idnits 2.17.1 draft-ye-ccamp-mw-topo-yang-02.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == The document doesn't use any RFC 2119 keywords, yet seems to have RFC 2119 boilerplate text. -- The document date (October 22, 2018) is 2014 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Outdated reference: A later version (-13) exists of draft-ietf-ccamp-mw-yang-10 == Outdated reference: A later version (-22) exists of draft-ietf-teas-yang-te-topo-18 Summary: 0 errors (**), 0 flaws (~~), 4 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 CCAMP Working Group M. Ye, Ed. 3 Internet-Draft A. Guo 4 Intended status: Standards Track Huawei Technologies 5 Expires: April 25, 2019 J. Ahlberg 6 Ericsson AB 7 X. Li 8 NEC Laboratories Europe GmbH 9 D. Spreafico 10 Nokia - IT 11 October 22, 2018 13 A YANG Data Model for Microwave Topology 14 draft-ye-ccamp-mw-topo-yang-02 16 Abstract 18 This document defines a YANG data model to describe the topologies of 19 microwave/millimeter. 21 Requirements Language 23 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 24 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 25 document are to be interpreted as described in [RFC2119]. 27 Status of This Memo 29 This Internet-Draft is submitted in full conformance with the 30 provisions of BCP 78 and BCP 79. 32 Internet-Drafts are working documents of the Internet Engineering 33 Task Force (IETF). Note that other groups may also distribute 34 working documents as Internet-Drafts. The list of current Internet- 35 Drafts is at https://datatracker.ietf.org/drafts/current/. 37 Internet-Drafts are draft documents valid for a maximum of six months 38 and may be updated, replaced, or obsoleted by other documents at any 39 time. It is inappropriate to use Internet-Drafts as reference 40 material or to cite them other than as "work in progress." 42 This Internet-Draft will expire on April 25, 2019. 44 Copyright Notice 46 Copyright (c) 2018 IETF Trust and the persons identified as the 47 document authors. All rights reserved. 49 This document is subject to BCP 78 and the IETF Trust's Legal 50 Provisions Relating to IETF Documents 51 (https://trustee.ietf.org/license-info) in effect on the date of 52 publication of this document. Please review these documents 53 carefully, as they describe your rights and restrictions with respect 54 to this document. Code Components extracted from this document must 55 include Simplified BSD License text as described in Section 4.e of 56 the Trust Legal Provisions and are provided without warranty as 57 described in the Simplified BSD License. 59 Table of Contents 61 1. Terminology and Definitions . . . . . . . . . . . . . . . . . 2 62 2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 63 3. YANG Data Model (Tree Structure) . . . . . . . . . . . . . . 3 64 3.1. The YANG Tree . . . . . . . . . . . . . . . . . . . . . . 3 65 3.2. Relationship with microwave interface YANG model . . . . 4 66 3.3. Relationship with client topology model . . . . . . . . . 4 67 3.4. Model applicability to other technology . . . . . . . . . 4 68 4. YANG Module . . . . . . . . . . . . . . . . . . . . . . . . . 5 69 5. Security Considerations . . . . . . . . . . . . . . . . . . . 8 70 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 9 71 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 9 72 7.1. Normative References . . . . . . . . . . . . . . . . . . 9 73 7.2. Informative References . . . . . . . . . . . . . . . . . 10 74 Appendix A. Appendix A Examples of microwave topology . . . . . 11 75 A.1. Appendix A.1 A topology with single microwave radio link 11 76 A.2. Appendix A.2 A topology with microwave radio links 77 bundling . . . . . . . . . . . . . . . . . . . . . . . . 13 78 Appendix B. Contributors . . . . . . . . . . . . . . . . . . . . 17 79 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 17 81 1. Terminology and Definitions 83 The following acronyms are used in this document: 85 PNC Provisioning Network Controller 87 MDSC Multi Domain Service Coordinator 89 2. Introduction 91 This document defines a YANG data model to describe the topologies of 92 microwave/millimeter(hereafter microwave is used to simplify the 93 text). The microwave topology model augments the TE topology model 94 defines in [I-D.ietf-teas-yang-te-topo]. 96 The microwave topology model is expected to be used between a 97 Provisioning Network Controller(PNC) and a Multi Domain Service 98 Coordinator(MDSC)([RFC8453]). Possible use cases of microwave 99 topology models include: 101 1. The microwave link frequency could be used to understand the 102 current frequency usage, enabling a whole view of the network 103 topology information, and as an input for network frequency 104 planning. 106 2. The microwave radio link could change its bandwidth according to 107 the environments under the adaptive modulation mode, e.g., the 108 bandwidth will degrade when there's a heavy rain. To get to know 109 of current microwave link bandwidth is important for path 110 computation and service provisioning across different 111 technologies/networks. 113 3. Due to bandwidth changing feature, availability is normally used 114 to describe the microwave radio link characteristic. [RFC8330] 115 defines a mechanism to report bandwidth-availability information 116 through OSPF-TE. It's also necessary to include the information 117 in the YANG data model to optimize the path/route computation. 119 3. YANG Data Model (Tree Structure) 121 3.1. The YANG Tree 123 module: ietf-microwave-topology 124 augment /nw:networks/nw:network/nw:network-types/tet:te-topology: 125 +--rw mw-topology! 126 augment /nw:networks/nw:network/nt:link/tet:te/tet:te-link-attributes: 127 +--rw mw-link-frequency? uint32 128 +--rw mw-link-channel-separation? uint32 129 +--ro mw-link-nominal-bandwidth? uint64 130 +--ro mw-link-current-bandwidth? uint64 131 +--ro mw-link-unreserved-bandwidth uint64 132 +--rw mw-link-availability* [availability] 133 +--rw availability decimal64 134 +--ro mw-link-bandwidth uint64 135 augment /nw:networks/nw:network/nw:node/nt:termination-point /tet:te: 136 +-- mp interface-root? 138 3.2. Relationship with microwave interface YANG model 140 The microwave topology model is expected to be used between a PNC and 141 a MDSC. [I-D.ietf-ccamp-mw-yang] defines an interface YANG model for 142 microwave radio link which is used between the PNC and the physical 143 device for device configuration. The PNC is able to convert the 144 information received from the topology model into the interface 145 model. For example, the link frequency in the topology model is 146 mapped to the tx-frequency of the carrier termination in the 147 interface model. 149 If the purpose is to access more information of the microwave 150 interface YANG model through the microwave topology model, a schema 151 mount mechanism could be used, see the "interface-root" in the 152 microwave topology model. [I-D.ietf-netmod-schema-mount] defines a 153 mechanism to add the schema trees defined by a set of YANG modules 154 onto a mount point defined in the schema tree in some YANG module. 155 The current defined schema mount mechanism allows mounting of 156 complete data models only. If complete mounting of the microwave 157 interface YANG model is not neceesary, a deviation model could be 158 created to remove unneeded schema in the microwave interface model, 159 and be mounted to the topology model. 161 3.3. Relationship with client topology model 163 Ethernet is the most common client signal over microwave link. The 164 Ethernet topology is an overlay TE topology on microwave topology. 165 When an ETH service is transported by a single microwave radio link, 166 the ETH link is supported by the microwave tunnel in underlay 167 microwave topology, the microwave tunnel is supported by the 168 microwave link. Please be noted that the tunnel in microwave 169 topology is normally one-hop tunnel without intermediate node. 170 Appendix A.1 shows some JSON example of Ethernet link over single 171 microwave link. When an ETH service is transported over two 172 microwave radio links, the ETH link is supported by the microwave 173 tunnel in underlay microwave topology, the microwave tunnel is 174 supported by the two microwave links. TTP Local Link Connectivity 175 List is a List of TE links terminated by the TTP hosting TE 176 node[I-D.ietf-teas-yang-te-topo]. It's used to associated with the 177 two LTP to the TTP in microwave topology. Appendix A.2 shows some 178 JSON example of Ethernet link over two microwave links. 180 3.4. Model applicability to other technology 182 TBA 184 4. YANG Module 186 file "ietf-microwave-topology.yang" 188 module ietf-microwave-topology { 189 yang-version 1.1; 190 namespace "urn:ietf:params:xml:ns:yang:ietf-microwave-topology"; 192 prefix "mwtopo"; 194 import ietf-network { 195 prefix "nw"; 196 } 198 import ietf-network-topology { 199 prefix "nt"; 200 } 202 import ietf-te-topology { 203 prefix "tet"; 204 } 206 /* 207 *import ietf-routing-types { 208 * prefix "rt-types"; 209 * } 210 */ 212 import ietf-yang-schema-mount { 213 prefix yangmnt; 214 reference "draft-ietf-netmod-schema-mount: YANG Schema Mount"; 215 } 217 organization 218 "Internet Engineering Task Force (IETF) CCAMP WG"; 219 contact 220 " 221 WG List: 223 ID-draft authors: 224 Min Ye (amy.yemin@huawei.com); 225 Aihua Guo (aihuaguo@huawei.com); 226 Jonas Ahlberg (jonas.ahlberg@ericsson.com); 227 Xi Li (Xi.Li@neclab.eu); 228 Daniela Spreafico (daniela.spreafico@nokia.com) 229 "; 231 description 232 "This is a module for microwave topology."; 233 revision 2018-10-22 { 234 description 235 "change the type of serveral data nodes."; 236 reference ""; 237 } 239 revision 2018-06-30 { 240 description 241 "Updated version to add mount point to the interface model."; 242 reference ""; 243 } 245 revision 2018-03-05 { 246 description 247 "Initial version."; 248 reference ""; 249 } 251 feature root-radio-if{ 252 description 253 "This feature means that root for microwave radio 254 interface model is supported."; 255 } 257 /* 258 * Groupings 259 */ 260 grouping mw-link-attributes { 261 description "Microwave link attributes"; 263 leaf mw-link-frequency { 264 type uint32; 265 units "kHz"; 266 description "Frequency of the link"; 267 } 269 leaf mw-link-channel-separation { 270 type uint32; 271 units "kHz"; 272 description "The distance 273 between adjacent channels in a radio frequency channel 274 arrangement used in this link"; 275 reference "ETSI EN 302 217-1"; 276 } 278 leaf mw-link-nominal-bandwidth { 279 type uint64; 280 units "Kbps"; 281 config false; 282 description "The nominal bandwidth of the link"; 283 } 285 leaf mw-link-current-bandwidth { 286 type uint64; 287 units "Kbps"; 288 config false; 289 description "The current bandwidth of the link"; 290 } 292 leaf mw-link-unreserved-bandwidth { 293 type uint64; 294 units "Kbps"; 295 config false; 296 description "The unreserved bandwidth of the link is 297 mw-link-current-bandwidth minus occupied bandwidth 298 on mw link"; 299 } 301 list mw-link-availability{ 302 key "availability"; 303 description "List of availability and corresponding 304 link bandwidth"; 306 leaf availability { 307 type decimal64 { 308 fraction-digits 4; 309 range "0..99.9999"; 310 } 311 description "Availability level of the link"; 312 } 314 leaf mw-link-bandwidth { 315 type uint64; 316 units "Kbps"; 317 config false; 318 description "The link bandwidth corresponding 319 to the availability level"; 320 } 321 } 323 container "interface-root" { 324 if-feature root-radio-if; 325 description 326 "Container for mount point."; 328 yangmnt:mount-point "interface-root" { 329 description 330 "Root for microwave radio interface model. 331 It could contain an interface instance."; 332 } 333 } 334 } 336 /* 337 * Data nodes 338 */ 339 augment "/nw:networks/nw:network/nw:network-types/" 340 + "tet:te-topology" { 341 container mw-topology { 342 presence "indicates a topology type of microwave."; 343 description "microwave topology type"; 344 } 345 description "augment network types to include microwave network"; 346 } 348 augment "/nw:networks/nw:network/nt:link/tet:te/" 349 + "tet:te-link-attributes" { 350 when "../../../nw:network-types/tet:te-topology/" 351 + "mwtopo:mw-topology" { 352 description "This augment is only valid for microwave."; 353 } 354 description "Microwave link augmentation"; 356 uses mw-link-attributes; 357 } 359 } 360 362 5. Security Considerations 364 The YANG module specified in this document defines a schema for data 365 that is designed to be accessed via network management protocols such 366 as NETCONF [RFC6241] or RESTCONF [RFC8040][RFC8040]. The lowest 367 NETCONF layer is the secure transport layer, and the mandatory-to- 368 implement secure transport is Secure Shell (SSH) [RFC6242]. The 369 lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure 370 transport is TLS [RFC8446]. 372 The NETCONF access control model [RFC8341] provides the means to 373 restrict access for particular NETCONF or RESTCONF users to a 374 preconfigured subset of all available NETCONF or RESTCONF protocol 375 operations and content. 377 There are a number of data nodes defined in this YANG module that are 378 writable/creatable/deletable (i.e., config true, which is the 379 default). These data nodes may be considered sensitive or vulnerable 380 in some network environments. Write operations (e.g., edit-config) 381 to these data nodes without proper protection can have a negative 382 effect on network operations. These are the subtrees and data nodes 383 and their sensitivity/vulnerability: 385 TBD.(list subtrees and data nodes and state why they are sensitive) 387 Some of the readable data nodes in this YANG module may be considered 388 sensitive or vulnerable in some network environments. It is thus 389 important to control read access (e.g., via get, get-config, or 390 notification) to these data nodes. These are the subtrees and data 391 nodes and their sensitivity/vulnerability: 393 TBD.(list subtrees and data nodes and state why they are sensitive) 395 6. IANA Considerations 397 IANA has assigned a new URI from the "IETF XML Registry" [RFC3688]. 399 URI: urn:ietf:params:xml:ns:yang:ietf-microwave-topology 400 Registrant Contact: The IESG 401 XML: N/A; the requested URI is an XML namespace. 403 IANA has recorded a YANG module name in the "YANG Module Names" 404 registry [RFC6020] as follows: 406 Name: ietf-microwave-topology 407 Namespace: urn:ietf:params:xml:ns:yang:ietf-microwave-topology 408 Prefix: mwtopo 409 Reference: RFC xxxx 411 7. References 413 7.1. Normative References 415 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 416 Requirement Levels", BCP 14, RFC 2119, 417 DOI 10.17487/RFC2119, March 1997, 418 . 420 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, 421 DOI 10.17487/RFC3688, January 2004, 422 . 424 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for 425 the Network Configuration Protocol (NETCONF)", RFC 6020, 426 DOI 10.17487/RFC6020, October 2010, 427 . 429 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., 430 and A. Bierman, Ed., "Network Configuration Protocol 431 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, 432 . 434 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure 435 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, 436 . 438 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF 439 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, 440 . 442 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration 443 Access Control Model", STD 91, RFC 8341, 444 DOI 10.17487/RFC8341, March 2018, 445 . 447 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol 448 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, 449 . 451 7.2. Informative References 453 [I-D.ietf-ccamp-mw-yang] 454 Ahlberg, J., Ye, M., Li, X., Spreafico, D., and M. 455 Vaupotic, "A YANG Data Model for Microwave Radio Link", 456 draft-ietf-ccamp-mw-yang-10 (work in progress), October 457 2018. 459 [I-D.ietf-netmod-schema-mount] 460 Bjorklund, M. and L. Lhotka, "YANG Schema Mount", draft- 461 ietf-netmod-schema-mount-12 (work in progress), October 462 2018. 464 [I-D.ietf-teas-yang-te-topo] 465 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and 466 O. Dios, "YANG Data Model for Traffic Engineering (TE) 467 Topologies", draft-ietf-teas-yang-te-topo-18 (work in 468 progress), June 2018. 470 [RFC8330] Long, H., Ye, M., Mirsky, G., D'Alessandro, A., and H. 471 Shah, "OSPF Traffic Engineering (OSPF-TE) Link 472 Availability Extension for Links with Variable Discrete 473 Bandwidth", RFC 8330, DOI 10.17487/RFC8330, February 2018, 474 . 476 [RFC8453] Ceccarelli, D., Ed. and Y. Lee, Ed., "Framework for 477 Abstraction and Control of TE Networks (ACTN)", RFC 8453, 478 DOI 10.17487/RFC8453, August 2018, 479 . 481 Appendix A. Appendix A Examples of microwave topology 483 A.1. Appendix A.1 A topology with single microwave radio link 485 Microwave is a transport technology which can be used to transport 486 client services, such as ETH. When an ETH service is transported by 487 a single microwave radio link, the topology could be shown as the 488 Figure 3. Note that the figure just shows an example, there might be 489 other possiblities to demonstrate the topology. 491 Node 1 Node 2 492 +---------------+ +---------------+ 493 | | | | 494 | +-----------+ | | +-----------+ | 495 | | LTP11 | | | | LTP21 | | --ETH topo 496 | +-------o---+ | ETH-TE-Link-1 | +---o-------+ | 497 | |---------------------------------| | 498 | | | | 499 | +-----------+ | | +-----------+ | 500 | | TTP-1 __ | | microwave tunnel-11 | | __ TTP-1 | | 501 | | \/@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\/ | | 502 | | * | | | | * | | --Microwave topo 503 | | * | | microwave link 12 | | * | | 504 | | LTP-1 *o ------------------------o* LTP-1 | | 505 | | | | | | | | 506 | +-----------+ | | +-----------+ | 507 | | | | 508 +---------------+ +---------------+ 510 Figure 3: ETH transported on a single microwave radio link 512 In the above ETH topology, the ETH-TE-link is encoded in JSON as 513 below: 515 ... 516 "ietf-network-topology:link": [ 517 { 518 "link-id": "N1,LTP11,N2,LTP21", 519 "source": { 520 "source-node": "N1", 521 "source-tp": "LTP11" 522 } 523 "destination": { 524 "dest-node": "N2", 525 "dest-tp": "LTP21" 526 } 527 } 528 ] 529 "ietf-te-topology:link/te/te-link-attributes/": [ 530 { 531 "ietf-te-topology:underlay": { 532 "enabled": ture, 533 "primary-path":{ 534 "path-element": { 535 "path-element-id": "MW-11" 536 //no backup-path 537 //no protection-type 538 } 539 } 540 "tunnel-termination-points": { 541 "source": "N1/TTP-1", 542 "destination": "N2/TTP-1" 543 } 544 "tunnels" : { 545 "sharing": "false", 546 "tunnel":{ 547 "tunnel-name": "MW-11", 548 "sharing": "false" 549 } 550 } 551 } 552 } 553 ] 555 Note that the example above just shows the particular ETH link, not 556 the full ETH topology. 558 In the microwave topology, the microwave link is encoded in JSON as 559 below: 561 ... 562 "ietf-network-topology:link": [ 563 { 564 "link-id": "N1,LTP1,N2,LTP1", 565 "source": { 566 "source-node": "N1", 567 "source-tp": "LTP1" 568 } 569 "destination": { 570 "dest-node": "N2", 571 "dest-tp": "LTP1" 572 } 573 } 574 ] 575 "ietf-te-topology:link/te/te-link-attributes": [ 576 { 577 "ietf-microwave-topology:mw-link-frequency": 10728000, 578 "ietf-microwave-topology:mw-link-channel-separation": "28000", 579 "ietf-microwave-topology:mw-link-nominal-bandwidth": "1000", 580 "ietf-microwave-topology:mw-link-current-bandwidth": "1000", 581 "ietf-microwave-topology:mw-link-unreserved-bandwidth": "400", 582 "ietf-microwave-topology:mw-link-availability":{ 583 "availability":"99.99", 584 "mw-link-bandwidth": "1000" 585 } 586 } 587 ] 589 A.2. Appendix A.2 A topology with microwave radio links bundling 591 When a ETH service is transported over two microwave radio links, the 592 topologies could be shown as in Figure 4. Note that the figure just 593 shows one example, there might be other possiblities to demonstrate 594 the topology. 596 Node 1 Node 2 597 +---------------+ +---------------+ 598 | | | | 599 | +-----------+ | | +-----------+ | 600 | | LTP11 | | | | LTP21 | | --ETH topo 601 | +-------o---+ | ETH-TE-Link-1 | +---o-------+ | 602 | |---------------------------------| | 603 | | | | 604 | +-----------+ | | +-----------+ | 605 | | TTP-1 __ | | microwave tunnel-11 | | __ TTP-1 | | 606 | | \/@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\/ | | 607 | | ** | | | | ** | | --Microwave topo 608 | | ** | | microwave link 22 | | ** | | 609 | | LTP-2**o ------------------------o**LTP-2 | | 610 | | LTP-1 *o ------------------------o* LTP-1 | | 611 | | | | microwave link 11 | | | | 612 | +-----------+ | | +-----------+ | 613 | | | | 614 +---------------+ +---------------+ 616 Figure 4: ETH transported on two microwave radio links 618 In the ETH topology, the ETH-TE-link is encoded in JSON as below: 620 ... 621 "ietf-network-topology:link": [ 622 { 623 "link-id": "N1,LTP11,N2,LTP21", 624 "source": { 625 "source-node": "N1", 626 "source-tp": "LTP11" 627 } 628 "destination": { 629 "dest-node": "N2", 630 "dest-tp": "LTP21" 631 } 632 } 633 ] 635 "ietf-te-topology:link/te/te-link-attributes/": [ 636 { 637 "ietf-te-topology:underlay": { 638 "enabled": ture, 639 "primary-path":{ 640 "path-element": { 641 "path-element-id": "MW-11" 642 //no backup-path 643 //no protection-type 644 } 645 } 646 "tunnel-termination-points": { 647 "source": "N1/TTP-1", 648 "destination": "N2/TTP-1" 649 } 650 "tunnels" : { 651 "sharing": "false", 652 "tunnel":{ 653 "tunnel-name": "MW-11", 654 "sharing": "false" 655 } 656 } 657 } 658 } 659 ] 661 Note that the example above just shows the specific ETH link, not the 662 full ETH topology. 664 In the microwave topology, the micorwave link is encoded in JSON as 665 below: 667 ... 669 "ietf-network-topology:link": [ 670 { 671 "link-id": "N1,LTP1,N2,LTP1", 672 "source": { 673 "source-node": "N1", 674 "source-tp": "LTP1" 675 } 676 "destination": { 677 "dest-node": "N2", 678 "dest-tp": "LTP1" 679 } 680 "ietf-te-topology:link/te/te-link-attributes": [ 681 { 682 "ietf-microwave-topology:mw-link-frequency": 10728000, 683 "ietf-microwave-topology:mw-link-channel-separation": "28000", 684 "ietf-microwave-topology:mw-link-nominal-bandwidth": "1000", 685 "ietf-microwave-topology:mw-link-current-bandwidth": "1000", 686 "ietf-microwave-topology:mw-link-unreserved-bandwidth": "400", 687 "ietf-microwave-topology:mw-link-availability":{ 688 "availability":"99.99", 689 "mw-link-bandwidth": "1000" 690 } 691 } 692 ] 693 } 694 { 695 "link-id": "N1,LTP1,N2,LTP1", 696 "source": { 697 "source-node": "N1", 698 "source-tp": "LTP2" 699 } 700 "destination": { 701 "dest-node": "N2", 702 "dest-tp": "LTP2" 703 } 704 "ietf-te-topology:link/te/te-link-attributes": [ 705 { 706 "ietf-microwave-topology:mw-link-frequency": 10756000, 707 "ietf-microwave-topology:mw-link-channel-separation": "28000", 708 "ietf-microwave-topology:mw-link-nominal-bandwidth": "1000", 709 "ietf-microwave-topology:mw-link-current-bandwidth": "1000", 710 "ietf-microwave-topology:mw-link-unreserved-bandwidth": "400", 711 "ietf-microwave-topology:mw-link-availability":{ 712 "availability":"99.99", 713 "mw-link-bandwidth": "1000" 714 } 715 } 716 ] 718 } 719 ] 721 "ietf-te-topology:node/te/tunnel-termination-point/" 722 +"local-link-connectivities":{ 723 "te-node-tunnel-termination-point-llc-list":[ 724 { 725 "link-tp-ref": LTP1 726 } 727 { 728 "link-tp-ref": LTP2 729 } 730 ] 731 } 733 Note that the example above just shows the microwave component links, 734 it doesn't show the full microwave topology. 736 Appendix B. Contributors 738 Italo Busi 739 Huawei Technologies 740 Email: italo.busi@huawei.com 742 Xufeng Liu 743 Jabil 744 Email: Xufeng_Liu@jabil.com 746 Authors' Addresses 748 Ye Min (editor) 749 Huawei Technologies 750 No.1899, Xiyuan Avenue 751 Chengdu 611731 752 P.R.China 754 Email: amy.yemin@huawei.com 756 Aihua Guo 757 Huawei Technologies 759 Email: aihuaguo@huawei.comm 760 Jonas Ahlberg 761 Ericsson AB 762 Lindholmspiren 11 763 Goteborg 417 56 764 Sweden 766 Email: jonas.ahlberg@ericsson.com 768 Xi Li 769 NEC Laboratories Europe GmbH 770 Kurfuersten-Anlage 36 771 Heidelberg 69115 772 Germany 774 Email: Xi.Li@neclab.eu 776 Daniela Spreafico 777 Nokia - IT 778 Via Energy Park, 14 779 Vimercate (MI) 20871 780 Italy 782 Email: daniela.spreafico@nokia.com