-constraint-encode] for Flexible-Grid 523 networks: 525 0 1 2 3 526 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 527 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 528 | MatrixID | RstType = 5 | Reserved | 529 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 530 |Grid | C.S. | Reserved | Min-Width | Max-Width | 531 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 533 In WSON network, Matrix ID is used to represent "either the value in 534 the corresponding Connectivity Matrix sub-TLV or takes the value OxFF 535 to indicate the restriction applies to the port regardless of any 536 Connectivity Matrix"[I-D.ietf-ccamp-general-constraint-encode]. 537 RstType is used to represent the restriction type. This document 538 defines a new RstType value to express the port Flexible-Grid 539 Supporting Ability constraint in Flexible-Grid networks: 541 5: PORT_ATTRIBUTION. 543 The meaning of Grid and C.S. is defined in 544 [I-D.farrkingel-ccamp-flexigrid-lambda-label], which is shown as 545 follows: 547 +---------------+-------+ 548 | Grid | Value | 549 +---------------+-------+ 550 | Reserved | 0 | 551 +---------------+-------+ 552 | ITU-T DWDM | 1 | 553 +---------------+-------+ 554 | ITU-T CWDM | 2 | 555 +---------------+-------+ 556 | Flexible DWDM | 3 | 557 +---------------+-------+ 558 | Any | 4(TBA)| 559 +---------------+-------+ 560 | Future use | 5-7 | 561 +---------------+-------+ 563 +-------------+---------+ 564 |C.S. (GHz) | Value | 565 +-------------+---------+ 566 | Reserved | 0 | 567 +-------------+---------+ 568 | 100 | 1 | 569 +-------------+---------+ 570 | 50 | 2 | 571 +-------------+---------+ 572 | 25 | 3 | 573 +-------------+---------+ 574 | 12.5 | 4 | 575 +-------------+---------+ 576 | 6.25 | 5 (TBA) | 577 +-------------+---------+ 578 |Future use | 6 ~ 15 | 579 +-------------+---------+ 581 A new Grid type "Any" is defined. 583 "Within the fixed grid network, the C.S. value is used to represent 584 the channel spacing, as the spacing between adjacent channels is 585 constant. While for flexible grid situation, this field should be 586 used to represent central frequency 587 granularity."[I-D.farrkingel-ccamp-flexigrid-lambda-label] 588 Accordingly the slot width granularity is twice of the C.S.. 590 Min-Width/Max-Width: 8bits, unsigned integer. Min-Width/Max-Width 591 denotes the minimum/maximum slot width that the port supports, which 592 is an inherent attribution of the network elements. The formula is 593 shown as follows: 595 Minimum Slot Width (GHz) = 12.5GHz * Min-Width; 597 Maximum Slot Width (GHz) = 12.5GHz * Max-Width; 599 For flexible-Grid ports (Grid = 3), the possible values of slot width 600 are within the range [Minimum Slot Width, Maximum Slot Width] and 601 with the slot width granularity of 2 * C.S.; for Fixed-Grid ports 602 (Grid = 1 or 2), Min-Width/Max-Width is meaningless and padded with 603 0. For any port with Grid type "any", it means that the port support 604 any Grid type, any slot width granularity and any slot width range, 605 so C.S. and Min-Width/Max-Width are meaningless and padded with 0.. 606 One example of such port is A-I1, which is comprised of optical 607 splitter. 609 Note that, the similar field of Min-Width/Max-Width is also included 610 in object "BW sub-TLV" proposed by 611 [I-D.dhillon-ccamp-super-channel-ospfte-ext]. However, BW sub-TLV is 612 mainly used to present the available label set, so it belongs to 613 dynamic information according to [RFC6163] and should be flooded 614 frequently whenever the link state changes (for example, after the 615 setup/teardown of the path traversing the link). In this document, 616 the Port Label Restriction sub-TLV with PORT_ATTRIBUTION type is 617 regarded as relatively static information, as changes to these 618 properties such as Grid, C.S. and Min-Width/Max-Width require 619 hardware upgrades. It is more suitable to carry such information 620 separated from available label set in order to alleviate unnecessary 621 flooding. 623 Other port label restrictions have no difference with that in 624 [I-D.ietf-ccamp-general-constraint-encode]. 626 5.3. Optical Signal Compatibility Constraint 628 To accommodate the feature of Optical Signal Compatibility 629 Constraint, we extend the Modulation Type sub-TLV defined in 630 [I-D.ietf-ccamp-rwa-wson-encode] for Fixed-Grid networks: 632 0 1 2 3 633 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 634 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 635 |S|I| Modulation ID | Length | 636 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 637 | m | Possible additional modulation parameters | 638 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 639 : the modulation ID : 640 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 642 The meaning of S, I and Modulation ID is in accordance with that of 643 [I-D.ietf-ccamp-rwa-wson-encode]. 645 This document adds a new field "m" (8bit) to represent the minimum 646 slot width requirement for corresponding Modulation ID: 648 Minimum Slot Width = 12.5GHz * m. 650 Note that the modulation type sub-TLV may contain multiple modulation 651 IDs, which means the transmitter/responder/transponder support 652 multiple data rate/modulation format. 654 This sub-TLV establishes mapping relations between data rate/ 655 modulation format (Modulation ID) and slot width. In addition, it 656 also provides the signal processing ability for each OE/EO element in 657 the network. However, FEC may impact the value of m, but it is not 658 discussed here and leaved for further study. New values of 659 Modulation ID should be defined for ultra-high speed transmission, 660 but it depends on transmission technique and not specified in this 661 document. 663 Other signal compatibility constraints have no difference with that 664 in [I-D.ietf-ccamp-rwa-wson-encode]. 666 6. Encoding Example 668 6.1. Example of Label Set Encoding 670 Taking the network of figure 1 as an example, the available spectral 671 resource of link AB is shown in figure 3. 673 #1 Lowest #2 Highest #3 674 |-|-| |---------|---------| |-------|-------| 675 | |Center Freq. | ^ 676 |1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1| 677 __|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|__ 678 n= -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 679 | |___| 680 |_|_| 12.5GHz 681 | 682 slice 684 Figure 3. Spectral resource state of link AB 686 In figure 3, the spectral resource is from 193.1THz - 16 * 6.25GHz to 687 193.1THz + 10 * 6.25GHz. For label list type, the label set format 688 is given as followsGBPo 689 0 1 2 3 690 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 691 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 692 |1| 0 | Num Labels(not used) | Length(28) | 693 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 694 | 3 |C.S.(5)| Identifier | n(-15) | 695 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 696 | m(1) | Reserved | 697 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 698 | 3 |C.S.(5)| Identifier | n(-7) | 699 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 700 | m(5) | Reserved | 701 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 702 | 3 |C.S.(5)| Identifier | n(6) | 703 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 704 | m(4) | Reserved | 705 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 707 For label range type, the label set format is given as followsGBPo 708 0 1 2 3 709 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 710 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 711 |1| 2 | Num Labels(not used) | Length(52) | 712 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 713 | 3 |C.S.(5)| Identifier | n(-15) | 714 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 715 | m(1) | Reserved | 716 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 717 | 3 |C.S.(5)| Identifier | n(-15) | 718 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 719 | m(1) | Reserved | 720 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 721 | 3 |C.S.(5)| Identifier | n(-11) | 722 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 723 | m(1) | Reserved | 724 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 725 | 3 |C.S.(5)| Identifier | n(-3) | 726 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 727 | m(1) | Reserved | 728 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 729 | 3 |C.S.(5)| Identifier | n(3) | 730 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 731 | m(1) | Reserved | 732 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 733 | 3 |C.S.(5)| Identifier | n(9) | 734 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 735 | m(1) | Reserved | 736 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 738 For bitmap type, the label set format is given as followsGBPo 740 0 1 2 3 741 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 742 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 743 |1| 4 | Num Labels(26) | Length(16) | 744 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 745 | 3 |C.S.(5)| Identifier | n(-15) | 746 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 747 | m(1) | Reserved | 748 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 749 |1|1|0|0|1|1|1|1|1|1|1|1|1|1|0|0|0|0|1|1|1|1|1|1|1|1|0|0|0|0|0|0| 750 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 752 6.2. Example of Port Flexible-Grid Supporting Ability Constraint 753 Encoding 755 Taking the network of figure 1 as an example, the port Flexible-Grid 756 supporting ability constraint of A-E1 can be encoded as follows: 758 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 759 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 760 | MatrixID(0xff)| RstType(5) | Reserved | 761 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 762 | 3 |C.S.(5)| Reserved | Min-Width(4) | Max-Width(16) | 763 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 765 The port port Flexible-Grid supporting ability constraint of A-E2 can 766 be encoded as follows: 768 0 1 2 3 769 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 770 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 771 | MatrixID(0xff)| RstType(5) | Reserved | 772 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 773 | 3 |C.S.(4)| Reserved | Min-Width(4) | Max-Width(24) | 774 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 776 The port Flexible-Grid supporting ability constraint of B-E2 can be 777 encoded as follows: 779 0 1 2 3 780 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 781 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 782 | MatrixID(0xff)| RstType(5) | Reserved | 783 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 784 | 1 |C.S.(2)| Reserved | Min-Width(0) | Max-Width(0) | 785 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 787 6.3. Example of Signal Compatibility Encoding 789 Assuming an optical transmitter can support the following modulation 790 typesGBPooptical tributary signal class DP-QPSK 100G (minimum slot 791 width: 50GHz); optical tributary signal class DP-BPSK 100G (minimum 792 slot width: 100GHz). The Modulation Type sub-TLV is given as 793 follows: 795 0 1 2 3 796 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 797 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 798 |1|0| DP-QPSK 100G | Length(8) | 799 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 800 | m(4) | Possible additional modulation parameters | 801 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 802 |1|0| DP-BPSK 100G | Length(8) | 803 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 804 | m(8) | Possible additional modulation parameters | 805 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 807 7. Security Considerations 809 8. IANA Considerations 811 TBD. 813 9. References 815 9.1. Normative References 817 [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM 818 apllications: DWDM frequency grid", November 2011. 820 [RFC2119] Bradner, S., "Key words for use in RFC's to Indicate 821 Requirement Levels", RFC 2119, March 1997. 823 [RFC6163] Lee, Y., Bernstain, G., and W. Imajuku, "Framework for 824 GMPLS and Path Computation Element Control of Wavelength 825 Switched Optical Networks", RFC 6163, April 2011. 827 9.2. Informative References 829 [I-D.dhillon-ccamp-super-channel-ospfte-ext] 830 Dhillon, A., Hussain, I., Rao, RJ., and M. Sosa, "OSPFTE 831 extension to support GMPLS for Flex Grid", October 2011. 833 [I-D.farrkingel-ccamp-flexigrid-lambda-label] 834 Farrel, A., King, D., Li, Y., Zhang, F., and R. Casellas, 835 "Generalized Labels for the Flexi-Grid in Lambda-Switch- 836 Capable (LSC) Label Switching Routers", October 2011. 838 [I-D.hussain-ccamp-super-channel-label] 839 Hussain, I., Dhillon, A., Pan, Z., Sosa, M., Basch, B., 840 Liu, S., and A-G. Malis, "Generalized Label for Super- 841 Channel Assignment on Flexible Grid", October 2011. 843 [I-D.ietf-ccamp-general-constraint-encode] 844 Bernstein, G., Lee, Y., Li, D., Imajuku, W., and JR. Han, 845 "General Network Element Constraint Encoding for GMPLS 846 Controlled Networks", May 2011. 848 [I-D.ietf-ccamp-rwa-wson-encode] 849 Bernstein, G., Lee, Y., Li, D., Imajuku, W., and JR. Han, 850 "Routing and Wavelength Assignment Information Encoding 851 for Wavelength Switched Optical Networks", October 2011. 853 [I-D.li-ccamp-flexible-grid-label] 854 Li, Y., Zhang, F., and R. Casellas, "Flexible Grid Label 855 Format in Wavelength Switched Optical Network", July 2011. 857 [I-D.zhang-ccamp-flexible-grid-ospf-ext] 858 Zhang, FT., Zi, XB., Casellas, R., Gonzales-de-Dios, O., 859 and D. Ceccarelli, "GMPLS OSPF-TE Extensions in support of 860 Flexible-Grid in DWDM Networks", October 2011. 862 [I-D.zhang-ccamp-flexible-grid-requirements] 863 Zhang, FT., Zi, XB., Gonzales-de-Dios, O., and R. 864 Casellas, "Requirements for GMPLS Control of Flexible 865 Grids", October 2011. 867 [I-D.zhang-ccamp-flexible-grid-rsvp-te-ext] 868 Zhang, FT., Gonzales-de-Dios, O., and D. Ceccarelli, 869 "RSVP-TE Signaling Extensions in support of Flexible 870 Grid", October 2011. 872 [I-D.zhangj-ccamp-flexi-grid-ospf-te-ext] 873 Zhang, J., Zhao, YL., and ZY. Yu, "OSPF-TE Protocol 874 Extension for Constraint-aware RSA in Flexi-Grid 875 Networks", October 2011. 877 Authors' Addresses 879 Lei Wang 880 ZTE 881 No.19, Huayuan East Road, Haidian District 882 Beijing 100191 883 P.R.China 885 Phone: +86 13811440067 886 Email: wang.lei131@zte.com.cn (hechen0001@gmail.com) 887 URI: http://www.zte.com.cn/ 889 Yao Li 890 ZTE 891 P.R.China 893 Phone: +86 025 52871109 894 Email: li.yao3@zte.com.cn 895 URI: http://www.zte.com.cn/